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Abstract

We give an overview of mathematical music theory as it has been de-
veloped in the past twenty years. The present theory includes a formal
language for musical and musicological objects and relations. This lan-
guage is built upon topos theory and its logic. Various models of mu-
sical phenomena have been developed. They include harmony (func-
tion theory, cadences, and modulations), classical counterpoint (Fux
rules), rhythm, motif theory, and the theory of musical performance.
Most of these models have also been implemented and evaluated in
computer applications. Some models have been tested empirically in
neuro-musicology and the cognitive science of music. The mathemat-
ical nature of this modeling process canonically embedds the given
historical music theories in a variety of fictitious theories and thereby
enables a qualification of historical reality against potential variants.
As a result, the historical realizations often turn out to be some kind of
“best possible world” and thus reveals a type of “anthropic principle”
in music.

These models use different types of mathematical approaches, such
as—for instance—enumeration combinatorics, group and module the-
ory, algebraic geometry and topology, vector fields and numerical solu-
tions of differential equations, Grothendieck topologies, topos theory,
and statistics. The results lead to good simulations of classical results
of music and performance theory. There is a number of classifiaction
theorems of determined categories of musical structures.

The overview concludes by a discussion of mathematical and mu-
sicological challenges which issue from the investigation of music by
mathematics, including the project of “Grand Unification” of harmony
and counterpoint and the classification of musical performance.
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Introduction

This is the second status quo report on mathematical music theory. The
first was written exactly ten years ago for the Deutsche Mathematiker-
Vereinigung [37], and ten years after my first steps into mathematical music
theory [31]. The former report essentially paralleled with the book Ge-
ometrie der Töne [34], whose title reflects the theoretical approach of that
time: The central concern was not logic but geometry, i.e., the investigation
of categories of local and global compositions which formalize the relevant
objects and relations for harmony (cadence and modulation), counterpoint
(Fux rules), melody, rhythm, large musical forms (in particular the classical
sonata theory), including their classification, and the paradigmatic semiotics
of musical structures as described by Ruwet [57] and Nattiez [49].

This approach included satisfactory theorems which model modulation,
counterpoint, and string quartet theory in coincidence with the classical
knowledge and tradition, which yield classification for some interesting global
structures [34, 37], and which have been operationalized in music compo-
sition software [35] and corresponding CDs [5, 6, 7, 36]. It was however
incomplete and too narrow in its concept framework for many musical prob-
lems. Here are some critical points:

• The Yoneda point of view was not properly developed. This defect
became virulent after Noll’s reconstruction of Riemann harmony [50].

• The development of the music platform RUBATOr for analysis and
performance [39, 42] enforced a critical review of music data models
for universal purposes from score representation to performance [38]
and the definition of an extended concept framework whose elements
were described in [38, 62] and implemented in RUBATOr’s PrediBase
DBMS.

• The complexity of musical performance asked for concepts and meth-
ods from differential geometry, such as vector fields and their integra-
tion (ordinary differential equations and associated numerical Runge-
Kutta-Fehlberg methods), Lie derivatives, and characteristics methods
in partial differential equations.

• The differenciation between mathematical fiction and musical facticity
had to be explicated and led to the concept of textual and paratextual
predicates [43, 44]. At this point, logical and geometric perspectives
were forced to unite. This approach is centered around topos-theoretic
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construction of musical predicates by means of logical and geomet-
ric operations and also targets at the design of universal composition
tools. Presently, several research groups (e.g. TU Berlin, IRCAM
Paris, U Osnabrück, UNAM Mexico, ETH Zürich, U Zürich) are col-
laborating in the theoretical and software design of these extensions.

So this second status report will center around the most important im-
provements and extensions of the theory since the early nineties. Again, this
report is paralleled by an upcomping book The Topos of Music [45] with ex-
tensive discussions of the old and new topics. A history of mathematical
music theory has however not been written, and this report is just a flash
on the ongoing process.

The report first deals with mathematical models in music, discussing
the methodological background, then illustrating it by three classical mod-
els: modulation, counterpoint, and performance. The second section in-
troduces the concept framework of forms and denotators, including their
operationalization on the RUBATOr workstation and the Galois theory of
concepts. Thirdly, we discuss the central category of local and global com-
positions with general Yoneda ‘addresses’, i.e., domains of presheaves. This
leads to Grothendieck topologies and sheaves of affine functions which are
essential for classification purposes. This latter subject is dealt with in
the fourth section. We discuss enumeration theory of musical objects and
algebraic schemes whose points parametrize isomorphism classes of global
compositions. Based on a substantial isomorphism between harmonic and
contrapuntal structures, we give a preview in the fifth section of what future
research in mathematical music theory could (and should) envisage.

The fact that this report has been realized under the excellent organi-
zation of the Universidad Nacional Autónoma de México and Emilio Lluis-
Puebla, president of the Mathematical Society of México, is also a sign that
mathematical music theory has transcended its original Swiss roots and has
attended international acceptance. At this point, I would like to acknowl-
edge all my collaborators and colleagues for their continuous support and
encouragement.

1 Models

1.1 What Are Models?

Basically, mathematical models of musical phenomena and their musicolog-
ical reflexions are similar to corresponding models of physical phenomena.
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The difference is that music and musicology are not phenomena of exterior
nature, but of interior, human nature. To begin with, there is a status of
music structures and correponding conceptual fields, together with composi-
tions in that area, and the modeler first has to rebuild this data in a precise
concept framework of mathematical quality. Next, the historical material
selection in music and musicology (scales, interval qualities, for example)
has to be paralleled in the mathematical concept framework by a selection
of instances. Here, the historical genesis is contrasted by the systematic
definition and selection of a priori arbitrari instances. After this positioning
act, the musical and/or musicological process type (such as a modulation
or cadence or contrapuntal movement) has to be rephrased in terms of the
mathematical concept framework. With this in mind, the historically grown
construction and analysis rules of that determined process have to be mod-
eled on the level of mathematics. This means that the formal process re-
statement must be completed by structure theorems (including the proofs, a
strong change of paradigm!), and then, by use of such theorems, the grown
rules must be deduced in the mathematical concept framework.

The typical property of mathematical models in music is this: To en-
able a quasi-automatic generalization to situations where the classical music
theory for which the model was constructed has no answer. In the case of
modulation which originally was modeled for major scales, the generaliza-
tion extends to arbitrary 7-tone scales. This is due to the a priori systematic
concept framework of mathematics. Once a bunch of concepts and struc-
tures has been set up, there is no reason whatsoever to stick to the historical
material selection, the genericity of precise concepts and theorems enables
a broader perspective which pure historicity cannot offer.

The property of extensibility of a mathematical model relocates the exist-
ing music theory (which it models) in a field of potential, fictitious theories.
This puts the historically grown facticity into a relation with the potential
‘worlds of music’. The purely historic justification of existing modulation
rules, for example, does not give us reasons for this choice, and this makes
the purely historical approach a poor knowledge basis: We know that some-
thing is the case, but not why, and why other possibilities are not. In
contrast, the mathematical approach gives us a field of potential theories
wherein the actual one can be asked for its possible special properties with
respect to non-existing variants. This differentia specifica is a remarkable
advantage of mathematical methodology against the historical approach of
musicology which cannot embed the facts in a viariety of fictions and thereby
understand the selection of what is against what is not.

This evokes Leibniz idea that the existing world is the best of all possible
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worlds: Is the existing music theory the best possible choice? Or is it at least
a distinguished one? In cosmology, this idea has been restated under the title
of the “anthropic principle” [3]. It says that the physical laws are the best
possible for the existence of humans, more precisely (and less radically), it
is the theorem stating that a slight variation of the fundamental constants,
such as the gravitational constant, or the electric charge of electrons and
protons, would make any higher molecular complexity as it is necessary for
the carbon-based biochemistry impossible.

1.2 Modulation

The historically first model in mathematical music theory dealt with tonal
modulation, more precisely: with Arnold Schönberg’s model of a tripartite
modulation process from tonality X to tonality Y , as it is described in
the classical treatise on harmony [58]. The process parts are the following,
exemplified for X = C-major, Y = F -major:

A. Neutralization of the old tonality X, neutral degrees of X are presented,
for example IC , V IC .

B. The pivotal root progression degrees (German: “Fundamentschritte der
Modulation”) are played to enforce the turning movement towards the
new tonality, for example degrees IIF , IVF , V IIF .

C. The new tonality (F -major in our example) is evidenced by a set of
cadence degrees, for example IIF , VF .

In [58], such transition processes are described for a set of tonality couples,
but not for all possible couples: These omitted couples are dealt with by a
chain of at least two successive modulations through intermediate tonalities.
Also is the construction of the core steps, i.e., the pivotal degrees, not inde-
pendent of the specific constellation, it is rather an ad hoc argumentation.
Moreover, the concepts are quite fuzzy, as usual in musicology. Finally, one
cannot infer, how such an argumentation should deal with non-European
tonalities. So there is the mathematical modeling enterprise as described
above, on the level of musicological theory. Besides that, the model must
also be tested on the corpora of compositions where there is a certain chance
to recognize such modulation processes. But let us get off on the theoretical
level first and comment on the experimental work later.

