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Abstract. Needed narrowing is a complete operational principle for
modern declarative languages which integrate the best features of (lazy)
functional and logic programming. We define a transformation methodol-
ogy for functional logic programs based on needed narrowing. We provide
(strong) correctness results for the transformation system w.r.t. the set
of computed values and answer substitutions and show that the promi-
nent properties of needed narrowing namely, the optimality w.r.t. the
length of derivations and the number of computed solutions— carry over
to the transformation process and the transformed programs. We illus-
trate the power of the system by taking on in our setting two well-known
transformation strategies (composition and tupling). We also provide an
implementation of the transformation system which, by means of some
experimental results, highlights the benefits of our approach.

1 Introduction

Functional logic programming languages combine the operational principles of
the most important declarative programming paradigms, namely functional and
logic programming (see [14] for a survey). Efficient demand-driven functional
computations are amalgamated with the flexible use of logical variables provid-
ing for function inversion and search for solutions. The operational semantics of
integrated languages is usually based on narrowing, a combination of variable
instantiation and reduction. The instantiation of variables is often computed by
unifying a subterm of the goal expression with the left-hand side of some pro-
gram rule; then narrowing reduces the instantiated goal using that rule. Needed
narrowing is currently the best narrowing strategy for first-order, lazy functional
logic programs due to its optimality properties [5]. Needed narrowing provides
completeness in the sense of logic programming (computation of all solutions) as
well as functional programming (computation of values), and it can be efficiently
implemented by pattern matching and unification.

The fold/unfold transformation approach was first introduced in [8] to opti-
mize functional programs and then used for logic programs [28]. This approach
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is commonly based on the construction, by means of a strategy, of a sequence of
equivalent programs each obtained by the preceding ones using an elementary
transformation rule. The essential rules are folding and wunfolding, i.e., contrac-
tion and expansion of subexpressions of a program using the definitions of this
program (or of a preceding one). Other rules which have been considered are,
for example, instantiation, definition introduction/elimination, and abstraction.

There exists a large class of program optimizations which can be achieved
by fold/unfold transformations and are not possible by using a fully automatic
method (such as, e.g., partial evaluation). Typical instances of this class are the
strategies that perform tupling (also known as pairing) [8,11], which merges
separate (nonnested) function calls with some common arguments into a single
call to a (possibly new) recursive function which returns a tuple of the results
of the separate calls, thus avoiding either multiple accesses to the same data
structures or common subcomputations, similarly to the idea of sharing which
is used in graph rewriting to improve the efficiency of computations in time and
space [6]. A closely related strategy is composition [30] (also known as fusion,
deforestation, or vertical jamming [12]), which essentially consists of the merg-
ing of nested function calls, where the inner function call builds up a composite
object which is used by the outer call, and composing these two calls into one
has the effect to avoid the generation of the intermediate data structure. The
composition can be made automatically [30], whereas tupling has only been au-
tomated to some extent [9,10].

Although a lot of literature has been devoted to proving the correctness of
fold /unfold systems w.r.t. the various semantics proposed for logic programs [7,
13,20,21,23, 28], in functional programming the problem of correctness has re-
ceived surprisingly little attention [26,27]. Of the very few studies of correctness
of fold /unfold transformations in functional programming, the most general and
recent, work is [26], which defines a simple (syntactic) condition for restricting
general fold /unfold transformations and which can be applied to give correctness
proofs for several well-known transformation methods, such as the deforestation.

In [2], we investigated fold/unfold rules in the context of a strict (call-by-
value) functional logic language based on unrestricted (i.e., not optimized) nar-
rowing. The use of narrowing empowers the fold/unfold system by implicitly
embedding the instantiation rule (the operation of the Burstall and Darlington
framework [8] which introduces an instance of an existing equation) into unfold-
ing by means of unification. However, [2] does not consider a general transfor-
mation system (only two rules: fold and unfold), and hence the composition or
tupling transformations cannot be achieved. Also, [2] refers to a notion of “re-
versible” folding, which is strictly weaker than the one which we consider here.
On the other hand, the use of unrestricted narrowing to perform unfolding may
produce an important increase in the number of program rules.

