
A Transformation System for Lazy FunctionalLogic Programs?Mar��a Alpuente1, Moreno Falaschi2, Gin�es Moreno3, and Germ�an Vidal11 DSIC, UPV, Camino de Vera s/n, 46022 Valencia, Spain.falpuente,gvidalg@dsic.upv.es2 Dip. Mat. e Informatica, U. Udine, 33100 Udine, Italy. falaschi@dimi.uniud.it3 Dep. Inform�atica, UCLM, 02071 Albacete, Spain. gmoreno@info-ab.uclm.esAbstract. Needed narrowing is a complete operational principle formodern declarative languages which integrate the best features of (lazy)functional and logic programming. We de�ne a transformation methodol-ogy for functional logic programs based on needed narrowing. We provide(strong) correctness results for the transformation system w.r.t. the setof computed values and answer substitutions and show that the promi-nent properties of needed narrowing {namely, the optimality w.r.t. thelength of derivations and the number of computed solutions{ carry overto the transformation process and the transformed programs. We illus-trate the power of the system by taking on in our setting two well-knowntransformation strategies (composition and tupling). We also provide animplementation of the transformation system which, by means of someexperimental results, highlights the bene�ts of our approach.1 IntroductionFunctional logic programming languages combine the operational principles ofthe most important declarative programming paradigms, namely functional andlogic programming (see [14] for a survey). E�cient demand-driven functionalcomputations are amalgamated with the exible use of logical variables provid-ing for function inversion and search for solutions. The operational semantics ofintegrated languages is usually based on narrowing, a combination of variableinstantiation and reduction. The instantiation of variables is often computed byunifying a subterm of the goal expression with the left-hand side of some pro-gram rule; then narrowing reduces the instantiated goal using that rule. Needednarrowing is currently the best narrowing strategy for �rst-order, lazy functionallogic programs due to its optimality properties [5]. Needed narrowing providescompleteness in the sense of logic programming (computation of all solutions) aswell as functional programming (computation of values), and it can be e�cientlyimplemented by pattern matching and uni�cation.The fold/unfold transformation approach was �rst introduced in [8] to opti-mize functional programs and then used for logic programs [28]. This approach? This work has been partially supported by CICYT under grant TIC 98-0445-C03-01.

is commonly based on the construction, by means of a strategy, of a sequence ofequivalent programs each obtained by the preceding ones using an elementarytransformation rule. The essential rules are folding and unfolding, i.e., contrac-tion and expansion of subexpressions of a program using the de�nitions of thisprogram (or of a preceding one). Other rules which have been considered are,for example, instantiation, de�nition introduction/elimination, and abstraction.There exists a large class of program optimizations which can be achievedby fold/unfold transformations and are not possible by using a fully automaticmethod (such as, e.g., partial evaluation). Typical instances of this class are thestrategies that perform tupling (also known as pairing) [8, 11], which mergesseparate (nonnested) function calls with some common arguments into a singlecall to a (possibly new) recursive function which returns a tuple of the resultsof the separate calls, thus avoiding either multiple accesses to the same datastructures or common subcomputations, similarly to the idea of sharing whichis used in graph rewriting to improve the e�ciency of computations in time andspace [6]. A closely related strategy is composition [30] (also known as fusion,deforestation, or vertical jamming [12]), which essentially consists of the merg-ing of nested function calls, where the inner function call builds up a compositeobject which is used by the outer call, and composing these two calls into onehas the e�ect to avoid the generation of the intermediate data structure. Thecomposition can be made automatically [30], whereas tupling has only been au-tomated to some extent [9, 10].Although a lot of literature has been devoted to proving the correctness offold/unfold systems w.r.t. the various semantics proposed for logic programs [7,13, 20, 21, 23, 28], in functional programming the problem of correctness has re-ceived surprisingly little attention [26, 27]. Of the very few studies of correctnessof fold/unfold transformations in functional programming, the most general andrecent work is [26], which de�nes a simple (syntactic) condition for restrictinggeneral fold/unfold transformations and which can be applied to give correctnessproofs for several well-known transformation methods, such as the deforestation.In [2], we investigated fold/unfold rules in the context of a strict (call-by-value) functional logic language based on unrestricted (i.e., not optimized) nar-rowing. The use of narrowing empowers the fold/unfold system by implicitlyembedding the instantiation rule (the operation of the Burstall and Darlingtonframework [8] which introduces an instance of an existing equation) into unfold-ing by means of uni�cation. However, [2] does not consider a general transfor-mation system (only two rules: fold and unfold), and hence the composition ortupling transformations cannot be achieved. Also, [2] refers to a notion of \re-versible" folding, which is strictly weaker than the one which we consider here.On the other hand, the use of unrestricted narrowing to perform unfolding mayproduce an important increase in the number of program rules.In this paper we de�ne a transformation methodology for lazy (call-by-name)functional logic programs. On the theoretical side, we extend the Tamaki andSato transformation rules [28] for logic programs to cope with lazy functionallogic programs based on needed narrowing. The transformation process con-