In the first steps, one makes the concepts of “tonality”, “degree”, “ca-
dence” precise. Then, one should model the modulation mechanism, and
last, one has to prove theorems which yield the pivotal degrees in process
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part B. Since this model has been described on several occasions [31, 32, 34,
48], we shall be very sketchy and only mark the cornerstones of the modeling
operation1. For the tonalities, one takes a seven-element scale S ⊂ Z12 of
pitch classes and covers S by seven triadic degrees IS , IIS , . . . V IIS which
are three-element subsets with each an intermediate pitch class between the
first and second, and between the second and third degree pitch. For the C-
major scale S = C, this gives us the classical triadic degrees. By definition,
a tonality S(3) is a scale S, together with its covering (3) by triadic degrees.
For the given modulation problem, we consider the translation orbit Dia(3)

of the C-major tonality C(3). For a given couple S(3), T (3), the modula-
tion mechanism is the datum of a symmetry S(3) → T (3), i.e., a translation
or an inversion on the ambient space Z12 which carries the first tonality
onto the second. The cadence concept is grasped by minimal subsets of
triadic coverings such that only the respective scales contain these degrees
as their degree subsets. In Dia(3), there are five such minimal cadential
sets, i.e., {IIS , IIIS}, {IIIS , IVS}, {IVS , VS}, {IIS , VS}, {V IIS}. So finally,
a modulation from S(3) to T (3) in Dia(3) is a quatruple (S(3), T (3), g, c) where
g : S(3) → T (3) is a modulation symmetry, and c is one of the five minimal
cadential sets for the target tonality.

The last point of this model is the calculation of the pivotal degrees.
This is achieved by what we call a “modulation quantum”. This is a subset
M ⊂ Z12 such that

1. g is an inner symmetry of the quantum;

2. the quantum contains all degrees of the cadence c;

3. M ∩ T is rigid, i.e., has no translation or inversion symmetry as inner
symmetry and is covered by degrees of T (3);

4. M is minimal with properties 1. and 2.

So a modulation quantum ‘materializes’ the modulation symmetry (much
like quanta in physics materialize forces), contains enough elements to ex-
press a cadence for the target tonality, has its trace M ∩T covered by target
tonality degrees and determines uniquely its associated symmetry (this fol-
lows from rigidity) and is a minimal such candidate (economical condition).
If such a quantum exists, we shall (by definition!) recover the pivotal degrees
from the triadic covering (M ∩ T )(3) of the trace M ∩ T by degrees of T (3).

1A detailed and mathematically generalized discussion is also contained in [45].
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A modulation which has a quantum is called quantized. The main theo-
rem now has to guarantee the existence of quantized modulations. This is the
alias of the historically grown rule canon in the mathematical model. This
theorem in fact guarantees quantized modulations for all couples in Dia(3),
and the pivotal degrees coincide with the pivotal degrees in Schönberg’s
treatise wherever he considers direct modulations (see [34, section 5.5.2]).

The present mathematical model has the advantage that it can also be
performed on any seven-element scale, and any translation class of that scale
as a modulation domain. So the modulation model immerges the classical
case Dia(3) in a variety of modulation scenarios which have never been
dealt with in historical contexts. In [48], this extension has been calculated
by computer programs (including explicit lists of modulation quanta and
pivotal degrees) and commented. That extension exhibits a very special
position of the common scales in European harmony which we summarize
as follows (see [48] for complete results):

• Among the modulation domains of rigid triadic tonalities, the max-
imum of 226 quantized modulations occurs for the harmonic minor
scale.

• Among modulation domains of non-rigid tonalities, the maximum of
114 quantized modulations occurs for the melodic minor scale. Among
those scales with quantized modulations for all couples of their modu-
lation domains, the minimum of 26 quantized modulations occurs for
the diatonic major scale.

Besides this “anthropic principle” for modulation, the model and its
extension also apply to just tuning pitch spaces, and there, where the math-
ematics is quite different since one works in Zn, one also has good results, see
[53, 45]. But the model and its extension also apply to compositions of tonal
character. Of course, the historical context seems to be a critical point here
since not every composer would compose in the framework of Schönberg’s
harmony. However, the mathematical model is not a poietic model, i.e.,
it does not claim that the composer has used its approach to set his/her
modulations. The mathematical model is more like a model in physics: The
phenomena are there (in our case: the compositions), and we have to de-
scribe their structure as well as possible, ignoring whether the creator of the
universe has ever used our mathematics, our logic or our conceptual model
of physical processes. In this spirit a number of successful interpretations of
modulatory processes, among them the hitherto poorely understood mod-
ulation architecture of Beethoven’s op.106 (“Hammerklavier”), have been
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realized, see [34]. A reconstruction of the first movement of Beethoven’s
op.106 in terms of analogous structures, replacing the minor seventh chord
and its satellite structures in op.106 by the augmented triad and its corre-
sponding satellite structures, has been realized in [32].

1.3 Counterpoint

The mathematical model of counterpoint [34] was first used in the context of
neurophysiological investigations via Depth-EEG [40], where we tested the
perception of consonances and dissonances in limbic and auditory structures
of the human brain. In that research project, classical European theories—
following Johann Joseph Fux [23] as a typical reference—were our objectives.
However, the model later, with the thesis of Jens Hichert [27], turned out to
have a similar extension to other interval dichotomies, and again, it turned
out that the European choice was an exemplification of a “anthropic prin-
ciple”.

We shall only sketch the core structures here to illustrate the model-
ing methodology. Some more technical details are given in section 5 below.
This counterpoint model starts from a specific 6-by-6-element dichotomy
K/D of the twelve interval quantities modulo octave which are modeled as
elements of Z12, i.e., prime = 0, minor second = 1, etc., major seventh =
11. So the classical contrapuntal dichotomy is D = {0, 3, 4, 7, 8, 9}/K =
{1, 2, 5, 6, 10, 11}. This dichotomy has a unique autocomplementarity sym-
metry AC(x) = 5x + 2, i.e., AC(K) = D. In this theory, such dichotomies
are called strong dichotomies. There are six types (i.e., affine orbits) of
strong dichotomies. If we draw the dichotomies as partitions of the discrete
torus Z3 × Z4

∼→ Z12 given by the Sylow decomposition of Z12 (in fact the
torus of minor and major thirds!), then it turns out that the classical di-
chotomy K/D has a maximal separation of its parts on the torus among
the six strong dichotomy types. It has a remarkable antipode dichotomy
which has its parts mixed up more than any other strong type, this is the
major dichotomy I/J = {2, 4, 5, 7, 9, 11}/{0, 1, 3, 6, 8, 10} whose first part
are exactly the proper intervals of the major scale when measured from the
tonic!

For each strong dichotomy, the results of Hichert enable a new and his-
torically fictitious counterpoint rule set. These six ‘worlds of counterpoint’
are quite fascinating for several reasons, one of which we shall now make
more explicit. It deals with the seven-element scale in which the counter-
point rules are realized2. If one looks for the diatonic scales (those having

2Moreover, but this is not our main concern here, the rule of forbidden paralles of fifth
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only semi-tone and whole-tone intervals for successive notes) where the free-
dom of choice of a successor interval to a given interval is maximal in Fux
counterpoint (dichotomy K/D), then the major scale is best, and it has no
cul-de-sac, i.e., it is always possible to proceed from one consonant inter-
val to another such interval under the given rules. The latter result is, by
the way, a fact which has never been demonstrated in a logically consistent
way in musicology... And the major scale has cul-de-sacs only for the major
dichotomy I/J . Among the scales with seven tones without cul-de-sac for
the major dichotomy, no European scales appear! However, there is a scale
K∗ = {0, 3, 4, 7, 8, 9, 11} without cul-de-saces for I/J . It is nearly a “mela”
(No. 15 = {0,1,3,4,7,8,9}), i.e., a basic scale for Indian ragas. And it is very
similar to the consonant half K of the Fux dichotomy.

So the counterpoint model not only exhibits a variety of fictitious coun-
terpoint theories which could very well yield new, interesting counterpoint
compositions. It also relates the existent counterpoint theory of the Fux
dichotomy K/D to its antipode, the major dichotomy I/J , through the
scales where the counterpoint has to be inserted, and thereby to a far-out
music structure such as the melas from Indian raga tradition. It is not clear
whether these intercultural relations can be made more realistic or whether
they remain fictitious. Here, more research must be done. But it becomes
evident that the extension of mathematical models could open not only new
perspectives of historical developments, it could also unfold new perspectives
of cultural specializations.

1.4 Performance

The author’s first steps in performance modeling were made 1989-1994
while programming the commercial musical composition software prestor

for Atari computers [35]. In prestor’s “AgoLogic” subroutine, a hierarchy
of polygonal tempo curves can be defined and edited. The program uses the
definition of musical tempo as a piecewise continuous map T : R → R+ on
the positive reals of symbolic time E, measured in quarters Q and with val-
ues in the positive reals, measuring the tempo T (E) at symbolic (score) time
E in units of quarters per minute, Q/Min, say. Mathematically, the tempo
is the inverse derivative of the physical time e as a function of symbolic time
E, as a function of symbolic time, i.e., T (E) = (de/dE)−1(E). The program
uses the calculation of physical time via the evident integration of 1/T (E).
The hierarchical tempo structure implements the fact that musical tempo is

is valid, and the coincidence with the Fux rules is extremely high, statistically speaking,
the difference is less than 10−8, see [50, II.4.3] for a precise argumentation.
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not the same for all notes at a given score time. Rather is the tempo layered
in a tree of successive refinements of local tempi. Typically, this looks like
this: We are given a ‘mother tempo’ curve Tmother, defined on the closed
symbolic time interval [E0, E1]. In a homophonic piano piece, this could be
the global tempo which is played by the left hand. If the right hand should
play a Chopin rubato during a subinterval [E00, E01] of [E0, E1], then the
tempo of the right hand will deviate from the mother tempo in this interval.
However, at the start and end times E00, E01, we ask the hands to coincide.
So the daughter tempo Tdaughter of the right hand should have the same
integral as the left hand with its mother tempo, i.e.,∫ E01

E00

1/Tdaughter =
∫ E01

E00

1/Tmother.

By use of adaptation algorithms, the tempo hierarchy subroutine in the
prestor software enables the graphically-interactive construction of such
daughter curves, including an arbitrary number of sisters and of genealog-
ical depth for daughters, granddaughters, great-granddaughters etc. This
means that interpretative time is encoded in a ramified tree of genealogical
refinement of local tempi.

