
A Pra
ti
al Minimum Spanning Tree AlgorithmUsing the Cy
le Property?Irit Katriel1, Peter Sanders1, Jesper Larsson Tr�a�21 Max-Plan
k-Institut f�ur Informatik, Saarbr�u
ken, Germanyfirit,sandersg�mpi-sb.mpg.de2 C&C Resear
h Laboratories, NEC Europe Ltd., Sankt Augustin, Germanytraff�

rl-ne
e.deAbstra
t. We present a simple new (randomized) algorithm for
om-puting minimum spanning trees that is more than two times faster thanthe best previously known algorithms (for dense, \diÆ
ult" inputs). It isof
on
eptual interest that the algorithm uses the property that the heav-iest edge in a
y
le
an be dis
arded. Previously this has only been ex-ploited in asymptoti
ally optimal algorithms that are
onsidered impra
-ti
al. An additional advantage is that the algorithm
an greatly pro�tfrom pipelined memory a

ess. Hen
e, an implementation on a ve
torma
hine is up to 10 times faster than previous algorithms. We outlineadditional re�nements for MSTs of impli
itly de�ned graphs and the useof the
entral data stru
ture for querying the heaviest edge between twonodes in the MST. The latter result is also interesting for sparse graphs.1 Introdu
tionGiven an undire
ted
onne
ted graphG with n nodes,m edges and (nonnegative)edge weights, the minimum spanning tree (MST) problem asks for a minimumtotal weight subset of the edges that forms a spanning tree of G.The
urrent state of the art in MST algorithms shows a gap between theoryand pra
ti
e. The algorithms used in pra
ti
e are among the oldest network algo-rithms [2, 5, 10, 13℄ and are all based on the
ut property : a lightest edge leaving aset of nodes
an be used for an MST. More spe
i�
ally, Kruskal's algorithm [10℄is best for sparse graphs. Its running time is asymptoti
ally dominated by thetime for sorting the edges by weight. For dense graphs (m� n), the Jarn��k-Prim(JP) algorithm is better [5, 15℄. Using Fibona

i heap priority queues, its exe
u-tion time is O(n logn+m). Using pairing heaps [3℄ Moret and Shapiro [12℄ getquite favorable results in pra
ti
e at the pri
e of worse performan
e guarantees.On the theoreti
al side there is a randomized linear time algorithm [6℄ and analmost linear time deterministi
 algorithm [14℄. But these algorithms are usually
onsidered impra
ti
al be
ause they are
ompli
ated and be
ause the
onstantfa
tors in the exe
ution time look unfavorable. These algorithms
omplement the
ut property with the
y
le property : a heaviest edge in any
y
le is not neededfor an MST.? Partially supported by DFG grant SA 933/1-1.

In this paper we partially
lose this gap. We develop a simple O(n logn+m)expe
ted time algorithm using the
y
le property that is very fast on densegraphs. Our experiments show that it is more than two times faster than the JPalgorithm for large dense graphs that require a large number of priority queueupdates for JP. For future ar
hite
tures it promises even larger speedups be
auseit pro�ts from pipelining for hiding memory a

ess laten
y. An implementationon a ve
tor ma
hine shows a speedup by a fa
tor of 10 for large dense graphs.Our algorithm is a simpli�
ation of the linear time randomized algorithms. Itsasymptoti

