
Coalgebras and Monads

in the Semantics of Java ⋆

Bart Jacobs and Erik Poll

Dept. of Computer Science, University of Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

Abstract

This paper describes the basic structures in the denotational and axiomatic se-
mantics of sequential Java, both from a monadic and a coalgebraic perspective.
This semantics is an abstraction of the one used for the verification of (sequen-
tial) Java programs using proof tools in the LOOP project at the University of
Nijmegen. It is shown how the monadic perspective gives rise to the relevant com-
putational structure in Java (composition, extension and repetition), and how the
coalgebraic perspective offers an associated program logic (with invariants, bisimu-
lations, and Hoare logics) for reasoning about the computational structure provided
by the monad.

Key words: coalgebra, monad, Java

1 Introduction

This paper investigates the semantics of sequential Java from a combined coal-
gebraic/monadic perspective. It turns out that these separate perspectives are
closely related—and that this is a more general phenomenon in the semantics
of programming languages. Statements (and also expressions) in Java may
have different termination options: they can hang (non-termination), termi-
nate normally yielding a successor state (and possibly a result value), or termi-
nate abruptly (for example, because of an exception). These three termination
options can be captured by a suitable coproduct (disjoint union, or variant)

⋆ Extended version of [22].
Email address: {bart,erikpoll}@cs.kun.nl (Bart Jacobs and Erik Poll).
URL: http://www.cs.kun.nl/∼{bart,erikpoll} (Bart Jacobs and Erik Poll).

Preprint submitted to Elsevier Science 5th February 2002

type, describing the result of a computation. The semantics of a statement
then takes the form,

S × A
stat // Hang + Normal + Abrupt

where S is the state space (set of states, or store) and A is the set of inputs
(parameters). Java statements do not have parameters, but since Java methods
do, it is convenient to also consider statements with parameters. It has become
standard in semantics to describe the result type on the right hand side as a
functor, acting on the state space S and the possible result value. In this setting
we can work within the category Sets of sets and functions—and do not need
domains—because the order structure used in denotational semantics comes
from a standard (flat) order on the result type of statements, see Section 4.2.

Thus, the situation for Java involves a suitable functor F :Sets×Sets → Sets

in two variables, describing the result type. Actually, this functor F is such that
for a fixed set S of states, the functor B 7→ F (S, B)S is a monad. Statements,
acting on S with input A and output B, are then functions of the form

S × A stat // F (S, B).

An elementary but crucial observation is that there are two alternative (but
equivalent) descriptions of such statements, namely as:

Coalgebras S // F (S, B)A of the functor S 7→ F (S, B)A

or as:

Kleisli maps A // F (S, B)S of the monad B 7→ F (S, B)S.

The equivalence relies on the following bijective correspondences obtained by
Currying.

S // F (S, B)A

================
S × A // F (S, B)
================

A // F (S, B)S

These two ways of viewing F as a functor in one parameter give two different
dimensions to the semantics 1 .

The main point of this paper is that these correspondences can be exploited
fruitfully. For Java the monadic view yields a mathematically clean descrip-
tion of the basic underlying computational structure for the language, incor-
porated in its composition, extension and repetition (while, for, recursion)

1 One can go further and distinguish a third parameter in the functor, for input
(our A), as in [28]. But such extra generality is not relevant for our work.

2

constructs. This shows the appropriateness of computational monads (intro-
duced in [37,38]) for an actual, real programming language. The coalgebraic
view yields an associated program logic. It involves tailor made definitions of
invariance, bisimulation and modal operators. The latter can be used to define
an appropriate Hoare logic or dynamic logic (see e.g. [10]), providing reason-
ing principles for the computational structure obtained by the monad. For
example, these principles can take the form of rules like [s1 ; s2]ϕ ↔ [s2][s1]ϕ,
expressing that a formula ϕ holds after a composite statement s1 ; s2 if and
only if [s1]ϕ holds after statement s2, i.e. ϕ holds after first statement s1 and
then s2.

The starting point for this work is the denotational semantics of sequential
Java, that has been developed as part of the LOOP project (Logic of Object-
Oriented Programming) [25,12,44]. This Java semantics provides the basis for
formal reasoning about Java programs using theorem provers. A compiler has
been developed, called the LOOP tool, which, given a sequential Java program,
generates its semantics in a form that can serve as input to a theorem prover,
see [5]. The theorem provers currently supported are PVS [40] and Isabelle [41],
so the LOOP tool can generate the semantics of a Java program in several PVS
or Isabelle theories. One of the aims of the LOOP project is to reason about
a real programming language, warts and all; the Java semantics therefore
covers essentially all of sequential Java, including details such as exceptions,
breaks, and non-termination—but without inner classes and interactive I/O 2 .
The semantics developed in the LOOP project has been used to reason about
existing Java programs, for instance to prove a non-trivial safety property for
the Vector class in the Java standard library [15]. Also, the LOOP tool works
on a suitable annotation language for Java, called JML [31,32], providing
for example class invariants and method specifications (with pre- and post-
conditions). As a serious case study JML is being used for specifying and
verifying the JavaCard API, see [42,43,6], used on the newest generation of
Java-programmable smart cards. JML is briefly discussed in Subsection 7.2
below.

Here we will not describe the denotational semantics of all of the Java con-
structs, but concentrate on the use of a monad to (re)organise the semantics
from a single perspective. A denotational semantics of Java is more compli-
cated than the semantics typically considered in textbooks on denotational
semantics. Not only does it involve the possibility of non-termination (using
the familiar ⊥), but it also involves different forms of abrupt termination

2 In fact, strictly speaking I/O is not part of the Java language, but provided by
classes in the Java API (Application Programming Interface). One way to accom-
modate I/O would be to include a model of the relevant API classes as part of the
global state space, and to provide interpretations of the associated class methods
for performing I/O.

3

of programs, such as exceptions and the different ways of “jumping” out of
methods and repetitions via break, return, and continue statements. In our
monad for Java we shall abstract from these different abrupt termination op-
tions, and consider only exceptions. The axiomatic semantics of exceptions is
studied in for example [7,34,33]—mostly via a weakest precondition calculus—
using a single possible exception, and not many forms of abrupt termination,
like in Java. Here we show that the computational monad approach [37,38]
provides a useful level of abstraction and a good means for organising all the
complications that come with defining the semantics of a real programming
language such as Java. The paper also provides a post hoc justification of the
Java semantics as used in the LOOP project, by giving some of the central
properties of the monadic structure and of the interpretation of some par-
ticular Java constructs. Not all aspects of the Java semantics are described
in this paper; the representation of the global state space, used for relating
identifiers to values, is discussed in [4], the treatment of inheritance in [13],
and of exceptions in [20]. See also [12] for an overview.