This first approach was successful on the time level. Therefore, the
SNSF grant (1992-196) for the RUBATOr project [38, 42] was designed to
extend this approach to other parameters, such as pitch, duration, loudness,
glissandi, and crescendi. But the prestor approach also had no rationale for
shaping the tempo hierarchy, except intuitive graphical interaction. So the
RUBATOr project had to deal with the question of constructing operators
for shaping performance from a more analytical point of view.

The basic extension of tempo curves to higher parameter spaces is this:
The performance is described by a performance mapping ℘ from the n-
dimensional real space REHLD... of n symbolic parameters, onset E, pitch
H, loudness L, duration D, etc. to the n-dimensional real space Rehld... of
n physical parameters, onset e, pitch h, loudness l, duration d, etc. Locally
on the score, we suppose that ℘ is a diffeomorphism on an n-dimensional
cube C, applied to a finite number of score events which are contained in
this cube. So for a symbolic event X (uppercase), x = ℘(X) (lowercase)
denotes the associated physical performance event.

The extension of the tempo concept is given by the inverse vector field
Z℘ of the constant diagonal field ∆(x) = ∆ = (1, . . . 1) on the physical
space, i.e., Z℘(X) = (J℘(X))−1(∆) with the Jacobian J℘(X). This defines
a performance field associated with the performance map ℘. The value
x = ℘(X) can be calculated as follows (still generalizing the situation for
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tempo): suppose that the performance is known for a ‘initial set’ I ⊂ C of
symbolic events. Suppose also that the integral curve

∫
X Z℘ of Z℘ through

X hits I at the initial point X0, and for the curve parameter time t. Then
we have

x = ℘(X) = ℘(X0)− t∆. (1)

So the performance map can actually be defined from a performance field Z
on the cube domain C, together with an initial performance map ℘I : I →
R
ehld.... On the tempo level, the initial performance is the moment where

the conductor lowers the baton to initialize the performance, and on the
pitch level, the initial performance encodes the concert pitch!

This generalization is only possible by use of the generic mathematical
concept framework of differential geometry. And it has the great advantage
that it includes a very fine shaping tool for musical performance: perfor-
mance vector fields! This meets the philosophy of performance as an effort
of “infinite subtlety”, as it was established by Theodor W. Adorno and
Walter Bejamin [2]. Moreover, the shaping operators of performance can
now be defined as operators which act on given performance fields and de-
pend upon parameters which are typically available from data of harmonic,
rhythmical, or motivic analysis of the underlying score. This would also
meet Adorno’s principle of a performance which is based on understanding
the score’s logical structure.

At present, there is no general system of performance operators. Several
operators have been implemented on the RUBATOr platform, and they
have been tested for classical scores, such as Bach’s Kunst der Fuge (see [59]
for a very interesting performance of Contrapunctus III). The most general
type of operators are linear operators in the analytical parameters as well
as in the given performance field. See [38, 41, 11] for this subject. The
formal setup of this operator type follows these lines: We are given the
analytical information in form of a “weight”, i.e., a function Λ : I → R.
This is what the analytical moduli of RUBATOr in fact do calculate. Then,
we are given an affine endomorphism Dir of the symbolic parameter space
R
EHLD.... Given the mother performance field Z, we have a new field

ZΛ,Dir = Z − LZΛ.Dir, (2)

where L is the Lie derivative. By the method of characteristics in partial
differential equations it can be shown [38, Vol.I,p.214] that this type of
operator englobes all known shaping operators in the implementations on
the RUBATOr workstation.
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Summarizing, the mathematical model of performance is a canonical
generalization of the very special, and musically too narrow, situation known
for tempo. And even in that special case has musicology never achieved
a valid definition of tempo which exceeds the medieval level of a locally
constant velocity (!) [45].

2 Concepts

The conceptual extension enforced by research in mathematical music theory
is a dramatic process which led to new problems in musicology, knowledge
representation theory, and mathematics.

2.1 Generalization of Common Structures

Ten years ago, the geometric approach to music theory was nothing more
than a common mathematization of music(ologic)al objects in the sense
that one dealt with categories of local and global compositions. A local
composition is a pair (K,M), where K is a (usually finite) subset of a
module M over a commutative ring A, whereas a morphism f : (K,M) →
(L,N) between two local compositions is a set map f : K → L which
extends to an affine homomorphism F : M → N , i.e., F (m) = n + F0(m),
a translation by n in the codomain plus a A-linear homomorphism F0 :
M → N . A global composition is defined via a finite covering of a set
K by charts Ki which are in bijection with supports of local compositions
(Li,Mi), including transition isomorphisms of local compositions induced
by the pairwise chart intersections. Morphisms are the evident maps which
are locally chart morphisms [34].

But this setup was too special for two main reasons. Firstly, the devel-
opment of data base management systems for music research software had
to cover more general musical objects, not just local or global compositions.
For instance, the objects had to carry names, had to be defined in a recursive
way in order to enable hierarchical concepts, and had to admit completely
heterogeneous types, such as products, coproducts, lists, etc. In this envi-
ronment, local and global compositions turned out to be too tightly related
to naive mathematical objects. Secondly, new constructions of musicologi-
cal objects required more general points than just elements of modules: For
instance, new developments in harmony [50] require local compositions K
where the elements of K are affine morphisms k : B → M on a domain
module B instead of the classical case B = 0 which evidently covers the
elements of the codomain module M . Thirdly, the recursive constructions
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turned out to include circular constructions, a completely new situation
which also mathematically has some serious implications: this is the subject
of the conceptual Galois theory we want to sketch below. Therefore, the
following general framework was created, a framework which is rooted in
the modern topos theory rather than in classical algebra and geometry.

2.2 Forms

Forms are the structure type which mimic a generic space concept3 . They
are based on the category Mod of (left) modules over associative, rings4

with identity. The morphisms of this category are the diaffine morphisms.
This means that if M,N are modules over rings R, S, respectively, a diaffine
morphism f : M → N is the composition f = en◦f0 of a dilinear morphism
f0 with respect to a ring homomorphism r : R → S and a translation
en on the codomain N . The morphism set from M to N is denoted by
M@N . The category of presheaves over Mod is denoted by Mod@; in
particular, the representable presheaf of a module M is denoted by @M .
More generally, for any presheaf F in Mod@, its value at module M will
be denoted by M@F . In the context of Mod@, we shall call a module an
address, a terminology which stresses the Yoneda philosophy, stating that
the isomorphism class of a module is determined by the system @M of
all the ‘perspectives’ it takes when ‘observed’ from all possible addresses.
Recall [29] that Mod@ is a topos whose subobject classifier Ω evaluates to
M@Ω = {S| S = sieve in M}. Its exponential ΩF for a presheaf F evaluates
to M@ΩF = {S| S = subfunctor of @M × F}, and for a representable
F = @N , we have M@Ω@N ∼→ (M ×N)@Ω, the set of sieves in M ×N . For
a subfunctor S ⊂ @M × F , an address B, and a morphism f : B →M , we
write f@S = {(f, s)| (f, s) ∈ B@S}, i.e., B@S =

∐
f∈B@M f@S.

To construct the formal setup of forms, we consider the set MonoMod@

of monomorphisms in Mod@. We further consider the set

Types = {Simple,Syn,Limit,Colimit,Power}

of form types. We then need the free monoid Names = 〈UNICODE〉
over the UNICODE alpabet 5. We next need the set Dia(Names) of all
diagram schemes with vertices in Names. More precisely, a diagram scheme
over Names is a finite directed multigraph whose vertices are elements of

3Fro further motivations, see [44].
4The empty module (!) is included in this category to guarantee universal construc-

tions.
5This is the current extension of the ASCII alphabet code to non-European letters
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Names, and whose arrows i : A → B are triples (i, A,B), with i = 1, . . .
natural numbers to identify arrows for given vertices.

Next, consider the set Dia(Names/Mod@) of diagrams on Dia(Names)
with values in Mod@. Such a diagram is a map

dia : D →Mod@

which with every vertex of D associates a functor and with every arrow
associates a natural transformation between corresponding vertex functors.
So i : A → B is mapped to the natural transformation dia(i) : dia(A) →
dia(B).

With these notations, we can define a semiotic of forms as follows:

Definition 1 A semiotic of forms is a set map

sem : FORMS → Types×MonoMod@ ×Dia(Names/Mod@)

defined on a subset FORMS ⊂ Names with the following properties (i) to
(iv). To ease language, we use the following notations and terminology:

• An element F ∈ FORMS is called a form name, and the pair (F, sem)
a form (if sem is clear, the form is identified with its name)

• pr1 · sem(F ) = t(F ) (=type of F )

• pr2 · sem(F ) = id(F ) (= identifier of F )

• domain(id(F )) = fun(F ) (= functor or “space” of F )

• codomain(id(F )) = frame(F ) (= frame or “frame space” of F )

• pr3 · sem(F ) = coord(F ) (= coordinator of F )

Then these properties are required:

(i) The empty word ∅ is not a member of FORMS

(ii) Within the coordinator of F , if t(F ) 6= Simple, the vertices of the
diagram are form names, i.e. elements of FORMS

(iii) For any vertex X of the coordinator diagram coord(F ), we have

coord(F )(X) = fun(X)
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(iv) If the type t(F ) is given, we have the following for the corresponding
frames:

• For Syn and Power, the coordinator has exactly one vertex G
and no arrows, i.e. coord(F ) : G→ fun(G), what means that in
theses cases, the coordinator is determined by a form name G.
Further, for Syn, we have frame(F ) = fun(G), and for Power,
we have frame(F ) = Ωfun(G).

• For Limit and Colimit, the coordinator is any diagram coord(F ).
For Limit, we have the frame frame(F ) = lim(coord(F )), and
for Colimit, we have the frame frame(F ) = colim(coord(F )).

• For type Simple, the coordinator has the unique vertex ∅, and a
value coord(F ) : ∅ → @M for a module M , or, in a more sloppy
notation: coord(F ) = M .

