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Abstract. Over the last �ve years, new \voxel-based" approaches haveallowed important progress in multimodal image registration, notablydue to the increasing use of information-theoretic similarity measures.Their wide success has led to the progressive abandon of measures usingstandard image statistics (mean and variance). Until now, such measureshave essentially been based on heuristics. In this paper, we address thedetermination of a new measure based on standard statistics from atheoretical point of view. We show that it naturally leads to a knownconcept of probability theory, the correlation ratio. In our derivation,we take as the hypothesis the functional dependence between the imageintensities. Although such a hypothesis is not as general as possible, itenables us to model the image smoothness prior very easily. We alsodemonstrate results of multimodal rigid registration involving MagneticResonance (MR), Computed Tomography (CT), and Positron EmissionTomography (PET) images. These results suggest that the correlationratio provides a good trade-o� between accuracy and robustness.1 IntroductionThe general principle of voxel-based registration consists of quantifying the qual-ity of matching with respect to a similarity measure of the images' overlappingvoxels. As the measure is assumed to be maximal when the images are correctlyaligned, these approaches are often implemented using an optimization scheme,or simulating a dynamic process [7].Many similarity measures have been proposed in the literature (see [3, 15, 2, 6]for reviews). Considering the elementary problem of aligning two similar images,the �rst idea was to use a least squares criterion. Simple correlation measureswere then proposed in order to cope with inter-image bias. Although these sim-ilarity measures have been used extensively in medical imaging, they basicallyassume a linear relationship between the image intensities. Such a hypothesis isgenerally too crude in multimodal registration.More recently, Woods et al. [21, 20] have proposed an original criterion whichproved itself to be e�cient for matching PET with MR. Although the methodneeds some manual segmentation to work, Nikou et al. [9] have de�ned a robustversion of the criterion that led to a fully automatic algorithm and extended itsusage to several modality combinations.



But the currently most popular multimodal measure is probably mutual in-formation [18, 17, 5, 13, 8] since it has been used with success for a large varietyof combinations including MR, CT, PET, and SPECT1. Given two images Xand Y , one can de�ne their joint probability density function (joint pdf), P (i; j),by simple normalization of their 2D-histogram (other approaches are possible,see section 2.3). Let Px(i) and Py(j) denote the corresponding marginal proba-bility density functions (pdf's). Mutual information between X and Y is givenby [1]: I(X;Y ) =Xi;j P (i; j) log2 P (i; j)Px(i)Py(j) :The mutual information measure is very general because it makes no assump-tions regarding the nature of the relationship that exists between the image in-tensities (see [16] for an excellent discussion). It does not assume a linear, norfunctional correlation but only a predictable relationship.However, one pitfall of mutual information is to treat intensity values ina purely qualitative way, without considering any notion of proximity in theintensity space. As one tissue is never represented by a single intensity value,nearby intensities convey a lot of spatial information.Let us illustrate this remark with a synthetic experiment (see �gure 1). Weconsider two arti�cial images : a binary image A representing a \grey stripe"(40� 30 pixels), and a gradation image B of the stripe (30� 30 pixels) in whichthe intensity is uniform in any column but each column has a di�erent intensity.A B
Fig. 1. \Grey stripe" registration experiment.If we horizontally move B over A, we note that any translation correspondingto an integer number of pixels makes mutual information I(A;BT ) maximal(provided that BT totally falls into A). Then, I(A;BT ) reaches 1, which is itstheoretical upper bound in this case. This is to say that mutual information doesnot explain how to align the stripes.Mutual information and the correlation ratio (later explained) have beencomputed for various horizontal translations of B, using bilinear interpolationfor non-integer ones (see �gure 2). Unlike mutual information, the correlation1 Single Photon-Emission Computed Tomography.
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Fig. 2. \Grey stripe" registration experiment. Left, plot of mutual informationI(A;BT ) vs. horizontal translation. Right, the correlation ratio. By convention, thenull translation corresponds to the case where the stripes completely overlap. Noticethat for any integer translation, I(A;BT ) is maximal (for non-integer translations,smaller values are observed due to interpolation).ratio has an absolute maximum corresponding to the position where the stripescompletely overlap.This example suggests that mutual information may be under-constrainedwhen reasonable assumptions can be made upon the existing relationship be-tween the images. Practically, one often observes its tendency to handle manylocal maxima. In this paper, we address the case where a functional correlationcan be assumed, but making minimal assumptions regarding the nature of thefunction itself. The similarity measure we propose is inherited from probabilitytheory and is known as the correlation ratio.2 TheoryWe give an intuitive argument to introduce our approach. Suppose that we havetwo registered images, X and Y . If we randomly select voxels in their overlap-ping region, we will observe that the intensity couples we get are statisticallyconsistent: all the voxels having a certain intensity i in X may also have clus-tered intensities in Y (possibly very di�erent from i). Depending on the imagestype, any iso-set X = i might project to one or several such clusters. In thecase of a single cluster per iso-set, the intensity in Y could be approximatelypredicted from the intensity in X , by applying a simple function. This argumentis valid only if the images are correctly registered. Thus, we could use the degreeof functional dependence between X and Y as a matching criterion.How now to measure the functional dependence? In the above thought ex-periment, images X and Y are considered as random variables. Evaluating thefunctional dependence between two variables comes down to an unconstraindedregression problem. Suppose we want to determine how well X approximates Y .A natural approach is:(1) �nd the function ��(X) that best �ts Y among all possible functions of X ,(2) measure the quality of �tting.