sists of applying an arbitrary number of times the basic transformation rules,which are: de�nition introduction, de�nition elimination, unfolding, folding, andabstraction. Needed narrowing is complete for inductively sequential programs[4]. Thus, we demonstrate that such a program structure is preserved throughthe transformation sequence (R0; : : : ;Rn), which is a key point for proving thecorrectness of the transformation system as well as its e�ective applicability.For instance, by using other variants of narrowing (e.g., lazy narrowing [22])the structure of the original program is not preserved, thus seriously restrictingthe applicability of the resulting system. The major technical result consists ofproving strong correctness for the transformation system, namely that the valuesand answers computed by needed narrowing in the initial and the �nal programcoincide (for goals constructed using the symbols of the initial program). Thee�ciency improvement of Rn with regard to R0 is not ensured by an arbitraryuse of the elementary transformation rules but it rather depends on the heuristicwhich is employed. On the practical side, we investigate how the classical andpowerful transformation methodologies of tupling and composition [24] transferto our framework. We show the advantages of using needed narrowing to achievecomposition and tupling in an integrated setting, and illustrate the power of ourtransformation system by (automatically) optimizing several signi�cative exam-ples using a prototype implementation [1].The structure of the paper is as follows. After recalling some basic de�nitionsin the next section, we introduce the basic transformation rules and illustratethem by means of several simple examples in Sec. 3. We also state the correctnessof the transformation system and show some results about the structure of trans-formed programs. Section 4 shows how to achieve the (automatic) compositionand tupling strategies in our framework as well as an experimental evaluationof the method on a small set of benchmarks. Section 5 concludes. More detailsand proofs of all technical results can be found in [3].2 PreliminariesWe assume familiarity with basic notions of term rewriting [6] and functionallogic programming [14]. We consider a signature � partitioned into a set C ofconstructors and a set F of (de�ned) functions or operations. We write c=n 2 Cand f=n 2 F for n-ary constructor and operation symbols, respectively. There isat least one sort Bool containing the 0-ary Boolean constructors true and false.The set of terms and constructor terms with variables (e.g., x; y; z) from X aredenoted by T (C[F ;X) and T (C;X), respectively. The set of variables occurringin a term t is denoted by Var(t). A term is linear if it does not contain multipleoccurrences of any variable. We write on for the list of objects o1; : : : ; on.A pattern is a term of the form f(dn) where f=n 2 F and d1; : : : ; dn 2T (C;X). Note the di�erence with the usual notion of pattern in functional pro-gramming: a constructor term. A term is operation-rooted (constructor-rooted)if it has an operation (constructor) symbol at the root. A position p in a term tis represented by a sequence of natural numbers (� denotes the empty sequence,

i.e., the root position). Positions are ordered by the pre�x ordering: p � q, if 9wsuch that p:w = q. Positions p; q are disjoint if neither p � q nor q � p. Given aterm t, we let Pos(t) and NVPos(t) denote the set of positions and the set ofnon-variable positions of t, respectively. tjp denotes the subterm of t at positionp, and t[s]p denotes the result of replacing the subterm tjp by the term s.We denote by fx1 7! t1; : : : ; xn 7! tng the substitution � with �(xi) = ti fori = 1; : : : ; n (with xi 6= xj if i 6= j), and �(x) = x for all other variables x. A sub-stitution � is (ground) constructor, if �(x) is (ground) constructor for all x suchthat �(x) 6= x. The identity substitution is denoted by id. Given a substitution� and a set of variables V � X , we denote by �j�V the substitution obtained from� by restricting its domain to V . We write � = � [V] if �j�V = �j�V , and � � � [V]denotes the existence of a substitution such that � � = � [V]. A uni�er oftwo terms s and t is a substitution � with �(s) = �(t). Two substitutions � and�0 are independent (on a set of variables V) i� there exists some x 2 V suchthat �(x) and �0(x) are not uni�able.A set of rewrite rules l ! r such that l 62 X , and Var(r) � Var(l) is calleda term rewriting