Given a form semiology, we shall denote a form by the symbol

F −→
id(F ):fun(F )→frame(F )

t(F )(coord(F ))

and omit the identifier if it is the identity functor. We also write

F −→
id(F )

Limit(F0, F1, . . . Fn) and F −→
id(F )

Colimit(F0, F1, . . . Fn)

if the diagram reduces to the discrete set of forms F0, F1, . . . Fn.
Given two forms F,G in a semiotic of forms sem, a morphism f : F → G

is just a natural transformation f : fun(F )→ fun(G). Hence every semiotic
of forms defines its category Formssem of forms.

2.3 Conceptual Galois Theory

The general problem of existence and size of form semiotics, i.e., the extent
of the FORMS set, maximal candidates of such sets, gluing such sets to-
gether along compatible intersections, etc., is far from being settled. We
shall not pursue this interesting and logically essential branch for reasons
of space. The least one should say is that regular forms, i.e., those forms
which are built from simple forms by transfinite recursion, may be supposed
to be included in a form semiotics without further danger concerning logical
consistency.
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Example 1 For non-negative integers m,n, consider the forms

OnModm −→
Id

Simple(Zm)

PiModn −→
Id

Simple(Zn)

OnPiModm,n −→
Id

Limit(OnModm, P iModn)

IntModm,n −→
Id

Limit(D)

with Z-modules Zm and Zn as coordinators, and with the diagram D =

OnModm �
pr1

OnPiModm,n
pr2- OnModn

associated with the canonical projections onto the formsOnModm, OnModn.
The name “OnMod” symbolizes “onset modulo...” whereas “PiMod” sym-
bolizes “pitch modulo...”, i.e., ordinary pitch classes. We see that the last
form’s diagram is just the condition that we should take the fiber product
over onset, i.e., the simultaneity of two events in pitch and onset; this is a
way to encode an interval of simultaneous note events.

But circular, i.e., non-regular forms do not exist automatically, nor are
they uniquely defined. For example, defining a form

F −→
I

Power(F )

is equivalent to selecting any monomorphism I : G � ΩG, and setting
fun(F ) = G. To elaborate canonical monomorpisms, consider a set S ⊂
A@G for a presheaf G. This defines a subfunctor S@ ⊂ @A × F which in
the morphism f : B → A takes the value f@S@ = {f} × S.f . Since we
have IdM@S@ = {IdM} × S, S is recovered by S@. This defines a presheaf
monomorphism

?@ : 2G� ΩG

on the presheaf 2G of all subsets 2A@G at address A. When combined with
the singleton monomorphism sing : G � Fin(G) : x 7→ {x} with the
codomain presheaf Fin(G) ⊂ 2G of all finite subsets (per address), we have
this chain

G� Fin(G)� 2G� ΩG

of monomorphisms. A number of common circular forms can be constructed
by use of the following proposition ([47]):

16



Proposition 1 Let H be a presheaf in Mod@. Then there are presheaves
X and Y in Mod@such that

X
∼→ Fin(H ×X) and

Y
∼→ H × Fin(Y ).

Example 2 It is common to consider sound events which share a specific
grouping behavior, for example when dealing with arpeggios, trills or larger
groupings such as they are considered in Schenker or in Jackendoff-Lerdahl
theory [28]. We want to deal with this phenomenon in defining MakroEvent
forms. Put generically, let Basic be a form which describes a sound event
type, for example the above event type Basic = OnPiModm,n. We then set

MakroBasic −→
f :F

∼→Fin(FK)�ΩFK
Power(KnotBasic)

with F = fun(MakroBasic), FK = fun(KnotBasic)
and the limit form
KnotBasic −→

Id
Limit(Basic,MakroBasic),

a form definition which by the above proposition yields existing forms.

The typical situation here is an existing form semiotic sem and a bunch
of ‘equations’ EF1,F2,...Fn(F ) which contain the form names F1, F2, . . . Fn
already covered by sem, and the new form name F . The equations are just
form definitions, using different types and other ingredients which specify
forms. The existence of an extended semiotics sem′ which fits with these
equations is a kind of algebraic field extension which solves the equations
E. This type of conceptual Galois theory should answer the question about
all possible solutions and their symmetry group, i.e., the automorphisms of
sem′ over sem. No systematic account of these problems has been given
to the date, but in view of the central role of circular forms in any field of
non-trivial knowledge bases [4], the topic asks for serious research.

2.4 Denotators

The level of forms is still not the substance we are looking for. The substance
is what is called a denotator. More precisely, given an address A and a form
F , a denotator is a quatruple Name : A F (c), consisting of a string D
(in UNICODE), its name, its address A, its form F , and its coordinates
c ∈ A@fun(F ). So a denotator is a kind of substance point, sitting in its
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form-space, and fixed on a determined address. This approach is really a
restatement of Aristotelian principles according to which the real thing is a
substance plus its “instanciation” in a determined form space. Restating the
above coordinates as a morphism c : @A → fun(F ) on the representable
contravariant functor @A of address A by the Yoneda lemma, the “pure
substance” concept crystallizes on the representable functor @A, the “pure
form” on the functor fun(F ), and the “real thing” on the morphism between
pure substance and pure form.

In classical mathematical music theory [37], denotators were always spe-
cial zero-addressed objects in the following sense: If M is a non-empty
R-module, and if 0 = 0Z is the zero module over the integers, we have the
well-known bijection 0@M ∼→ M , and the elements of M may be identified
with zero-addressed points of M . Therefore, a local composition from clas-
sical mathematical music theory, i.e., a finite set K ⊂ M , is identified with
a denotator K∗ : 0 Loc(M)(K), with form

Loc(M) −→
Fin([M ])�Ω[M ]

Power([M ])

and [M ] −→ Simple(M).
Evidently, this approach relates to approaches to set theory, such as

Aczel’s hyperset theory [1] which reconsiders the set theory as developed
and published by Finsler6 in the early twenties of the last century [12, 13].
The present setup is a generalization on two levels (besides the functorial
setup): It includes circularity on the level of forms and circularity on the
level of denotators. For instance, the above circular form named MakroBasic
enables denotators which have infinite descent in their knot sets. Similar
constructs intervene for frequency modulation denotators, see [45, 43].

The denotator approach evidently fails to cover more connotative strata
of the complex musical sign system. But it is shown in music semiotics [43,
section 1.2.2] that the highly connotative Hjelmslev stratification of music
can be construed by successive connotational enrichment around the core
system of denotators. This is the reason why the naming “denotator” was
chosen: Denotators are the denotative kernel objects.

2.5 The RUBATO Enterprise

So far, the language of forms and denotators seems to live exclusively in
the esotheric universe of mathematics. Fortunately, this is not true: On the

6It is not clear whether Aczel is aware of this pioneer who is more known for his works
in differential geometry (“Finsler spaces”).
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contrary, this language was developed under constraints of object-oriented
programming in a research grant (1992-1996) of the Swiss national Science
Foundation, directed by the author, and targetted at the construction of
a software platform for analysis and performance of musical scores. After
the programming work, executed by the author’s assistant Oliver Zahorka
and the author in C and Objective C language, the platform was named
RUBATOr; several research reports [38], papers [39], and free software units
[42] are available in this context. The Swiss RUBATOr project was restartet
in 1998 in a German research grant of the Vokswagen Foundation by a
research group under direction of Thomas Noll [52] and is being ported to
the Mac OS X platform on the basis of the Objective C language. Presently,
the research group of the author at the Computer Science Department of the
University of Zurich is also developing new software units of the RUBATOr

platform, based on Java/Java3D language. The latter implements the full
functorial version of forms and denotators.

Independently of its different realizations on current software environ-
ments, the idea of such a platform is this: To implement a database man-
agement system (called PrediBase in the RUBATOr terminology) which
is based on the form and denotator data model, to implement a frame
software (RUBATOr) which incorporates PrediBase, and to extend the
frame software by dynamically loadable program units (such a unit is called
RUBETTEr in the RUBATOr terminology) which implement different tasks
for musical analysis, performance, composition, logical constructions, navi-
gation, etc. So the entire platform is a universal, and indefinitely extendible
tool for musicology in its valid form of an exact, operationalized science,
where the experimental paradigm can be (and has been [59, 14]) performed
on an objective, distributed level of international collaboration. For details
on this concept, see [44].

3 Local and Global Compositions

Local and global compositions are a ind of musical variety and describe the
core theory of musical objects. Their cateogries share important properties
which are also basic to the topos-theoretic evolution of the entire theory.

3.1 Categories of Local Compositions

Although the category of all denotators is defined [45], we shall focus on
the classically prominent subcategory of local compositions. These are the
denotators D : A F (x) whose form F is of power type. More precisely, we
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shall consider A-addressed denotators with coordinates x ⊂ @A × fun(S),
where form S is called the ambient space7 of D. If there is a set X ⊂ A@S
such that x = X@, the local composition is said to be objective, otherwise,
we call it functorial.