omplexity is O(m+ n logn). Whenm� n logn we get a linear timealgorithm with small
onstant fa
tors. The key
omponent of these algorithmsworks as follows. Generate a smaller graph G0 by sele
ting a random sample ofthe edges of G. Find a minimum spanning forest T 0 of G0. Then, �lter ea
h edgee 2 E using the
y
le property: Dis
ard e if it is the heaviest edge on a
y
lein T 0 [feg. Finally, �nd the MST of the graph that
ontains the edges T 0 andthe edges that were not �ltered out. Sin
e MST edges were not dis
arded, thisis also the MST of G.Klein and Tarjan [8℄ prove that if the sample graph G0 is obtained by in-
luding ea
h edge of G independently with probability p, then the expe
tednumber of edges that are not �ltered out is bounded from above by n=p. Bysetting p =pn=m both re
ursively solved MST instan
es
an be made small. Itremains to �nd an eÆ
ient way to implement �ltering.King [7℄ suggests a �ltering s
heme whi
h requires an O�n log m+nn � prepro-
essing stage, after whi
h the �ltering
an be done with O(1) time per edge (fora total of O(m)). The prepro
essing stage runs Boruvka's [2, 13℄ algorithm onthe spanning tree T 0 and uses the intermediate results to
onstru
t a tree Bthat has the verti
es of G as leaves su
h that: (1) the heaviest edge on the pathbetween two leaves in B is the same as the heaviest edge between them in T 0.(2) B is a full bran
hing tree; that is, all the leaves of B are at the same leveland ea
h internal node has at least two sons. (3) B has at most 2n nodes. It isthen possible to apply to B Koml�os's algorithm [9℄ for maximum edge weightqueries on a full bran
hing tree. This algorithm builds a data stru
ture of sizeO�n log(m+nn)� whi
h
an be used to �nd the maximum edge weight on the pathbetween leaves u and v, denoted F (u; v), in
onstant time. A path between twoleaves is divided at their least
ommon an
estor (LCA) into two half paths andthe maximum weight on ea
h half path is pre
omputed. In addition, during theprepro
essing stage the algorithm generates information su
h that the LCA oftwo leaves
an be found in
onstant time.In Se
tion 2 we develop a simpler �ltering s
heme that is based on the or-der in whi
h the JP algorithm adds nodes to the MST of the sample graph G0.We show that using this ordering,
omputing F (u; v) redu
es to a single inter-val maximum query. This is signi�
antly simpler to implement than Koml�os'salgorithm be
ause (1) we do not need to
onvert T 0 into a di�erent tree. (2)interval maximum
omputation is more stru
tured than path maximum in a fullbran
hing tree, where nodes may have di�erent degrees. As a
onsequen
e, the

prepro
essing stage involves
omputation of simpler fun
tions and needs simplerdata stru
tures.Interval maxima
an be found in
onstant time by applying a standard te
h-nique that uses pre
omputed tables of total size O(n logn). The tables storepre�x minima and suÆx maxima [4℄. We explain how to arrange these tables insu
h a way that F (u; v)
an be found using two table lookups for �nding theJP-order, one ex
lusive-or operation, one operation �nding the most signi�
antnonzero bit, two table lookups in fused pre�x and suÆx tables and some shiftsand adds for index
al
ulations. These operations
an be exe
uted independentlyfor all edges, in
ontrast to the priority queue a

esses of the JP algorithm thathave to be exe
uted sequentially to preserve
orre
tness.In Se
tion 3 we report measurements on
urrent high-end mi
ropro
essorsthat show speedup up to a fa
tor 3.35
ompared to a highly tuned implemen-tation of the JP algorithm. An implementation on a ve
tor
omputer results ineven higher speedup of up to 10.2 The I-Max-Filter AlgorithmIn Se
tion 2.1 we explain how �nding the heaviest edge between two nodes inan MST
an be redu
ed to �nding an interval maximum. The array used is theedge weights of the MST stored in the order in whi
h the edges are added by theJP algorithm. Then in Se
tion 2.2 we explain how this interval maximum
anbe
omputed using one further table lookup per node, an ex
lusive-or operationand a
omputation of the position of the most signi�
ant one-bit in an integer.In Se
tion 2.3 we use these
omponents to assemble the I-Max-Filter algorithmfor
omputing MSTs.2.1 Redu
tion to Interval MaximaThe following lemma shows that by renumbering nodes a

