
Behavioral Contracts and Behavioral Subtyping

Robert Bruce Findler
Rice University

6100 South Main; MS 132
Houston, TX 77006; USA

Mario Latendresse
Rice University

Matthias Felleisen
Rice University

Northeastern University

ABSTRACT
Component-basedsoftware manufacturing has the potential to bring
division-of-labor benefits to the world of software engineering. In
order to make a market of software components viable, however,
producers and consumers must agree on enforceable software con-
tracts.

In this paper, we show how to enforce contracts if components are
manufactured from class and interface hierarchies. In particular,
we focus on one style of contract: pre- and post-conditions. Pro-
grammers annotate class and interface methods with pre- and post-
conditions and the run-time system checks these conditions during
evaluation. These contracts guarantee that methods are called prop-
erly and provide appropriate results.

In procedural languages, the use of pre- and post-condition con-
tracts is well-established and studies have demonstrated its value.
In object-oriented languages, however, assigning blame for pre-
and post-condition failures poses subtle and complex problems.
Specifically, assigning blame for malformed class and interface hi-
erarchies is so difficult that none of the existing contract monitor-
ing tools correctly assign blame for these failures. In this paper, we
show how to overcome these problems in the context of Java. Our
work is based on the notion of behavioral subtyping.

1. INTRODUCTION
In 1969, McIlroy [19] proposed the idea of reusable software com-
ponents. In a marketplace with reusable components, software
manufacturers would producesoftware componentswith well-spec-
ified interfaces. Programmers would assemble systems from these
off-the-shelf components, possibly adapting some with wrapper
code or adding a few new ones. If a component were to break
its promises, a programmer would replace it with a different one. If
a manufacturer were to improve a component, a programmer could
improve the final product by replacing the link to the old compo-
nent with a link to the new one.

To make such a component marketplace work, components must
come with interfaces that specify their key properties. Beugnard et

Foundations of Software Engineering, FSE 2001

al [2] list four levels of component contracts:

• syntactic contracts,e.g. types,

• behavioral contracts,e.g.pre- and post-condition invariants,

• sequencing contracts,e.g. threading and timing constraints,
and

• quality of service contracts,e.g. time and space guarantees.

In this paper, we focus on behavioral contracts in the form of pre-
and post-conditions, for Java [10] and other object-oriented pro-
gramming languages.

In principle, one could try to prove the correctness of behavioral
contracts. For example, the Extended Static Checking group at
Digital has developed verification tools for Java and Modula 3 [3].
In general, however, the languages used to express behavioral con-
tracts are rich enough that it is not possible to verify statically that
the contracts are never violated. In fact, the Extended Static Check-
ing group’s tools are neither complete nor sound, that is, they may
validate code that is faulty and may fault code that is correct. Fur-
thermore, most tools that do attempt to prove behavioral contracts
correct are computationally expensive. Finally, these tools also re-
quire training in logic that most programmers do not possess. Be-
cause of these difficulties, we focus on tools that monitor the cor-
rectness of contracts at run-time.

Run-time enforced behavioral contracts have been studied exten-
sively in the context of procedural languages [11, 17, 23, 25]. Rosen-
blum [25], in particular, makes the case for the use of assertions in
C and describes the most useful classes of assertions. Adding be-
havioral contracts to an object-oriented language, however, poses
subtle and complex problems. In particular, the contracts on over-
riding methods are improperly synthesized from the programmer’s
original contracts in all of the existing contract monitoring sys-
tems [5, 9, 12, 13, 14, 18, 21, 24]. This flaw leads to mis-assigned,
delayed, or even entirely missing blame1 for contract violations.

We overcome these flaws by basing our work on that of Amer-
ica [1], Liskov and Wing [15, 16], and Meyer [20] who have studied
the problem of relating types and subtypes, with behavioral spec-
ifications, in an object-oriented world. Accordingly, one type is

1We believe that a certain amount of accountability and pride in
quality craftsmanship is critical to good software production. Thus,
when we use the term “blame” we mean that the programmer
should be held accountable for shoddy craftsmanship.

