A Practical Minimum Spanning Tree Algorithm
Using the Cycle Property™

Irit Katriel', Peter Sanders!, Jesper Larsson Triff?

! Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
{irit,sanders}@mpi-sb.mpg.de
2 C&C Research Laboratories, NEC Europe Ltd., Sankt Augustin, Germany
traff@ccrl-nece.de

Abstract. We present a simple new (randomized) algorithm for com-
puting minimum spanning trees that is more than two times faster than
the best previously known algorithms (for dense, “difficult” inputs). It is
of conceptual interest that the algorithm uses the property that the heav-
iest edge in a cycle can be discarded. Previously this has only been ex-
ploited in asymptotically optimal algorithms that are considered imprac-
tical. An additional advantage is that the algorithm can greatly profit
from pipelined memory access. Hence, an implementation on a vector
machine is up to 10 times faster than previous algorithms. We outline
additional refinements for MSTs of implicitly defined graphs and the use
of the central data structure for querying the heaviest edge between two
nodes in the MST. The latter result is also interesting for sparse graphs.

1 Introduction

Given an undirected connected graph G with n nodes, m edges and (nonnegative)
edge weights, the minimum spanning tree (MST) problem asks for a minimum
total weight subset of the edges that forms a spanning tree of G.

The current state of the art in MST algorithms shows a gap between theory
and practice. The algorithms used in practice are among the oldest network algo-
rithms [2, 5,10, 13] and are all based on the cut property: a lightest edge leaving a
set of nodes can be used for an MST. More specifically, Kruskal’s algorithm [10]
is best for sparse graphs. Its running time is asymptotically dominated by the
time for sorting the edges by weight. For dense graphs (m > n), the Jarnik-Prim
(JP) algorithm is better [5,15]. Using Fibonacci heap priority queues, its execu-
tion time is O(nlogn + m). Using pairing heaps [3] Moret and Shapiro [12] get
quite favorable results in practice at the price of worse performance guarantees.

On the theoretical side there is a randomized linear time algorithm [6] and an
almost linear time deterministic algorithm [14]. But these algorithms are usually
considered impractical because they are complicated and because the constant
factors in the execution time look unfavorable. These algorithms complement the
cut property with the cycle property: a heaviest edge in any cycle is not needed
for an MST.

* Partially supported by DFG grant SA 933/1-1.

In this paper we partially close this gap. We develop a simple O(nlogn + m)
expected time algorithm using the cycle property that is very fast on dense
graphs. Our experiments show that it is more than two times faster than the JP
algorithm for large dense graphs that require a large number of priority queue
updates for JP. For future architectures it promises even larger speedups because
it profits from pipelining for hiding memory access latency. An implementation
on a vector machine shows a speedup by a factor of 10 for large dense graphs.

Our algorithm is a simplification of the linear time randomized algorithms. Its
asymptotic complexity is O(m + nlogn). When m > nlogn we get a linear time
algorithm with small constant factors. The key component of these algorithms
works as follows. Generate a smaller graph G’ by selecting a random sample of
the edges of G. Find a minimum spanning forest 7" of G'. Then, filter each edge
e € E using the cycle property: Discard e if it is the heaviest edge on a cycle
in 7' U {e}. Finally, find the MST of the graph that contains the edges 7" and
the edges that were not filtered out. Since MST edges were not discarded, this
is also the MST of G.

Klein and Tarjan [8] prove that if the sample graph G’ is obtained by in-
cluding each edge of G independently with probability p, then the expected
number of edges that are not filtered out is bounded from above by n/p. By
setting p = y/n/m both recursively solved MST instances can be made small. It
remains to find an efficient way to implement filtering.