ording to the orderin whi
h they are added to the MST by the JP algorithm, heaviest edge queries
an be redu
ed to simple interval maximum queries.Lemma 1. Consider an MST T = (f0; : : : ; n� 1g ; ET) where the JP algorithm(JP) adds the nodes to the tree in the order 0, : : : , n � 1. Let ei, 0 < i < ndenote the edge used to add node i to the tree by the JP algorithm. Let wi, denotethe weight of ei. Then, for all nodes u < v, the heaviest edge on the path from uto v in T has weight maxu<j�v wj .Proof. By indu
tion over v. The
laim is trivially true for v = 1. For the in-du
tion step we assume that the
laim is true for all pairs of nodes (u; v0) withu < v0 < v and show that it is also true for the pair (u; v). First note that ev ison the path from u to v be
ause in the JP algorithm u is inserted before v andv is an isolated node until ev is added to the tree. Let v0 < v denote the node atthe other end of edge ev. Edge ev is heavier than all the edges ev0+1, : : : ev�1

1 4 3 850 1 4 3 850

Case 2: v’ > u

8
3

4

5

1

u

v’

v

3
84

5

1

Case 1: v’ < u

v’

u
v

Fig. 1. Illustration of the two
ases of Lemma 1. The JP algorithm adds the nodesfrom left to right.be
ause otherwise the JP algorithm would have added v, using ev, earlier. Thereare two
ases to
onsider (see Figure 1).Case v0 � u: By the indu
tion hypothesis, the heaviest edge on the path fromv0 to u is maxv0<j�u wj . Sin
e all these edges are lighter than ev, the maximumover wu, : : : ,wv �nds the
orre
t answer wv .Case v0 > u: By the indu
tion hypothesis, the heaviest edge on the path betweenu and v0 has weight maxu<j�v0 wj . Hen
e, the heaviest edge we are looking for hasweight max fwv;maxu<j�v0 wjg. Maximizing over the larger set maxu<j�v wjwill return the right answer sin
e ev is heavier than the edges ev0+1, : : : ev�1.Lemma 1 also holds when we have the MSF of an un
onne
ted graph ratherthan the MST of a
onne
ted graph. When JP spans a
onne
ted
omponent,it sele
ts an arbitrary node i and adds it to the MSF with wi = 1. Then theinterval maximum for two nodes that are in two di�erent
omponents is 1, asit should be.2.2 Computation of Interval MaximaGiven an array a[0℄ : : : a[n � 1℄, we explain how max a[i::j℄
an be
omputedin
onstant time using prepro
essing time and spa
e O(n logn). The emphasisis on very simple and fast queries sin
e we are looking at appli
ations wheremany more than n logn queries are made. To this end we develop an eÆ
ientimplementation of a basi
 method des
ribed in [4, Se
tion 3.4.3℄ whi
h is a spe
ial
ase of the general method in [1℄. This algorithmmight be of independent interestfor other appli
ations. Slight modi�
ations of this basi
 algorithm are ne
essaryin order to use it in the I-Max-Filter algorithm. They will be des
ribed later. Inthe following, we assume that n is a power of two. Adaption to the general
aseis simple by either rounding up to the next power of two and �lling the arraywith �1 or by introdu
ing a few
ase distin
tions while initializing the datastru
ture.Consider a
omplete binary tree built on top of a so that the entries of aare the leaves (see level 0 in Figure 2). The idea is to store an array of pre�x orsuÆx maxima with every internal node of the tree. Left su

essors store suÆxmaxima. Right su

essors store pre�x maxima. The size of an array is propor-tional to the size of the subtree rooted at the
orresponding node. To
ompute

the interval maximum max a[i::j℄, let v denote the least
ommon an
estor ofa[i℄ and a[j℄. Let u denote the left su

essor of v and let w denote the rightsu

essor of v. Let u[i℄ denote the suÆx maximum
orresponding to leaf i inthe suÆx maxima array stored in u. Correspondingly, let w[j℄ denote the pre�xmaximum
orresponding to leaf j in the pre�x maxima array stored in w. Thenmaxa[i::j℄ = max(u[i℄; w[j℄).
56 98 41 745688 7677347515 8062526530