In this paper we define a transformation methodology for lazy (call-by-name)
functional logic programs. On the theoretical side, we extend the Tamaki and
Sato transformation rules [28] for logic programs to cope with lazy functional
logic programs based on needed narrowing. The transformation process con-



sists of applying an arbitrary number of times the basic transformation rules,
which are: definition introduction, definition elimination, unfolding, folding, and
abstraction. Needed narrowing is complete for inductively sequential programs
[4]. Thus, we demonstrate that such a program structure is preserved through
the transformation sequence (Rg,...,Ry), which is a key point for proving the
correctness of the transformation system as well as its effective applicability.
For instance, by using other variants of narrowing (e.g., lazy narrowing [22])
the structure of the original program is not preserved, thus seriously restricting
the applicability of the resulting system. The major technical result consists of
proving strong correctness for the transformation system, namely that the values
and answers computed by needed narrowing in the initial and the final program
coincide (for goals constructed using the symbols of the initial program). The
efficiency improvement of R,, with regard to R is not ensured by an arbitrary
use of the elementary transformation rules but it rather depends on the heuristic
which is employed. On the practical side, we investigate how the classical and
powerful transformation methodologies of tupling and composition [24] transfer
to our framework. We show the advantages of using needed narrowing to achieve
composition and tupling in an integrated setting, and illustrate the power of our
transformation system by (automatically) optimizing several significative exam-
ples using a prototype implementation [1].

The structure of the paper is as follows. After recalling some basic definitions
in the next section, we introduce the basic transformation rules and illustrate
them by means of several simple examples in Sec. 3. We also state the correctness
of the transformation system and show some results about the structure of trans-
formed programs. Section 4 shows how to achieve the (automatic) composition
and tupling strategies in our framework as well as an experimental evaluation
of the method on a small set of benchmarks. Section 5 concludes. More details
and proofs of all technical results can be found in [3].

2 Preliminaries

We assume familiarity with basic notions of term rewriting [6] and functional
logic programming [14]. We consider a signature X partitioned into a set C of
constructors and a set F of (defined) functions or operations. We write ¢/n € C
and f/n € F for n-ary constructor and operation symbols, respectively. There is
at least one sort Bool containing the 0-ary Boolean constructors true and false.
The set of terms and constructor terms with variables (e.g., z,y,z) from X are
denoted by T(CUF,X) and T (C, X), respectively. The set of variables occurring
in a term ¢ is denoted by Var(t). A term is linear if it does not contain multiple
occurrences of any variable. We write o,, for the list of objects 01,...,04.

A pattern is a term of the form f(d,) where f/n € F and dy,...,d, €
T(C,X). Note the difference with the usual notion of pattern in functional pro-
gramming: a constructor term. A term is operation-rooted (constructor-rooted)
if it has an operation (constructor) symbol at the root. A position p in a term ¢
is represented by a sequence of natural numbers (4 denotes the empty sequence,



i.e., the root position). Positions are ordered by the prefiz ordering: p < ¢, if Jw
such that p.w = ¢. Positions p, g are disjoint if neither p < g nor ¢ < p. Given a
term ¢, we let Pos(t) and N'VPos(t) denote the set of positions and the set of
non-variable positions of ¢, respectively. |, denotes the subterm of ¢ at position
p, and t[s], denotes the result of replacing the subterm t|, by the term s.

We denote by {z1 — t1,...,x, —> t,} the substitution o with o(x;) = t; for
i=1,...,n (with z; # z; if i # j), and o(z) = = for all other variables z. A sub-
stitution o is (ground) constructor, if o(z) is (ground) constructor for all - such
that o(z) # z. The identity substitution is denoted by id. Given a substitution
¢ and a set of variables V' C X', we denote by 6y the substitution obtained from
6 by restricting its domain to V. We write § = o [V]if 6}y = oyy, and § < o [V]
denotes the existence of a substitution y such that v o6 = o [V]. A unifier of
two terms s and ¢ is a substitution ¢ with o(s) = o(¢). Two substitutions ¢ and
o' are independent (on a set of variables V') iff there exists some z € V such
that o(x) and o'(x) are not unifiable.

