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In this paper we partially lose this gap. We develop a simple O(n logn+m)expeted time algorithm using the yle property that is very fast on densegraphs. Our experiments show that it is more than two times faster than the JPalgorithm for large dense graphs that require a large number of priority queueupdates for JP. For future arhitetures it promises even larger speedups beauseit pro�ts from pipelining for hiding memory aess lateny. An implementationon a vetor mahine shows a speedup by a fator of 10 for large dense graphs.Our algorithm is a simpli�ation of the linear time randomized algorithms. Itsasymptoti omplexity is O(m+ n logn). Whenm� n logn we get a linear timealgorithm with small onstant fators. The key omponent of these algorithmsworks as follows. Generate a smaller graph G0 by seleting a random sample ofthe edges of G. Find a minimum spanning forest T 0 of G0. Then, �lter eah edgee 2 E using the yle property: Disard e if it is the heaviest edge on a ylein T 0 [ feg. Finally, �nd the MST of the graph that ontains the edges T 0 andthe edges that were not �ltered out. Sine MST edges were not disarded, thisis also the MST of G.Klein and Tarjan [8℄ prove that if the sample graph G0 is obtained by in-luding eah edge of G independently with probability p, then the expetednumber of edges that are not �ltered out is bounded from above by n=p. Bysetting p =pn=m both reursively solved MST instanes an be made small. Itremains to �nd an eÆient way to implement �ltering.King [7℄ suggests a �ltering sheme whih requires an O�n log m+nn � prepro-essing stage, after whih the �ltering an be done with O(1) time per edge (fora total of O(m)). The preproessing stage runs Boruvka's [2, 13℄ algorithm onthe spanning tree T 0 and uses the intermediate results to onstrut a tree Bthat has the verties of G as leaves suh that: (1) the heaviest edge on the pathbetween two leaves in B is the same as the heaviest edge between them in T 0.(2) B is a full branhing tree; that is, all the leaves of B are at the same leveland eah internal node has at least two sons. (3) B has at most 2n nodes. It isthen possible to apply to B Koml�os's algorithm [9℄ for maximum edge weightqueries on a full branhing tree. This algorithm builds a data struture of sizeO�n log(m+nn )� whih an be used to �nd the maximum edge weight on the pathbetween leaves u and v, denoted F (u; v), in onstant time. A path between twoleaves is divided at their least ommon anestor (LCA) into two half paths andthe maximum weight on eah half path is preomputed. In addition, during thepreproessing stage the algorithm generates information suh that the LCA oftwo leaves an be found in onstant time.In Setion 2 we develop a simpler �ltering sheme that is based on the or-der in whih the JP algorithm adds nodes to the MST of the sample graph G0.We show that using this ordering, omputing F (u; v) redues to a single inter-val maximum query. This is signi�antly simpler to implement than Koml�os'salgorithm beause (1) we do not need to onvert T 0 into a di�erent tree. (2)interval maximum omputation is more strutured than path maximum in a fullbranhing tree, where nodes may have di�erent degrees. As a onsequene, the



preproessing stage involves omputation of simpler funtions and needs simplerdata strutures.Interval maxima an be found in onstant time by applying a standard teh-nique that uses preomputed tables of total size O(n logn). The tables storepre�x minima and suÆx maxima [4℄. We explain how to arrange these tables insuh a way that F (u; v) an be found using two table lookups for �nding theJP-order, one exlusive-or operation, one operation �nding the most signi�antnonzero bit, two table lookups in fused pre�x and suÆx tables and some shiftsand adds for index alulations. These operations an be exeuted independentlyfor all edges, in ontrast to the priority queue aesses of the JP algorithm thathave to be exeuted sequentially to preserve orretness.In Setion 3 we report measurements on urrent high-end miroproessorsthat show speedup up to a fator 3.35 ompared to a highly tuned implemen-tation of the JP algorithm. An implementation on a vetor omputer results ineven higher speedup of up to 10.2 The I-Max-Filter AlgorithmIn Setion 2.1 we explain how �nding