King [7] suggests a filtering scheme which requires an (’)(n log) prepro-
cessing stage, after which the filtering can be done with O(1) time per edge (for
a total of O(m)). The preprocessing stage runs Boruvka’s [2,13] algorithm on
the spanning tree 7' and uses the intermediate results to construct a tree B
that has the vertices of G as leaves such that: (1) the heaviest edge on the path
between two leaves in B is the same as the heaviest edge between them in 7.
(2) B is a full branching tree; that is, all the leaves of B are at the same level
and each internal node has at least two sons. (3) B has at most 2n nodes. It is
then possible to apply to B Komlds’s algorithm [9] for maximum edge weight
queries on a full branching tree. This algorithm builds a data structure of size
O(n log(%)) which can be used to find the maximum edge weight on the path
between leaves u and v, denoted F'(u,v), in constant time. A path between two
leaves is divided at their least common ancestor (LCA) into two half paths and
the maximum weight on each half path is precomputed. In addition, during the
preprocessing stage the algorithm generates information such that the LCA of
two leaves can be found in constant time.

m+n
n

In Section 2 we develop a simpler filtering scheme that is based on the or-
der in which the JP algorithm adds nodes to the MST of the sample graph G'.
We show that using this ordering, computing F'(u,v) reduces to a single inter-
val maximum query. This is significantly simpler to implement than Komlés’s
algorithm because (1) we do not need to convert 7' into a different tree. (2)
interval maximum computation is more structured than path maximum in a full
branching tree, where nodes may have different degrees. As a consequence, the

preprocessing stage involves computation of simpler functions and needs simpler
data structures.

Interval maxima can be found in constant time by applying a standard tech-
nique that uses precomputed tables of total size O(nlogn). The tables store
prefix minima and suffix maxima [4]. We explain how to arrange these tables in
such a way that F(u,v) can be found using two table lookups for finding the
JP-order, one exclusive-or operation, one operation finding the most significant
nonzero bit, two table lookups in fused prefix and suffix tables and some shifts
and adds for index calculations. These operations can be executed independently
for all edges, in contrast to the priority queue accesses of the JP algorithm that
have to be executed sequentially to preserve correctness.

In Section 3 we report measurements on current high-end microprocessors
that show speedup up to a factor 3.35 compared to a highly tuned implemen-
tation of the JP algorithm. An implementation on a vector computer results in
even higher speedup of up to 10.

2 The I-Max-Filter Algorithm

In Section 2.1 we explain how finding the heaviest edge between two nodes in
an MST can be reduced to finding an interval maximum. The array used is the
edge weights of the MST stored in the order in which the edges are added by the
JP algorithm. Then in Section 2.2 we explain how this interval maximum can
be computed using one further table lookup per node, an exclusive-or operation
and a computation of the position of the most significant one-bit in an integer.
In Section 2.3 we use these components to assemble the I-Max-Filter algorithm
for computing MSTs.

2.1 Reduction to Interval Maxima

The following lemma shows that by renumbering nodes according to the order
in which they are added to the MST by the JP algorithm, heaviest edge queries
can be reduced to simple interval maximum queries.

Lemma 1. Consider an MSTT = ({0,... ,n — 1}, Ex) where the JP algorithm
(JP) adds the nodes to the tree in the order 0, ..., n — 1. Let e;, 0 < i < n
denote the edge used to add node i to the tree by the JP algorithm. Let w;, denote
the weight of e;. Then, for all nodes u < v, the heaviest edge on the path from u
to v in T has weight max, «j<, w;.

Proof. By induction over v. The claim is trivially true for v = 1. For the in-
duction step we assume that the claim is true for all pairs of nodes (u,v') with
u < v' < v and show that it is also true for the pair (u,v). First note that e, is
on the path from u to v because in the JP algorithm w is inserted before v and
v is an isolated node until e, is added to the tree. Let v’ < v denote the node at
the other end of edge e,. Edge e, is heavier than all the edges e, 11, ... €y—1

Fig. 1. Illustration of the two cases of Lemma 1. The JP algorithm adds the nodes
from left to right.

because otherwise the JP algorithm would have added v, using e,, earlier. There
are two cases to consider (see Figure 1).

Case v' < u: By the induction hypothesis, the heaviest edge on the path from
v' to u is max, <<, wj. Since all these edges are lighter than e,,, the maximum
OVET Wy, ... ,w, finds the correct answer w,.

Case v’ > u: By the induction hypothesis, the heaviest edge on the path between
uand v’ has weight max, < j<, w;. Hence, the heaviest edge we are looking for has
weight max {w,, max,«j<, w;}. Maximizing over the larger set max,<j<, w;
will return the right answer since e, is heavier than the edges e, 41, ... e,_1.