Given two local compositions D : A F (x), E : B G(y), a morphism
f/α : D → E is a couple (f : x→ y, α ∈ A@B), consisting of a morphism of
presheaves f and an address change α such that there is a form morphism
h : S → T which makes the diagram of presheaves

x −−−−→ @A× S

f

y y@α×h

y −−−−→ @B × T

commute. This defines the category Loc of local compositions. If both,
D,E are objective with x = X@, y = Y @, one may also define morphisms
on the sets X,Y by the expressions f/α : X → Y (forgetting about the
names) which means that f : X → Y is a set map such that there is a form
morphism h : S → T which makes the diagram

X −−−−→ A@S

f

y yA@h

Y.α −−−−→ A@T

of sets commute. This defines the category ObLoc of objective local com-
positions. Every objective morphism f/α : X → Y induces a functorial
morphism f@/α : x→ y in an evident way. This defines a functor

?@ : ObLoc→ Loc

This functor is fully faithful. Moreover, each functorial local composition
x (again forgetting about names) gives rise to its objective trace X = x@

where {IdA} × X = IdA@x. If we fix the address A and restrict to the
identity α = IdA as address change, we obtain subcategories ObLocA,LocA
and a corresonding fully faithful embedding ?@

A : ObLocA → LocA. In this
context, the objective trace canonically extends to a left inverse functor ?@A

of ?@
A. Moreover

Proposition 2 The morphisms ?@A and ?@
A build an adjoint pair ?@

A a?@A.
7If no confusion is likely, we identify S with fun(S).
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For more algebraic calculations, such as Grothendieck topologies and
Cech cohomology, one has to restrict to special subcategories. We shall
therefore also look at the “address” category RMod of left R-modules with
R-affine morphisms for a given commutative ring R. In this category, the
set of morphisms from module M to module N is denoted by M@RN . We
denote the corresponding category of (objective) local compositions by RLoc
(RObLoc) Proposition 2 is also valid mutatis mutandis for RLocA.

3.2 Finite Completeness

So, on a fixed address, objective and associated functorial local compositions
are quite the same. But there is a characteristic difference when allowing
address change. This relates to universal constructions:

Theorem 1 [45] The categories Loc and RLoc are finitely complete.

If we admit general address changes, the subcategory of objective local com-
positions is not finitely complete, there are examples [45] of musically mean-
ingful diagrams E → D ← G of objective local compositions whose fiber
product E ×D G is not objective8. Therefore address change—which is the
portal to the full Yoneda point of view—enforces functorial local composi-
tions if one insists on finite completeness. This latter requirement is however
crucial if, for example, Grothendieck topologies must be defined (see below).

The dual situation is less simple: There are no general colimits in Loc.
This is the reason why global compositions, i.e., ‘manifolds’ defined by (fi-
nite) atlases whose charts are local compositions, have been introduced to
mathematical music theory [31, 37].

3.3 Categories of Global Compositions

More precisely, given an address A, an objective global composition GI is a
set G which is covered by a finite atlas I of subsets Gi which are in bijection
to A-addressed objective local compositions Hi ⊂ A@Fi with transition
isomorphisms fi,j/IdA on the inverse images of the intersections Gi ∩Gj . A
functorial global composition at this address is a presheaf in Mod@, together
with a finite covering by subsheaves Gi which are isomorphic to functorial
local compositions Hi ⊂ @A× Fi with transition isomorphisms fi,j/IdA on
the inverse images of the intersections Gi ∩ Gj . Suppose we are given two
global objective (functorial) compositions GI at address A, with atlas (Gi)I ,

8The right adjointness of the objective trace functor for fixed addresses only guarantees
preservation of limits for fixed addresses.
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and UJ at address B, with atlas (Uj)J . A morphism (f ι/α) : GI → UJ is is
a morphism f of the underlying sets (presheaves), together with an address-
change α : A→ B, and a map ι : I → J such that

• f(Gi) ⊂ Uι(i), all i ∈ I,

• the induced morphisms on the charts are morphisms of objective (func-
torial) local compositions unter the address-change α.

This defines the category ObGlob (Glob) of objective (functorial) global
compositions. The functorialization process described for local compositions
works also globally to yield an injection

?@ : ObGlob� Glob

The significant difference of this concept from mathematical manifolds is
that the covering (Gi)I is part of the global composition, i.e., no passage to
the limit of atlas refinements is admitted. For music this is a semiotically
important information since the covering of a musical composition is a signif-
icant part of its understanding [34]. In fact, a typical construction of global
compositions starts with a local composition and then covers its functor by
a familiy of subfunctors, together with the induced atlas of the canonical
restrictions, the result is called an interpretation. The absence of colimits in
Loc can be restated in terms that there are global compositions which are
not isomorphic to interpretations, see [37, 45] for criteria of interpretability
in terms of flasque sheaves of affine functions.

From this general definition, several specialization are derived for more
specific usage. First, algebraic applications are more feasible in the smaller
categories RObLoc and RGlob of objective and functorial global composi-
tions defined on the category ModR of R-modules and R-affine morphisms
over a commutative ring R instead of Mod. Again, we have a completeness
theorem:

Theorem 2 [45] The categories Glob and RGlob are finitely complete.

For Grothendieck topologies, one better works with a more mathematical
manifold concept of global compositions. This regards uniquely the mor-
phism concept. Two morphisms f ι/α, gκ/β : GI → HJ are mathematically
equivalent iff f = g, so just consider set maps (natural transformations for
functorial global compositions) f such that there is an address change and
a covering map which extends f to a morphism in ObGlob (Glob) (or cor-
responding categories RObGlob, RGlob). This equivalence defines coarser
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categories which we index by “µ” for “mathematical”:

µGlob, µObGlob, RµGlob, RµObGlob.

Theorem 3 The categories µGlob, R
µGlob are finitely complete.

Observe that the “mathematical” categories have the same objects as the
original ones, only the morphisms are ‘blurred’. So the mathematical cate-
gories are half way between the original musical manifold (morphism) con-
cept and the purely mathematical manifold (morphism) concept.

3.4 Grothendieck Topology

Because of theorem 3, we may define a Grothendieck (pre)topology, the
finite cover topology, on µGlob and on R

µGlob via covering families. Its cov-
ering families for a global composition GI are finite collections of morphisms
(HJk

k → GI)k which generate the functor of GI .

Proposition 3 [45] The finite cover topology on µGlob and R
µGlob is sub-

canonical. For a fixed address A, the finite cover topology on µGlobA and
R
µGlobA is subcanonical.

Various Čech cohomology groups (in the sense of Verdier [25, exposé
V]) can be associated to covering families of the finite cover Grothendieck
topology [45, chapter 19].

3.5 Sheaves of Functions

We now want to look at affine functions on functorial global compositions.
We fix an address module A over the commutative ring R and work in the
category R

µGlobA which is finitely complete, much like R
µGlob.

To define affine functions on a global composition GI in R
µGlobA, consider

the objective composition Â = Â@RR. We claim that the set Hom(GI , Â)
is canonically provided with a R-module structure. For any R-module M ,
we in fact have the sum morphism

@+ : @RM ×@RM → @RM

which is induced by the sum homomorphism in M . We also have the scalar
dilatation morphism

@λ : @RM → @RM
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for λ ∈ R, induced by the scalar multiplication on M . It is easily seen that
these two natural transformations for M = R induce morphisms

+̂ : Â× Â→ Â, λ̂ : Â→ Â (3)

which turn the functor Â into a module-valued functor, and therefore, the
morphism setHom(GI , Â) into aR-module. Call this moduleHom(GI , Â) =
Γ(GI) the module of affine functions on GI . We therefore have a repre-
sentable contravariant functor

Γ : R
µGlobA → RMod (4)

which associates the R-module Γ(GI) of global affine functions with a given
global composition GI . By proposition 3, we have

Theorem 4 The presheaf of affine functions (4) is a sheaf in the finite cover
topology.

The sheaf of affine functions will be used in the classification theory to
construct global compositions from free global compositions.

4 Classification

Classification of global musical objects deals with the determination of iso-
morphism classes in adequate categories of global compositions, the type of
objetcs which play the role of musical manifolds. It relies on two construc-
tions: coefficient systems of affine functions and resolutions of global compo-
sitions. From the musicological point of view, this is one of the most dificult
chapters of mathematical music theory since the relation between classifi-
cation and musicology, in particular: esthetics, is quite implicit. Therefore
classification is highly controversial in musicology. Here are three prominent
reasons:

• It is commonly believed that classifying musical objects on whatever
level is contrarious to the individual expressivity of compositions as
they are cultivated since the Renaissance.

• Classification is misunderstood as a purely bureaucratic activity of list
compilation.

• Due to a catastrophical lack of technical tools, traditional musicology
has only rarely been able to control the variety of their objects.

24



The third point shows a disdain of detailed technical work which is psy-
chologically comprehensible must scientifically be blamed for a major scien-
tific retard even with respect to other humanities such as linguistics.

We have already vaporized these mystifications on several occasions, e.g.
[33, 34], and we will stress one main argument again here: Classification
is nothing else than the task of totally understanding an object. This is
Yoneda’s lemma in its full philosophical implication, in fact, the isomorphism
class of an object X is equivalent to that of its contravariant Yoneda functor
Hom(−, X). The latter boils down to the synopsis of all perspectives Y → X
(morphisms) under which X may be ‘observed’. Such a result is in complete
harmony with Adorno’s, Valéry’s, and Bätschmann’s insights in the theory
of arts. They state that understanding works of art means a synthesis of
all their interpretative perspectives, see [34, 45] for details. Results and
methods regarding classification of musical structures have already been
applied to the theory of the string quartet, composition, and performance
[34, 35, 36, 38].

4.1 Enumeration Theory

A first aspect of classification deals with enumeration, i.e., counting the
number of isomorphism classes of determined musical structures, such as
local or global composition, if this number is finite. The representative case
is that of local and global objective compositions at finite addresses A and
living in finite ambient modules M , such as the classical situation of A = 0
and M = Z12, the case considered by the American Set Theory for pitch
classes modulo 12, and A = M = Z12, the case of self-addressed pitch
classes investigated by Thomas Noll [50]. The most complete enumeration
results have been obtained by Harald Fripertinger by use of Pólya-de-Bruijn
enumeration theory [16, 17, 18, 19, 20, 21, 22].