Program Conditions

C
void m(Object x)

@pre pC(x)
@post qC (x)

D
void m(Object x)

@pre pD(x)
@post qD(x)

∀x: pC(x) ⇒ pD(x)

∀x: qD(x) ⇒ qC(x)

�

Figure 1: The Behavioral Subtyping Condition

Program Conditions

void m(Object x)
@pre pL(x)
@post qL(x)

L R
void m(Object x)

@pre pR(x)
@post qR(x)

B
void m(Object x)

@pre pB(x)
@post qB(x)

(∀x: pR(x) ⇒ pB(x)) ∧
(∀x: pL(x) ⇒ pB(x))

(∀x: qB(x) ⇒ qR(x)) ∧
(∀x: qB(x) ⇒ qL(x))

�
�

���

�
�

���

Figure 2: The Behavioral Subtyping Condition, Generalized to Multiple Inheritance

a behavioral subtype of another if objects of the subtype can be
substituted in any context expecting the original type, without any
effect on the program’s behavior. This paper demonstrates how to
integrate contracts properly, according to the notion of behavioral
subtyping, into a contract monitoring tool for Java.

The next section explains behavioral subtyping in more detail. Sec-
tion 3 discusses existing contract monitoring tools and shows how
they fail to enforce contracts properly. Section 4 presents our con-
tract monitoring tool. The last two sections discuss related work
and draw some preliminary conclusions.

2. THE BEHAVIORAL SUBTYPING
CONDITION

Behavioral subtyping [1, 15, 16, 20] guarantees that all objects of
a subtype preserve all of the original type’s invariants. Put differ-
ently, any object of a subtype must besubstitutablefor an object
of the original type without any effect on the program’s observable
behavior. For pre- and post-conditions, the behavioral subtyping
condition states that the pre-condition contracts for a type imply
the pre-condition contracts for each subtype and the post-condition
contracts for each subtype imply the post-condition contracts for
the type.

Consider figure 1. It represents a program with two classes,C and
D , with D derived fromC. Both classes have a methodm, with
D ’s m overridingC’s m. Each method, however, has its own dis-
tinct pre-condition and post-condition. Interpreted for this exam-
ple, the behavioral subtyping condition states that for any input to
the method,x, pC(x) impliespD(x) andqD(x) impliesqC(x).

We generalize the behavioral subtyping condition to multiple in-
heritance by considering each subtype relationship independently.
For an example, consider figure 2. It contains three interfaces,L ,
R, andB . Since each inheritance relationship is considered sep-
arately, we only require thatB is independently substitutable for
eitherL andR, as reflected in the conditions listed in figure 2. This
is the minimum requirement to match the spirit of the behavioral
subtyping condition.2

3. PROBLEMS WITH PRIOR WORK
We examined four tools that implement Eiffel-style [21] contracts
for Java: iContract [14], JMSAssert [18], jContractor [12], and
HandShake [5]. These systems enforce contracts by evaluating pre-
condition expressions as methods are called and evaluating post-
condition expressions as methods return. If the pre-condition fails,
they blame the calling code for not establishing the proper context.
If the post-condition fails, they blame the method itself for not liv-
ing up to its promise.

These tools also handle programs with inheritance. With the ex-
ception of jContractor [12], they all handle inheritance in the same
manner. For each overridden method, they construct a disjunction
of all of the method’s super pre-conditions and a conjunction of all
of the method’s super post-conditions. For the program in figure 1,
the systems replace the conditionpD(x) with

pC(x) || pD(x)

2It is possible to imagine a stronger constraint, however. One may
require thatL andR’s conditions be equivalent. This work applies
for this stricter constraint, mutatis mutandis.

Written by Alice

class C {
void set(int a) { . . . }

@pre { a > 0 }

int get() { . . . }
@post { a > 0 }

}

class D extends C {
void set(int a) { . . . }

@pre { a > 10 }

int get() { . . . }
@post { a > 10 }

}

Written by Bill

D d = new D () ;
d.set(5) ;
. . .

d.get() ;

Figure 3: Delayed, Incorrect Explanation for Contract Violation

and replace the conditionqD(x) with

qC (x) && qD(x)

Since the logical statements:

pC(x) ⇒ (pC (x) || pD(x))

and

(qC (x) && qD(x)) ⇒ qD(x)

are always true, the re-written programs always satisfy the behav-
ioral subtyping condition,even if the original program did not.