Lemma 1 also holds when we have the MSF of an unconnected graph rather
than the MST of a connected graph. When JP spans a connected component,
it selects an arbitrary node i and adds it to the MSF with w; = oo. Then the
interval maximum for two nodes that are in two different components is oo, as
it should be.

2.2 Computation of Interval Maxima

Given an array al0]...a[n — 1], we explain how maxali..j] can be computed
in constant time using preprocessing time and space O(nlogn). The emphasis
is on very simple and fast queries since we are looking at applications where
many more than nlogn queries are made. To this end we develop an efficient
implementation of a basic method described in [4, Section 3.4.3] which is a special
case of the general method in [1]. This algorithm might be of independent interest
for other applications. Slight modifications of this basic algorithm are necessary
in order to use it in the I-Max-Filter algorithm. They will be described later. In
the following, we assume that n is a power of two. Adaption to the general case
is simple by either rounding up to the next power of two and filling the array
with —oo or by introducing a few case distinctions while initializing the data
structure.

Consider a complete binary tree built on top of a so that the entries of a
are the leaves (see level 0 in Figure 2). The idea is to store an array of prefix or
suffix maxima with every internal node of the tree. Left successors store suffix
maxima. Right successors store prefix maxima. The size of an array is propor-
tional to the size of the subtree rooted at the corresponding node. To compute

the interval maximum maxali..j], let v denote the least common ancestor of
ali] and a[j]. Let u denote the left successor of v and let w denote the right
successor of v. Let u[i] denote the suffix maximum corresponding to leaf i in
the suffix maxima array stored in u. Correspondingly, let w[j] denote the prefix
maximum corresponding to leaf j in the prefix maxima array stored in w. Then
max afi..j] = max(u[i], w[j]).

“98‘96‘ 95‘98‘75‘75‘75‘56‘34‘ 52‘77‘77‘77‘77‘77‘80‘ Level 3

‘98‘98‘ 98‘ 98‘ 1.5‘65‘75‘75‘77‘77‘77‘41‘62‘74‘75‘&)‘ Level 2
7

“ BB‘ 56‘30‘ 98‘ 66‘65 ‘75[75‘ 52‘ 52‘ 77‘ 77‘ 74‘ 74‘ 76‘80‘ Level 1

—— — — — — —
‘B&‘SS‘SO‘QE‘15‘66‘75‘56‘M‘sz‘ﬂ‘ﬂ‘ﬁz‘m‘m‘m‘Lwan
t— t— t— t— t— t— t—

Fig. 2. Example of a layers array for interval maxima. The suffix sections are marked
by an extra surrounding box.

We observed that this approach can be implemented in a very simple way
using a log(n) x n array preSuf. As can be seen in Figure 2, all suffix and prefix
arrays in one layer can be assembled in one array as follows

. [max(a[2b..i]) if b is odd
preSuf[/][i] = {max(a[i..(Q’Z + 1)b — 1]) otherwise

where b = |i/2¢].

Furthermore, the interval boundaries can be used to index the arrays. We
simply have max a[i..j] = max(preSuf[£][i], preSuf[¢][j]) where { = msbPos(i &
J); @ is the bit-wise exclusive-or operation and msbPos(z) = |log, z] is equal
to the position of the most significant nonzero bit of = (starting at 0). Some
architectures have this operation in hardware?; if not, msbPos(x) can be stored
in a table (of size n) and found by table lookup. Layer 0 is identical to a. A
further optimization stores a pointer to the array preSuf[/] in the layer table. As
the computation is symmetric, we can conduct a table lookup with indices i, j
without knowing whether i < j or 7 < i.

To use this data structure for the I-Max-Filter algorithm we need a small
modification since we are interested in maxima of the form maxa[min(i, j) +
1..max(i, j)] without knowing which of two endpoints is the smaller. Here we
simply note that the approach still works if we redefine the suffix maxima to
exclude the first entry, i.e., preSuf[/][i] = max(a[i + 1..(2" + 1) [i/2¢] — 1]) if
|i/2"] is even.

3 One trick is to use the exponent in a floating point representation of .

2.3 Putting the Pieces Together

Fig. 3 summarizes the I-Max-Filter algorithm and the following Theorem estab-
lishes its complexity.