77 80

98 98 15 75 77 80

76745275659830

65 75 77 62 767498

7452

417798

88 65 75 77

Level 0

Level 1

Level 2

98 75 34 52 77 8098 7777779898 75 75 56 77 Level 3

56Fig. 2. Example of a layers array for interval maxima. The suÆx se
tions are markedby an extra surrounding box.We observed that this approa
h
an be implemented in a very simple wayusing a log(n)�n array preSuf. As
an be seen in Figure 2, all suÆx and pre�xarrays in one layer
an be assembled in one array as followspreSuf[`℄[i℄ = �max(a[2`b::i℄) if b is oddmax(a[i::(2` + 1)b� 1℄) otherwisewhere b = �i=2`�.Furthermore, the interval boundaries
an be used to index the arrays. Wesimply have max a[i::j℄ = max(preSuf[`℄[i℄; preSuf[`℄[j℄) where ` = msbPos(i �j); � is the bit-wise ex
lusive-or operation and msbPos(x) = blog2 x
 is equalto the position of the most signi�
ant nonzero bit of x (starting at 0). Somear
hite
tures have this operation in hardware3; if not, msbPos(x)
an be storedin a table (of size n) and found by table lookup. Layer 0 is identi
al to a. Afurther optimization stores a pointer to the array preSuf[`℄ in the layer table. Asthe
omputation is symmetri
, we
an
ondu
t a table lookup with indi
es i; jwithout knowing whether i < j or j < i.To use this data stru
ture for the I-Max-Filter algorithm we need a smallmodi�
ation sin
e we are interested in maxima of the form maxa[min(i; j) +1::max(i; j)℄ without knowing whi
h of two endpoints is the smaller. Here wesimply note that the approa
h still works if we rede�ne the suÆx maxima toex
lude the �rst entry, i.e., preSuf[`℄[i℄ = max(a[i + 1::(2` + 1) �i=2`� � 1℄) if�i=2`� is even.3 One tri
k is to use the exponent in a
oating point representation of x.

2.3 Putting the Pie
es TogetherFig. 3 summarizes the I-Max-Filter algorithm and the following Theorem estab-lishes its
omplexity.Theorem 1. The I-Max-Filter algorithm
omputes MSTs in expe
ted timemT�lter +O(n logn+pnm) where T�lter is the time required to query the �lterabout one edge.In parti
ular, if m = !(n log2 n), the exe
ution time is (1 + o(1))mT�lter.Proof. Taking a sample
an be implemented to run in
onstant time per sampledelement. Running JP on the sample takes time O(n logn+pnm) if a Fibona

iheap (or another data stru
ture with similar time bounds) is used for the priorityqueue. The lookup tables
an be
omputed in time O(n logn). The �ltering looptakes time mT�lter.4 By the sampling lemma explained in the introdu
tion [8,Lemma 1℄, the expe
ted number of edges in E00 is n=pn=m = pnm. Hen
e,running JP on E00 takes expe
ted time O(n logn+pnm). Summing all the
omponent exe
ution times yields the
laimed time bound.From a theoreti
al point of view it is instru
tive to
ompare the number ofedge weight
omparisons needed to �nd an MST with the obvious lower boundof m. Also in this respe
t we are quite good for dense graphs be
ause the �lteralgorithm performs at most two
omparisons with ea
h edge that is �ltered out.In addition, an edge is already �ltered out if the �rst
omparison in Fig. 3 fails.Hen
e, a more detailed analysis might well show that we approa
h the lowerbound of m for dense graphs.3 Experimental EvaluationThe obje
tive of this se
tion is to demonstrate that the I-Max-Filter algo-rithm is a serious
ontestant for the fastest MST algorithm for dense graphs4 Note that it would be
ounterprodu
tive to exempt the nodes in E0 from �lteringbe
ause this would require an extra test for ea
h edge or we would have to
omputeE �E0 expli
itly during sampling.(* Compute MST of G = (f0; : : : ; n� 1g ; E) *)Fun
tion I-Max-Filter-MST(E) : set of EdgeE0 := random sample from E of size pmnE00 := JP-MST(E0)Let jpNum[0::n� 1℄ denote the order in whi
h JP-MST added the nodesInitialize the table preSuf[0:: log n℄[0::n � 1℄ as des
ribed in Se
tion 2.2(* Filtering loop *)forall edges e = (u; v) 2 E do` := msbPos(jpNum[u℄�jpNum[v℄)if we < preSuf[`℄[jpNum[u℄℄ and we < preSuf[`℄[jpNum[v℄℄ then add e to E00return JP-MST(E00) Fig. 3. The I-Max-Filter algorithm.