As Karaorman, Hölzle, and Bruno [12, section 4.1] point out, con-
tract monitoring tools should check the programmer’s original con-
tracts, because checking the synthesized contracts can mask pro-
grammer errors. For example, an erroneous contract formulation
may never be reported. Here is their example:

interface I {
int m(int a);

@pre { a > 0 }
}

The interface contains a single method,m, with the pre-condition
requirement thata is greater than0. Now, imagine this extension:

interface J extends I {
int m (int a);

@pre { a > 10 }
}

The programmer has made a mistake in extendingI with J, because
I ’s pre-condition is stronger thanJ’s pre-condition. For example,
whena is 5, J’s pre-condition is false butI ’s is true. SinceJ is
a subtype ofI , the behavioral subtyping condition tells us that the
pre-condition forI must imply the pre-condition forJ. This error
may have been a logical error on the part of the programmer, or
it may have been a typo. In either case, the tool should report the
error to the programmer. If the tool does not report this error, the

program may signal an incorrect error or even produce an erro-
neous result. To improve software’s reliability, these defects must
be detected and reported as soon as they occur.

None of the existing tools for monitoring pre- and post-conditions,
even jContractor, handle this situation properly, in general. Instead,
most combine pre-conditions with a disjunction, replacingJ’s pre-
condition with

(a > 0) || (a > 10)

which masks the defect in the program. When a programmer in-
vokesm with 5, the synthesized pre-condition is true, and no error
is signalled.

Similarly, an erroneous contract formulation may trigger a bad ex-
planation of a run-time error. Figure 3 contains a program fragment
that illustrates this idea. It consists of two classes,C andD , both of
which implement an integer state variable. InC, the state variable
is allowed to take on all positive values and inD , the state variable
must be strictly larger than 10. Here, Alice wrote a hierarchy that
does not match the behavioral subtyping condition, becauseD is
not a behavioral subtype ofC. Since the existing tools combine the
pre-conditions with a disjunction,D ’s pre-condition is effectively
the same asC’s and does not guarantee that the state variable is
larger than10. Thus, the call tosetwith 5 will not signal an error.
Then, whenget is invoked, it will return5, which incorrectly trig-
gers a post-condition violation, blaming Alice with an error mes-
sage. Even though the blame is assigned to the guilty party in this
case, it is assigned after the actual violation occurs, making the
problem difficult to reproduce. Also, the blame is justified with an
incorrect reason, making the problem difficult to understand.

Existing contract monitoring systems handle Java’s multiple inher-
itance in a similarly flawed manner. When a single class imple-
ments more than one interface, JMSAssert [18] collects both the
pre-conditions and post-conditions together in conjunctions, ensur-
ing that the object meets all of the interfaces simultaneously. iCon-
tract [14] collects all of the pre-conditions in a disjunction and post-
conditions in a conjunction. Again, since these manufactured con-
tracts do not match the programmer’s written contracts, blame for
faulty programs may be delayed, mis-assigned, or missing entirely.

4. PROPERLY MONITORING CONTRACTS
Programmers make mistakes. Their mistakes range from simple
typos to complex, subtle logical errors. Accordingly, tools should

C

(a)

I C

(b)

J

I C

�

(c)

I C

D

�

(d)

I J

K C

��� ���

(e)

Figure 4: Section 4.2 Overview

not make the assumption that programmers have constructed well-
formed programs; in particular, they should not re-write the pro-
grams based on such an assumption. Instead, tools should report er-
rors based on the program text that the programmers provide. Giv-
ing programmers good explanations in terms of their original pro-
grams helps them pinpoint their mistakes, in a precise and timely
fashion. This is especially true for contract monitoring tools, whose
purpose is to provide checkable specifications of programs to im-
prove software reliability.

4.1 Hierarchy Errors
Consider the program in figure 5. Imagine that three different pro-
grammers, Cathy, David, and Ellen, wrote the three different parts
of the program. When Ellen’s code invokes the static methodcre-
ateobject, it returns an instance ofC, but with typeI . Then, Ellen’s
fragment invokesm with 5. According to the contracts forI , this
is perfectly valid input. According to the contract onJ, however,
this is an illegal input. The behavioral subtyping condition tells us
that J can only be a subtype ofI if it is substitutable forI in ev-
ery context. Whena is 5, J is not substitutable forI , soJ is not
a behavioral subtype ofI . In short, Cathy’s claim thatJ extends
I , is wrong. The blame for the contractual violation must lie with
Cathy.