Theorem 1. The I-Maz-Filter algorithm computes MSTs in expected time
mThiter + O(nlogn + /nm) where Thger i the time required to query the filter
about one edge.

In particular, if m = w(nlog® n), the execution time is (1 + o(1))mThiter-

Proof. Taking a sample can be implemented to run in constant time per sampled
element. Running JP on the sample takes time O(nlogn + /nm) if a Fibonacci
heap (or another data structure with similar time bounds) is used for the priority
queue. The lookup tables can be computed in time O(nlogn). The filtering loop
takes time mTger.* By the sampling lemma explained in the introduction [8,
Lemma 1], the expected number of edges in E"” is n/y/n/m = /nm. Hence,
running JP on E” takes expected time O(nlogn + y/nm). Summing all the
component execution times yields the claimed time bound.

From a theoretical point of view it is instructive to compare the number of
edge weight comparisons needed to find an MST with the obvious lower bound
of m. Also in this respect we are quite good for dense graphs because the filter
algorithm performs at most two comparisons with each edge that is filtered out.
In addition, an edge is already filtered out if the first comparison in Fig. 3 fails.
Hence, a more detailed analysis might well show that we approach the lower
bound of m for dense graphs.

3 Experimental Evaluation

The objective of this section is to demonstrate that the I-Max-Filter algo-
rithm is a serious contestant for the fastest MST algorithm for dense graphs

* Note that it would be counterproductive to exempt the nodes in E' from filtering
because this would require an extra test for each edge or we would have to compute
E — E' explicitly during sampling.

(* Compute MST of G = ({0,... ,n —1},E) *)
Function I-Max-Filter-MST(E) : set of Edge
E' := random sample from E of size \/mn
E" ;= JP-MST(E')
Let jpNum[0..n — 1] denote the order in which JP-MST added the nodes
Initialize the table preSuf[0..log n][0..n — 1] as described in Section 2.2
(* Filtering loop *)
forall edges e = (u,v) € E do
¢ := msbPos(jpNum[u]®jpNum[v])
if we < preSuf[f][jpNum[u]] and w. < preSuf[¢][jpNum[v]] then add e to E"
return JP-MST(E")

Fig. 3. The I-Max-Filter algorithm.

(m > nlogn). We compare our implementation with a fast implementation of
the JP algorithm. In [12] the execution time of the JP algorithm using differ-
ent priority queues is compared and pairing heaps are found to be the fastest
on dense graphs. We took the pairing heap from their code and combined it
with a faster, array based graph representation.? This implementation of JP
consistently outperforms [12] and LEDA [11].

3.1 Graph Representations

One issue in comparing MST-algorithms for dense graphs is the underlying graph
representation. The JP algorithm requires a representation that allows fast it-
eration over all edges that are adjacent to a given node. In a linked list imple-
mentation each edge resides in two linked lists; one for each incident node. In
our adjacency array representation each edge is represented twice in an array
with 2m entries such that the edges adjacent to each source node are stored
contiguously. For each edge, the target node and weight is stored. In terms of
space requirements, each source and each target is stored once, and only the
weight is duplicated. A second array of size n holds for each node a pointer to
the beginning of its adjacency array.

The I-Max-Filter algorithm, on the other hand, can be implemented to work
well with any representation that allows sampling edges in time linear in the
sample size and that allows fast iteration over all edges. In particular, it is
sufficient to store each edge once. Our implementation for I-Max-Filter uses an
array in which each edge appears once as (u,v) with u < v and the edges are
sorted by source node (u).% Only for the two small graphs for which the JP-
algorithm is called it generates an adjacency array representation (see Fig. 3).

To get a fair comparison we decided that each algorithm gets the original
input in its “favorite” representation. This decision favors JP because the con-
version from an edge array to an adjacency array is much more expensive than
vice versa. Furthermore, I-Max-Filter could run on the adjacency array repre-
sentation with only a small overhead: during the sampling and filtering stages it
would use the adjacency array while ignoring edges (u,v) with u > v.

3.2 Filtering Access Pattern

Our implementation filters all edges stored with a node together so that it is

likely that accesses to data associated with this node resides in cache.
Furthermore, the nodes are processed in the order given by JP order. This

has the effect that only O(n) entries of the O(nlogn) lookup table entries need

5 The original implementation [12] uses linked lists which were quite appropriate at
the time, when cache effects were less important.