A set of rewrite rules I — r such that | € X, and Var(r) C Var(l) is called
a term rewriting system (TRS). The terms [ and r are called the left-hand side
(Ihs) and the right-hand side (rhs) of the rule, respectively. A TRS R is left-
linear if  is linear for all I — r € R. A TRS is constructor based (CB) if each lhs
l is a pattern. In the remainder of this paper, a functional logic program is a left-
linear CB-TRS. Conditions in program rules are treated by using the predefined
functions and, if_then_else, case_of which are reduced by standard defining
rules [17,22]. Two (possibly renamed) rules I — r and I' — 1’ overlap, if there
is a non-variable position p € NVPos(l) and a most-general unifier o such that
o(ll,) = o(l"). A left-linear TRS with no overlapping rules is called orthogonal.
A rewrite step is an application of a rewrite rule to a term, i.e., t =, g s if
there exists a position p in ¢, a rewrite rule R = [ — r and a substitution o
with ¢, = o(l) and s = t[o(r)], (p and R will often be omitted in the notation
of a computation step). The instantiated lhs o(l) is called a redez. A term ¢ is
called a normal form if there is no term s with ¢ — s. =T denotes the transitive
closure of — and —* denotes the reflexive and transitive closure of —.

To evaluate terms containing variables, narrowing non-deterministically in-
stantiates the variables such that a rewrite step is possible. Formally, ¢ ~, g, #'
is a narrowing step if p is a non-variable position in t and o(t) —, r t'. We
denote by ty ~* t, a sequence of narrowing steps tg ~,, ... ~,, 1, with
0 = on0---007. Since we are interested in computing values (constructor
terms) as well as answers (substitutions) in functional logic programming, we
say that the narrowing derivation t ~% ¢ computes the result ¢ with answer o if ¢
is a constructor term. The evaluation to (ground) constructor terms (and not to
arbitrary expressions) is the intended semantics of functional languages and also
of most functional logic languages. In particular, the equality predicate ~ used
in some examples is defined, like in functional languages, as the strict equality
on terms, i.e., the equation ¢; ~ t, is satisfied if ¢; and ¢, are reducible to the
same ground constructor term. We say that o is a computed answer substitution
for an equation e if there is a narrowing derivation e ~} true.



Needed Narrowing. A challenge in the design of functional logic languages is
the definition of a “good” narrowing strategy, i.e., a restriction A on the narrow-
ing steps issuing from ¢, without losing completeness. Needed narrowing [5] is
currently the best known narrowing strategy due to its optimality properties. It
extends the Huet and Lévy’s notion of a needed reduction [18]. The definition of
needed narrowing [5] uses the notion of definitional tree [4]. Roughly speaking,
a definitional tree for a function symbol f is a tree whose leaves contain all (and
only) the rules used to define f and whose inner nodes contain information to
guide the (optimal) pattern matching during the evaluation of expressions. Each
inner node contains a pattern and a variable position in this pattern (the induc-
tive position) which is further refined in the patterns of its immediate children
by using different constructor symbols. The pattern of the root node is simply
f(z), where T,, are different variables. A defined function is called inductively
sequential if it has a definitional tree. A rewrite system R is called inductively
sequential if all its defined functions are inductively sequential.

To compute needed narrowing steps for an operation-rooted term ¢, we take a
definitional tree P for the root of ¢ and compute A(¢,P). Then, for all (p, R,0) €
At,P), t ~pRo t'is a needed narrowing step. Informally speaking, needed
narrowing applies a rule, if possible, or checks the subterm corresponding to
the inductive position of the branch: if it is a variable, it is instantiated to
the constructor of a child; if it is already a constructor, we proceed with the
corresponding child; if it is a function, we evaluate it by recursively applying
needed narrowing (see [5] for a detailed definition).

Example 1. Consider the following set of rules for “<” and “+”:

0 <N —  true 0+N — N
s(M) < 0O — false sM)+N — s(M+N)
sM) < s(N) —» MLKN

Then the function A computes the following set for the initial term X < X + X:
{(4,0 < N — true, {X+— 0}), (2,s(M) + N — s(M+N),{X— s(M)})}

This corresponds to the narrowing steps (the subterm evaluated in the next step
is underlined):

X<X+X~yxs0p true
XX+ Xopxosqny s(M) < s(M+s(M))

Needed narrowing is sound and complete for inductively sequential programs.
Moreover, it is minimal, i.e., given two distinct needed narrowing derivations
e~* true and e ~7%, true, we have that ¢ and ¢’ are independent on Var(e).

3 The Transformation Rules

In this section, our aim is to define a set of program transformations which
is strongly correct, i.e., sound and complete w.r.t. the semantics of computed



values and answer substitutions. Let us first give the rules for the introduction
and elimination of function definitions in a similar style to [28], in which the

set, of definitions is partitioned into “old” and “new” ones. In the following, we
consider a fixed transformation sequence (Ro,...,Ry), k > 0.