(m � n logn). We
ompare our implementation with a fast implementation ofthe JP algorithm. In [12℄ the exe
ution time of the JP algorithm using di�er-ent priority queues is
ompared and pairing heaps are found to be the fasteston dense graphs. We took the pairing heap from their
ode and
ombined itwith a faster, array based graph representation.5 This implementation of JP
onsistently outperforms [12℄ and LEDA [11℄.3.1 Graph RepresentationsOne issue in
omparing MST-algorithms for dense graphs is the underlying graphrepresentation. The JP algorithm requires a representation that allows fast it-eration over all edges that are adja
ent to a given node. In a linked list imple-mentation ea
h edge resides in two linked lists; one for ea
h in
ident node. Inour adja
en
y array representation ea
h edge is represented twi
e in an arraywith 2m entries su
h that the edges adja
ent to ea
h sour
e node are stored
ontiguously. For ea
h edge, the target node and weight is stored. In terms ofspa
e requirements, ea
h sour
e and ea
h target is stored on
e, and only theweight is dupli
ated. A se
ond array of size n holds for ea
h node a pointer tothe beginning of its adja
en
y array.The I-Max-Filter algorithm, on the other hand,
an be implemented to workwell with any representation that allows sampling edges in time linear in thesample size and that allows fast iteration over all edges. In parti
ular, it issuÆ
ient to store ea
h edge on
e. Our implementation for I-Max-Filter uses anarray in whi
h ea
h edge appears on
e as (u; v) with u < v and the edges aresorted by sour
e node (u).6 Only for the two small graphs for whi
h the JP-algorithm is
alled it generates an adja
en
y array representation (see Fig. 3).To get a fair
omparison we de
ided that ea
h algorithm gets the originalinput in its \favorite" representation. This de
ision favors JP be
ause the
on-version from an edge array to an adja
en
y array is mu
h more expensive thanvi
e versa. Furthermore, I-Max-Filter
ould run on the adja
en
y array repre-sentation with only a small overhead: during the sampling and �ltering stages itwould use the adja
en
y array while ignoring edges (u; v) with u > v.3.2 Filtering A

ess PatternOur implementation �lters all edges stored with a node together so that it islikely that a

esses to data asso
iated with this node resides in
a
he.Furthermore, the nodes are pro
essed in the order given by JP order. Thishas the e�e
t that only O(n) entries of the O(n logn) lookup table entries need5 The original implementation [12℄ uses linked lists whi
h were quite appropriate atthe time, when
a
he e�e
ts were less important.6 These requirements
ould be dropped at very small
ost. In parti
ular, I-Max-Filter
an work eÆ
iently with a
ompletely unsorted edge array or with an adja
en
yarray representation that stores ea
h edge only in one dire
tion. The latter onlyneeds spa
e for m+ n node indi
es and m edge weights.