system (TRS). The terms l and r are called the left-hand side(lhs) and the right-hand side (rhs) of the rule, respectively. A TRS R is left-linear if l is linear for all l! r 2 R. A TRS is constructor based (CB) if each lhsl is a pattern. In the remainder of this paper, a functional logic program is a left-linear CB-TRS. Conditions in program rules are treated by using the prede�nedfunctions and, if then else, case of which are reduced by standard de�ningrules [17, 22]. Two (possibly renamed) rules l ! r and l0 ! r0 overlap, if thereis a non-variable position p 2 NVPos(l) and a most-general uni�er � such that�(ljp) = �(l0). A left-linear TRS with no overlapping rules is called orthogonal.A rewrite step is an application of a rewrite rule to a term, i.e., t !p;R s ifthere exists a position p in t, a rewrite rule R = l ! r and a substitution �with tjp = �(l) and s = t[�(r)]p (p and R will often be omitted in the notationof a computation step). The instantiated lhs �(l) is called a redex. A term t iscalled a normal form if there is no term s with t! s.!+ denotes the transitiveclosure of ! and !� denotes the reexive and transitive closure of !.To evaluate terms containing variables, narrowing non-deterministically in-stantiates the variables such that a rewrite step is possible. Formally, t;p;R;� t0is a narrowing step if p is a non-variable position in t and �(t) !p;R t0. Wedenote by t0 ;�� tn a sequence of narrowing steps t0 ;�1 : : : ;�n tn with� = �n � � � � � �1. Since we are interested in computing values (constructorterms) as well as answers (substitutions) in functional logic programming, wesay that the narrowing derivation t;�� c computes the result c with answer � if cis a constructor term. The evaluation to (ground) constructor terms (and not toarbitrary expressions) is the intended semantics of functional languages and alsoof most functional logic languages. In particular, the equality predicate � usedin some examples is de�ned, like in functional languages, as the strict equalityon terms, i.e., the equation t1 � t2 is satis�ed if t1 and t2 are reducible to thesame ground constructor term. We say that � is a computed answer substitutionfor an equation e if there is a narrowing derivation e;�� true.

Needed Narrowing. A challenge in the design of functional logic languages isthe de�nition of a \good" narrowing strategy, i.e., a restriction � on the narrow-ing steps issuing from t, without losing completeness. Needed narrowing [5] iscurrently the best known narrowing strategy due to its optimality properties. Itextends the Huet and L�evy's notion of a needed reduction [18]. The de�nition ofneeded narrowing [5] uses the notion of de�nitional tree [4]. Roughly speaking,a de�nitional tree for a function symbol f is a tree whose leaves contain all (andonly) the rules used to de�ne f and whose inner nodes contain information toguide the (optimal) pattern matching during the evaluation of expressions. Eachinner node contains a pattern and a variable position in this pattern (the induc-tive position) which is further re�ned in the patterns of its immediate childrenby using di�erent constructor symbols. The pattern of the root node is simplyf(xn), where xn are di�erent variables. A de�ned function is called inductivelysequential if it has a de�nitional tree. A rewrite system R is called inductivelysequential if all its de�ned functions are inductively sequential.To compute needed narrowing steps for an operation-rooted term t, we take ade�nitional tree P for the root of t and compute �(t;P). Then, for all (p;R; �) 2�(t;P), t ;p;R;� t0 is a needed narrowing step. Informally speaking, needednarrowing applies a rule, if possible, or checks the subterm corresponding tothe inductive position of the branch: if it is a variable, it is instantiated tothe constructor of a child; if it is already a constructor, we proceed with thecorresponding child; if it is a function, we evaluate it by recursively applyingneeded narrowing (see [5] for a detailed de�nition).Example 1. Consider the following set of rules for \6" and \+":0 6 N ! true 0+ N ! Ns(M) 6 0 ! false s(M) + N ! s(M+ N)s(M) 6 s(N) ! M 6 NThen the function � computes the following set for the initial term X 6 X+ X:f(�; 0 6 N! true; fX 7! 0g); (2; s(M) + N! s(M+ N); fX 7! s(M)g)gThis corresponds to the narrowing steps (the subterm evaluated in the next stepis underlined):X 6 X+ X;fX7!0g trueX 6 X+ X;fX7!s(M)g s(M) 6 s(M+ s(M))Needed narrowing is sound and complete for inductively sequential programs.Moreover, it is minimal, i.e., given two distinct needed narrowing derivationse;�� true and e;��0 true, we have that � and �0 are independent on Var(e).3 The Transformation RulesIn this section, our aim is to de�ne a set of program transformations whichis strongly correct, i.e., sound and complete w.r.t. the semantics of computed