2.1 A solution to problem (1)One must beforehand determine a cost function in order to perform regression.A convenient choice is variance, which measures a variable's average dispersionaround its mean value. Thus, it naturally imposes a constraint of proximity inthe sample space. Using variance, our problem is to �nd�� = argmin� V ar [Y � �(X)] : (1)If no constraint is imposed on the functions � (such as linearity), eq (1) isknown to be minimized uniquely by the conditional expectation of Y in termsof X [10]. Recall that it is de�ned by,E(Y jX) = ��(X); with ��(x) = Z y p(yjx) dy;where p(yjx) denotes the conditional pdf of Y assuming the event X = x. To agiven event corresponds a given conditional pdf.2.2 A solution to problem (2)Now that we have optimally estimated Y in terms of X , we use a result knownas the total variance theorem [12, 11], which relies on the orthogonality principlewell-known in Kalman �ltering:V ar(Y ) = V ar [E(Y jX)] + V ar [Y �E(Y jX)] : (2)This may be seen as an energy conservation equation. The variance of Y isdecomposed as a sum of two antagonist \energy" terms: while V ar [E(Y jX)]measures the part of Y which is predicted by X , V ar [Y �E(Y jX)] measuresthe part of Y which is functionally independent of X .From eq (2), we remark that V ar [Y �E(Y jX)] can actually be low for twodistinct reasons: either Y is well \explained" by X (V ar [E(Y jX)] is high), or Ygives little information (V ar(Y ) is low). In a registration problem, V ar(Y ) canonly be computed in the overlapping region of the images. It may be arbitrarilylow depending on the region size. Thus, minimizing V ar [Y �E(Y jX)] wouldtend to completely disconnect the images. Notice that for exactly the samereasons, mutual information is preferred to conditional entropy [16].It seems more reasonable to compare the \explained" energy of Y with itstotal energy. This leads to the de�nition of the correlation ratio:�(Y jX) = V ar [E(Y jX)]V ar(Y ) () �(Y jX) = 1� V ar [Y �E(Y jX)]V ar(Y ) : (3)The correlation ratio measures the functional dependence between X and Y .It takes on values between 0 (no functional dependence) and 1 (purely determin-istic dependence). Due to the use of a ratio instead of a subtraction, �(Y jX) isinvariant to multiplicative changes in Y , i.e. 8k; �(kY jX) = �(Y jX). Also notethat the correlation ratio is asymmetrical by nature since the two variables fun-damentally do not play the same role in the functional relationship; in general,�(Y jX) 6= �(X jY ).



2.3 Application to registrationIn order to compute the correlation ratio between two images, we must be able tode�ne them as random variables, that is determine their marginal and joint pdf's.A common technique consists of normalizing the image pair 2D-histogram [4, 5,2]. Then, the images may be seen as discrete random variables [11]. Viola [16]has proposed a continuous approach using Parzen density estimates.If we choose the discrete approach, there is no need to manipulate explicitlythe images 2D-histogram. Instead, the correlation ratio can be computed recur-sively by accumulating local computations. Let 
 denote the images overlappingregion, and N = Card(
) the total number of voxels it contains. We considerthe iso-sets of X , 
i = f! 2 
; X(!) = ig and their cardinals Ni = Card(
i).The total and conditional moments (mean and variance) of Y are:�2 = 1N X!2
 Y (!)2 �m2; m = 1N X!2
 Y (!):�2i = 1Ni X!2
i Y (!)2 �m2i ; mi = 1Ni X!2
i Y (!):Starting from eq (3), we obtain a very simple expression for the correlationratio (the complete proof can be found in [11]):1� �(Y jX) = 1N �2 Xi Ni �2i : (4)The algorithm derived from these equations does not require the computa-tion of the images 2D-histogram. This makes an important di�erence with mu-tual information. Classical algorithms for computing mutual information havean O(nxny) complexity, nx and ny being the number of intensity levels in the Xand Y images, respectively. Our computation of the correlation ratio has onlyan O(nx) complexity, and is independent from ny.3 Related measuresThe correlation ratio generalizes the correlation coe�cient, which is a symmet-rical measure of linear dependence between two random variables:�(X;Y ) = Cov(X;Y )2V ar(X)V ar(Y ) :The correlation coe�cient is closely related to the various correlation mea-sures that have been used in image registration. The linear dependence being astronger constraint than the functional dependence, it can be shown that [12,11], �(Y jX) � �(X;Y ); �(X jY ) � �(X;Y ):We now analyze two similarity measures which are based on standard statis-tics but not limited to the case of linear correlation.