to be in
a
he at any time. In the results reported here (for graphs with up to10,000 nodes), this a

ess sequen
e resulted in a speedup of about 5 per
ent.For even larger graphs we have observed speedups of up to 11 % due to thisoptimization.3.3 Implementation on Ve
tor-Ma
hinesA ve
tor-ma
hine has the
apability to perform operations on ve
tors (insteadof s
alars) of some �xed size (in
urrent ve
tor-ma
hines 256 or 512 elements)in one instru
tion. Ve
tor-instru
tions typi
ally in
lude arithmeti
 and booleanoperations, memory a

ess instru
tions (
onse
utive, strided, and indire
t), andspe
ial instru
tions like pre�x-summation and minimum sear
h. Ve
torized mem-ory a

esses
ir
umvent the
a
he. The �ltering loop of Fig. 3
an readily beimplemented on a ve
tor-ma
hine. The edges are stored
onse
utively in an ar-ray and
an immediately be a

essed in a ve
torized loop; ve
torized lookup ofsour
e and target verti
es is possible by indire
t memory a

ess operations. Forthe �ltering itself, bitwise ex
lusive or and two additional table lookups in thepreSuf array are ne
essary. Using the pre�x-summation
apabilities, the edgesthat are not �ltered out are stored
onse
utively in a new edge array. Also the
onstru
tion of the preSuf data-stru
ture
an be ve
torized. The only possibilityfor ve
torization in the JP algorithm is the loop that s
ans and updates ad-ja
ent verti
es of the vertex just added to the MST. We divide this loop intoa s
anning loop whi
h
olle
ts the adja
ent verti
es for whi
h a priority queueupdate is needed, and an update loop performing the a
tual priority queue up-dates. Using pre�x-summation the s
anning loop
an immediately be ve
torized.For the update there is little hope, unless a favorable data stru
ture allowingsimultaneous de
rease-key operations
an be devised.3.4 Graph TypesBoth algorithms, JP and I-Max-Filter were implemented in C++ and
ompiledusing GNU g++ version 3.0.4 with optimization level -O6. We use a SUN-Fire-15000 server with 900 MHz UltraSPARC-III+ pro
essors. Measurementson a Dell Pre
ision 530 workstation with 1.7 GHz Intel P4 Xeon pro
essorsshow similar results. The ve
tor ma
hine used is a NEC SX-6. The SX-6 hasa memory bandwidth of 32GBytes/se
ond, and (ve
tor) peak-performan
e of8GFlops.We performed measurements with four di�erent families of graphs, ea
h withadjustable edge density � = 2m=n(n� 1). This in
ludes all the families in [12℄that admit dense inputs. A test instan
e is de�ned by three parameters: thegraph type, the number of nodes and the density of edges (the number of edgesis
omputed from these parameters). Ea
h reported result is the average of tenexe
utions of the relevant algorithm; ea
h on a di�erent randomly generatedgraph with the given parameters. Furthermore, the I-Max-Filter algorithm is

randomized be
ause the sample graph is sele
ted at random. Despite the ran-domization, the varian
e of the exe
ution times within one test was
onsistentlyvery small (less than 1 per
ent), hen
e we only plot the averages.Worst-Case: � � n(n � 1)=2 edges are sele
ted at random and the edges areassigned weights that
ause JP to perform as many De
rease Key operations aspossible [12℄.Linear-Random: � �n(n� 1)=2 edges are sele
ted at random. Ea
h edge (u; v)is assigned the weight w(u; v) = ju� vj where u and v are the integer IDs of thenodes.Uniform-Random: � � n(n � 1)=2 edges are sele
ted at random and ea
h isassigned an edge weight whi
h is sele
ted uniformly at random.Random-Geometri
:[12℄ Nodes are random 2D points in a 1� y re
tangle forsome stret
h fa
tor y > 0. Edges are between nodes with Eu
lidean distan
e atmost � and the weight of an edge is equal to the distan
e between its endpoints.The parameter � indire
tly
ontrols density whereas the stret
h fa
tor y allows usto interpolate between behavior similar to
lass Uniform-Random and behaviorsimilar to
lass Linear-Random.3.5 Results on Mi
ropro
essorsFig. 4 shows exe
ution times per edge on the SUN for the three graph familiesWorst-Case, Linear-Random and Uniform-Random for n = 10000 nodes andvarying density. We
an see that I-Max-Filter is up to 2.46 times faster thanJP. This is not only for the \engineered" Worst-Case instan
es but also forLinear-Random graphs. The speedup is smaller for Uniform-Random graphs.On the Pentium 4 JP is even faster than I-Max-Filter on the Uniform-Randomgraphs. The reason is that for \average" inputs JP needs to perform only asublinear number of de
rease-key operations so that the part of
ode dominatingthe exe
ution time of JP is s
anning adja
en
y lists and
omparing the weightof ea
h edge with the distan
e of the target node from the
urrent MST. Thereis no hope to be signi�
antly faster than that. On the other hand, we observed aspeedup of up to a fa
tor of 3.35 on dense Worst-Case graphs. Hen
e, when wesay that I-Max-Filter outperforms JP this is with respe
t to spa
e
onsumption,simpli
ity of input
onventions and worst-
ase performan
e guarantees ratherthan average
ase exe
ution time.
0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-Max