The Java semantics used in the LOOP project has originally been developed
primarily from a coalgebraic perspective [45,16,24]. This perspective focuses
on the state space as a black box, and leads to useful notions such as class
invariant, bisimilarity and modal logic. Hoare logics for Java and for JML have
been developed “directly”, see [14,12,23], but the modal operators associated
with coalgebras (see [39,46,18,19]) also provide a post hoc justification in this
case.

This paper is organised as follows. It starts in Section 3 with a sketch of the
Java semantics as used in the LOOP project, focusing on the different abnor-
malities in Java. In the monadic approach in Section 4 these abnormalities
are simplified to a single set E. This leads to a monad J , which we call the
Java monad. Its Kleisli composition corresponds to Java composition, and its
extension to Java extension. Furthermore, the homsets in its Kleisli category
have a cppo structure. Section 5 considers this same situation for some other
functors. Next, in Section 6, while statements and recursive statements are
studied in this general framework. The cppo structure of Kleisli homsets also
allows us to deal with recursive statements in the usual way. In the special case
of our Java monad J , these general, denotational definitions are shown to be
equivalent to more “operational” characterisations used in the LOOP project.
The final section 7 describes modal operators associated with the functor cap-
turing Java statements as coalgebras. These can be used for an appropriate
axiomatic semantics for Java (and JML), taking the various termination op-
tions into account.

4

2 Preliminaries

We shall make frequent use of n-ary products X1 × · · · × Xn of sets Xi, with
projection functions πi: X1×· · ·×Xn → Xi. The empty product, when n = 0,
describes a singleton set, which is written as 1 = {∗}. We also use n-ary
coproducts (or disjoint unions) X1 + · · ·+Xn with coprojection (or injections)
κi: Xi → X1 + · · · + Xn. There is an associated “case” or “pattern match”
construction which is perhaps not so familiar: given n functions fi: Xi → Y ,
there is a unique function 3 f : X1 + · · · + Xn → Y with f ◦ κi = fi, for all
1 ≤ i ≤ n. We shall write

f(z) = CASES z OF {

κ1(x1) 7→ f1(x1),
...

κn(xn) 7→ fn(xn) }

for the function that maps z ∈ X1 + · · ·+ Xn of the form κi(xi) to fi(xi).

Familiarity is assumed with the basics of the theory of monads, see for in-
stance [38,49,26] for an introduction, or [30,36,3] for more advanced informa-
tion.

3 Java semantics for verification

This section explains the essentials of the semantics of (sequential) Java as
used in the LOOP project. As such it exists in the form of PVS and Is-
abelle/HOL definitions in higher order logic, in so-called prelude files, which
form the basis for every verification exercise. Here we shall use a more mathe-
matical notation for the basic ingredients of this semantics. Later in this paper
it will be reformulated (and simplified) using a monad.

Traditionally, in denotational semantics an imperative program s is interpreted
as a partial function on some state space S, i.e.

S
[[s]]

// 1 + S.

The state space S is a global store giving the values of all program variables.
We will not go into the precise form of the store here; for more detail, see [4].

3 which, in categorical notation, is written as the cotuple [f1, . . . , fn].

5

The global state space S includes both the heap for allocating objects and
their fields, and the stack for current bindings of identifiers, so a separate
“environment” for bindings of identifiers as traditionally used in denotational
semantics is not needed.

Above we have used the notation introduced in the previous section; the con-
ventional notation for 1+S is S⊥. The 1+ . . . option in the result type signals
non-termination (or “hanging”).

Similar to program statements, an expression e—possibly having side effects—
is interpreted as a function

S
[[e]]

// 1 + (S × B).

Again, the first +-option 1 in the result type signals non-termination. The
second option is for normal termination, which for expressions (of type B)
yields a state, needed for side-effects, and a result value in B.

In a real programming language like Java however, things are more compli-
cated. Statements and expressions in Java can not just hang or terminate
normally, they can also terminate abruptly. Expressions can only terminate
abruptly because of an exception (e.g. through division by 0), but statements
may also terminate abruptly because of a return (to exit from a method call),
break (to exit from a block, repetition or switch-statement), or continue (to
skip the remainder of a repetition). The last two options can occur with or
without label. Consequently, the result types of statements and expressions
will have to be more complicated than the 1 + S and 1 + (S ×B) above. The
result types of statements and expressions are abbreviated as StatResult(S)
and ExprResult(S, B), where:

StatResult(S) = 1 + S + StatAbn(S)

ExprResult(S, B) = 1 + (S × B) + ExprAbn(S)

Here StatAbn(S) and ExprAbn(S) are the types of statement and expression
abnormalities, defined below.

Later in the monadic description we shall abstract away from the particular
shapes of these abnormalities, but now we want to show what really happens
in the semantics of Java (that is used for verification). Therefore, we describe
all these abnormality options in appropriate definitions, involving a state space
S. First, abnormal termination for statements is captured via four options:

StatAbn(S) = (S × RefType) + S + (S × (1 + String)) + (S × (1 + String))

6

where RefType and String are constant sets used for references and strings.
The first +-option S × RefType describes an exception result, consisting of a
state and a reference to an exception. The second +-option is for a return
result, the third one for a break result (possibly with a string as label), and
the fourth one for a continue result (also possibly with a string as label).

Since exceptions are the only abnormalities that can result from expressions
we have:

ExprAbn(S) = S × RefType.

A void method void m(A1 a1, ..., An an){ ... } in Java is then inter-
preted as a state transformer function S × A1 × · · · × An → StatResult(S).
A non-void method B m(A1 a1, ..., An an){ ... } gets interpreted as a
function S × A1 × · · · × An → ExprResult(S, B). Notice that these state
transformers can be described as coalgebras, namely of the functors S 7→
StatResult(S)A1×···×An and S 7→ ExprResult(S, B)A1×···×An. Statements inside
a method body are also translated as state transformers S → StatResult(S),
without parameters, of course. They are composed via an explicit composi-
tion operation, which we describe in the next paragraph. A whole class is
represented as a single coalgebra, combining (via tupling) separate operations
for all the fields, methods and constructors of the class. The class’s fields are
related to appropriate memory positions via a predicate on this coalgebra 4 .
Similarly, the class’s methods and constructors are related to their imple-
mentations, see [12] for details. Reasoning about a particular class/coalgebra
proceeds under the assumption that these “implementation” predicates hold
for the coalgebra.

On the basis of this representation of statements and expressions all language
constructs of (sequential) Java are translated into the (higher order) logics
of PVS and Isabelle [25,14,13,4,44]. For instance, the composition (s ; t): S →
StatResult(S) of two statements s, t: S → StatResult(S) is defined as:

(s ; t) = λx ∈ S. CASES s(x) OF {

κ1(∗) 7→ κ1(∗),

κ2(x
′) 7→ t(x′),

κ3(w) 7→ κ3(w) }.