the heaviest edge between two nodes inan MST an be redued to �nding an interval maximum. The array used is theedge weights of the MST stored in the order in whih the edges are added by theJP algorithm. Then in Setion 2.2 we explain how this interval maximum anbe omputed using one further table lookup per node, an exlusive-or operationand a omputation of the position of the most signi�ant one-bit in an integer.In Setion 2.3 we use these omponents to assemble the I-Max-Filter algorithmfor omputing MSTs.2.1 Redution to Interval MaximaThe following lemma shows that by renumbering nodes aording to the orderin whih they are added to the MST by the JP algorithm, heaviest edge queriesan be redued to simple interval maximum queries.Lemma 1. Consider an MST T = (f0; : : : ; n� 1g ; ET ) where the JP algorithm(JP) adds the nodes to the tree in the order 0, : : : , n � 1. Let ei, 0 < i < ndenote the edge used to add node i to the tree by the JP algorithm. Let wi, denotethe weight of ei. Then, for all nodes u < v, the heaviest edge on the path from uto v in T has weight maxu<j�v wj .Proof. By indution over v. The laim is trivially true for v = 1. For the in-dution step we assume that the laim is true for all pairs of nodes (u; v0) withu < v0 < v and show that it is also true for the pair (u; v). First note that ev ison the path from u to v beause in the JP algorithm u is inserted before v andv is an isolated node until ev is added to the tree. Let v0 < v denote the node atthe other end of edge ev. Edge ev is heavier than all the edges ev0+1, : : : ev�1
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Fig. 1. Illustration of the two ases of Lemma 1. The JP algorithm adds the nodesfrom left to right.beause otherwise the JP algorithm would have added v, using ev, earlier. Thereare two ases to onsider (see Figure 1).Case v0 � u: By the indution hypothesis, the heaviest edge on the path fromv0 to u is maxv0<j�u wj . Sine all these edges are lighter than ev, the maximumover wu, : : : ,wv �nds the orret answer wv .Case v0 > u: By the indution hypothesis, the heaviest edge on the path betweenu and v0 has weight maxu<j�v0 wj . Hene, the heaviest edge we are looking for hasweight max fwv;maxu<j�v0 wjg. Maximizing over the larger set maxu<j�v wjwill return the right answer sine ev is heavier than the edges ev0+1, : : : ev�1.Lemma 1 also holds when we have the MSF of an unonneted graph ratherthan the MST of a onneted graph. When JP spans a onneted omponent,it selets an arbitrary node i and adds it to the MSF with wi = 1. Then theinterval maximum for two nodes that are in two di�erent omponents is 1, asit should be.2.2 Computation of Interval MaximaGiven an array a[0℄ : : : a[n � 1℄, we explain how max a[i::j℄ an be omputedin onstant time using preproessing time and spae O(n logn). The emphasisis on very simple and fast queries sine we are looking at appliations wheremany more than n logn queries are made. To this end we develop an eÆientimplementation of a basi method desribed in [4, Setion 3.4.3℄ whih is a speialase of the general method in [1℄. This algorithmmight be of independent interestfor other appliations. Slight modi�ations of this basi algorithm are neessaryin order to use it in the I-Max-Filter algorithm. They will be desribed later. Inthe following, we assume that n is a power of two. Adaption to the general aseis simple by either rounding up to the next power of two and �lling the arraywith �1 or by introduing a few ase distintions while initializing the datastruture.Consider a omplete binary tree built on top of a so that the entries of aare the leaves (see level 0 in Figure 2). The idea is to store an array of pre�x orsuÆx maxima with every internal node of the tree. Left suessors store suÆxmaxima. Right suessors store pre�x maxima. The size of an array is propor-tional to the size of the subtree rooted at the orresponding node. To ompute



the interval maximum max a[i::j℄, let v denote the least ommon anestor ofa[i℄ and a[j℄. Let u denote the left suessor of v and let w denote the rightsuessor of v. Let u[i℄ denote the suÆx maximum orresponding to leaf i inthe suÆx maxima array stored in u. Correspondingly, let w[j℄ denote the pre�xmaximum orresponding to leaf j in the pre�x maxima array stored in w. Thenmaxa[i::j℄ = max(u[i℄; w[j℄).