Let us give a short overview of the main (some results being negleced, no
doubt; the author apologizes for this incompleteness) historical landmarks
in enumeration and listings of isomorphism classes: In 1973 Allen Forte
[15] established the list of 352 orbits of chords of pitch classes under the
translation group T12 = eZ12 and the 224 orbits of chords under the group
TI12 = eZ12 .± 1 of translations and inversions. In 1978, George Halsey and
Edwin Hewitt [26] succeeded to give a recursive formula for enumeration of
translation orbits of chords in finite abelian groups, and enumerating the
translation orbit number for chords in cyclic groups of cardinality n ≤ 24.
In 1980, the author [31] calculated the list of 158 affine orbits of chords in
Z12, the list of 26 affine orbits of three-element motives in Z2

12, and the list

25



of 45 three-element motives in Z5×Z12. In 1989, Hans Straub and Egmont
Köhler [60, 30] gave the list of all affine 216 four-element motive orbits in
Z

2
12. In his works starting from 1991 to the present, Harald Fripertinger

(loc.cit.) has given enumeration formulas for chord orbit numbers in Zn un-
der Tn, T In, and the full affine group, also for n-phonic k-series, all-interval
series, motives in Zm × Zn, and Vuza canons in Zn. He has calculated lists
of affine motive orbits in Z2

12 for motives up to cardinality 6.
The usage of classification has been annotated above, but there is one

particular result which we cannot withhold from the reader: Fripertinger’s
formulas (in fact the cycle index polynomial) yield the impressive number
of 2 230 741 522 540 743 033 415 296 821 609 381 912 affine orbits of 72-
element motives in Z2

12. This is of order 1036 against the estimated order
of 1011 stars in a galaxy! So the musical universe is a serious competitor
against the physical universe, in its quantity as well as in its quality of a
spiritual antagonist.

Let us briefly review the Pólya-de-Bruijn enumeration methods applied
by Fripertinger. We typically work in the space F = Zn. A subset C ⊂ F is
identified with its characteristic function χC : F → 2 = {0, 1}. For a permu-
tation g in a subgroup G of the full group

−→
GL(F ) of affine automorphisms

of F , we have the cycle index cyc(g) = (c1, . . . cf ), f = card(F ), with ci =
number of cycles of cardinality i. Take the indeterminates X1, . . . Xf and
set Xg = Xc1

1 . . . X
cf
f . Then the cycle index polynomial is defined by

Z(G) = card(G)−1
∑
G

Xg.

Consider now “Pólya weights” w(0), w(1) ∈ Q[x] and for a characteristic
function χ : F → 2, the product πw(χ) =

∏
t∈F w(χ(t)) which is invariant

under the canonical action of G on 2F . Then, the configuarion counting
series is defined by

C(G,F,w) =
∑

2F /G

πw(χ).

With these definitions, we have the following results:

• For weights w(0) = 1, w(1) = x, the xk-coefficient of C(G,F,w) is the
number of G-orbits of k-element sets in F .

• For the constant weights w(0) = w(1) = 1, we have C(G,F,w) =
card(2F /G).

We have the main
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Theorem 5

C(G,F,w) = Z(G)(w(0) + w(1), w(0)2 + w(1)2, . . . w(0)f + w(1)f )

and the

Corollary 1 The cardinality of the orbit space 2F /G is Z(G)(2, . . . 2).

Generalizations of the main theorem by de Bruijn yield (for example) the
orbit cardinalities of k-element chords in Z12 under the groups T12, T I12, and−→
GL(Z12):

k = 0 1 2 3 4 5 6 7 8 9 10 11 12
T12 1 1 6 19 43 66 80 66 43 19 6 1 1
TI12 1 1 6 12 29 38 50 38 29 12 6 1 1
−→
GL(Z12) 1 1 5 9 21 25 34 25 21 9 5 1 1

The same result also yields formulas for orbits of (k, n)-series [19, Satz
2.2.5]. We reproduce the particularly interesting list of orbits for n = 12:

k number of orbits of (k, 12)-series
2 6
3 30
4 275
5 2 000
6 14 060
7 83 280
8 416 880
9 1 663 680

10 4 993 440
11 9 980 160
12 (dodecaphonic series) 9 985 920

The huge number of isomorphism classes of local compositions of the
most common type, and in spaces which are strong reductions of the ‘real
parameter spaces’ modulo octave or similar periodicities, preconizes the us-
age of statistical methods to control the variety of cases encountered in
practical analyses. Even next generation computers cannot reach the cal-
culation power to check all possible classes. We refer to specialized papers
[8, 9, 10] for this subject.
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4.2 Standard Objects

General classification of local and global compositions has been attacked by
the author since 1980 [31]. First descriptions of algebraic schemes whose
rational points parametrize local and global compositions have been pub-
lished in [32]. Those results also included recursive algorithms to calculate
classes of global compositions in modules of finite length. They have been
generalized to compositions of variable address [45, 46]. In the following
subsections, we want to give a series of concepts and results which describe
the recent classification theorems on variable addresses.

Assumption 1 In the following discussion of classification theory, we shall
always assume that the global compositions are A-addressed for a fixed ad-
dress A, objective, and that we work over the category ModR of modules
over a commutative ring R. We also assume that the supports G of our
global compositions GI are finite sets, in other words, we are situated in the
category RObGlobfiniteA .

Let us start with the standard compositions of the theory. They repre-
sent compositions with “notes in general position”, i.e. their configuration
is as “free” as possible from ‘occasional’ coincidences. In fact, the standard
composition is a geometric realization deduced from the nerve n(GI) of the
composition, i.e., of its covering I, and thus depends only on combinatorial
information. There is a natural projection from the standard object onto
the generating composition. Here is the formal construction:

Given a module A in RMod and a natural number 0 ≤ n, we denote
Atn the affine n + 1-fold coproduct

∐
n+1A of A. By construction, there

is an isomorphism Atn
∼→ Rn ⊕ An+1. We denote the canonical basis of

Rn by (e1, . . . en), and for any element a ∈ A and 0 ≤ i ≤ n, we set
ai = (0, . . . , a, . . . 0) for the n + 1-tuple in An+1 having a at its i + 1-th
position and zero else; the zero element is denoted by e0. We have the
inclusion morphisms

σi : A→ Atn (5)

for 0 ≤ i ≤ n, with

σi(a) =

{
(0, a0) (linear) if i = 0,
(ei, ai) (affine) if i > 0.

(6)

This defines a local, A-addressed composition A∆n ⊂ A@RA
tn which is

called the A-addressed local standard composition of dimension n. By con-
struction, it has the following property: If M is any R-module, and if
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s. = (s0, . . . sn) is any sequence of A-addressed points9 in M , with asso-
ciated local composition S = {s0, . . . sn} ⊂ A@RM , then there is exactly
one morphism of local compositions

(s.) : A∆n → S : σi 7→ si for i = 0, . . . n. (7)

This morphism is in fact defined by the universal property of the coproduct
and is mediated by the following affine function f : Atn → M : Write
si = eti · si,0. Then we have

f(e0) = t0,

f(ei) = ti − t0 (linear) for i > 0,
f(ai) = si,0(a) (linear) for i ≥ 0,

and the formula si = f · σi is immediate.
To define global “free” objects among the A-addressed objective com-

positions with finite charts, we consider the natural weight function ν :
n(GI)→ N with ν(Σ) = card(∩Σ)− 1, where we set ∩Σ = ∩s∈Σs. The pair
n?(GI) = (n(GI), ν) is an object in the category of naturally weighted sim-
plicial complexes whose morphims are the simplicial maps which commute
with the weight functions. We shall represent the naturally weighted nerve
n?(GI) by an isomorphic standard representative n? induced by a covering
of the natural interval [0,m] = {0, 1, 2, 3, . . .m = card(G) − 1} of natural
numbers.

For n?, we define the global standard composition A∆n? at address A by
the interpretation of the local standard composition A∆m which is given by
the present covering of [0,m]. We are also given a standard atlas of A∆n? .
In fact, for any subset q = {t0, . . . tc} ⊂ [0,m] of c + 1 elements, we have
the canonical injection iq : A∆c → A∆m via σj 7→ σtj . This defines the
standard atlas.

The universal property of this global standard composition reads as fol-
lows. Take the category Covens of coverings of sets10, and consider the
covariant functor

ACovn? : ObGlobfiniteA → Sets : GI 7→ HomCovens(n?, (G,n0(GI))) (8)

where the covering n? denotes the naturally weighted simplicial complex
after forgetting about its weight. Then we have this straightforward result:

9In the Yoneda language, these are the morphisms in A@RM .
10Its objects are coverings of sets XI , its morphisms XI → Y J are compatible pairs of

set maps f : X → Y, φ : I → J , i.e., f(x) ⊂ φ(x).
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Proposition 4 The functor ACovn? is representable by the standard global
composition A∆n?, i.e., we have a bijection

HomCovens(n?, (G,n0(GI))) ∼→ Hom
ObGlobfiniteA

(A∆n? , G
I)

which is functorial in the A-addressed composition GI .

In particular, if we take the standard covering n? = n?(GI) of the nerve of
GI and then the corresponding ‘identity’ morphism Id : n? ∼→ (G,no(GI)),
we obtain a corresponding bijective morphism

resGI : ∆GI → GI (9)

with the notation ∆GI = A∆n?(GI), this object and the morphism resGI

being called the resolution of GI . Clearly, the associated simplicial mor-
phism n(resGI ) : n?(∆GI ) → n?(GI) is an isomorphism, but resGI is not,
in general, an isomorphism!

In particular, due to the universal propertiy of the global standard com-
positions, every morphism f ι : GI → HJ can uniquely be lifted to a corre-
sponding morphism resf ι of resolutions to make the diagram

∆GI
resfι−−−−→ ∆HJ

res
GI

y yresHJ
GI

f ι−−−−→ HJ

commute. We therefore have a resolution functor

resA : ObGlobfiniteA → ObGlobfiniteA (10)

and a natural transformation

δA : resA → Id
ObGlobfiniteA

(11)

The resolution of a global composition is a representation of its weighted
nerve and thereby includes invariant data of the composition. But more
is needed to yield a full set of invariants. The next step deals with this
completion. It is related to functions on global compositions.