(1)

This means that if s(x) hangs or terminates abruptly, then (s ; t)(x) = s(x)
so that t is not executed at all, and if s(x) terminates normally resulting in
a successor state x′, then (s ; t)(x) = t(x′) and t is executed on this successor
state. Notice how abnormalities are propagated.

4 The LOOP compiler computes these positions.

7

The Java evaluation strategy prescribes that arguments should be evaluated
first, from left to right (see [11, §§ 15.7.4]). But so far we have used values
as arguments, and not expressions possibly having side-effects. Restricting to
the case with one argument, this means that for a statement t: S × A →
StatResult(S) we still have to define an extension 5 t∗ of t with type t∗: (S ×
(S → ExprResult(S, A))) → StatResult(S), namely as:

t∗(x, e) = CASES e(x) OF {

κ1(∗) 7→ κ1(∗),

κ2(x
′, a) 7→ t(x′, a),

κ3(w) 7→ κ3(w) }

(2)

(and similarly for an expression instead of a statement t).

In the next section we shall see how composition and extension can be obtained
from an underlying monad.

4 The monad for Java semantics and its properties

This section introduces an appropriate monad J for Java statements and ex-
pressions. Its (categorical) properties are investigated in some detail, with
emphasis on extension and composition, and on the order on homsets of the
Kleisli category Kl(J) of the “Java” monad J .

The first step is to simplify the situation from the previous section. This is
done by ignoring the complicated structure of Java abnormalities, and using
one fixed set E in place of both StatAbn and ExprAbn. Then we can see a
statement as a special form of expression, namely one with result type 1.
Thus, our general state transformer functions are of the form:

S × A // 1 + (S × B) + (S × E).

They can be described as maps S × A → F (S, B), for a functor F :Sets ×
Sets → Sets as in the introduction, with, obviously, F (S, B) = 1+(S×B)×
(S × E). Within the LOOP semantics they are regarded as coalgebras:

S //
(
1 + (S × B) + (S × E)

)A
.

5 In PVS and Isabelle we use overloading and also write t for t∗.

8

But here we shall first look at them as morphisms

A //
(
1 + (S × B) + (S × E)

)S

in the Kleisli category of a monad. These two representations are of course
equivalent (via Currying), but they give different perspectives. In the coalge-
braic view the state space S plays a central role, but in the monadic view S

is just one of the ingredients of the monad, like partiality and exceptions; and
the emphasis is more functional and lies on input and output.

Definition 1 Let Sets be the category of sets and functions. Fix two sets E

for exceptions and S for states. A functor J :Sets → Sets is defined by

J(A) = (1 + (S × A) + (S × E))S
. (3)

It forms a monad with unit and multiplication natural transformations:

A
ηA // J(A) J2(A)

µA // J(A)

given by

ηA(a) = λx ∈ S. κ2(x, a) µA(f) = λx ∈ S. CASES f(x) OF {

κ1(∗) 7→ κ1(∗),

κ2(x
′, g) 7→ g(x′),

κ3(x
′, e) 7→ κ3(x

′, e) }.

This J will sometimes be called the Java monad.

It is not hard to check that the three monad equations µA ◦ ηJ(A) = id,
µA ◦ J(ηA) = id and µA ◦ J(µA) = µA ◦ µJ(A) are satisfied. Notice that
the Java monad J incorporates ingredients from three basic computational
monads introduced in [38]: the partiality monad A 7→ 1 + A, the exception
monad A 7→ A + E and the side-effect monad A 7→ (S × A)S. But J is not
obtained via composition from these basic monads, but from the associated
monad transformers [37,8,35], namely T 7→ 1 + T (−), T 7→ T ((−) + E) and
T 7→ T (S × (−))S.

4.1 Extension and composition

It is folklore knowledge that every functor F :Sets → Sets is strong, with
strength natural transformation stA,B: A×F (B) → F (A×B) given by (a, z) 7→

9

F (λb ∈ B. (a, b))(z). This strength definition applies in particular to the above
functor J . Explicitly,

stA,B(a, f) = λx ∈ S. CASES f(x) OF {

κ1(∗) 7→ κ1(∗),

κ2(x
′, b) 7→ κ2(x

′, (a, b)),

κ3(x
′, e) 7→ κ3(x

′, e) }.

(4)

In order to show that J is a strong monad, and not just a strong functor, we
have to check that additionally the following two diagrams commute.

A × B
id × ηB //

ηA×B
((R

R

R

R

R

R

R

R

R

R

R

R

R

R

A × J(B)

stA,B
��

J(A × B)

A × J2(B)

stA,J(B)
��

id × µB // A × J(B)

stA,B

��

J(A × J(B))

J(stA,B)
��

J2(A × B) µA×B
// J(A × B)

This is an easy exercise. In fact, for a monad on Sets, the strength map is
uniquely determined, see [38, Proposition 3.4].

Using this strength map there is a standard way to turn functions f : A×B →
J(C) into functions f ∗: A × J(B) → J(C), namely as:

f ∗ = µC ◦ J(f) ◦ stA,B. (5)

Explicitly, this “Kleisli extension” can be described on a ∈ A and g ∈ J(B)
as:

f ∗(a, g) = λx ∈ S. CASES g(x) OF {

κ1(∗) 7→ κ1(∗),

κ2(x
′, b) 7→ f(a, b)(x′),

κ3(x
′, e) 7→ κ3(x

′, e) }.

Thus, this Kleisli extension is the same as extension for Java described in (2).

For convenience, we shall also describe extension in the other parameter:

f ♯ = (f ◦ swap)∗ ◦ swap

= µC ◦ J(f ◦ swap) ◦ stB,A ◦ swap : J(A) × B −→ J(C).
(6)

10

where the function swap exchanges the arguments: swap(x, y) = (y, x). As an
aside, a monad is called distributive (see [27]) if evaluation in the first argu-
ment and in the second one commute. This is not the case for J . Moggi [38]
introduces a special ‘let’ notation for extension, which is convenient in com-
putations. Here we are merely interested in showing how the monad extension
plays a role in Java.

Example 2 Recall that Java (like C) has two conjunctions, namely “and” &

and “conditional and” &&, see [11, §§ 15.23]. The first one (&) always evaluates
both arguments, but the second one (&&) only does so if the first argument
evaluates to true. The difference is relevant in the presence of side-effects,
non-termination, or exceptions. We show how the two conjunction operations
can be described concisely via extension w.r.t. the Java monad.

First, the one-step extension (ηbool ◦∧)∗: bool × J(bool) → J(bool) only has
to evaluate its second argument. Extending it again, now in the first argument,
yields:

J(bool) × J(bool)
&

def
= ((ηbool ◦∧)∗)♯

// J(bool).