values and answer substitutions. Let us �rst give the rules for the introductionand elimination of function de�nitions in a similar style to [28], in which theset of de�nitions is partitioned into \old" and \new" ones. In the following, weconsider a �xed transformation sequence (R0; : : : ;Rk), k � 0.De�nition 1 (De�nition introduction). We may get program Rk+1 by ad-ding to Rk a new rule (the \de�nition rule") of the form f(tn)! r, such that:1. f(tn) is a linear pattern and Var(f(tn)) = Var(r) {i.e., it is non-erasing{,2. f does not occur in the sequence R0; : : : ;Rk (f is new), and3. every de�ned function symbol occurring in r belongs to R0.We say that f is a new function symbol, and every function symbol belonging toR0 is called an old function symbol.The introduction of a new de�nition is virtually always the �rst step of a trans-formation sequence. Determining which de�nitions should be introduced is atask which falls into the realm of strategies (see [23] for a survey), which wediscuss in Sec. 4.De�nition 2 (De�nition elimination). We may get program Rk+1 by delet-ing from program Rk all rules de�ning the function f , say Rf , such that f doesnot occur in R0 nor in (Rk �Rf).This rule has been initially proposed with the name of deletion (for logic pro-grams) in [21] and also in [7], where it was called restriction. Note that thedeletion of the rules de�ning a function f implies that no function calls to f areallowed afterwards. However, subsequent transformation steps (in particular,folding steps) might introduce those deleted functions in the rhs's of the rules,thus producing inconsistencies in the resulting programs. We avoid this encum-brance by the usual requirement [23] not to allow folding steps if a de�nitionelimination step has been performed.Now we introduce our unfolding rule, which systematizes a �t combinationof instantiation and classical (functional) unfolding into a single transformationrule, thus bearing the capability of narrowing to deal with logical variables.De�nition 3 (Unfolding). Let R = (l ! r) 2 Rk be a rule (the \unfoldedrule") whose rhs is an operation-rooted term. We may get program Rk+1 fromRk by replacing R with f�(l)! r0 j r ;� r0 is a needed narrowing step in Rkg.Here it is worth noting that the requirement not to unfold a rule whose rhs isnot operation-rooted can be left aside when functions are totally de�ned (whichis quite usual in typed languages). The following example shows that the aboverequirement cannot be dropped in general.Example 2. Consider the following programs:R =8<: f(0)! 0g(X)! s(f(X))h(s(X))! s(0) 9=; R0 =8<: f(0)! 0g(0)! s(0)h(s(X))! s(0)9=;

By a needed narrowing step s(f(X)) ;fX7!0g s(0) given from the rhs of thesecond rule of R, we get (by unfolding) the transformed program R0. Now, thegoal h(g(s(0))) � X has the successful needed narrowing derivation in Rh(g(s(0))) � X ; h(s(f(s(0)))) � X ; s(0) � X ;�fX7!s(0)g truewhereas it fails in the transformed program. Essentially, completeness is lostbecause the considered unfolding rule f(0)! 0 de�nes a function f which is nottotally de�ned. Hence, by unfolding the call f(X) we improperly \compile in" anunnecessary restriction in the domain of the function g.Now, let us introduce the folding rule, which is a counterpart of the previoustransformation, i.e., the compression of a piece of code into an equivalent call.De�nition 4 (Folding). Let R = (l ! r) 2 Rk be a rule (the \folded rule")and let R0 = (l0 ! r0) 2 Rj , 0 � j � k, be a rule (the \folding rule") such thatrjp = �(r0) for some p 2 NVPos(r), ful�lling the following conditions:1. rjp is not a constructor term;2. either l (the lhs of the folded rule R) is rooted by an old function symbol, orR is the result of at least one unfolding within the sequence R0; : : : ;Rk; and3. the folding rule R0 is a de�nition rule.1Then, we may get program Rk+1 from program Rk by replacing the rule R withthe new rule l ! r[�(l0)]p.Roughly speaking, the folding operation proceeds in a contrary direction to theusual reduction steps, that is, reductions are performed against the reverse fold-ing rules. Note that the applicability conditions 2 and 3 for the folding ruleguarantee that \self folding" (i.e., the possibility to unsafely fold a rule by itself[23]) is disallowed. There are several points regarding our de�nition of the fold-ing rule which are worth noticing: (i) As a di�erence w.r.t. the unfolding rule,the subterm which is selected for the folding step needs not be a (needed) nar-rowing redex. This generality is not only safe but also helpful as it will becomeapparent in Example 3. (ii) In contrast to [2], the substitution � of Def. 4 is nota uni�er but just a matcher. This is similar to many other folding rules for logicprograms, which have been de�ned in a similar \functional style" (see, e.g., [7,20, 24, 28]). (iii) Finally, the non-erasing condition in Def. 1 can now be fullyclari�ed: it avoids to consider a rule l ! r, with Var(r) � Var(l), as a foldingrule, since it might introduce extra variables in the rhs of the resulting rule.Many attempts have been also made to de�ne a folding transformation ina (pure) functional context [8, 27]. A marked folding for a lazy (higher-order)functional language has been presented in [26], which preserves the semanticsof (ground constructor) values under applicability conditions which are similarto ours. However, our correctness results are slightly stronger, since we preservethe (non-ground) semantics of computed values and answers.1 A de�nition rule maintains its status only as long as it remains unchanged, i.e., oncea de�nition rule is transformed it is not considered a de�nition rule anymore.