6 These requirements could be dropped at very small cost. In particular, I-Max-Filter
can work efficiently with a completely unsorted edge array or with an adjacency
array representation that stores each edge only in one direction. The latter only
needs space for m + n node indices and m edge weights.

to be in cache at any time. In the results reported here (for graphs with up to
10,000 nodes), this access sequence resulted in a speedup of about 5 percent.
For even larger graphs we have observed speedups of up to 11 % due to this
optimization.

3.3 Implementation on Vector-Machines

A vector-machine has the capability to perform operations on vectors (instead
of scalars) of some fixed size (in current vector-machines 256 or 512 elements)
in one instruction. Vector-instructions typically include arithmetic and boolean
operations, memory access instructions (consecutive, strided, and indirect), and
special instructions like prefix-summation and minimum search. Vectorized mem-
ory accesses circumvent the cache. The filtering loop of Fig. 3 can readily be
implemented on a vector-machine. The edges are stored consecutively in an ar-
ray and can immediately be accessed in a vectorized loop; vectorized lookup of
source and target vertices is possible by indirect memory access operations. For
the filtering itself, bitwise exclusive or and two additional table lookups in the
preSuf array are necessary. Using the prefix-summation capabilities, the edges
that are not filtered out are stored consecutively in a new edge array. Also the
construction of the preSuf data-structure can be vectorized. The only possibility
for vectorization in the JP algorithm is the loop that scans and updates ad-
jacent vertices of the vertex just added to the MST. We divide this loop into
a scanning loop which collects the adjacent vertices for which a priority queue
update is needed, and an update loop performing the actual priority queue up-
dates. Using prefix-summation the scanning loop can immediately be vectorized.
For the update there is little hope, unless a favorable data structure allowing
simultaneous decrease-key operations can be devised.

3.4 Graph Types

Both algorithms, JP and I-Max-Filter were implemented in C++ and compiled
using GNU g++ version 3.0.4 with optimization level -06. We use a SUN-
Fire-15000 server with 900 MHz UltraSPARC-ITI+ processors. Measurements
on a Dell Precision 530 workstation with 1.7 GHz Intel P4 Xeon processors
show similar results. The vector machine used is a NEC SX-6. The SX-6 has
a memory bandwidth of 32GBytes/second, and (vector) peak-performance of
8GFlops.

We performed measurements with four different families of graphs, each with
adjustable edge density p = 2m/n(n — 1). This includes all the families in [12]
that admit dense inputs. A test instance is defined by three parameters: the
graph type, the number of nodes and the density of edges (the number of edges
is computed from these parameters). Each reported result is the average of ten
executions of the relevant algorithm; each on a different randomly generated
graph with the given parameters. Furthermore, the I-Max-Filter algorithm is

randomized because the sample graph is selected at random. Despite the ran-
domization, the variance of the execution times within one test was consistently
very small (less than 1 percent), hence we only plot the averages.
Worst-Case: p - n(n — 1)/2 edges are selected at random and the edges are
assigned weights that cause JP to perform as many Decrease Key operations as
possible [12].

Linear-Random: p-n(n — 1)/2 edges are selected at random. Each edge (u,v)
is assigned the weight w(u,v) = |u — v| where u and v are the integer IDs of the
nodes.

Uniform-Random: p - n(n — 1)/2 edges are selected at random and each is
assigned an edge weight which is selected uniformly at random.
Random-Geometric:[12] Nodes are random 2D points in a 1 X y rectangle for
some stretch factor y > 0. Edges are between nodes with Euclidean distance at
most a and the weight of an edge is equal to the distance between its endpoints.
The parameter « indirectly controls density whereas the stretch factor y allows us
to interpolate between behavior similar to class Uniform-Random and behavior
similar to class Linear-Random.