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2.3 Putting the Piees TogetherFig. 3 summarizes the I-Max-Filter algorithm and the following Theorem estab-lishes its omplexity.Theorem 1. The I-Max-Filter algorithm omputes MSTs in expeted timemT�lter +O(n logn+pnm) where T�lter is the time required to query the �lterabout one edge.In partiular, if m = !(n log2 n), the exeution time is (1 + o(1))mT�lter.Proof. Taking a sample an be implemented to run in onstant time per sampledelement. Running JP on the sample takes time O(n logn+pnm) if a Fibonaiheap (or another data struture with similar time bounds) is used for the priorityqueue. The lookup tables an be omputed in time O(n logn). The �ltering looptakes time mT�lter.4 By the sampling lemma explained in the introdution [8,Lemma 1℄, the expeted number of edges in E00 is n=pn=m = pnm. Hene,running JP on E00 takes expeted time O(n logn+pnm). Summing all theomponent exeution times yields the laimed time bound.From a theoretial point of view it is instrutive to ompare the number ofedge weight omparisons needed to �nd an MST with the obvious lower boundof m. Also in this respet we are quite good for dense graphs beause the �lteralgorithm performs at most two omparisons with eah edge that is �ltered out.In addition, an edge is already �ltered out if the �rst omparison in Fig. 3 fails.Hene, a more detailed analysis might well show that we approah the lowerbound of m for dense graphs.3 Experimental EvaluationThe objetive of this setion is to demonstrate that the I-Max-Filter algo-rithm is a serious ontestant for the fastest MST algorithm for dense graphs4 Note that it would be ounterprodutive to exempt the nodes in E0 from �lteringbeause this would require an extra test for eah edge or we would have to omputeE �E0 expliitly during sampling.(* Compute MST of G = (f0; : : : ; n� 1g ; E) *)Funtion I-Max-Filter-MST(E) : set of EdgeE0 := random sample from E of size pmnE00 := JP-MST(E0)Let jpNum[0::n� 1℄ denote the order in whih JP-MST added the nodesInitialize the table preSuf[0:: log n℄[0::n � 1℄ as desribed in Setion 2.2(* Filtering loop *)forall edges e = (u; v) 2 E do` := msbPos(jpNum[u℄�jpNum[v℄)if we < preSuf[`℄[jpNum[u℄℄ and we < preSuf[`℄[jpNum[v℄℄ then add e to E00return JP-MST(E00) Fig. 3. The I-Max-Filter algorithm.



(m � n logn). We ompare our implementation with a fast implementation ofthe JP algorithm. In [12℄ the exeution time of the JP algorithm using di�er-ent priority queues is ompared and pairing heaps are found to be the fasteston dense graphs. We took the pairing heap from their ode and ombined itwith a faster, array based graph representation.5 This implementation of JPonsistently outperforms [12℄ and LEDA [11℄.3.1 Graph RepresentationsOne issue in omparing MST-algorithms for dense graphs is the underlying graphrepresentation. The JP algorithm requires a representation that allows fast it-eration over all edges that are adjaent to a given node. In a linked list imple-mentation eah edge resides in two linked lists; one for eah inident node. Inour adjaeny array representation eah edge is represented twie in an arraywith 2m entries suh that the edges adjaent to eah soure node are storedontiguously. For eah edge, the target node and weight is stored. In terms ofspae requirements, eah soure and eah target is stored one, and only theweight is dupliated. A seond array of size n holds for eah node a pointer tothe beginning of its adjaeny array.The I-Max-Filter algorithm, on the other hand, an be implemented to workwell with any representation that allows sampling edges in time linear in thesample size and that allows fast iteration over all edges. In partiular, it issuÆient to store eah edge one. Our implementation for I-Max-Filter uses anarray in whih eah edge appears one as (u; v) with u < v and the edges aresorted by soure node (u).6 Only for the two small graphs for whih the JP-algorithm is alled it generates an adjaeny array representation (see Fig. 3).To get a fair omparison we deided that eah algorithm gets the originalinput in its \favorite" representation. This deision favors JP beause the on-version from an edge array to an adjaeny array is muh more expensive thanvie versa. Furthermore, I-Max-Filter ould run on the adjaeny array repre-sentation with only a small overhead: during the sampling and �ltering stages itwould use the adjaeny array while ignoring edges (u; v) with u > v.3.2 Filtering Aess PatternOur implementation �lters all edges stored with a node together so that it islikely that aesses to data assoiated with this node resides in ahe.Furthermore, the nodes are proessed in the order given by JP order. Thishas the e�et that only O(n) entries of the O(n logn) lookup table entries need5 The original implementation [12℄ uses linked lists whih were quite appropriate atthe time, when ahe e�ets were less important.6 These requirements ould be dropped at very small ost. In partiular, I-Max-Filteran work eÆiently with a ompletely unsorted edge array or with an adjaenyarray representation that stores eah edge only in one diretion. The latter onlyneeds spae for m+ n node indies and m edge weights.