As in our de�nition of folding, a large number of proposals also allow thefolded and the folding rule to belong to di�erent programs (see, e.g., [7, 20, 23,24, 28]), which in general is crucial to achieve an e�ective optimization. Someother works in the literature have advocated a di�erent style of folding which isreversible [13], i.e., a kind of folding which can always be undone by an unfold-ing step. This greatly simpli�es the correctness proofs |correctness of foldingfollows immediately from the correctness of unfolding|, but usually require toostrong applicability conditions, such as requiring that both the folded and thefolding rules belong to the same program, which drastically reduces the powerof the transformation. The folding rule proposed in [2] for a strict functionallogic language is reversible and thus its transformational power is very limited.The folding rule introduced in this paper is more powerful and the applicabilityconditions are less restrictive.2 Therefore, its use within a transformation sys-tem |when guided by appropriate strategies| is able to produce more e�ectiveoptimizations for (lazy) functional logic programs.The set of rules presented so far constitutes the kernel of our transformationsystem. These rules su�ce for automatizing the composition strategy. However,the transformation system must be empowered for achieving the tupling opti-mization, which we attain by extending the transformation system with a ruleof abstraction [8, 26] (often known as where{abstraction rule [24]). It essentiallyconsists of replacing the occurrences of some expression e in the rhs of a rule Rby a fresh variable z, adding the \local declaration" z = e within a where expres-sion in R. For instance, the rule double sum(X; Y) ! sum(sum(X; Y); sum(X; Y))can be transformed into the new ruledouble sum(X; Y) ! sum(Z; Z) where Z = sum(X; Y) :As noted by [24], the use of the where{abstraction rule has the advantage thatin the call-by-value mode of execution, the evaluation of the expression e isperformed only once. This is also true in a lazy context under an implementationbased on sharing, which allows us to keep track of variables which occur severaltimes in the expression to be evaluated.The new rules introduced by the where{abstraction do contain extra variablesin the right-hand sides. However, as noted in [26], this can be easily amended byusing standard \lambda lifting" techniques (which can be thought of as an appro-priate application of a de�nition introduction step followed by a folding step). Forinstance, if we consider again the rule double sum(X; Y) ! sum(Z; Z) where Z =sum(X; Y); we can transform it (by lambda lifting [19]) into the new pair of rulesdouble sum(X; Y)! ds aux(sum(X; Y))ds aux(Z)! sum(Z; Z)Note that these rules can be directly generated from the initial de�nition by ade�nition introduction (ds aux(Z)! sum(Z; Z)) and then by folding the originalrule at the expression sum(sum(X; Y); sum(X; Y)) using as folding rule the newly2 It would be interesting to study a generalization of our folding rule to a disjunctivefolding rule, i.e., allowing the folding of multiple recursive rules (see [25]).

generated de�nition for ds aux=1. The inclusion of an abstraction rule is tra-ditional in functional fold/unfold frameworks [8, 24, 26, 27]. In the case of logicprograms, abstraction is only possible by means of the so called generalizationstrategy [24], which generalizes some calls to eliminate the mismatches that pre-vent a folding step.Now, we are ready to formalize our abstraction rule, which is inspired bythe standard lambda lifting transformation of functional programs. By meansof the tuple constructor h i, our de�nition allows the abstraction of di�erentexpressions in one go. For a sequence of (pairwise disjoint) positions P = pn,we let t[sn]P = (((t[s1]p1)[s2]p2) : : : [sn]pn). By abuse, we denote t[sn]P by t[s]Pwhen s1 = : : : = sn = s, as well as ((t[s1]P1) : : : [sn]Pn) by t[sn]Pn .De�nition 5 (Abstraction). Let R = (f(tn) ! r) 2 Rk be a rule and let Pjbe sequences of disjoint positions in NVPos(r) such that rjp = ei for all p in Pi,i = 1; : : : ; j, i.e., r = r[ej]Pj . We may get program Rk+1 from Rk by replacingR with ff(tn) ! f aux(ym; he1; : : : ; eji); f aux(ym; hz1; : : : ; zji) ! r[zj]Pjg,where zj are fresh variables not occurring in tn, f aux is a fresh function symbolthat does not occur in (R0; : : : ;Rk), and Var(r[zj]Pj) = fym; zjg.Informally, the two rules generated by the abstraction transformation can beunderstood as a syntactic variant of the following rule:f(tn) ! r[zj]Pj where hz1; : : : ; zji = he1; : : : ; eji :Now we state the main theoretical results for the basic transformations intro-duced in this section. We state the correctness of transformation sequences con-structed from an inductively sequential program by applying the following rules:de�nition introduction, de�nition elimination, unfolding, folding, and abstrac-tion. In proving this, we assume that no folding step is applied after a de�nitionelimination, which guarantees that no function call to a previously deleted func-tion is introduced along a transformation sequence [23]. First, we state thattransformations preserve the inductively sequential structure of programs.Theorem 1. Let (R0; : : : ;Rn) be a transformation sequence. If R0 is induc-tivlely sequential, then Ri is also