Explicitly,

f1 & f2 = λx ∈ S. CASES f1(x) OF {

κ1(∗) 7→ κ1(∗),

κ2(x1, b1) 7→ CASES f2(x1) OF {

κ1(∗) 7→ κ1(∗),

κ2(x2, b2) 7→ κ2(x2, b1 ∧ b2),

κ3(x2, e2) 7→ κ3(x2, e2) },

κ3(x1, e1) 7→ κ3(x1, e1) }.

The conditional and && can be obtained by extending the auxiliary function
t: bool×J(bool) → J(bool) given by t(b, f) = IF b THEN f ELSE ηbool(false).

J(bool) × J(bool) &&
def
= t♯ // J(bool).

This concludes the example.

We turn to the Kleisli category Kl(J) of the Java monad J . Its objects are sets,
and its morphisms A → B are functions A → J(B). The identity map A →
J(A) in Kl(J) is the unit ηA at A, and the “Kleisli” composition g • f : A →
J(C) of two morphisms f : A → J(B) and g: B → J(C) in Kl(J) is defined as

11

usual as:

g • f = µC ◦ J(g) ◦ f. (7)

Unraveling yields for a ∈ A,

(g • f)(a) = λx ∈ S. CASES f(x) OF {

κ1(∗) 7→ κ1(∗),

κ2(x
′, b) 7→ g(b)(x′),

κ3(x
′, e) 7→ κ3(x

′, e) }.

Thus the Kleisli composition • is basically the same as Java composition ;
from (1): if f does not terminate or terminates abruptly, so does g • f , and
if f terminates normally and produces a successor state, then g is executed
on this state. We thus use a compositional (denotational) semantics: for Java
statements s1, s2,

[[s1 ; s2]] = [[s2]] •[[s1]].

The other Java language constructs are interpreted in essentially the same
way, see [12].

For future use we define how to iterate a function s: A → J(A) using Kleisli
composition:

sn =

ηA if n = 0

s • sn−1 otherwise.
(8)

4.2 Cppo structure on Kleisli homsets

The homsets of the Kleisli category of the Java monad J are the sets of
morphisms f : A → B in the Kleisli category Kl(J), i.e. the sets of functions
f : A → J(B). Each set J(B) can be ordered via the “pointwise flat” ordering,
obtained from the flat ordering on 1+(S×A)+(S×E) by taking the pointwise
extension to J(B) = (1+ (S ×B)+ (S ×E))S, which can in turn be extended
– pointwise – to functions A → J(B). Explicitly, for f1, f2: A → J(B), f1 ⊑ f2

if for each a ∈ A and x ∈ S, f1(a)(x) hangs, or else is equal to f2(a)(x). More
formally:

f1 ⊑ f2 ⇐⇒ ∀a ∈ A. ∀x ∈ S. f1(a)(x) = κ1(∗) ∨ f1(a)(x) = f2(a)(x). (9)

12

It is not hard to see that ⊑ is a partial ordering. Also, there is a least element
⊥ = λa ∈ A. λx ∈ S. κ1(∗), namely the statement that always hangs. Notice
that f •⊥ = ⊥, but ⊥• f may be different from ⊥, namely when f throws an
exception.

It is standard that the flat ordering is a complete partial ordering (cpo): an
ordering in which each ascending sequence has a least upperbound. Hence
the pointwise flat ordering ⊑ also makes the set of morphisms A → J(B) in
the Kleisli category Kl(J) a cpo. Explicitly, for an ascending chain (fn: A →
J(B))n∈N there is a least upperbound f =

⊔
n∈N fn: A → J(B) given by:

f(a)(x) =

κ1(∗) if ∀n ∈ N. fn(a)(x) = κ1(∗)

fℓ(a)(x) else, where ℓ is the least n with fn(a)(x) 6= κ1(∗).

The cpo structure together with the bottom element ⊥ makes each homset
a complete pointed partial ordering (cppo). In the category of cppos, mor-
phisms are continuous functions that preserve the ordering, but which need
not preserve the bottom element. This is exactly what Kleisli composition •
does. Therefore the Kleisli category Kl(J) is cppo-enriched, see [9].

We summarise what we have found so far.

Proposition 3 The functor J from (3) describing the outputs of Java state-
ments and expressions is a strong monad on the category of sets. Its Kleisli
composition and extension correspond to composition and extension in Java.
And its Kleisli category Kl(J) is cppo-enriched. 2

The following result about extension and continuity will be useful later in
Subsection 6.2.

Lemma 4 Consider a function f : A × B → J(C) and its extension f ∗: A ×
J(B) → J(C) from (5).

(1) For each a ∈ A, the function f ∗(a,−): J(B) → J(C) is continuous.
(2) If the set A carries an ordering in such a way that for each b ∈ B,

the function f(−, b): A → J(C) is continuous, then for each g ∈ J(B),
f ∗(−, g): A → J(C) is also continuous. 2

5 Other examples

The aim of this section is to briefly illustrate that the situation of Proposition 3
is not uncommon in semantics. The following two functors F :Sets× Sets →

13

Sets are also such that the associated functors T given by T (B) = F (S, B)S

are strong monads, whose Kleisli category Kl(T) is cppo-enriched.

(1) F (S, B) = 1+(S×B), describing possibly non-terminating computations.
The ordering on the associated Kleisli homsets is again the “pointwise
flat” ordering, obtained from the flat ordering on F (S, B) by taking the
pointwise extension on T (B) = F (S, B)S.

(2) F (S, B) = P(S × B), describing non-deterministic computations (or B-
labeled transition systems). The ordering in this case is the pointwise
inclusion ordering on subsets.

Also, the analogues of Lemma 4 hold for these T (instead of J).

6 While statements and recursive statements

In this section we assume an arbitrary strong monad T on the category of
sets, whose Kleisli category Kl(T) is cppo-enriched and satisfies the analogue
of Lemma 4 (with T instead of J). For such a T we shall give the standard
denotational definitions for while statements and for recursion. For the special
case where T is the Java monad J we show that these denotational definitions
coincide with (a simplified version of) more operational characterisations that
are used within the LOOP project. In the simplification only exceptions can
cause a break out of a repetition. In Java one may have a continue or break
statement inside a while loop, causing a skip of the remainder of the current
cycle (for continue), or of the whole while loop altogether (for break). The
full version of the while statement that is used for the verification of Java
programs is described in [14].

6.1 While statement

So let T be our strong monad, with statements interpreted as maps A → T (B),
describing T -computations. The composition of such statements is described
by the Kleisli composition • associated with T . For a Boolean computation
c ∈ T (bool) we shall define a function while(c) taking a statement s: A → T (A)
in the Kleisli category Kl(T) to a new statement while(c)(s): A → T (A). This
requires a conditional statement, which is defined as follows.