Definition 1 (Definition introduction). We may get program Ry+1 by ad-
ding to Ry a new rule (the “definition rule”) of the form f(t,) — r, such that:

1. f(tn) is a linear pattern and Var(f(t,)) = Var(r) i.e., it is non-erasing ,
2. f does not occur in the sequence Ry, ..., Ry (f is new), and
3. every defined function symbol occurring in r belongs to Ry.

We say that f is a new function symbol, and every function symbol belonging to
Ry is called an old function symbol.

The introduction of a new definition is virtually always the first step of a trans-
formation sequence. Determining which definitions should be introduced is a
task which falls into the realm of strategies (see [23] for a survey), which we
discuss in Sec. 4.

Definition 2 (Definition elimination). We may get program Ryi+1 by delet-
ing from program Ry all rules defining the function f, say R, such that f does
not occur in Ro nor in (R, — RY).

This rule has been initially proposed with the name of deletion (for logic pro-
grams) in [21] and also in [7], where it was called restriction. Note that the
deletion of the rules defining a function f implies that no function calls to f are
allowed afterwards. However, subsequent transformation steps (in particular,
folding steps) might introduce those deleted functions in the rhs’s of the rules,
thus producing inconsistencies in the resulting programs. We avoid this encum-
brance by the usual requirement [23] not to allow folding steps if a definition
elimination step has been performed.

Now we introduce our unfolding rule, which systematizes a fit combination
of instantiation and classical (functional) unfolding into a single transformation
rule, thus bearing the capability of narrowing to deal with logical variables.

Definition 3 (Unfolding). Let R = (I — r) € Ry be a rule (the “unfolded
rule”) whose rhs is an operation-rooted term. We may get program Ryi1 from
Ry by replacing R with {0(1) — r' | r ~¢g r' is a needed narrowing step in Ry }.

Here it is worth noting that the requirement not to unfold a rule whose rhs is
not operation-rooted can be left aside when functions are totally defined (which
is quite usual in typed languages). The following example shows that the above
requirement cannot be dropped in general.

Ezxample 2. Consider the following programs:
£(0) = 0 £(0) = 0

R = g(X) = s(£(X)) R = g(0) = s(0)
h(s(X)) — s(0) h(s(X)) — s(0)



By a needed narrowing step s(f(X)) ~x—o} s(0) given from the rhs of the
second rule of R, we get (by unfolding) the transformed program R'. Now, the
goal h(g(s(0))) =~ X has the successful needed narrowing derivation in R

h(g(s(0))) & X ~ h(s(£(s(0))) A X ~> 5(0) & X ~siy,y(0); tTUE

whereas it fails in the transformed program. Essentially, completeness is lost
because the considered unfolding rule £(0) — 0 defines a function £ which is not
totally defined. Hence, by unfolding the call £(X) we improperly “compile in” an
unnecessary restriction in the domain of the function g.

Now, let us introduce the folding rule, which is a counterpart of the previous
transformation, i.e., the compression of a piece of code into an equivalent call.

Definition 4 (Folding). Let R = (I — r) € Ry be a rule (the “folded rule”)
and let ' = (I' = ') € Rj, 0 < j <k, be a rule (the “folding rule”) such that
rl, = 0(r'") for some p € NVPos(r), fulfilling the following conditions:

1. r|p is not a constructor term;

2. either | (the lhs of the folded rule R) is rooted by an old function symbol, or
R is the result of at least one unfolding within the sequence Ry, ..., Rg; and

3. the folding rule R' is a definition rule.!

Then, we may get program Ryi1 from program Ry by replacing the rule R with
the new rule I — r[6(1")],.

Roughly speaking, the folding operation proceeds in a contrary direction to the
usual reduction steps, that is, reductions are performed against the reverse fold-
ing rules. Note that the applicability conditions 2 and 3 for the folding rule
guarantee that “self folding” (i.e., the possibility to unsafely fold a rule by itself
[23]) is disallowed. There are several points regarding our definition of the fold-
ing rule which are worth noticing: (i) As a difference w.r.t. the unfolding rule,
the subterm which is selected for the folding step needs not be a (needed) nar-
rowing redex. This generality is not only safe but also helpful as it will become
apparent in Example 3. (ii) In contrast to [2], the substitution # of Def. 4 is not
a unifier but just a matcher. This is similar to many other folding rules for logic
programs, which have been defined in a similar “functional style” (see, e.g., [7,
20,24,28]). (iii) Finally, the non-erasing condition in Def. 1 can now be fully
clarified: it avoids to consider a rule I — r, with Var(r) C Var(l), as a folding
rule, since it might introduce extra variables in the rhs of the resulting rule.