inductively sequential, for i = 1; : : : ; n.Sands formalizes a syntactic improvement theory [26] which restricts generalfold/unfold transformations and can be applied to give correctness proofs forsome existing transformation methods (such as deforestation [30]). However, we�nd it more convenient to stick to the logic programming methods for provingcorrectness because the narrowing mechanism can be properly seen as a gen-eralization of the SLD-resolution method which implicitly applies instantiationbefore replacing a call by the corresponding instance of the body. That is, instan-tiation is computed in a systematic way by the needed narrowing mechanism (asin the unfolding of logic programs), whereas it is not restricted in the Burstalland Darlington's fold/unfold framework considered in [26]. Unrestricted instan-tiation is problematic since it does not even preserve local equivalence, and for

this reason the instantiation rule is not considered explicitly in [26]. As a conse-quence, the improvement theorem of [26] does not directly apply to our context.Our demonstration technique for the correctness result is inspired by the orig-inal proof scheme of Tamaki and Sato [28] concerning the least Herbrand modelsemantics of logic programs (and the subsequent extension of Kawamura andKanamori [20] for the semantics of computed answers). Intuitively, a fold/unfoldtransformation system is correct if there are \at least as many folds as there areunfolds" or, equivalently, if \going backward in the computation (as folding does)does not prevail over going forward in the computation (as unfolding does)" [23,26]. This essentially means that there must be a kind of \computational cost"measure which is not increased either by folding or by unfolding steps. Severalde�nitions for this measure can be found in the literature: the rank of a goal in[28], the weight of a proof tree in [20], or the notion of improvement in [26]. Inour context, we have introduced the notion of rank of a term in order to measurethe computational cost of a given term. The detailed proof scheme can be foundin [3]. The strong correctness of the transformation is stated as follows.Theorem 2. Let (R0; : : : ;Rn), n > 0, be a transformation sequence. Let e be anequation with no new function symbol and V � Var(e) a �nite set of variables.Then, e;�� true in R0 i� e;��0 true in Rn, with �0 = � [V] (up to renaming).4 Some ExperimentsThe building blocks of strategic program optimizations are transformation tac-tics (strategies), which are used to guide the process and e�ect some particularkind of change to the program undergoing transformation [12, 24].One of the most relevant quests in applying a transformation strategy is theintroduction of new functions, often called in the literature eureka de�nitions.Although there is no general theory of strategies which ensures that derivedprograms are more e�cient than the initial ones, some partial results exist. Forinstance, in the setting of higher-order (non-strict) functional languages, Sands[26] has recently introduced the theory of improvement to provide a syntacticmethod for guiding and constraining the unfold/fold method in [8] so that totalcorrectness and performance improvement are always guaranteed.In the following, we illustrate the power of our transformation system bytackling some representative examples regarding the optimizations of composi-tion [30] and tupling [8, 11].4.1 Transformation StrategiesThe composition strategy was originally introduced in [8, 11] for the optimiza-tion of pure functional programs. Variants of this composition strategy are theinternal specialization technique [27] and the deforestation method [30]. By us-ing the composition strategy (or its variants), one may avoid the constructionof intermediate data structures that are produced by some function g and con-sumed as inputs by another function f. In some cases, most of the e�ciency

improvement of the composition strategy can be simply obtained by lazy evalu-ation [12]. Nevertheless, the composition strategy often allows the derivation ofprograms with improved performance also in the context of lazy evaluation [29].Laziness is decisive when, given a nested function call f(g(X)), the intermediatedata structure produced by g is in�nite but the function f can produce its out-come by knowing only a �nite portion of the output of g. The following exampleillustrates the advantages of our transformation rules w.r.t. those of [2].Example 3. The function sum prefix(X; Y) de�ned in the following program R0returns the sum of the Y consecutive natural numbers, starting from X:sum prefix(X; Y)! suml(from(X); Y) (R1) from(X)! [Xjfrom(s(X))] (R4)suml(L; 0)! 0 (R2) 0+ X! X (R5)suml([HjT]; s(X))! H+ suml(T; X) (R3) s(X) + Y! s(X+ Y) (R6)We can improve the e�ciency of R0 by avoiding the creation and subsequentuse of the intermediate, partial list generated by the call to the function from:1. De�nition introduction:aux(X; Y)! suml(from(X); Y) (R7)2. Unfolding of rule R7 (note that instantiation is automatic):aux(X; 0)! 0 (R8)aux(X; s(Y))! suml([Xjfrom(s(X))]; s(Y)) (R9)3. Unfolding of rule R9 (note that this is infeasible with an eager strategy):aux(X; s(Y))! X+ suml(from(s(X)); Y) (R10)4. Folding of suml(from(s(X)); Y) in rule R10 using R7:aux(X; s(Y))! X+ aux(s(X); Y) (R11)5. Folding of the rhs of rule R1 using R7:sum prefix(X; Y)! aux(X; Y) (R12)Then, the transformed program R5 is formed by the following rules:sum prefix(X; Y)! aux(X; Y) (R12)aux(X; 0)! 0 (R8)aux(X; s(Y))! X+ aux(s(X); Y) (R11)(together with the initial de�nitions for +, from, and suml).Note that the use of needed narrowing as a basis for our unfolding rule is essentialin the above example. It ensures that no redundant rules are produced by unfold-ing and it also allows the transformation even in the presence of nonterminatingfunctions (as opposed to [2]).The tupling strategy was introduced in [8, 11] to optimize functional pro-grams. The tupling strategy is very e�ective when several functions require the