Definition 5 The conditional operator

T (bool) × (T (B)A)2 IfThenElse // T (B)A

14

is obtained by extension as ifthenelse
♯ of the obvious map

bool × (T (B)A)2 ifthenelse // T (B)A.

Thus, IfThenElse evaluates the condition in T (bool) and decides on the basis
of its outcome whether to evaluate the first or second statement in the product
(T (B)A)2. By Lemma 4 (2)—actually, by its analogue for T , plus Currying—
the conditional statement IfThenElse is continuous in each of its arguments.

For the case where T is the Java monad J , the conditional statement may be
described explicitly as:

IfThenElse(c, s1, s2) = λa ∈ A. λx ∈ S. CASES c(x) OF {

κ1(∗) 7→ κ1(∗),

κ2(x
′, b) 7→ IF b

THEN s1(a)(x′)

ELSE s2(a)(x′),

κ3(x
′, e) 7→ κ3(x

′, e) }.

In the standard elementary semantics of programming languages using partial
functions as denotations of statements, the while statement is characterised
as a least fixed point, see e.g. [48, Definition 9.18]. This approach may be
generalised to our current setting with statements w.r.t. the monad T .

Definition 6 For a condition c ∈ T (bool) and a statement s: A → T (A), a
while statement while(c)(s): A → T (A) is defined as the least fixed point of the
operator H(c, s): T (A)A → T (A)A given by:

H(c, s) = λt ∈ T (A)A. IfThenElse(c, t • s, ηA).

This operator H(c, s) is continuous, because both • and IfThenElse are contin-
uous.

We proceed with the operational description of while statements while(c)(s)
for the Java monad J . The idea in this case is to iterate the statement s until
the condition c becomes false. But there are various subtleties involved:

(1) The condition c may itself have a side-effect, which has to be taken into
account. Therefore we iterate s • ĉ, where ĉ: A → J(A) is the statement

15

which executes c only for its side-effect and ignores its result:

ĉ(a)(x) = CASES c(x) OF {

κ1(∗) 7→ κ1(∗),

κ2(x
′, b) 7→ κ2(x

′, a),

κ3(x
′, e) 7→ κ3(x

′, e) }.

Or, equivalently, ĉ(a) = J(λb ∈ bool. a)(c).
(2) During the iteration both c and s may throw exceptions. If this happens

the while statement must throw the same exception.

In order to detect that the condition becomes false or an exception is thrown
two partial functions N(c, s), E(c, s) : A → N

S are defined. The number
N(c, s)(a)(x), if defined, is the smallest number of iterations after which c

becomes false without occurrence of exceptions. Similarly, E(c, s)(a)(x), if de-
fined, is the smallest number of iterations after which an exception is thrown.
More formally, N(c, s)(a)(x) is the smallest number n such that

(ĉ •(s • ĉ)n)(a)(x) = κ2(x
′, false)

for some x′, if such a number n exists, and E(c, s)(a)(x) is the smallest number
n such that

(s • ĉ)n(a)(x) = κ3(x
′, e)

for some x′ and e, if such a number n exists.

By the definition of Kleisli composition, if f(a)(x) = κ3(x
′, e) for some f :

A → J(B) then (g • f)(a)(x) = f(a)(x) for all g : B → J(C). In other
words, if f(a)(x) throws an exception, then (g • f)(a)(x) also throws that ex-
ception. So, if (s • ĉ)n(a)(x) throws an exception then ĉ •(s • ĉ)m(a)(x) throws
the same exception for all m ≥ n. This means that if both N(c, s)(a)(x) and
E(c, s)(a)(x) are defined, then N(c, s)(a)(x) is smaller than E(c, s)(a)(x). This
is used in the following operational description of the while statement for the
Java monad.

Proposition 7 For a condition c ∈ J(bool) and a statement s: A → J(A) the
while statement while(c)(s): A → J(A) from Definition 6 can equivalently be
described as:

while(c)(s) = λa ∈ A. λx ∈ S.

(ĉ •(s • ĉ)n)(a)(x) if N(c, s)(a)(x) = n

(s • ĉ)n(a)(x) if E(c, s)(a)(x) = n and N(c, s)(a)(x) is undefined

κ1(∗) if both N(c, s)(a)(x) and E(c, s)(a)(x) are undefined.

16

PROOF. The proof that while(c)(s) is a fixed point of the operator H(c, s)
from Definition 6 proceeds by distinguishing many cases and handling them
one by one.

First we consider the following three cases: (1) the condition hangs; (2) the
condition throws an exception; (3) the condition terminates normally and
evaluates to false. In all these cases the statement is not executed at all, and
the outcome of the while is easily established using the above functions N and
E: it hangs in case of (1), it throws the same exception as the condition in (2)
and it terminates normally in (3).

The statement does get executed in case: (4) the condition terminates nor-
mally and evaluates to true. This leads to the subcases: (4a) the statement
hangs; (4b) the statement throws an exception; (4c) the statement terminates
normally. In the last case we use the following auxiliary result: if s(a)(x′) =
κ2(x

′′, a′) and c(x) = κ2(x
′, true), then while(c)(s)(a)(x) = while(c)(s)(a′)(x′′).

In order to show that while(c)(s) is the least fixed point of H(c, s), we assume
a function t: A → J(A) with H(c, s)(t) = t. We then first show by induction
on n that:

(1) If N(c, s)(a)(x) = n, then t(a)(x) = (ĉ •(s • ĉ)n)(a)(x).
(2) If E(c, s)(a)(x) = n, then t(a)(x) = (s • ĉ)n(a)(x).

The result while(c)(s) ⊑ t then follows by unpacking the definition of while. 2

Definition 6 and Proposition 7 give quite different characterisations of the
meaning of while. Both correspond to an intuitive understanding of the se-
mantics of while. Which of these characterisations is the more fundamental
one – and should therefore be considered as the definition – is a matter of
taste, but we should prove their equivalence. In reasoning about while repe-
titions we often found the definition given by Proposition 7 more convenient
than the more conventional Definition 6.

A similar analysis can be given for Java’s for statement. What is slightly more
difficult is that an extra local variable with update function has to be taken
into account.

6.2 Recursive statements

Again we start from the general situation with a computational monad T .
Recursive statements with input type A and result type B are interpreted as
functions of type A → T (B), which are constructed from a (continuous) map-

17

ping from statements to statements of type T (B)A → T (B)A. The semantics
of such a recursive statement can be defined in the same way as the semantics
of the while statement.