3.1 Woods criterionThe heuristic criterion devised by Woods et al. [21] was originally intended forPET-MR registration, but it has also been used with other modalities [2]. Thisturns out to be very similar to the correlation ratio. According to the notationsintroduced in section 2.3, the Woods criterion can be written as follows:W (Y jX) = 1N Xi Ni �imi ; (5)where the notation W (Y jX) is used in order to emphasize that the criterionis asymmetrical, such as the correlation ratio. Notice that W (Y jX) has to beminimized, just like 1� �(Y jX).Though di�erent, eq (5) and eq (4) express the same basic idea. Even so,we can identify two di�erences. First, the correlation ratio sums variances, �2iwhereas the Woods criterion sums normalized standard deviations, �i=mi. Sec-ond, the multiplicative invariance property is achieved in the correlation ratiovia a global division by �2; in the Woods criterion, every term of the sum isdivided by a conditional mean, mi.3.2 Weighted neighbor likelihoodIn [16], Viola already proposed performing registration by evaluating the degreeof functional dependence between two images. This approach is very analogousto that we have proposed in section 2. First, a weighted neighbor approximator isused to estimate the Y image in terms of the X image. Second, a similarity mea-sure is obtained by considering the estimation log-likelihood (under hypotheseswe won't discuss here).We have previously shown [11] that the approximator devised by Viola isnothing but the conditional expectation of Y in terms of a variable, ~X, whosepdf is the Parzen estimate of X . Furthermore, the weighted neighbor likelihoodis negatively proportional to the estimation error:L(Y jX) = �k V ar hY �E(Y j ~X)i ; k > 0:Maximizing the weighted neighbor likelihood is in fact equivalent to mini-mizing the numerator in eq (3) (up to the use of Parzen windowing). However,the correlation ratio involves a division by V ar(Y ), which plays a critical role inregistration problems since it prevents disconnecting the images (see section 2.2).4 ResultsWe tested voxel-based 3Dmultimodal registration over ten patient brain datasets.For each patient, the following images were available :{ MR, T1 weighted (256� 256� 20� 26 voxels of 1:25� 1:25� 4mm3)



{ MR, T2 weighted (256� 256� 20� 26 voxels of 1:25� 1:25� 4mm3){ CT (512� 512� 28� 34 voxels of 0:65� 0:65� 4mm3){ PET (128� 128� 15 voxels of 2:59� 2:59� 8mm3)All images were stored with one byte per voxel. The gold standard transfor-mations between each modality were known thanks to a prospective, marker-based registration method [19]. No preprocessing of the images was done.We implemented an algorithm similar to that of Maes et al. [5], employingPowell's multidimensional direction set method as a maximization scheme. Foursimilarity measures were tested: the correlation ratio (CR), mutual information(MI), the correlation coe�cient (CC), and the opposite of the Woods criterion(OW). The choice of the opposite is only for consistency: OW has to be maxi-mized like MI, CR, and CC. In all registration experiments, the transformationwas initialized as the identity.We used two di�erent interpolation techniques: trilinear interpolation (TRI)and trilinear partial volume interpolation [5] (PV). The results that are presentedhere were obtained using PV interpolation; on the whole, they are better thanthose obtained with TRI interpolation.After each registration, a \typical" error � was computed in the following way.We selected eight points in the transformed image, approximately situated on theskull surface. Registration errors corresponding to these points were computedaccording to the marker-based transformation, and then averaged to obtain �.Table 1. Mean and median of the registration typical errors (based on positions ofstereotaxic markers) obtained over ten intra-patient experiments.Experiment Measure Mean � (mm) Median � (mm)T1-to-T2 MI 4.30 1.48CR (X:T2) 1.93 1.46OW (X:T2) 2.65 2.00CC 2.42 2.37CT-to-T1 MI 2.52 2.00CR (X:T1) 3.27 3.24PET-to-T1 MI 5.87 5.58CR (X:T1) 4.60 3.65OW (X:T1) 7.69 7.62Statistics on typical errors over the ten patients are shown in table 1. We gotnon sensible results with CC in CT-to-T1 and PET-to-T1 registration, and withOW in CT-to-T1 registration. Conversely, MI and CR demonstrated suitableaccuracy levels for every modality combination. MI gave the best results for CT-to-T1 registration, while CR was better for PET-to-T1 registration. In the caseof T1-to-T2 registration, CR and MI generally provided the best results, but MIfailed in two cases. Notice that for CT-to-T1 registration, the CT images weresubsampled by factors 2� 2� 1 in the x, y, and z direction, respectively; due to