computation of the same subexpression, in which case we tuple together thosefunctions. By avoiding either multiple accesses to data structures or commonsubcomputations one often gets linear recursive programs (i.e., programs whoserhs's have at most one recursive call) from nonlinear recursive programs [24].The following well-known example illustrates the tupling strategy.Example 4. The �bonacci numbers can be computed by the program R0:fib(0)! s(0) (R1)fib(s(0))! s(0) (R2)fib(s(s(X)))! fib(s(X)) + fib(X) (R3)(together with the rules for addition +). Observe that this program has anexponential complexity, which can be reduced to a linear one by applying thetupling strategy as follows:1. De�nition introduction:new(X)! hfib(s(X)); fib(X)i (R4)2. Unfolding of rule R4 (narrowing the needed redex fib(s(X))):new(0)! hs(0); fib(s(0))i (R5)new(s(X))! hfib(s(X)) + fib(X); fib(s(X))i (R6)3. Unfolding of rule R5 (narrowing the needed redex fib(s(0))):new(0)! hs(0); s(0)i (R7)4. Abstraction of R6:new(s(X))! new aux(hfib(s(X)); fib(X)i) (R8)new aux(hZ1; Z2i)! hZ1 + Z2; Z1i (R9)5. Folding of hfib(s(X)); fib(X)i in rule R8 using R4:new(s(X))! new aux(new(X)) (R10)6. Abstraction of R3:fib(s(s(X)))! fib aux(hfib(s(X)); fib(X)i) (R11)fib aux(hZ1; Z2i)! Z1 + Z2 (R12)7. Folding of hfib(s(X)); fib(X)i in rule R11 using again rule R4:fib(s(s(X)))! fib aux(new(X)) (R13)Now, the (enhanced) transformed program R7 (with linear complexity thanksto the use of the recursive function new), is the following:fib(0)! s(0) (R1)fib(s(0))! s(0) (R2)fib(s(s(X)))! Z1 + Z2 where hZ1; Z2i = new(X) (R12; R13)new(0)! hs(0); s(0)i (R7)new(s(X))! hZ1 + Z2; Z1i where hZ1; Z2i = new(X) (R9; R10)where rules (R12; R13) and (R9; R10) are expressed by using local declarationsfor readability.

Table 1. Benchmark results.Benchmarks Rw1 RT1 Comp Rw2 RT2 Speedup (%)doubleappend 3 1.77 0.1 6 1.63 10%sumprefix 8 3.59 0.21 10 3.48 3%lengthapp 7 1.61 0.17 10 1.51 6%doubleflip 3 0.95 0.11 5 0.7 26%fibprefix 11 2.2 0.28 13 2.26 -3%4.2 BenchmarksThe basic rules presented so far have been implemented by a prototype systemSynth [1], which is publicly available at http://www.dsic.upv.es/users/elp/soft.html. It is written in SICStus Prolog and includes a parser for the lan-guage Curry, a modern multiparadigm declarative language based on needednarrowing which is intended to become a standard in the functional logic com-munity [16, 17]. It also includes a fully automatic composition strategy based onsome (apparently reasonable) heuristics. The transformation system allows usto choose between two ways to apply the composition strategy. The �rst wayis semi-automatic, since the user has to indicate the rule in which a nested callappears. A second way is completely automatic. It is the transformer which looksfor a nested call in one of the rules and introduces a de�nition rule for a newfunction to start the process. We are currently extending the system in order tomechanize tupling (e.g., by using the analysis method of [9]).Table 1 summarizes our benchmark results. The �rst two columns measurethe number of rewrite rules (Rw1) and the absolute runtimes (RT1) for the orig-inal programs. The next column (Comp) shows the execution times of the (au-tomatic) composition algorithm. The other columns show the number of rewriterules (Rw2), the absolute runtimes (RT2), and the speedups achieved for thetransformed programs. All the programs have been executed by using Taste-Curry, which is a publicly available interpreter for a subset of Curry [16]. Timesare expressed in seconds and are the average of 10 executions. We note that our(automatic) composition strategy performs well w.r.t. the �rst four benchmarks.They are classical examples in which composition is able to perform an e�ec-tive optimization (sumprefix is described in Example 3, while doubleappend,lengthapp, and doubleflip are typical functional programs to illustrate de-forestation [30]). Regarding the last benchmark fibprefix, which is similar tosumprefix but it sums Fibonacci numbers instead of natural numbers, a slow-down has been produced (due to an incorrect folding, which added a new functioncall to the recursion). In this case a tupling strategy is mandatory to succeed,as expected.In general, the transformed programs cannot be guaranteed to be faster thanthe original ones, since there is a trade-o� between the smaller amount of compu-tation needed after the transformation (when guided by appropriate strategies)and the larger number of derived rules. Nevertheless, our experiments seem tosubstantiate that the smaller computations make up for the overhead of checkingthe applicability of the larger number of rules in the derived programs.