Many attempts have been also made to define a folding transformation in
a (pure) functional context [8,27]. A marked folding for a lazy (higher-order)
functional language has been presented in [26], which preserves the semantics
of (ground constructor) values under applicability conditions which are similar
to ours. However, our correctness results are slightly stronger, since we preserve
the (non-ground) semantics of computed values and answers.

A definition rule maintains its status only as long as it remains unchanged, i.e., once
a definition rule is transformed it is not considered a definition rule anymore.



As in our definition of folding, a large number of proposals also allow the
folded and the folding rule to belong to different programs (see, e.g., [7, 20,23,
24,28]), which in general is crucial to achieve an effective optimization. Some
other works in the literature have advocated a different style of folding which is
reversible [13], i.e., a kind of folding which can always be undone by an unfold-
ing step. This greatly simplifies the correctness proofs correctness of folding
follows immediately from the correctness of unfolding , but usually require too
strong applicability conditions, such as requiring that both the folded and the
folding rules belong to the same program, which drastically reduces the power
of the transformation. The folding rule proposed in [2] for a strict functional
logic language is reversible and thus its transformational power is very limited.
The folding rule introduced in this paper is more powerful and the applicability
conditions are less restrictive.? Therefore, its use within a transformation sys-
tem —when guided by appropriate strategies— is able to produce more effective
optimizations for (lazy) functional logic programs.

The set of rules presented so far constitutes the kernel of our transformation
system. These rules suffice for automatizing the composition strategy. However,
the transformation system must be empowered for achieving the tupling opti-
mization, which we attain by extending the transformation system with a rule
of abstraction [8,26] (often known as where—abstraction rule [24]). It essentially
consists of replacing the occurrences of some expression e in the rhs of a rule R
by a fresh variable z, adding the “local declaration” z = e within a where expres-
sion in R. For instance, the rule double_sum(X,Y) — sum(sum(X,Y), sum(X,Y))
can be transformed into the new rule

double_sum(X,Y) — sum(Z,Z) where Z = sum(X,Y) .

As noted by [24], the use of the where-abstraction rule has the advantage that
in the call-by-value mode of execution, the evaluation of the expression e is
performed only once. This is also true in a lazy context under an implementation
based on sharing, which allows us to keep track of variables which occur several
times in the expression to be evaluated.

The new rules introduced by the where—abstraction do contain extra variables
in the right-hand sides. However, as noted in [26], this can be easily amended by
using standard “lambda lifting” techniques (which can be thought of as an appro-
priate application of a definition introduction step followed by a folding step). For
instance, if we consider again the rule double_sum(X,Y) — sum(Z,Z) where Z =
sum(X, Y), we can transform it (by lambda lifting [19]) into the new pair of rules

double_sum(X,Y) — ds_aux(sum(X, Y))
ds_aux(Z) — sum(Z, Z)

Note that these rules can be directly generated from the initial definition by a
definition introduction (ds_aux(Z) — sum(Z,Z)) and then by folding the original
rule at the expression sum(sum(X,Y), sum(X,Y)) using as folding rule the newly

2 Tt would be interesting to study a generalization of our folding rule to a disjunctive
folding rule, i.e., allowing the folding of multiple recursive rules (see [25]).



generated definition for ds_aux/1. The inclusion of an abstraction rule is tra-
ditional in functional fold/unfold frameworks [8,24,26,27]. In the case of logic
programs, abstraction is only possible by means of the so called generalization
strategy [24], which generalizes some calls to eliminate the mismatches that pre-
vent a folding step.

Now, we are ready to formalize our abstraction rule, which is inspired by
the standard lambda lifting transformation of functional programs. By means
of the tuple constructor { ), our definition allows the abstraction of different
expressions in one go. For a sequence of (pairwise disjoint) positions P = py,
we let t[5n]p = ((¢[s1]p1)[S2]ps) - - - [Snlp. )- By abuse, we denote t[S;]p by t[s]p
when s1 = ... = s, = s, as well as ((t[s1]p,) ... [sn]p,) by t[Sa]5

Definition 5 (Abstraction). Let R = (f(f,) — r) € Rk be a rule and let P;
be sequences of disjoint positions in NVPos(r) such that r|, = e; for all p in P;,
1=1,...,7, e, r = r[e_j]P—j. We may get program Rygy1 from Ry by replacing
R with {f(t,) = f-aux(Um,(e1,-..,€j)), [f-auz(Ym,(z1,...,2)) = rZle )
where Z; are fresh variables not occurring in t,,, f_auz is a fresh function symbol
that does not occur in (Ro,...,Ri), and Var(r[z_j]P—j) = {Um. %}

Informally, the two rules generated by the abstraction transformation can be
understood as a syntactic variant of the following rule:

ft,) — r[Zjle; where (z1, ..., 25) = (e1,....€) .