to be in ahe at any time. In the results reported here (for graphs with up to10,000 nodes), this aess sequene resulted in a speedup of about 5 perent.For even larger graphs we have observed speedups of up to 11 % due to thisoptimization.3.3 Implementation on Vetor-MahinesA vetor-mahine has the apability to perform operations on vetors (insteadof salars) of some �xed size (in urrent vetor-mahines 256 or 512 elements)in one instrution. Vetor-instrutions typially inlude arithmeti and booleanoperations, memory aess instrutions (onseutive, strided, and indiret), andspeial instrutions like pre�x-summation and minimum searh. Vetorized mem-ory aesses irumvent the ahe. The �ltering loop of Fig. 3 an readily beimplemented on a vetor-mahine. The edges are stored onseutively in an ar-ray and an immediately be aessed in a vetorized loop; vetorized lookup ofsoure and target verties is possible by indiret memory aess operations. Forthe �ltering itself, bitwise exlusive or and two additional table lookups in thepreSuf array are neessary. Using the pre�x-summation apabilities, the edgesthat are not �ltered out are stored onseutively in a new edge array. Also theonstrution of the preSuf data-struture an be vetorized. The only possibilityfor vetorization in the JP algorithm is the loop that sans and updates ad-jaent verties of the vertex just added to the MST. We divide this loop intoa sanning loop whih ollets the adjaent verties for whih a priority queueupdate is needed, and an update loop performing the atual priority queue up-dates. Using pre�x-summation the sanning loop an immediately be vetorized.For the update there is little hope, unless a favorable data struture allowingsimultaneous derease-key operations an be devised.3.4 Graph TypesBoth algorithms, JP and I-Max-Filter were implemented in C++ and ompiledusing GNU g++ version 3.0.4 with optimization level -O6. We use a SUN-Fire-15000 server with 900 MHz UltraSPARC-III+ proessors. Measurementson a Dell Preision 530 workstation with 1.7 GHz Intel P4 Xeon proessorsshow similar results. The vetor mahine used is a NEC SX-6. The SX-6 hasa memory bandwidth of 32GBytes/seond, and (vetor) peak-performane of8GFlops.We performed measurements with four di�erent families of graphs, eah withadjustable edge density � = 2m=n(n� 1). This inludes all the families in [12℄that admit dense inputs. A test instane is de�ned by three parameters: thegraph type, the number of nodes and the density of edges (the number of edgesis omputed from these parameters). Eah reported result is the average of tenexeutions of the relevant algorithm; eah on a di�erent randomly generatedgraph with the given parameters. Furthermore, the I-Max-Filter algorithm is



randomized beause the sample graph is seleted at random. Despite the ran-domization, the variane of the exeution times within one test was onsistentlyvery small (less than 1 perent), hene we only plot the averages.Worst-Case: � � n(n � 1)=2 edges are seleted at random and the edges areassigned weights that ause JP to perform as many Derease Key operations aspossible [12℄.Linear-Random: � �n(n� 1)=2 edges are seleted at random. Eah edge (u; v)is assigned the weight w(u; v) = ju� vj where u and v are the integer IDs of thenodes.Uniform-Random: � � n(n � 1)=2 edges are seleted at random and eah isassigned an edge weight whih is seleted uniformly at random.Random-Geometri:[12℄ Nodes are random 2D points in a 1� y retangle forsome streth fator y > 0. Edges are between nodes with Eulidean distane atmost � and the weight of an edge is equal to the distane between its endpoints.The parameter � indiretly ontrols density whereas the streth fator y allows usto interpolate between behavior similar to lass Uniform-Random and behaviorsimilar to lass Linear-Random.3.5 Results on MiroproessorsFig. 