// Written by Cathy
interface I {

void m(int a) ;
@pre { a > 0 }

}

interface J extends I {
void m(int a) ;

@pre { a > 10 }
}

// Written by David
class C implements J {

static I createobject() {
return new C() ;

}
void m(int a) { . . . }

@pre { a > 10 }
}

// Written by Ellen
I i = C.createobject() ;
i.m(5) ;

Figure 5: Hierarchy Blame

Cathy’s code does not violate a pre-condition or a post-condition.
Instead, the two pre-conditions have the wrong relationship. Hence,
a contract checking tool should check for, and report, three differ-
ent types of errors: pre-condition errors, post-condition errors, and

hierarchy extensionerrors.

4.2 How to Check Contracts and Assign Blame
We model contract monitoring as a translation from Java with con-
tracts to plain Java, augmented with three new statements:pre-
Blame, postBlame, andhierBlame. Each accepts a string naming
the class that is to be blamed for the respective failure. When they
are executed, the program halts with an appropriate error message
that blames the author of the class named by the argument.

In general, the contract compiler transfers pre-condition and post-
condition contracts into wrapper methods3 that check the contracts
and call the corresponding original method. It rewrites calls to
methods with contracts into calls to the appropriate wrapper method.
Furthermore, method calls in the elaborated program are rewritten
to call these wrapper methods, based on the static type of the object
whose method is invoked. The translation thus depends on the type
analysis and takes into account the type hierarchy.

Figure 4 shows a series of hierarchy diagrams that provide an out-
line for this section. Each diagram corresponds to a configuration
of classes and interfaces. The boxes represent classes and inter-
faces. The classes are namedC andD and the interfaces are named
I , J, andK . The single lines with arrow-heads represent both class
and interface inheritance and the double lines without arrow-heads
represent interface implementation.

Diagram 4 (a) illustrates the simplest case. Figure 6 contains pro-
gram text corresponding to this diagram and its translation. The
program consists of two classes,C andMain. The originalC class
has a methodm with a pre-condition and a post-condition. Its trans-
lation has two methods, the originalm and the wrapper method
m C. The name of the wrapper method is synthesized from the
name of the original method and the name of the class. The wrap-
per method accepts one additional argument naming the class that
is calling the method, which is blamed if the pre-condition fails.
In figure 6 lines 4–6, the wrapper method checks the pre-condition
and blames the class of the caller if a violation occurs. Then, in
line 7, it runs the original method. Finally, in lines 8–10, it checks
the post-condition, blaming the class itself for any violations of the
post-condition. The contract compiler also rewrites the call tom in
Main to call the wrapper method, passing in"Main" to be blamed
for a pre-condition violation.

3Although it may be possible to avoid adding wrapper methods,
we believe wrapper methods are the simplest and most efficient
approach to proper contract checking.

class C {
void m(int a) { . . . }

@pre
. . . C’s pre-condition. . .

@post
. . . C’s post-condition. . .

}

class Main {
public static void
main(String[] argv) {

new C().m(5) ;
}}

1: class C {
2: void m (int a) { . . . }
3: void m C (string tbb, int a) {
4: if (! . . . C’s pre-condition. . .) {
5: preBlame(tbb) ;
6: }
7: m(a) ;
8: if (! . . . C’s post-condition. . .) {
9: postBlame("C") ;

10: }}}

12: class Main {
13: public static void
14: main(String[] argv) {
15: new C().m C("Main", 5) ;
16: }}

Figure 6: Pre- and Post-condition Checking

Diagram 4 (b) contains a class and an interface. The class im-
plements the interface. As with the previous example, when a
method is called, its pre-condition must be checked, though the
pre-condition to be checked depends on the static type of the ref-
erence to the object whose method is invoked. Since that may be
eitherI or C, two wrapper methods are generated:m C andm I ,
which each check their respective pre- and post-conditions.