Definition 8 For a continuous mapping H : T (B)A → T (B)A we define the
statement rec(H): A → T (B) as the least fixed point of H.

For the special case where T is the Java monad J , we can use the explicit
description of the least fixed point from Subsection 4.2 to get the expected
operational description of recursive statements (as used in the LOOP project):
for a mapping H as above a partial function U(H) : A → N

S is defined. The
number U(H)(a)(x), if it exists, is the smallest n such that Hn(⊥)(a)(x) 6=
κ1(∗). Then

rec(H) = λa ∈ A. λx ∈ S.

Hn(⊥)(a)(x) if U(H)(a)(x) = n

κ1(∗) if U(H)(a)(x) is undefined.

Continuity of a particular H is typically easy to show. By Lemma 4 all
extensions—like & and && in Example 2—are continuous, and it is a stan-
dard result that application, lambda abstraction, composition, and the taking
of least fixed points all preserve continuity.

7 Logic for coalgebras

The new research area of modal and temporal logic for coalgebras is fairly
active [39,46,18,19,21,2,47,29]. Most of these studies work with coalgebras
X

c
→ T (X) of so-called polynomial functors T . These are built up induc-

tively, using identity and constant functors, products and coproducts, expo-
nents (with a constant set), and possibly also powersets. All the functors we
have considered so-far are polynomial. The results obtained in this area show
that temporal and modal logics are the natural logics for coalgebras, by pro-
viding tailor made next-time operators for reasoning about the dynamical
behaviour of coalgebras. These results extend standard results from modal
logic, like completeness and Hennessey-Milner style characterisation of bisimi-
larity, namely as validity for all formulas of the logic. Here we shall not go into
this theory in general, but sketch some of its consequences for the semantics
of Java. The temporal and modal operators that we describe are as in [18,19].

The dual, monadic/coalgebraic picture that we have described for the seman-
tics of Java has concentrated on the computational structure obtained from
the monad J(A) = F (S, A)S, for F (S, A) = 1+(S×A)+(S×E). From now on
we shall take a coalgebraic look and consider the functor L(S) = F (S, B)A,

18

for fixed sets A, B. Java statements are then coalgebras S → L(S) of this
functor L. This coalgebraic view allows variation in the state-space S, leading
to notions such as coalgebra homomorphism, invariance, bisimilarity, modal
operators, and Hoare logic. This will be sketched below.

7.1 Modal operators for Java

Modal operators can be defined for coalgebras of polynomial functors by in-
duction on the structure of the functor, see [18,19]. Therefore one distinguishes
in the result type of a coalgebra c occurrences of the state space S, and of
constants A, as in:

S
c // · · · S · · · A · · · S · · ·

For each occurrence of S in the result type (box) one has an operator that
acts on predicates on S. It maps a predicate P ⊆ S to a new predicate
consisting of those states x ∈ S such that if c(x) yields a result state, say y,
at the occurrence of S we are talking about, then P (y) holds. This operator
thus says “next-time P at this occurrence”. Similarly, for each occurrence of a
constant A in the result type (not as exponent) there is an “observer” yielding
atomic predicates. It maps an element a ∈ A to the predicate consisting of
those x ∈ S such that if c(x) yields a result observation at the occurrence A

that we are talking about, then this observation is a.

In order to make this more concrete, we shall consider these operators and
observers for the functor L, starting from a given statement s, as in:

S
s //

(
1 + (S × B) + (S × E)

)A
.

The two occurrences of S on the right-hand side give rise to two next-time
operators: Ns, for normal state, and Es, for exceptional state. They are defined
on a predicate P ⊆ S and an input a ∈ A as:

Ns(P)(a) = {x ∈ S | ∀x′, b′. s(x)(a) = κ2(x
′, b′) ⇒ P (x′)}

Es(P)(a) = {x ∈ S | ∀x′, e′. s(x)(a) = κ3(x
′, e′) ⇒ P (x′)}.

Thus, Ns(P)(a) holds for those states for which, if the statement with input a

terminates normally, then P holds in the result state. Note that these operators
Ns and Es implicitly depend on the statement s. We could make this explicit
by writing Ns[s](P)(a) and Es[s](P)(a) instead—like in dynamic logic.

Similarly, the three (non-exponent) constants 1, B, E give rise to three ob-
server predicates, Hg, Rs(b), Ex(e), (for hang, result, and exception, resp.)

19

defined for a ∈ A as:

Hg(a) = {x ∈ S | s(x)(a) = κ1(∗)}

Rs(b)(a) = {x ∈ S | ∀x′, b′. s(x)(a) = κ2(x
′, b′) ⇒ b′ = b}

Ex(e)(a) = {x ∈ S | ∀x′, e′. s(x)(a) = κ3(x
′, e′) ⇒ e′ = e}.

Like the operators Ns and Es earlier the observers Hg, Rs(b), Ex(e) implicitly
depend on the statement s; this could be make explicit in the same way.

With these operators and observers one can express various properties. For ex-
ample, let false be the constant predicate “false”; the predicate Ns(false)(a) ∧
Es(false)(a) then describes those states where our statement s hangs at a. And
¬Ns(false)(a) contains the states where s must terminate normally (with input
a). Also, these operators interact appropriately with the Kleisli composition
structure of the monad J . For instance, there is a “normal” composition rule
for Ns, of the form

Ns[s1 ; s2](P)(a)=
∨

b∈B

Rs[s1](b)(a) ∧ Ns[s1](Ns[s2](P)(b))(a). (10)

This provides a suitable connection between the computational structure pro-
vided by the monad, and the logical structure provided by the functor of the
coalgebra. How to obtain such connections for more general Kleisli maps /
coalgebras is still an open question.

A predicate P ⊆ S is called an invariant (see also [17,18]) if for all a ∈ A,

P =⇒ Ns(P)(a) ∧ Rs(P)(a).

This means that s preserves P : once P holds, it will continue to hold no matter
how many times one applies s.

Writing �P for the greatest invariant in P , we can read �P as “always P” or
“henceforth P”. The � operator is useful for expressing safety properties—and
its dual ♦ = ¬�¬ for liveness properties.

What we see is that appropriate logical operators for reasoning about Java
statements can be obtained via a structural analysis of the functor that cap-
tures these statements as coalgebras.

20

7.2 Hoare logic for Java and JML

In this final part we illustrate how the logical operators from the previous
section given rise to a suitable Hoare logic for Java. The “obvious” way to do
this is to introduce separate Hoare triples for the different termination modes,
as in [14,12]. For predicates P, Q ⊆ S write for example:

{P} s(a) {normal(Q, b)} for P =⇒ Ns(Q)(a) ∧ Rs(b)(a)

{P} s(a) {exceptional(Q, e)} for P =⇒ Es(Q)(a) ∧ Ex(e)(a).