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-Max

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim
I-MaxFig. 4.Worst-Case, Linear-Random, and Uniform-Random graphs, 10000 nodes, SUN.

On very sparse graphs, I-Max-Filter is up to two times slower than JP, be-
ause pmn = �(m) and as a result both the sample graph and the graph thatremains after the �ltering stage are not mu
h smaller than the original graph.The runtime is therefore
omparable to two runs of JP on the input.3.6 Results On A Ve
tor Ma
hine
0

100

200

300

400

500

600

700

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim (Scalar)
I-Max (Scalar)

Prim (Vectorized)
I-Max (Vectorized)

0

100

200

300

400

500

600

700

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim (Scalar)
I-Max (Scalar)

Prim (Vectorized)
I-Max (Vectorized)

0

100

200

300

400

500

600

700

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim (Scalar)
I-Max (Scalar)

Prim (Vectorized)
I-Max (Vectorized)

Fig. 5. Worst-Case, Linear-Random, and Uniform-Random graphs, 10000 nodes, NECSX-6.Fig. 5 shows measurements on a NEC SX-6 ve
tor
omputer analogous tothe mi
ropro
essor results reported in Fig. 4.For ea
h of the two algorithms (JP and I-Max-Filter), runtimes per edgeare plotted for s
alar as well as ve
torized version. The results of the s
alar
ode show, on
e again, that JP is very fast on Uniform-Random graphs whileI-Max-Filter is faster on the diÆ
ult graphs. In addition, we
an see that onthe \diÆ
ult" inputs I-Max-Filter bene�ts from ve
torization more than JPwhi
h a
hieves a speedup of only fa
tor 1.3. This is to be expe
ted; JP be
omesless ve
torizable when many de
rease key operations are performed, while theexe
ution time of I-Max-Filter is dominated by the �ltering stage, whi
h in turnis not sensitive to the graph type. As a
onsequen
e, we see a speedup of up to10 on the \diÆ
ult" graphs when
omparing the ve
torized versions of JP andI-Max-Filter.3.7 Can JP be made faster?It is
on
eivable that the implementation of JP
ould be further improved us-ing an even faster priority queue. Our implementation of JP uses the PairingHeap variant that proved to be fastest in the
omparative study of Moret andShapiro [12℄. How mu
h
an JP gain from an even faster heap? To investigatethis we ran it with a best possible (theoreti
ally impossible!) perfe
t heap, that

is, a heap in whi
h both De
rease-Key and Delete-Minimum operations takesunit time. The perfe
t heap is implemented as an array, su
h that De
rease-Keytakes
onstant time, and to simulate
onstant-time Delete-Minimum we simplystop the
lo
k during this operation. Results for the worst-
ase graphs are shownin Fig. 6, whi
h give both the run time break-down for I-Max-Filter, and therun time for I-Max-Filter with Pairing Heap and Perfe
t heap. The results showthat I-Max-Filter is not very sensitive to the type of heap; its running time isdominated by the �ltering stage whi
h doesn't use the heap. JP is sensitive tothe type of heap when running on graphs that in
ur many De
rease-Key opera-tions, but not when it runs on a Uniform-Random graph (not shown here). Allof this was to be expe
ted, but in addition we see that I-Max-Filter is fastereven when JP
an a

ess the heap almost for free and the only thing that takestime is traversing the nodes' adja
en
y lists.
0