Now we state the main theoretical results for the basic transformations intro-
duced in this section. We state the correctness of transformation sequences con-
structed from an inductively sequential program by applying the following rules:
definition introduction, definition elimination, unfolding, folding, and abstrac-
tion. In proving this, we assume that no folding step is applied after a definition
elimination, which guarantees that no function call to a previously deleted func-
tion is introduced along a transformation sequence [23]. First, we state that
transformations preserve the inductively sequential structure of programs.

Theorem 1. Let (Ro,...,Ry,) be a transformation sequence. If Rq is induc-
tivlely sequential, then R; is also inductively sequential, for i =1,... n.

Sands formalizes a syntactic improvement theory [26] which restricts general
fold/unfold transformations and can be applied to give correctness proofs for
some existing transformation methods (such as deforestation [30]). However, we
find it more convenient to stick to the logic programming methods for proving
correctness because the narrowing mechanism can be properly seen as a gen-
eralization of the SLD-resolution method which implicitly applies instantiation
before replacing a call by the corresponding instance of the body. That is, instan-
tiation is computed in a systematic way by the needed narrowing mechanism (as
in the unfolding of logic programs), whereas it is not restricted in the Burstall
and Darlington’s fold /unfold framework considered in [26]. Unrestricted instan-
tiation is problematic since it does not even preserve local equivalence, and for



this reason the instantiation rule is not considered explicitly in [26]. As a conse-
quence, the improvement theorem of [26] does not directly apply to our context.

Our demonstration technique for the correctness result is inspired by the orig-
inal proof scheme of Tamaki and Sato [28] concerning the least Herbrand model
semantics of logic programs (and the subsequent extension of Kawamura and
Kanamori [20] for the semantics of computed answers). Intuitively, a fold /unfold
transformation system is correct if there are “at least as many folds as there are
unfolds” or, equivalently, if “going backward in the computation (as folding does)
does not prevail over going forward in the computation (as unfolding does)” [23,
26]. This essentially means that there must be a kind of “computational cost”
measure which is not increased either by folding or by unfolding steps. Several
definitions for this measure can be found in the literature: the rank of a goal in
[28], the weight of a proof tree in [20], or the notion of improvement in [26]. In
our context, we have introduced the notion of rank of a term in order to measure
the computational cost of a given term. The detailed proof scheme can be found
in [3]. The strong correctness of the transformation is stated as follows.

Theorem 2. Let (Rq,...,Rn), n > 0, be a transformation sequence. Let e be an

equation with no new function symbol and V O Var(e) a finite set of variables.
Then, e~ true in Ry iff e ~%, true in R, with ' = o [V] (up to renaming).

4 Some Experiments

The building blocks of strategic program optimizations are transformation tac-
tics (strategies), which are used to guide the process and effect some particular
kind of change to the program undergoing transformation [12, 24].

One of the most relevant quests in applying a transformation strategy is the
introduction of new functions, often called in the literature eureka definitions.
Although there is no general theory of strategies which ensures that derived
programs are more efficient than the initial ones, some partial results exist. For
instance, in the setting of higher-order (non-strict) functional languages, Sands
[26] has recently introduced the theory of improvement to provide a syntactic
method for guiding and constraining the unfold/fold method in [8] so that total
correctness and performance improvement are always guaranteed.

In the following, we illustrate the power of our transformation system by
tackling some representative examples regarding the optimizations of composi-
tion [30] and tupling [8, 11].