The example in diagram (b) adds another twist. Since instances of
C are substitutable in contexts expectingI s, we must also check
that the hierarchy is well-formed. In this case,I ’s pre-conditions
must implyC’s pre-conditions andC’s post-conditions must im-
ply I ’s post-conditions, for each method call tom. There are four
possibilities forC andI ’s pre-conditions. Clearly, if both aretrue,
no violation has occurred and if both arefalse, the pre-condition
does not hold and the caller must be blamed. IfI ’s pre-condition is
true andC’s pre-condition isfalse, the hierarchy is malformed and
the author ofC must be blamed. IfI ’s pre-condition isfalse and
C’s pre-condition istrue, the hierarchy is well-formed and no hi-
erarchy violation is signaled. In this case, however, if the object is
being viewed as an instance ofI , the pre-condition checking code
in m I blames the caller for failing to establish the pre-condition.
If the object is being viewed as an instance ofC, no error occurs
and no violation is signaled. The logic of post-condition checking
is similar.

To perform the hierarchy checks, hierarchy checking methods are
generated for each interface and class method. For classes, the new
methods are inserted into the translated version of the class. For
interfaces, the new methods are inserted into a new class that is
generated for each interface. These hierarchy checking methods
recursively combine the result of each pre- or post-condition with
the rest of the pre- and post-condition results in the hierarchy to
determine if the hierarchy is well-formed.

Figure 7 contains a translation that illustrates how our compiler
deals with diagram (b). The wrapper methods,m C andm I , are
augmentedwith calls to the hierarchy checkingmethods,m pre hier
andm posthier in figure 7 lines 11 and 16. Them pre hier and
m posthier methods inC ensure that the pre- and post-condition
hierarchies are well-formed. The checkers forI would appear in

theI checkersclass; they are analogous and omitted.

For the pre-condition checkingm pre hier accepts the same ar-
guments as the original method and returns the value of the pre-
condition. To check the hierarchy, the method first callsI checkers’s
m pre hier method in line 20, which ensures that the pre-condition
hierarchy fromI (and up) is well formed. Sincethis in I checkers
does not refer to the object whose contracts are checked, the current
object is passed along toI checkers’s m pre hier. In our example,
the hierarchy fromI (and up) is trivially well-formed, sinceI has
no supertypes. The result ofI checkers’s m pre hier is the value
of I ’s pre-condition onm and is bound tosup in C’s m pre hier,
as shown on line 19. Then,m pre hier bindsres to the value of its
own pre-condition, in line 21. Next, it tests ifI ’s pre-condition im-
pliesC’s pre-condition, with the expression!sup || res in line 22,
which is logically equivalent tosup⇒ res. If the implication holds,
m pre hier returns the result of the pre-condition, in line 23. If not,
it evaluates thehierBlame statement in line 25, which aborts the
program and blamesC as a bad extension ofI .

The post-condition checking recursively traverses the interface and
class hierarchy in the same order as pre-condition checking. In
contrast to the pre-condition checking, post-condition checking ac-
cumulates the intermediate results needed to check the hierarchy
instead of returning them. In our example, the first two arguments
to m posthier in C are the accumulators:tbb (figure 7 line 27)
is the class to be blamed for the failure andlast is the value of
the post-condition of a subtype (initiallyfalse if there are no sub-
types). To determine if there is a hierarchy violation,res is bound
to the value ofm’s post-condition in line 28, and the implication
is checked in line 29. If the hierarchy is flawed at this point,tbb
is blamed in line 32. In this example, this cannot happen, since
res is initially false, but the code is needed in general. Then,
I checkers’s m posthier is called in line 30, with the value ofC’s
post-condition andC’s name. Thus, the blame for a bad hierarchy
discovered duringI checkers’s m posthier falls onC.

Diagram 4 (c) adds interface checking to the picture. Still, the
contract checkersfor the program in diagram (c) are similar to those
in diagram (b). The additional interface generates an additional
class for checking the additional level in the hierarchy.

interface I {
void m(int a) ;

@pre
. . . C’s pre-condition. . .

@post
. . . C’s post-condition. . .

}

class C implements I {
void m(int a) { . . . }

@pre
. . . I ’s pre-condition. . .

@post
. . . I ’s post-condition. . .