50

100

150

200

250

300

350

400

450

500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Final Prim
IMax Filter

Prim on Sample
Sample Generation

0

100

200

300

400

500

600

700

800

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
pe

r
ed

ge
 [n

s]

Edge density

Prim - Pairing Heap
Prim - Perfect Heap

I-Max - Pairing Heap
I-Max - Perfect Heap

Fig. 6. Time break-down of I-Max-Filter (left). Pairing Heap vs. Perfe
t Heap (right).Worst-Case graph, 10,000 nodes, SUN.4 Con
lusionsWe have seen that the
y
le property
an be pra
ti
ally useful to design improvedMST algorithms for rather dense graphs. An open question is whether we
an�nd improved pra
ti
al algorithms for sparse graphs that use further ideas fromthe asymptoti
ally best theoreti
al algorithms. Besides a
omponent for �lteringedges, these algorithms have a
omponent for redu
ing the number of nodesbased on Boruvka's [2, 13℄ algorithm. Although this algorithm is
on
eptuallysimple, it seems unlikely that it is useful for internal memory algorithms on
urrent ma
hines. However node redu
tion has great potential for parallel andexternal-memory implementations.Referen
es1. N. Alon and B. S
hieber. Optimal prepro
essing for answering on-line produ
tqueries. Te
hni
al Report TR 71/87, Tel Aviv University, 1987.

2. O. Boruvka. O jist�em probl�emu minim�aln��m. Pr�a
e, Moravsk�e Prirodovede
k�eSpole
nosti, pages 1{58, 1926.3. M. L. Fredman. On the eÆ
ien
y of pairing heaps and related data stru
tures.Journal of the ACM, 46(4):473{501, July 1999.4. J. J�aj�a. An Introdu
tion to Parallel Algorithms. Addison Wesley, 1992.5. V. Jarn��k. O jist�em probl�emu minim�aln��m. Pr�a
a Moravsk�e P�r��rodov�ede
k�eSpole�
nosti, 6:57{63, 1930.6. D. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm for�nding minimum spanning trees. Journal of the ACM, 42(2):321{329, 1995.7. V. King. A simpler minimum spanning tree veri�
ation algorithm. Algorithmi
a,18:263{270, 1997.8. P. N. Klein and R. E. Tarjan. A randomized linear-time algorithm for �ndingminimum spanning trees. In Pro
eedings of the 26th Annual ACM Symposium onthe Theory of Computing, pages 9{15, 1994.9. J. Koml�os. Linear veri�
ation for spanning trees. In 25th annual Symposium onFoundations of Computer S
ien
e, pages 201{206, 1984.10. J. B. Kruskal. On the shortest spanning subtree of a graph and the travelingsalesman problem. Pro
eedings of the Ameri
an Mathemati
al So
iety, 7:48{50,1956.11. K. Mehlhorn and S. N�aher. The LEDA Platform of Combinatorial and Geometri
Computing. Cambridge University Press, 1999.12. B. M. E. Moret and H. D. Shapiro. An empiri
al analysis of algorithms for
on-stru
ting a minimum spanning tree. In Workshop Algorithms and Data Stru
tures(WADS), volume 519 of Le
ture LNCS, pages 400{411. Springer, 1991.13. J. Nesetril, E. Milkov�a, and H. Nesetrilov�a. Otakar Boruvka on minimum spanningtree problem: Translation of both the 1926 papers,
omments, history. Dis
reteMathemati
s, 233(1-3), 3{36, 2001.14. S. Pettie and V. Rama
handran. An optimal minimum spanning tree algorithm.Journal of the ACM, 49(1): 16{34, 2002.15. R. C. Prim. Shortest
onne
tion networks and some generalizations. Bell SystemsTe
hni
al Journal, pages 1389{1401, 1957.