4.1 Transformation Strategies

The composition strategy was originally introduced in [8,11] for the optimiza-
tion of pure functional programs. Variants of this composition strategy are the
internal specialization technique [27] and the deforestation method [30]. By us-
ing the composition strategy (or its variants), one may avoid the construction
of intermediate data structures that are produced by some function g and con-
sumed as inputs by another function f. In some cases, most of the efficiency



improvement of the composition strategy can be simply obtained by lazy evalu-
ation [12]. Nevertheless, the composition strategy often allows the derivation of
programs with improved performance also in the context of lazy evaluation [29].
Laziness is decisive when, given a nested function call £(g(X)), the intermediate
data structure produced by g is infinite but the function £ can produce its out-
come by knowing only a finite portion of the output of g. The following example
illustrates the advantages of our transformation rules w.r.t. those of [2].

Ezample 8. The function sum_prefix(X,Y) defined in the following program Rg
returns the sum of the Y consecutive natural numbers, starting from X:
sum_prefix(X,Y) — suml(from(X),Y) (Ry) from(X) — [X|from(s(X))] (R4)
suml(L,0) — 0 (R2) 0+X—X (Rs)
suml([H|T], s(X)) = H+ suml(T,X) (R3) sX) +Y—>sX+Y) (Rs)
We can improve the efficiency of Ry by avoiding the creation and subsequent
use of the intermediate, partial list generated by the call to the function from:

1. Definition introduction:

aux(X,Y) — suml(from(X),Y) (R7)

3

[\

. Unfolding of rule R; (note that instantiation is automatic):

aux(X,0) = 0 (Rs)
aux(X,s(Y)) — suml([X|from(s(X))],s(Y)) (Ry)

3. Unfolding of rule Rg (note that this is infeasible with an eager strategy):
aux(X,s(Y)) — X + suml(from(s(X)),Y) (Rio)
4. Folding of suml(from(s(X)),Y) in rule Ry using Ry:

aux(X,s(Y)) = X + aux(s(X),Y) (Ri1)

(@33

. Folding of the rhs of rule R; using R7:
sum prefix(X,Y) — aux(X,Y) (Ri2)
Then, the transformed program R5 is formed by the following rules:

sum_prefix(X,Y) — aux(X,Y) (R12)
aux(X,0) = 0 (Rs)
aux(X,s(Y)) — X + aux(s(X),Y) (Rn1)

(together with the initial definitions for 4+, from, and suml).

Note that the use of needed narrowing as a basis for our unfolding rule is essential
in the above example. It ensures that no redundant rules are produced by unfold-
ing and it also allows the transformation even in the presence of nonterminating
functions (as opposed to [2]).

The tupling strategy was introduced in [8,11] to optimize functional pro-
grams. The tupling strategy is very effective when several functions require the



computation of the same subexpression, in which case we tuple together those
functions. By avoiding either multiple accesses to data structures or common
subcomputations one often gets linear recursive programs (i.e., programs whose
rhs’s have at most one recursive call) from nonlinear recursive programs [24].
The following well-known example illustrates the tupling strategy.

Ezample 4. The fibonacci numbers can be computed by the program Ry:
fib(0) — s(0) (Ry)
fib(s(0)) — s(0) (R2)
fib(s(s(X))) = £ib(s(X)) + £ib(X) (R3)
(together with the rules for addition +). Observe that this program has an
exponential complexity, which can be reduced to a linear one by applying the
tupling strategy as follows:

1. Definition introduction:

new(X) — (£ib(s(X)), £ib(X))  (Ra)

[\

. Unfolding of rule Ry (narrowing the needed redex fib(s(X))):

new(0) — (s(0),fib(s(0))) (Rs)
new(s(X)) — (fib(s(X)) + £ib(X),fib(s(X))) (Rs)

w

. Unfolding of rule R; (narrowing the needed redex fib(s(0))):
new(0) = (s(0),s(0))  (Rr)
4. Abstraction of Rg:

new(s(X)) — new_aux((fib(s(X)),fib(X))) (Rs)
new_aux((Zs, Zs)) = (Z1 + Z2,Z1) (Ro)

. Folding of (£fib(s(X)), £ib(X)) in rule Rg using Ry:
new(s(X)) — new_aux(new(X)) (Rip)

(@33

6. Abstraction of Rs:
fib(s(s(X))) — fib_aux((fib(s(X)),fib(X))) (Ri1)
fib_aux((Z1,Zs)) = Z1 + Z (R12)

7. Folding of (fib(s(X)),fib(X)) in rule Ry using again rule Ry:
fib(s(s(X))) — fib_aux(new(X)) (Ri3)

Now, the (enhanced) transformed program R; (with linear complexity thanks
to the use of the recursive function new), is the following:

£ib(0) — s(0) (R1)

£ib(s(0)) — s(0) (R2)
fib(s(s(X))) — Z1 + Z5 where (Zy,Zy) = new(X) (R12, R13)

new(0) — (s(0),s(0)) (Rr)

new(s(X)) = (Z1 + Z3,Z4) where (Zy,Z;) = new(X) (Rg,Ri0)

where rules (R12, R13) and (Rg, R1p) are expressed by using local declarations
for readability.