These are partial correctness triples. The first one says that if the precondition
P holds and if s(a) terminates normally, then the postcondition Q holds and
the result value is equal to b.

Associated with these definitions there are appropriate rules, like:

{P} s1(a) {normal(Q, b)} {Q} s2(b) {exceptional(R, e)}

{P} (s1 ; s2)(a) {exceptional(R, e)}
(11)

Such rules illustrate an interaction like in (10) above between the computa-
tional structure given by the monad, and the logical structure given by the
functor of the coalgebras.

Things get more interesting if we consider the annotation language JML [32]
for Java. This language involves correctness assertions which can be added
as special comments to Java classes. For example, the behaviour of a Java
method m may be described in JML as:

/*@ behavior

@ diverges: D <pre-condition for non-termination>

@ requires: P <precondition>

@ modifiable: M <fields that can be modified>

@ ensures: Q <postcondition for normal termination>

@ signals(E e): R <postcondition for exceptional termination>

@*/

B m(A a) { ... }

The meaning of such behaviour specifications can be expressed via the logical
operators and observers described above. This is slightly complicated by the
fact that the Q and R above are predicates involving not only the post-state,
but also the pre-state—for evaluation of expressions like \old(e) referring to
the value of e in the state before the method is evaluated. But this can be
handled in the standard way by using what are called logical variables (the y,
b, e below). Ignoring modifies clauses (and class invariants, which should be

21

added to the pre- and post-conditions), the meaning of the above specification
can be expressed as:

∀a ∈ [[A]]. ∀b ∈ [[B]]. ∀e ∈ [[E]]. ∀y ∈ S.

[[P]] ∧ (y =)

=⇒
(
Hg(a) ⇒ [[D]]

)
∧

(
Rs(b)(a) ⇒ Ns([[Q]](y, b))(a)

)
∧

(
Ex(e)(a) ⇒ Es([[R]](y, e))(a)

)

where (y =) is the predicate {x | x = y}. This formula says that if in a state
equal to y the precondition holds, then (1) if the statement hangs with input a,
then (the translation of) D holds (in the original pre-state), (2) if the statement
with input a terminates normally, then in the post-state Q(y, b) holds, where
y is the pre-state and b the result value, and (3) if the statement with input
a terminates with an exception e, then Q(y, e) holds in the post-state.

For more information on the logical semantics of JML we refer to [23], where
appropriate proof rules are described for such JML specifications, following
the computational structure (like in (10) and (11) above). These rules also
involve the extra abnormalities (for return, break and continue, as described
in Section 3) because they may arise during computations—but they cannot
emerge from a method, and so they are not mentioned in JML.

8 Conclusions

We have investigated the structure at the heart of the denotational and ax-
iomatic semantics of sequential Java developed in the LOOP project, which is
used as the basis of mechanically assisted verification of actual Java programs.
We have described this structure both from a monadic and from a coalgebraic
point of view. The monadic point of view, investigated in Sections 4 to 6, pro-
vides a monad that is useful for organising the computational structure of the
Java semantics, particularly when it comes to all the subtleties involved with
handling abnormal termination. The coalgebraic point of view, investigated in
Section 7, provides suitable modal operations for reasoning about this com-
putational structure, and with which in particular a Hoare logic for Java can
be defined.

The monadic/coalgebraic approach is quite general, in that the same basic ma-
chinery is used to deal with non-termination and abrupt termination. As men-
tioned in Section 5, other computational features, such as non-determinism,
could be dealt with in a similar way.

22

It is interesting to contrast our approach to the one taken in the denotational
semantics of sequential Java described in [1]. In our approach the monad J

makes explicit everything involved with the control flow of programs at the
level of types. In the approach of [1] some of this complexity is implicit in the
shape of the global state S, which contains global variables that keep track of
exceptions and breaks. A disadvantage of this approach is that in the definition
of the semantics one has to be very careful to update this information in all
the right places; forgetting to do this at some point will mean that a wrong
continuation will be taken. Given the size and complexity of the semantics,
avoiding such mistakes is not trivial 6 . In our approach the type information
of the very basic type system discussed in Section 2 provides some safety:
for the definitions to be well-typed one is essentially forced to consider all
options, and simply forgetting a case would result in an ill-typed rather than
an incorrect definition. This advantage is in particular relevant for the LOOP
compiler, as it provides denotations as PVS or Isabelle code, which can indeed
be mechanically typechecked.

Acknowledgements

Thanks are due to the anonymous referees whose sharp comments greatly
improved the quality of the paper.

References

[1] J. Alves-Foss and F. S. Lam. Dynamic denotational semantics of Java. In
J. Alves-Foss, editor, Formal Syntax and Semantics of Java, volume 1523 in
Lecture Notes in Computer Science, pages 201–240. Springer, Berlin, 1998.

[2] A. Baltag. A logic for coalgebraic simulation. In H. Reichel, editor, Coalgebraic
Methods in Computer Science, volume 33 in Electronic Notes in Theoretical
Computer Science, Elsevier, Amsterdam, 2000.

[3] M. Barr and Ch. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985.

[4] J. van den Berg, M. Huisman, B. Jacobs, and E. Poll. A type-theoretic memory
model for verification of sequential Java programs. In D. Bert, C. Choppy, and
P. Mosses, editors, Recent Trends in Algebraic Development Techniques, volume
1827 in Lecture Notes in Computer Science, pages 1–21. Springer, Berlin, 2000.

[5] J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In
T. Margaria and W. Yi, editors, Tools and Algorithms for the Construction and

6 For example, the definition of the semantics of the while statement in [1] does
not appear to update the “continue” information when a repetition is entered.

23

Analysis of Software (TACAS), volume 2031 in Lecture Notes in Computer
Science, pages 299–312. Springer, Berlin, 2001.

[6] J. van den Berg, B. Jacobs, and E. Poll. Formal specification and verification
of JavaCard’s Application Identifier Class. In I. Attali and Th. Jensen, editors,
Java on Smart Cards: Programming and Security, volume 2041 in Lecture Notes
in Computer Science, pages 137–150. Springer, Berlin, 2001.

[7] F. Christian. Correct and robust programs. IEEE Transactions on Software
Engineering, 10(2):163–174, 1984.

[8] D. A. Espinosa. Semantic Lego. PhD thesis, Colombia Univ., 1995.

[9] M.P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps.
Cambridge Univ. Press, 1996.

[10] R. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes 7, Stanford,

2nd rev. edition, 1992.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification
Second Edition. The Java Series. Addison-Wesley, 2000.

[12] M. Huisman. Reasoning about JAVA Programs in higher order logic with PVS
and Isabelle. PhD thesis, University of Nijmegen, 2001.