3.5 Results on Microprocessors

Fig. 4 shows execution times per edge on the SUN for the three graph families
Worst-Case, Linear-Random and Uniform-Random for n = 10000 nodes and
varying density. We can see that I-Max-Filter is up to 2.46 times faster than
JP. This is not only for the “engineered” Worst-Case instances but also for
Linear-Random graphs. The speedup is smaller for Uniform-Random graphs.
On the Pentium 4 JP is even faster than I-Max-Filter on the Uniform-Random
graphs. The reason is that for “average” inputs JP needs to perform only a
sublinear number of decrease-key operations so that the part of code dominating
the execution time of JP is scanning adjacency lists and comparing the weight
of each edge with the distance of the target node from the current MST. There
is no hope to be significantly faster than that. On the other hand, we observed a
speedup of up to a factor of 3.35 on dense Worst-Case graphs. Hence, when we
say that I-Max-Filter outperforms JP this is with respect to space consumption,
simplicity of input conventions and worst-case performance guarantees rather
than average case execution time.

=3
S
S}

600

@
S
S}

500 |- ~

200 WW |

3

]
a
3
8
-
|

]
s g
5 8
5 8
N
‘

Time per edge [ns]
IS
S
3
%
I

))
E=4 E=4
o o
g g
2 300 P 4 300 % 1 2 800 R 4
v K X e se X e e eme e
g 2o0f R I e a0 f B
= 100 Prim —+— 100 - prim —— 1~ 100 | Prim —+—
I-Max —--x--- I-Max —--x--- I-Max —--x---
ol v vy TR ol v vy TR ol v vy TR
010203040506070809 1 0.10203040506070809 1 010203040506070809 1
Edge density Edge density Edge density

Fig. 4. Worst-Case, Linear-Random, and Uniform-Random graphs, 10000 nodes, SUN.

On very sparse graphs, I-Max-Filter is up to two times slower than JP, be-
cause v/mn = @(m) and as a result both the sample graph and the graph that
remains after the filtering stage are not much smaller than the original graph.
The runtime is therefore comparable to two runs of JP on the input.

3.6 Results On A Vector Machine

700 T

T 700 T

T T T T T
Prim (Scalar) —+— Prim (Scalar) —+— Prim (Scalar) —+—

I-Max (Scalar) --3%-- I-Max (Scalar) -~ I-Max (Scalar) -~
Prim (Vectorized) ----- Prim (Vectorized) ----- Prim (Vectorized) -----
600 - I-Max (Vectorized) & b 600 - I-Max (Vectorized) & b 600 - I-Max (Vectorized) & b
X

500 g 500 - g 500 - e S 4

400 400 400 —

300 |- o R

Time per edge [ns]
Time per edge [ns]
Time per edge [ns]

300 - B 300 - B
7(\\
.
200 - S g 200 - g 200 - g
e
o o &
wor B 7 100 |- Bog B 100 |- b |
B G e G g BB G BB @G g g g
ol v ol v ol Frk e *
01 02 03 04 05 06 0.7 08 09 1 01 02 03 04 05 06 0.7 08 09 1 01 02 03 04 05 06 0.7 08 09 1
Edge density Edge density Edge density

Fig. 5. Worst-Case, Linear-Random, and Uniform-Random graphs, 10000 nodes, NEC
SX-6.

Fig. 5 shows measurements on a NEC SX-6 vector computer analogous to
the microprocessor results reported in Fig. 4.

For each of the two algorithms (JP and I-Max-Filter), runtimes per edge
are plotted for scalar as well as vectorized version. The results of the scalar
code show, once again, that JP is very fast on Uniform-Random graphs while
I-Max-Filter is faster on the difficult graphs. In addition, we can see that on
the “difficult” inputs I-Max-Filter benefits from vectorization more than JP
which achieves a speedup of only factor 1.3. This is to be expected; JP becomes
less vectorizable when many decrease key operations are performed, while the
execution time of I-Max-Filter is dominated by the filtering stage, which in turn
is not sensitive to the graph type. As a consequence, we see a speedup of up to
10 on the “difficult” graphs when comparing the vectorized versions of JP and
I-Max-Filter.