the large dimensions of the CT images, registration at full resolution was indeedtoo time consuming.Several subsampling factors were also tested for every modality combinationin order to speed up the registration process with minimal loss in terms ofaccuracy. A typical drawback of subsampling is to introduce local maxima inthe similarity measure so that the global maximum becomes di�cult to track.Table 2. The correlation ratio performances depending on resolution.Experiment Subsampling Mean � (mm) Median � (mm)T1-to-T2 (2� 2� 1) 1.90 1.48(4� 4� 1) 2.01 1.67CT-to-T1 (4� 4� 1) 4.23 3.55(8� 8� 1) 6.65 5.96PET-to-T1 (2� 2� 1) 6.82 6.20(4� 4� 1) 11.65 11.19The inuence of subsampling on the correlation ratio performances was re-markably moderate (see table 2). While CR allowed good registration at rel-atively low resolutions, other studies [11] (which could not be presented here)qualitatively demonstrated that CR was less sensitive to subsampling than MIand OW.

Fig. 3. Multimodal registration by maximization of CR. Images from left to right :MR-T1, MR-T2, CT, and PET. The images are resampled in the same reference frameafter registration. Contours extracted from the MR-T1 are superimposed to each othermodality in order to visualize the quality of registration.



5 Discussion and conclusionOur experiments tend to show that assuming a functional correlation betweencertain multimodal images is not critical. Even if this is an approximation, no-tably in the CT-MR case (see [18] for a discussion), a preprocessing step mightvalidate it. Van den Elsen et al. [14] have proposed a simple intensity mappingto the original CT image so that bone and air appear in the same intensity rangeas is the case in MR images. Then, low intensities in MR (air and bone) mayproject to nearby intensities in CT. Another possible strategy for CT-MR reg-istration could be to use the correlation ratio for a quick guessing of the correcttransformation (using subsampling), and then mutual information for probablymore accurate alignment.The case of PET images is particular because they are much more distortedthan MR or CT. This might explain why mutual information is relatively inaccu-rate in PET-T1 registration. It is generally admitted that today Woods methodis the best one for this speci�c problem. In some way, our results corroboratethis observation, suggesting that taking into account nearby intensities in PETimages might be crucial. Mutual information seems to be better adapted tolow-noise images.Finally, the discrepancies found experimentally between the correlation ratioand the Woods criterion are surprising since these two measures are formallybased on similar considerations (see section 3.1). It seems that the correlationratio gives not only a theoretical justi�cation to the Woods criterion but alsoperceptible practical improvements.AcknowledgmentsThe images and the standard transformations were provided as part of theproject, \Evaluation of Retrospective Image Registration", National Institutesof Health, Project Number 1 R01 NS33926-01, Principal Investigator, J. MichaelFitzpatrick, Vanderbilt University, Nashville, TN.Many thanks to Frederik Maes, Jean-Pierre Nadal, and Christophoros Nikoufor fruitful discussion and to Janet Bertot for the proofreading of this article.References1. R. E. Blahut. Principles and Practice of Information Theory. Addison-WesleyPub. Comp., 1987.2. M. Bro-Nielsen. Rigid Registration of CT, MR and Cryosection Images Using aGLCM Framework. CVRMed-MRCAS'97, pages 171{180, March 1997.3. L. G. Brown. A survey of image registration techniques. ACM Computing Surveys,24(4):325{376, 1992.4. D. L. G. Hill and D. J. Hawkes. Medical image registration using voxel similaritymeasures. AAAI Sping Symposium Series: Applications of Comp. Vision in Med.Im. Proces., pages 34{37, 1994.
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