}

1: interface I { . . . }
2: class I checkers{ . . . }

4: class C implements I {
5: void m () { . . . }
6: void m I (string tbb, int a) { . . . }
7: void m C (string tbb, int a) {
8: if (! . . . C’s pre-condition. . .) {
9: preBlame(tbb) ;

10: }
11: m pre hier(a) ;
12: m(a) ;
13: if (! . . . C’s post-condition. . .) {
14: postBlame("C") ;
15: }
16: m posthier("C", false, a) ;
17: }
18: boolean m pre hier(int a) {
19: boolean sup=
20: I checkers.mpre hier(this, a) ;
21: boolean res= . . . C’s pre-condition ;
22: if (!sup || res) { // sup⇒ res
23: return res;
24: } else {
25: hierBlame("C") ;
26: }}
27: void m posthier(string tbb, boolean last, int a) {
28: boolean res= . . . C’s post-condition ;
29: if (!last || res) { // last⇒ res
30: I checkers.mposthier ("C", res, this, a) ;
31: } else {
32: hierBlame(tbb) ;
33: }}}

Figure 7: Hierarchy Checking

Diagram 4 (d) introduces class inheritance (or implementation in-
heritance) which poses a more complex problem for our compiler.
As with an additional interface, new methods are generated to check
the hierarchy. Unlike an additional interface, the new hierarchy
checking methods are only used when an instance of the derived
class is created. That is, if the program only creates instances of
C, the hierarchy belowC is not checked. Instances ofD , how-
ever, do check the entire hierarchy, includingC’s andI ’s pre- and
post-conditions. In general, the conditions of every interface and
every superclass of the originally instantiated class are checked at
each method call and each method return to ensure the hierarchy is
sound.

Diagram 4 (e) shows an interface with two super-interfaces. Ac-
cording to the discussion in section 2, the hierarchy checkers must
check that the pre-condition inI implies the pre-condition inK and
the pre-condition inJ implies the pre-condition inK .4 The follow-
ing boolean identity

(a → c) ∧ (b → c) ⇔ (a ∨ b) → c

4Another alternative, as mentioned in footnote 2, is to ensure that
I ’s andJ’s conditions are equivalent. This could easily be checked
at this point in the hierarchy checker.

tells us that we can just check that disjunction ofI ’s andJ’s pre-
conditions impliesK ’s pre-condition. Accordingly, as shown in
figure 8,K checkers’s m pre hier method hierarchy checker com-
bines the results ofI checkers’sandJ checkers’sm pre hier meth-
ods in a disjunction and binds that tosup in figure 8 lines 6–8.
Thus, the contract checker’s traversal of the type hierarchy remains
the same.

For post-conditions, we take advantage of a similar boolean iden-
tity:

(a → b) ∧ (a → c) ⇔ a → (b ∧ c)

and combine the recursive calls with a conjunction to compute the
result of the post-condition hierarchy checking method, as shown
in m posthier’s definition in figure 8 lines 19–22.

4.3 Implementation
An implementation of our contract checker is in progress. The sec-
ond author, Mario Latendresse, is building a Java contract compiler.
We plan to release a prototype by the end of 2001.

To interact with other Java tools, interfaces should compile to a
single.class file. As described here, the contract compiler gen-
erates an additional class for each interface. Our implementation,

interface I {
void m(int a);

@pre
. . . I ’s pre-condition. . .

@post
. . . I ’s post-condition. . .

}

interface J {
void m(int a);

@pre
. . . J’s pre-condition. . .

@post
. . . J’s post-condition. . .

}

interface K extends I , J {
void m(int a);

@pre
. . . K ’s pre-condition. . .

@post
. . . K ’s post-condition. . .

}

1: class I checkers{ . . . }
2: class J checkers{ . . . }

4: class K checkers{
5: static boolean m pre hier(K this, int a) {
6: boolean sup=
7: I checkers.mpre hier(this, a) ||
8: J checkers.mpre hier(this, a) ;
9: boolean res= . . . K ’s pre-condition. . . ;

10: if (!sup || res) { // sup⇒ res
11: return res;
12: } else {
13: hierBlame("K") ;
14: }}
15: static void m posthier(string tbb, boolean last,
16: K this, int a) {
17: boolean res= . . . K ’s post-condition. . . ;
18: if (!last || res) { // last⇒ res
19: return
20: I checkers.mposthier("K", res, this, a)
21: &&
22: J checkers.mposthier("K", res, this, a);
23: } else {
24: hierBlame(tbb) ;
25: }}}

Figure 8: Hierarchy Checking for Multiple Inheritance

however, augments the.class file generated for the interface
with enough information to add the wrapper and hierarchy meth-
ods to each class that implements the interface. This is done using
a custom attribute in the class file that contains the byte-codes of
the contracts. The hierarchy checking methods for interfaces are
then copied into classes that implement interfaces.