3.7 Can JP be made faster?

It is conceivable that the implementation of JP could be further improved us-
ing an even faster priority queue. Our implementation of JP uses the Pairing
Heap variant that proved to be fastest in the comparative study of Moret and
Shapiro [12]. How much can JP gain from an even faster heap? To investigate
this we ran it with a best possible (theoretically impossible!) perfect heap, that

is, a heap in which both Decrease-Key and Delete-Minimum operations takes
unit time. The perfect heap is implemented as an array, such that Decrease-Key
takes constant time, and to simulate constant-time Delete-Minimum we simply
stop the clock during this operation. Results for the worst-case graphs are shown
in Fig. 6, which give both the run time break-down for I-Max-Filter, and the
run time for [-Max-Filter with Pairing Heap and Perfect heap. The results show
that I-Max-Filter is not very sensitive to the type of heap; its running time is
dominated by the filtering stage which doesn’t use the heap. JP is sensitive to
the type of heap when running on graphs that incur many Decrease-Key opera-
tions, but not when it runs on a Uniform-Random graph (not shown here). All
of this was to be expected, but in addition we see that I-Max-Filter is faster
even when JP can access the heap almost for free and the only thing that takes
time is traversing the nodes’ adjacency lists.

T T T T T T T
Final Prim —+— Prim - Pairing Heap —+—

450 | IMax Filter —-x-- | 700 Prim - Perfect Heap ~—x-- |
4 Prim on Sample -- ¥-- |-Max - Pairing Heap - - - -
400 [Sample Generation - |-Max - Perfect Heap

250
200

Time per edge [ns]
Time per edge [ns]

-
@
3

.
o 9o
S 38

Gl S R R B S

1 1 1 Eﬁ q§ ‘EF #
01 02 03 04 05 06 07 08 09 1
Edge density Edge density

o

Fig. 6. Time break-down of I-Max-Filter (left). Pairing Heap vs. Perfect Heap (right).
Worst-Case graph, 10,000 nodes, SUN.

4 Conclusions

We have seen that the cycle property can be practically useful to design improved
MST algorithms for rather dense graphs. An open question is whether we can
find improved practical algorithms for sparse graphs that use further ideas from
the asymptotically best theoretical algorithms. Besides a component for filtering
edges, these algorithms have a component for reducing the number of nodes
based on Boruvka’s [2,13] algorithm. Although this algorithm is conceptually
simple, it seems unlikely that it is useful for internal memory algorithms on
current machines. However node reduction has great potential for parallel and
external-memory implementations.

References

1. N. Alon and B. Schieber. Optimal preprocessing for answering on-line product
queries. Technical Report TR 71/87, Tel Aviv University, 1987.

10.

11.

12.

13.

14.

15.

. O. Boruvka. O jistém problému minimdalnim. Prace, Moravské Prirodovedecké

Spolecnosti, pages 1 58, 1926.

M. L. Fredman. On the efficiency of pairing heaps and related data structures.
Journal of the ACM, 46(4):473 501, July 1999.

J. J&ja. An Introduction to Parallel Algorithms. Addison Wesley, 1992.

V. Jarnik. O jistém problému minimalnim. Prdca Moravské Prirodovédecké
Spolecnosti, 6:57 63, 1930.

D. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm for
finding minimum spanning trees. Journal of the ACM, 42(2):321-329, 1995.

V. King. A simpler minimum spanning tree verification algorithm. Algorithmica,
18:263 270, 1997.

P. N. Klein and R. E. Tarjan. A randomized linear-time algorithm for finding
minimum spanning trees. In Proceedings of the 26th Annual ACM Symposium on
the Theory of Computing, pages 9 15, 1994.

. J. Komlés. Linear verification for spanning trees. In 25th annual Symposium on

Foundations of Computer Science, pages 201 206, 1984.

J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7:48-50,
1956.

K. Mehlhorn and S. Naher. The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

B. M. E. Moret and H. D. Shapiro. An empirical analysis of algorithms for con-
structing a minimum spanning tree. In Workshop Algorithms and Data Structures
(WADS), volume 519 of Lecture LNCS, pages 400-411. Springer, 1991.

J. Nesetril, E. Milkova, and H. Nesetrilova. Otakar Boruvka on minimum spanning
tree problem: Translation of both the 1926 papers, comments, history. Discrete
Mathematics, 233(1-3), 3-36, 2001.

S. Pettie and V. Ramachandran. An optimal minimum spanning tree algorithm.
Journal of the ACM, 49(1): 16-34, 2002.

R. C. Prim. Shortest connection networks and some generalizations. Bell Systems
Technical Journal, pages 1389 1401, 1957.