4 shows exeution times per edge on the SUN for the three graph familiesWorst-Case, Linear-Random and Uniform-Random for n = 10000 nodes andvarying density. We an see that I-Max-Filter is up to 2.46 times faster thanJP. This is not only for the \engineered" Worst-Case instanes but also forLinear-Random graphs. The speedup is smaller for Uniform-Random graphs.On the Pentium 4 JP is even faster than I-Max-Filter on the Uniform-Randomgraphs. The reason is that for \average" inputs JP needs to perform only asublinear number of derease-key operations so that the part of ode dominatingthe exeution time of JP is sanning adjaeny lists and omparing the weightof eah edge with the distane of the target node from the urrent MST. Thereis no hope to be signi�antly faster than that. On the other hand, we observed aspeedup of up to a fator of 3.35 on dense Worst-Case graphs. Hene, when wesay that I-Max-Filter outperforms JP this is with respet to spae onsumption,simpliity of input onventions and worst-ase performane guarantees ratherthan average ase exeution time.
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On very sparse graphs, I-Max-Filter is up to two times slower than JP, be-ause pmn = �(m) and as a result both the sample graph and the graph thatremains after the �ltering stage are not muh smaller than the original graph.The runtime is therefore omparable to two runs of JP on the input.3.6 Results On A Vetor Mahine
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Fig. 5. Worst-Case, Linear-Random, and Uniform-Random graphs, 10000 nodes, NECSX-6.Fig. 5 shows measurements on a NEC SX-6 vetor omputer analogous tothe miroproessor results reported in Fig. 4.For eah of the two algorithms (JP and I-Max-Filter), runtimes per edgeare plotted for salar as well as vetorized version. The results of the salarode show, one again, that JP is very fast on Uniform-Random graphs whileI-Max-Filter is faster on the diÆult graphs. In addition, we an see that onthe \diÆult" inputs I-Max-Filter bene�ts from vetorization more than JPwhih ahieves a speedup of only fator 1.3. This is to be expeted; JP beomesless vetorizable when many derease key operations are performed, while theexeution time of I-Max-Filter is dominated by the �ltering stage, whih in turnis not sensitive to the graph type. As a onsequene, we see a speedup of up to10 on the \diÆult" graphs when omparing the vetorized versions of JP andI-Max-Filter.3.7 Can JP be made faster?It is oneivable that the implementation of JP ould be further improved us-ing an even faster priority queue. Our implementation of JP uses the PairingHeap variant that proved to be fastest in the omparative study of Moret andShapiro [12℄. How muh an JP gain from an even faster heap? To investigatethis we ran it with a best possible (theoretially impossible!) perfet heap, that



is, a heap in whih both Derease-Key and Delete-Minimum operations takesunit time. The perfet heap is implemented as an array, suh that Derease-Keytakes onstant time, and to simulate onstant-time Delete-Minimum we simplystop the lok during this operation. Results for the worst-ase graphs are shownin Fig. 6, whih give both the run time break-down for I-Max-Filter, and therun time for I-Max-Filter with Pairing Heap and Perfet heap. The results showthat I-Max-Filter is not very sensitive to the type of heap; its running time isdominated by the �ltering stage whih doesn't use the heap. JP is sensitive tothe type of heap when running on graphs that inur many Derease-Key opera-tions, but not when it runs on a Uniform-Random graph (not shown here). Allof this was to be expeted, but in addition we see that I-Max-Filter is fastereven when JP an aess the heap almost for free and the only thing that takestime is traversing the nodes' adjaeny lists.
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