In the code examples in section 4.2, we used method names for
wrappers that are valid Java identifiers. In our implementation, spe-
cial names for wrapper methods are used in the class files to elimi-
nate name clashes with programmer-defined method names. Addi-
tionally, our contract compiler does not add new blame-assigning
statements to Java; instead it inlines code that raises an exception
to blames the guilty party.

Our contract compiler does not install a class loader, it does not
generate any new.java or .class files, nor does it require any
existing class libraries during evaluation. These features of our de-
sign enable our contract compiler to integrate seamlessly with the
existing Java development environments, unlike existing Java con-
tract checkers.

Since our contract compiler uses wrapper methods to check con-
tracts and it redirects each method call to call the wrapper meth-
ods, the programmer’s original methods are still available in the
class. Thus, the.class files that our contract compiler generates
can be linked to existing, pre-compiled byte-codes. This allows
pre-existing, byte-code distributions of Java code to interoperate
with code compiled by our contract compiler. The pre- and post-
conditions of methods invoked by the pre-existing bytes-codes are
not checked.

5. RELATED WORK
Karaorman, Hölzle, and Bruno [12, section 4.1] first recognized the
problems with re-writing the programmer’s pre- and post-conditions.
Although they recognize the problem, their contract checking tool
still does not check the hierarchy properly.

In addition to the already mentioned contract monitoring tools, much
pre- and post-condition based work in object-oriented languages
would benefit from considering hierarchy violations in addition to
pre- and post-condition violations.

Edwards et al’s [6] paper on detecting interface violation in compo-
nent software provides a mechanism for separating contracts from
the components that implement them. They map each object to
a parallel “mathematical” representation of the object and check
contracts on the parallel objects. This technique neatly sidesteps
problems when contracts operate on the original objects, such as
contracts that mutate objects, but there is no guarantee that, when
the parallel objects satisfy the contracts, the original objects also
satisfy the contracts.

Dhara and Leavens [4] describe a system for proving pre- and post-
condition style assertions on methods. Like the tools in section 3,
their tool combines pre-conditions with a disjunction and post-con-
ditions with a conjunction. Accordingly, they suffer from the same
problems as the other tools surveyed in section 3. The techniques
used here should easily generalize to their work.

6. CONCLUSIONS AND FUTURE WORK
This paper argues that contract-monitoring tools should report three
kinds of errors: pre-condition errors, post-condition errors, and hi-
erarchy violations. It demonstrates that, without the last kind of

error, existing contract tools assign blame incorrectly for certain
contractual violations, sometimes do not catch certain contractual
violations at all, and provide bad explanations for programmer’s
errors in other cases. The paper also explains how to implement a
contract checker that properly checks for hierarchy violations.

This work demands a complete semantic characterization of con-
tracts and contract monitoring, based on a rigorous semantic de-
scription of the programming language. A companion paper [7]
treats contracts as an extension of types and presents a contract
soundness theorem, akin to the type soundness of Milner [22].

Java suffers from a flaw that our contract checker exacerbates. As
America [1] and Szyperski [26] point out, implementation inher-
itance and interface inheritance are two separate mechanisms, yet
Java combines them. In practice, this combination means that pro-
grammers may extend a class without intending the derived class to
be a subtype and thus, not a behavioral subtype. Unfortunately, our
contract checker may still assign blame to the derived class for not
being a behavioral subtype. The cleanest solution to this problem,
in Java, is to use the proxy pattern [8], but this is not always prac-
tical. We are considering an extension to the translator presented
here that allows programmers to explicitly specify that a derived
class is not a behavioral subtype.

7. ACKNOWLEDGEMENTS
Thanks to Daniel Jackson, Shriram Krishnamurthi, and Clemens
Szyperski for valuable comments on drafts of this paper.