30



4.3 Global Compositions from Coefficient Systems

Recall that a global affine function on a global composition GI is a morphism
f : GI → A@RR. We know that the set of global affine functions builds a R-
module Γ(GI) under pointwise addition and scalar multiplication. Moreover,
the retraction f · gι of an affine function f : GI → A@RR via a morphism
gι : HJ → GI is an affine function, and the retracted function module is a
submodule of Γ(HJ).

To control such submodules, we give an alternative description of such
function modules in terms of coefficient systems from sheaf theory [24].
Given a global composition GI , reconsider the category n(GI) of its ab-
stract nerve.

Definition 2 A (R-)module complex over GI is a covariant functor (a co-
efficient system in Godement’s terminology)

M : n(GI)→ RMod (12)

into the category RMod of R-modules and R-affine morphisms, with tran-
sition morphisms

Mσ,τ : M(σ)→M(τ)

of modules for the simplex inclusions (morphisms) σ ⊂ τ .
As usual in sheaf theory, we put ΓM = limn(GI)M(σ) and call this the

set of global sections.

Example 3 Since any morphism of global compositions f
ι

/α : GI → HJ

yields a natural transformation n(f
ι

/α) : n(GI) → n(HJ), every module

complex M over HJ induces a module complex on f
ι

/α ?M over GI , with

f
ι

/α ?M(σ) = M(n(f
ι

/α)(σ)).

Example 4 If M is any R-module, the constant module complex of M is the
complex with M(σ) = M for all simplexes and identity transition. Observe
that its global sections are in bijection with the set M c, if N(GI) has c
connected components.

We now review global affine functions as patchworks of affine functions
on charts of atlases. Suppose that we are given a global composition GI .
For a simplex σ of n(GI), we have the canonical local composition ∩σ, and
a morphism f : ∩σ → A@RR is an affine function on ∩σ. The set nΓ(σ) of
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these functions is provided with the structure of a R-module by the pointwise
addition and scalar multiplication.

For an inclusion of simplexes σ ⊂ τ of n(GI), the ambient spaces of
the charts of these simplexes are the same, i.e., the inclusion of local com-
positions ∩τ ⊂ ∩σ are in bijection with an inclusion of local compositions
Kτ ⊂ Kσ ⊂ A@RN for a specific module N . Since an affine function on ∩τ
is the restriction of an affine morphism A@h : A@RN → A@RR, f evidently
extends to the restriction A@h|Kσ , so the transition morphisms by restric-
tion of affine functions are surjective. The corresponding complex of affine
functions is denoted by nΓ(GI). The subcomplex C = CGI of constant func-
tions is defined by C(σ) = {f ∈ nΓ(GI)(σ), f = constant on ∩ σ}. The set
of global sections of the function complex is denoted by Γ(GI) and clearly
identifies to the previous definition of Γ(GI).

Let f ι : GI → HJ be a morphism of global compositions. Take a simplex
σ in n(GI), and its image σ′ under the associated simplicial map. Then, each
restricted morphism

f |∩σ : ∩σ → ∩σ′

gives rise to a map

f ι ? nΓ(HJ)(σ) = nΓ(HJ)(σ′)→ nΓ(GI)(σ)

by right composition with this restricted morphism. Moreover, the map is
R-linear. Therefore, if M is any subcomplex of nΓ(HJ), its induced complex

f
ι

/IdA ? M is mapped R-linearly onto what is called the retracted module
complex

M |f
ι

/IdA ⊂ nΓ(GI). (13)

In particular, if M = CHJ , we have CHJ |f ι ⊂ CGI .
With these techniques in mind, the resolution functor resA and its as-

sociated natural transformation δA give rise to a module complex of affine
functions ∆nΓ(GI) = nΓ(GI)|resGI in nΓ(∆GI ), for each global composition
GI . Call this complex the resolution complex of composition GI . Moreover,
this assignment commutes with the morphism of the resolution functor, i.e.,
for a morphism f ι : GI → HJ , we have a canonical inclusion

nΓ(∆HJ )|resf ι ⊂ nΓ(∆GI ) (14)

of the the retracted resolution complex of HJ in the resolution complex of
GI . The next step deals with the reconstruction of GI from nΓ(∆GI ) and
the related question of classification of global compositions by use of the
resolution complex which is suggested by the functorial relation (14).
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The generic situation from the preceding constructions is that we are
given a module complex M ⊂ nΓ(GI), containing the constants C, and that
we would like to construct a kind of “quotient” composition whose affine
functions are those of M . We first look at the local situation.

Definition 3 Let S ⊂ A@RU be a local composition in the R-module U .
For a submodule L ⊂ Γ(S) of affine functions on S, the evaluation map ˙ :
S → A@RL

? into the A-valued points of the dual module L? = HomR(L,R)
of L is defined by ṡ(a)(l) = l(s)(a).

The problem is that the evaluation is not a morphism of local compo-
sitions in general. But in the special case which is of interest, we have
this guarantee: Let S = A∆n ⊂ A@RA

tn. Then, the dotted points
σ̇i : A → L? define the universal map HL : Atn → L?, and we have in-
terpreted ˙ : A∆n → A@RL

? as a morphism of local compositions.
Next, suppose we are given two local compositiosns S ⊂ A@RU, T ⊂

A@RV and a morphism
f : S → T,

together with a module LT ⊂ Γ(T ) whose retract LT |f is included in a
module LS ⊂ Γ(S). We then have a commutative diagram

S
˙−−−−→ A@RL

?
S

f

y yA@|f?

T
˙−−−−→ A@RL

?
T

where |f? is the R-dual of the canonical linear map |f : LT → LS .
This construction yields a morphism ḟ : Ṡ → Ṫ of local compositions

in the ambient spaces L?S , L
?
T , respectively. With this technique we may

associate a global composition with a module complex N ⊂ nΓ(A∆n?) of
affine functions in the standard composition A∆n? of a standard covering
n?.

Assumption 2 In the following discussion of classification, we shall tacitly
assume that all module complexes of affine functions have surjective tran-
sition morphisms. (We know that this is the case for retracted function
modules from resolution morphisms!)

If we apply the construction from diagram (4.3) to the situation where
S = A∆n(σ) ⊂ A@Atn(σ), and T = A∆n(τ) ⊂ A@Atn(τ) for simplexes
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τ ⊂ σ of A∆n? , and with LS = N(σ), LT = N(τ), then we have injective
vertical arrows in the corresponding commutative diagram

A∆n(σ)
˙−−−−→ A@RN(σ)?

inclusion

y yA@res?

A∆n(τ)
˙−−−−→ A@RN(τ)?

where res is the restriction map. We write ∩σ = ˙
A∆n(σ), and therefore get

a surjective morphism (A∆n(σ) → ∩σ)n? of diagrams of local compositions
over the nerve n?. Setting A∆n?/N = colimn? ∩ σ, we have a commutative
diagram of sets

A∆n(σ)
˙−−−−→ ∩σy y

A∆n?
/N=coliṁ−−−−−−→ A∆n?/N

induced by the dot morphisms of local compositions. In order to complete
the construction and to obtain a concise theorem, we shall now suppose the
following:

Assumption 3 We henceforth suppose that the global composition GI has
a finitely generated projective atlas, i.e., an atlas whose charts have finitely
generated projective R-modules. We also suppose that GI has projective
affine functions, i.e., that the affine function modules on the zero-simplexes
(the charts) are projective.

It is easily seen that under this assumption, the colimit diagram (4.3)
has bijective horizontal arrows, and the images ∩σ are injected into the
limit A∆n?/N . So these images cover the limit and the images of the zero-
dimensional simplexes build a canonical atlas of a global A-addressed compo-
sition, i.e., the diagram (4.3) becomes a bijective morphism of A-addressed
global compositions.

So, we have constructed a canonical global composition and a bijective
morphism from the free object to a global composition which is defined by
the functions of N .

Definition 4 We call this composition A∆n?/N the N -quotient of A∆n?.
The morphism A∆n? → A∆n?/N from diagram (4.3) is denoted by /N .
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In particular, if resGI : ∆GI → GI is the resolution of the composition
GI , we have the resolution complex ∆nΓ(GI). Here is the crucial theorem
[45]:

Theorem 6 Under assumption 3 (for example, if R is semi-simple) we have
a commutative triangle of morphisms of global compositions

∆GI

	�
�
�
�
�

/∆nΓ(GI)
@
@
@
@
@

resGI

R

∆GI/∆nΓ(GI)
f

- GI

(15)

with an isomorphism f . All morphisms are isomorphisms of covering sets.

This means that we are able to reconstruct GI from its retracted affine
functions on the resolution. Moreover, in this case, the retracted module
complex can also be recoverd from the quotient composition, i.e.,

∆nΓ(GI) = nΓ(A∆GI/∆nΓ(GI))|/∆nΓ(GI) (16)

so that we are now left with the question of charactrizing those module
complexes of affine functions in A∆n? which could give rise to compositions
having this free object as their resolution.

Under assumption 3, we may proceed to the analysis of the following type
of module complexes N ⊂ nΓ(A∆n): they are finitely generated projective
(i.e., their zero-simplex modules are so), and contain the constant functions;
call these complexes representative.

4.4 Orbit Spaces and Classifying Schemes

By the universal property of the standard compositions, the automorphism
group SA,n? of the standard composition A∆n? identifies to a subgroup of
the symmetric group Sm+1 of permutations of A∆n? if the standard covering
is defined on the integer interval [0,m] as discussed above. By retraction,
this group acts from the right on the set RepA,n of representative module
complexes on A∆n?

ret : RepA,n? × SA,n? → RepA,n? : (N, g) 7→ N |g. (17)

The orbit space of this action has this role [45]:
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Theorem 7 The orbit space RepA,n?/SA,n? is in bijection with the set of
isomorphism classes of A-addressed global compositions with projective func-
tions and finitely generated projective atlases which have a covering complex
isomorphic to n?. This bijection is induced by the retraction of the function
module complex to the resolution A∆n?, in one direction, and by the quo-
tient composition on a given representative module complex on A∆n?, in the
other.