[13] M. Huisman and B. Jacobs. Inheritance in higher order logic: Modeling and
reasoning. In M. Aagaard and J. Harrison, editors, Theorem Proving in Higher
Order Logics, volume 1869 in Lecture Notes in Computer Science, pages 301–
319. Springer, Berlin, 2000.

[14] M. Huisman and B. Jacobs. Java program verification via a Hoare logic
with abrupt termination. In T. Maibaum, editor, Fundamental Approaches
to Software Engineering, volume 1783 in Lecture Notes in Computer Science,
pages 284–303. Springer, Berlin, 2000.

[15] M. Huisman, B. Jacobs, and J. van den Berg. A case study in class library
verification: Java’s Vector class. Int. Journ. on Software Tools for Technology
Transfer, 3(3):332–352, 2001.

[16] B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones,
C. Lengauer, and H.-J. Schek, editors, Object-Orientation with Parallelism and
Persistence, pages 83–103. Kluwer Acad. Publ., 1996.

[17] B. Jacobs. Invariants, bisimulations and the correctness of coalgebraic
refinements. In M. Johnson, editor, Algebraic Methodology and Software
Technology, volume 1349 in Lecture Notes in Computer Science, pages 276–
291. Springer, Berlin, 1997.

[18] B. Jacobs. The temporal logic of coalgebras via Galois algebras. Techn. Rep.
CSI-R9906, Comput. Sci. Inst., Univ. of Nijmegen. To appear in Mathematical
Structures in Computer Science, 1999.

24

[19] B. Jacobs. Towards a duality result in coalgebraic modal logic. In H. Reichel,
editor, Coalgebraic Methods in Computer Science, volume 33 in Electronic Notes
in Theoretical Computer Science, Elsevier, Amsterdam, 2000.

[20] B. Jacobs. A formalisation of Java’s exception mechanism. In D. Sands, editor,
Programming Languages and Systems (ESOP), volume 2028 in Lecture Notes
in Computer Science, pages 284–301. Springer, Berlin, 2001.

[21] B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Inf.
Théor. et Appl., 35(1):31–59, 2001.

[22] B. Jacobs and E. Poll. A monad for basic Java semantics. In T. Rus, editor,
Algebraic Methodology and Software Technology, volume 1816 in Lecture Notes
in Computer Science, pages 150–164. Springer, Berlin, 2000.

[23] B. Jacobs and E. Poll. A logic for the Java Modeling Language JML.
In H. Hussmann, editor, Fundamental Approaches to Software Engineering
(FASE), volume 2029 in Lecture Notes in Computer Science, pages 284–299.
Springer, Berlin, 2001.

[24] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin, 62:222–259, 1997.

[25] B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel, and
H. Tews. Reasoning about classes in Java (preliminary report). In Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA),
pages 329–340. ACM Press, 1998.

[26] S.L. Peyton Jones and P. Wadler. Imperative functional programming. In
Principles of Programming Languages, pages 71–84. ACM Press, 1993.

[27] A. Kock. Strong functors and monoidal monads. Arch. Math., XXIII:113–120,
1972.

[28] S. Krstić, J. Launchbury, and D. Pavlović. Categories of processes enriched
in final coalgebras. In F. Honsell and M. Miculan, editors, Foundations of
Software Science and Computation Structures, volume 2030 in Lecture Notes
in Computer Science, pages 303–317. Springer, Berlin, 2001.

[29] A. Kurz. Specifying coalgebras with modal logic. Theor. Comp. Sci., 260(1-
2):119–138, 2001.

[30] S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin,
1971.

[31] G.T. Leavens, A.L. Baker, and C. Ruby. JML: A notation for detailed design.
In H. Kilov and B. Rumpe, editors, Behavioral Specifications of Business and
Systems, pages 175–188. Kluwer, 1999.

[32] G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A
behavioral interface specification language for Java. Techn. Rep. 98-06, Dep. of
Comp. Sci., Iowa State Univ.
http://www.cs.iastate.edu/~leavens/JML.html, 1999.

25

[33] K.R.M. Leino. Toward Reliable Modular Programs. PhD thesis, California
Institute of Technology, 1995.

[34] K.R.M. Leino and J.L.A. van de Snepscheut. Semantics of exceptions. In E.-R.
Olderog, editor, Programming Concepts, Methods and Calculi, pages 447–466.
North-Holland, 1994.

[35] S. Liang and P. Hudak. Modular denotational semantics for compiler
construction. In ESOP’96: 6th European Symposium on Programming, volume
1058 in Lecture Notes in Computer Science, pages 219–234. Springer, Berlin,
1996.

[36] E.G. Manes. Algebraic Theories. Springer, Berlin, 1974.

[37] E. Moggi. An abstract view of programming languages. Techn. rep. LFCS-90-
113, Univ. Edinburgh, 1990.

[38] E. Moggi. Notions of computation and monads. Inf. & Comp., 93(1):55–92,
1991.

[39] L.S. Moss. Coalgebraic logic. Annals of Pure & Applied Logic, 96(1-3):277–317,
1999. Erratum in Annals of Pure & Applied Logic, 99(1-3):241–259, 1999.

[40] S. Owre, J.M. Rushby, N. Shankar, and F. von Henke. Formal verification
for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE
Transactions on Software Engineering, 21(2):107–125, 1995.

[41] L.C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor,
Logic and computer science, pages 361–386. Academic Press, London, 1990. The
APIC series, vol. 31.

[42] E. Poll, J. van den Berg, and B. Jacobs. Specification of the JavaCard API
in JML. In J. Domingo-Ferrer, D. Chan, and A. Watson, editors, Smart Card
Research and Advanced Application, pages 135–154. Kluwer Acad. Publ., 2000.

[43] E. Poll, J. van den Berg, and B. Jacobs. Formal specification of the JavaCard
API in JML: the APDU class. Computer Networks, 36(4):407–421, 2001.

[44] Loop Project. http://www.cs.kun.nl/∼bart/LOOP/.

[45] H. Reichel. An approach to object semantics based on terminal co-algebras.
Math. Struct. in Comp. Sci., 5:129–152, 1995.

[46] M. Rößiger. Coalgebras and modal logic. In H. Reichel, editor, Coalgebraic
Methods in Computer Science, Volume 33 in Electronic Notes in Theoretical
Computer Science, Elsevier, Amsterdam, 2000.

[47] M. Rößiger. From modal logic to terminal coalgebras. Theoretical Computer
Science, 260(1-2):209–228, 2001.

[48] J.E. Stoy. Denotational Semantics: the Scott-Strachey Approach to
Programming Language Semantics. MIT Press, Cambridge, MA, 1977.

[49] P. Wadler. Comprehending monads. Mathematical Structures in Computer
Science, 9:461–493, 1992.

26