Table 1. Benchmark results.

Benchmarks |Rwi|RT:|Comp|Rw2|RT>|Speedup (%)

doubleappend| 3 (1.77| 0.1 6 (1.63 10%
sumprefix 8 [3.59] 0.21 | 10 |3.48 3%
lengthapp 7 |1.61] 0.17 | 10 |1.51 6%
doubleflip | 3 (0.95 0.11 | 5 |0.7 26%
fibprefix | 11 |2.2| 0.28 | 13 |2.26 -3%

4.2 Benchmarks

The basic rules presented so far have been implemented by a prototype system
SYNTH [1], which is publicly available at http://www.dsic.upv.es/users/elp/
soft.html. It is written in SICStus Prolog and includes a parser for the lan-
guage Curry, a modern multiparadigm declarative language based on needed
narrowing which is intended to become a standard in the functional logic com-
munity [16,17]. It also includes a fully automatic composition strategy based on
some (apparently reasonable) heuristics. The transformation system allows us
to choose between two ways to apply the composition strategy. The first way
is semi-automatic, since the user has to indicate the rule in which a nested call
appears. A second way is completely automatic. It is the transformer which looks
for a nested call in one of the rules and introduces a definition rule for a new
function to start the process. We are currently extending the system in order to
mechanize tupling (e.g., by using the analysis method of [9]).

Table 1 summarizes our benchmark results. The first two columns measure
the number of rewrite rules (Rwy ) and the absolute runtimes (RT}) for the orig-
inal programs. The next column (Comp) shows the execution times of the (au-
tomatic) composition algorithm. The other columns show the number of rewrite
rules (Rw,), the absolute runtimes (RT:), and the speedups achieved for the
transformed programs. All the programs have been executed by using Taste-
Curry, which is a publicly available interpreter for a subset of Curry [16]. Times
are expressed in seconds and are the average of 10 executions. We note that our
(automatic) composition strategy performs well w.r.t. the first four benchmarks.
They are classical examples in which composition is able to perform an effec-
tive optimization (sumprefix is described in Example 3, while doubleappend,
lengthapp, and doubleflip are typical functional programs to illustrate de-
forestation [30]). Regarding the last benchmark fibprefix, which is similar to
sumprefix but it sums Fibonacci numbers instead of natural numbers, a slow-
down has been produced (due to an incorrect folding, which added a new function
call to the recursion). In this case a tupling strategy is mandatory to succeed,
as expected.

In general, the transformed programs cannot be guaranteed to be faster than
the original ones, since there is a trade-off between the smaller amount of compu-
tation needed after the transformation (when guided by appropriate strategies)
and the larger number of derived rules. Nevertheless, our experiments seem to
substantiate that the smaller computations make up for the overhead of checking
the applicability of the larger number of rules in the derived programs.



5 Conclusions

The definition of a fold/unfold framework for the optimization of functional
logic programs was an open problem marked in [24] as pending research. We
have presented a transformation methodology for lazy functional logic programs
preserving the semantics of both values and answers computed by an efficient
(currently the best) operational mechanism. For proving correctness, we exten-
sively exploit the existing results from Huet and Levy’s theory of needed reduc-
tions [18] and the wide literature about completeness of needed narrowing [5]
(rather than striving an ad-hoc proof). We have shown that the transformation
process keeps the inductively sequential structure of programs. We have also
illustrated with several examples that the transformation process can be guided
by appropriate strategies which lead to effective improvements. Qur experiments
show that our transformation framework combines in a useful and effective way
the systematic instantiation of calls during unfolding (by virtue of the logic com-
ponent of the needed narrowing mechanism) with the power of the abstraction
transformations (thanks to the functional dimension). We have also presented
an implementation which allows us to perform automatically the composition
strategy as well as to perform all basic transformations in a semi-automatized
way. The multi-paradigm language Curry [15,17] is an extension of Haskell with
features for logic and concurrent programming. The results in this paper can be
applied to optimize a large class of kernel (i.e., non concurrent) Curry programs.
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