In particular, this classification result is valid for the global compositions
having as their address a module A over a semi-simple commutative ring R.

A more in-depth discussion of the action of the automorphism group of
the standard composition on module complexes yields this geometric classi-
fication spaces [45]:

Theorem 8 For an addresse A which is locally free of rank m over the com-
mutative ring R, there is a subscheme Jn

?
of a projective Spec(R)-scheme of

finite type such that its S-valued points Jn
?
(Spec(S)) for a R-algebra S are

in bijection with the classifying orbits of module complexes N in S⊗RA∆n?

which are locally free of defined co-ranks on the zero-simplexes of n?.

In particular, if the ground ring R is semi-simple, this theorem gives the
classification of any global composition which are addressed in a finitely
generated R-module A.

What could now be, after all, the program of classification? Its core value
is that it deals with understanding musical works. And we should stress that
our concept of a musical work is not the narrow one which restricts to those
individual opera which—at least in Europe—started to emanate in the Re-
naissance. It includes as well general musical corpora such as scales, systems,
everything that can be represented by means of global compositions.

From the precise parametric description of a work and of its ambiguities,
this work appears as a point configuration in a more or less complex space.
However this configuration is already a determinate perspective which shows
a multitude of relations among its ingredients. It is the composer’s perspec-
tive (now including an abstract ‘composer’ or creator of a general musical
structure like a scale). For example, the choice of tonality, instrumentation,
tempo, etc., are points of view which may or may not pertain to the com-
position, this is a question of the epoch of creation. But their character can
undoubtedly be subject to variation. Among others, here we do address the
question of historical instrumentation for early music.

In order to understand the relations among different parts of a composi-
tion, and even to simply recognize them, a change of the given perspective
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is mandatory. If a never seen object must be inspected, what should we do?
You walk around it. This is the most common version of Yoneda’s lemma.
The analogy to cartography is straightforward: The natural perspective of
the landscape in which we live does not coincide with the perspective which
meets our need for orientation best. To reach this goal, we preferrably build
maps which show the landscape from an infinitely high point.

The same happens to music. You play a piece in slow motion ‘from very
near’, in a zoomed optics, a complex chord is arpeggiated, i.e., viewed from a
skew angle, and so forth. This idea of variation of the perspective has in fact
been integrated in the compositional thinking of the 20th century, perhaps
most prominently by Edgar Varèse, especially in his comments on the com-
position “Intégrales” [61, p.67]. There, he invokes a geometric analogon of a
machine which is able to project a mobile spatial object from variable space
angles onto a luminous surface. This latter idea is astonishingly akin to
the resolution projection from points in general position to points in special
position.

5 Towards Grand Unification

In this section, we shall shortly illustrate on a concrete musicological situ-
ation: harmony and counterpoint, why some of the above general concepts
have been introduced, and how they create perspectives of unification.

5.1 An Isomorphism Between Instances of Harmony and
Counterpoint

Classically, mathematical music theory worked on the pitch class space
PiMod12 introduced above. In what follows, we shall slightly adjust it
by the “fifth circle” automorphism .7 : Z12

∼→ Z12, i.e., we consider the
synonymous form

FiP iMod12 −→
@.7

Syn(PiMod12)

which means that pitch denotators are now thought in terms of multiples
of fifths, a common point of view in harmony. On this pitch space, two
extensions are necessary: extension to intervals and extension to chords.
The first one will be realized by a new form space

IntMod12 −→ Simple(Z12[ε])
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with the module Z12[ε] of dual numbers over the pitch module Z12. We have
the evident form embedding

⊗1 : FiP iMod12 � IntMod12 : x 7→ x⊗ 1

of this extension, where we should pay attention to the interpretation of a
zero-addressed interval denotator

D : 0 IntMod12(a+ ε.b).

It means that D has cantus firmus pitch a and interval quantity b in terms of
multiples of fifths. For example, the interval coordinate 1 + ε.5 denotes the
pitch of fifth from the basic pitch (say ‘g’ if zero corresponds to pitch ‘c’), to-
gether with the interval of 7.5 = 11, i.e., the major seventh (‘b’ in our setup).
The set Kε of consonant intervals in counterpoint are then given by the zero-
addressed denotators with coordinate a+ ε.k, k ∈ K = {0, 1, 3, 4, 8, 9, }. The
set Dε of dissonant intervals are the remaining denotators a+ ε.d, d ∈ D =
Z12 −K.

The counterpoint model of mathematical music theory [34] which yields
an excellent coincidence of counterpoint rules between this model and Fux’
traditional rules [23] is deduced from a unique affine automorphism, the
autocomplementary involution AC = e2.5 on the pitch space: we have
AC(K) = D,AC(D) = K. It can be shown [34, 50] that this unique invo-
lution and the fact that K is a multiplicative monoid uniquely characterize
the consonance-dissonance dichotomy among all 924 mathematically possi-
ble 6-6-dichotomies. This model’s involution has also been recognized by
neurophysiological investigations in human depth EEG [40]. Consider the
consonance stabilizer Trans(Kε,Kε) ⊂ Z12[ε]@Z12[ε]. This one is canoni-
cally related to Riemann harmony in the following sense.

In his PhD thesis, Noll succeeded in reconstructing Riemann harmony
on the basis of “self-addressed chords”. This means that pitch denotators

D : Z12 FiP iMod12(ey.x)

are considered instead of usual zero-address pitch denotators which here
appear as those which factor through the zero address change α : Z12 → 0,
i.e., the constant pitches. A self-addressed chord is defined to be a local
composition with ambient space FiP iMod12, and Noll’s point was to replace
zero-addressed chords by self-addressed ones.

In Riemann’s spirit [54, 55, 56], the harmonic “consonance perspective”
between the constant dominant triad Dominant : 0 FiP iMod12(1, 5, 2)
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and the constant tonic triad Tonic : 0 FiP iMod12(0, 4, 1) is defined by
the monoid Trans(Dominant, Tonic) ⊂ Z12@Z12, a self-addressed chord
generated by the transporter set of all morphisms u : Dominant→ Tonic.

This self-addressed chord is related to the above stabilizer as follows:
Consider the tensor multiplication embedding

⊗ε : Z12@Z12 � Z12[ε]@Z12[ε] : eu.v 7→ e(u+ε.0).(v ⊗ Z12[ε]).

Then we have a “grand unification” theorem ([50], see also [51] for more
details):

Theorem 9 With the above notations, we have

Trans(Dominant, Tonic) = ⊗ε−1Trans(Kε,Kε).

This means that the Fux and Riemann theories are intimately related by this
denotator-theoretic connections. At present, it is not known to what extent
this structural relation has been involved in the historical development from
contrapuntal polyphony to harmonic homophony.

5.2 Conclusion and Preview

If we review the overall power of mathematics in the description, analy-
sis and performance of music, it turns out that it has a unique unifying
character: Seemingly disparate subjects become related and comparable
only through the universal language and methods of modern mathematics.
Moreover, the operationalization of the abstract theories on the technical
level of computers and software is an immediate and very important em-
pirical and theoretical consequence of mathematization. For the first time,
models and experimental setups can be applied in a scientific, i.e., precise
and objective framework. Finally, the embedding of the historically grown
existing theories in the mathematical concept framework preconizes a nat-
ural extension of facticity to fictitious variants, thereby opening the way to
the comprehension of the crucial question of musicology: Why do we have
this music and no other?

Of course, there will be other musics. But mathematical methods and
associated technologial tools will undoubtedly play a dominant role it their
discovery and exploration, be it on the level of instrumental realization, be
it on the very concept space which transcends pure intuition and catalyzes
fantasy to an unprecedented degree.
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Zürich 1993-1995

[39] Mazzola G and Zahorka O: The RUBATO Performance Workstation
on NeXTSTEP. In: ICMA (ed.): Proceedings of the ICMC 94, S.
Francisco 1994

42



[40] Mazzola G et al.: Neuronal Response in Limbic and Neocortical Struc-
tures During Perception of Consonances and Dissonances. In: Stein-
berg R (ed.): Music and the Mind Machine. Springer, Berlin et al.
1995

[41] Mazzola G: Inverse Performance Theory. In: ICMA (ed.): Proceedings
of the ICMC 95, S. Francisco 1995

[42] Mazzola G and Zahorka O: RUBATO on the Internet.
http://www.rubato.org, Univ. Zűrich 1996
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Doctoral Thesis, TU Berlin 1995

[51] Noll Th: The Consonance/Dissonance-Dichotomy Considered from a
Morphological Point of View. In: Ioannis Zannos (ed.): Music and
Signs—Semiotic and Cognitive Studies in Music. ASCO Art &Science,
Bratislava 1999

43



[52] Noll Th: Homepage of the VW Foundation Research Group on Math-
ematical Music Theory: http://www.mamuth.de

[53] Radl H: Versuch uber die Modulationstheorie Mazzolas in reiner Stim-
mung. Diploma Thesis, U Augsburg, Augsburg 1998

[54] Riemann H: Musikalische Logik. Leipzig 1873

[55] Riemann H: Vereinfachte Harmonielehre oder die Lehre von den
tonalen Funktionen der Akkorde. London 1893

[56] Riemann H: Handbuch der Harmonielehre. Leipzig 6/1912

[57] Ruwet N: Langage, Musique, Poesie. Seuil, Paris 1972

[58] Schönberg A: Harmonielehre (1911). Universal Edition, Wien 1966

[59] Stange-Elbe J: Analyse- und Interpretationsperspektiven zu Johann
Sebastian Bachs “Kunst der Fuge” mit Werkzeugen der objektori-
entierten Informationstechnologie. Habilitation Thesis, U Osnabrück,
2000
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