8. REFERENCES
[1] America, P. Designing an object-oriented programming

language with behavioural subtyping. InFoundations of
Object-Oriented Languages, REX School/Workshop,
Noordwijkerhout, The Netherlands, May/June 1990, Lecture
Notes in Computer Science, pages 60–90. Springer-Verlag,
1991.

[2] Beugnard, A., J.-M. Jézéquel, N. Plouzeau and D. Watkins.
Making components contract aware. InIEEE Software,
pages 38–45, june 1999.

[3] Detlefs, D. L., K. Rustan, M. Leino, G. Nelson and J. B.
Saxe. Extended static checking. Technical Report 158,
Compaq SRC Research Report, 1998.

[4] Dhara, K. K. and G. T. Leavens. Forcing behavioral
subtyping through specification inheritance. InProceedings
18th International Conference on Software Engineering,
pages 258–267. IEEE, 1996. Berlin, Germany.

[5] Duncan, A. and U. Hölze. Adding contracts to Java with
handshake. Technical Report TRCS98-32, The University of
California at Santa Barbara, December 1998.

[6] Edwards, S., G. Shakir, M. Sitaraman, B. Weide and
J. Hollingsworth. A framework for detecting interface
violations in component-based software,. InProceedings 5th
International Conference on Software Reuse, pages 46–55.
IEEE, June 1998.

[7] Findler, R. B. and M. Felleisen. Contract soundness for
object-oriented languages. InObject-Oriented Programming,
Systems, Languages, and Applications, 2001.

[8] Gamma, E., R. Helm, R. Johnson and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Massachusetts, 1994.

[9] Gomes, B., D. Stoutamire, B. Vaysman and H. Klawitter.A
Language Manual for Sather 1.1, August 1996.

[10] Gosling, J., B. Joy and G. Steele.The Java(tm) Language
Specification. Addison-Wesley, 1996.

[11] Holt, R. C. and J. R. Cordy. The Turing programming
language. InCommunications of the ACM, volume 31, pages
1310–1423, December 1988.

[12] Karaorman, M., U. Hölzle and J. Bruno. jContractor: A
reflective Java library to support design by contract. In
Proceedings of Meta-Level Architectures and Reflection,
volume 1616 oflncs, July 1999.

[13] Kölling, M. and J. Rosenberg.Blue: Language Specification,
version 0.94, 1997.

[14] Kramer, R. iContract — the Java design by contract tool. In
Technology of Object-Oriented Languagesand Systems,
1998.

[15] Liskov, B. H. and J. Wing. Behavioral subtyping using
invariants and constraints. Technical Report CMU
CS-99-156, School of Computer Science, Carnegie Mellon
University, July 1999.

[16] Liskov, B. H. and J. M. Wing. A behavioral notion of
subtyping.ACM Transactions on Programming Languages
and Systems, November 1994.

[17] Luckham, D. C. and F. von Henke. An overview of Anna, a
specification language for Ada. InIEEE Software, volume 2,
pages 9–23, March 1985.

[18] Man Machine Systems. Design by contract for Java using
jmsassert.
http://www.mmsindia.com/DBCForJava.html,
2000.

[19] McIlroy, M. D. Mass produced software components. In
Naur, P. and B. Randell, editors,Report on a Conference of
the NATOScience Committee, pages 138–150, 1968.

[20] Meyer, B.Object-oriented Software Construction. Prentice
Hall, 1988.

[21] Meyer, B.Eiffel: The Language. Prentice Hall, 1992.

[22] Milner, R. A theory of type polymorphism in programming.
Journal of Computer Systems Science, 17:348–375, 1978.

[23] Parnas, D. L. A technique for software module specification
with examples.Communications of the ACM,
15(5):330–336, May 1972.

[24] Plösch, R. and J. Pichler. Contracts: From analysis to C++
implementation. InTechnology of Object-Oriented
Languages and Systems, pages 248–257, 1999.

[25] Rosenblum, D. S. A practical approach to programming with
assertions.IEEE Transactions on Software Engineering,
21(1):19–31, Janurary 1995.

[26] Szyperski, C.Component Software. Addison-Wesley, 1998.