5 ConclusionsThe de�nition of a fold/unfold framework for the optimization of functionallogic programs was an open problem marked in [24] as pending research. Wehave presented a transformation methodology for lazy functional logic programspreserving the semantics of both values and answers computed by an e�cient(currently the best) operational mechanism. For proving correctness, we exten-sively exploit the existing results from Huet and Levy's theory of needed reduc-tions [18] and the wide literature about completeness of needed narrowing [5](rather than striving an ad-hoc proof). We have shown that the transformationprocess keeps the inductively sequential structure of programs. We have alsoillustrated with several examples that the transformation process can be guidedby appropriate strategies which lead to e�ective improvements. Our experimentsshow that our transformation framework combines in a useful and e�ective waythe systematic instantiation of calls during unfolding (by virtue of the logic com-ponent of the needed narrowing mechanism) with the power of the abstractiontransformations (thanks to the functional dimension). We have also presentedan implementation which allows us to perform automatically the compositionstrategy as well as to perform all basic transformations in a semi-automatizedway. The multi-paradigm language Curry [15, 17] is an extension of Haskell withfeatures for logic and concurrent programming. The results in this paper can beapplied to optimize a large class of kernel (i.e., non concurrent) Curry programs.AcknowledgementsWe thank Ivan Ziliotto and Cesar Ferri for having implemented the transformerSynth under SICStus Prolog and for the evaluation of the benchmarks.References1. M. Alpuente, M. Falaschi, C. Ferri, G. Moreno, G. Vidal, and I. Ziliotto. The Trans-formation System Synth. Technical report DSIC-II/16/99, DSIC, 1999. Availablefrom URL: http://www.dsic.upv.es/users/elp/papers.html.2. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Safe Folding/Unfolding withConditional Narrowing. In H. Heering M. Hanus and K. Meinke, editors, Proc. ofALP'97, Springer LNCS 1298, pages 1{15, 1997.3. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. A Transformation System forLazy Functional Logic Programs. Technical report, DSIC, UPV, 1999. Availablefrom URL: http://www.dsic.upv.es/users/elp/papers.html.4. S. Antoy. De�nitional Trees. In Proc. of ALP'92, Springer LNCS 632, pages143{157, 1992.5. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc. 21stACM Symp. on Principles of Programming Languages, pages 268{279, 1994.6. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge UniversityPress, 1998.7. A. Bossi and N. Cocco. Basic Transformation Operations which preserve Com-puted Answer Substitutions of Logic Programs. JLP, 16:47{87, 1993.

8. R.M. Burstall and J. Darlington. A Transformation System for Developing Recur-sive Programs. Journal of the ACM, 24(1):44{67, 1977.9. W. Chin. Towards an Automated Tupling Strategy. In Proc. of Partial Evaluationand Semantics-Based Program Manipulation, pages 119{132. ACM, 1993.10. W. Chin, A. Goh, and S. Khoo. E�ective Optimisation of Multiple Traversals inLazy Languages. In Proc. of PEPM'99 (Technical Report BRICS-NS-99-1), pages119{130. University of Aarhus, DK, 1999.11. J. Darlington. Program transformation. In Functional Programming and its Ap-plications, pages 193{215. Cambridge University Press, 1982.12. M. S. Feather. A Survey and Classi�cation of some Program TransformationApproaches and Techniques. In IFIP'87, pages 165{195, 1987.13. P. A. Gardner and J. C. Shepherdson. Unfold/fold Transformation of Logic Pro-grams. In J.L Lassez and G. Plotkin, editors, Computational Logic, Essays inHonor of Alan Robinson, pages 565{583. The MIT Press, Cambridge, MA, 1991.14. M. Hanus. The Integration of Functions into Logic Programming: From Theoryto Practice. Journal of Logic Programming, 19&20:583{628, 1994.15. M. Hanus. A Uni�ed Computation Model for Functional and Logic Programming.In Proc. of the 24th ACM POPL, pages 80{93. ACM, New York, 1997.16. M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A Truly Functional LogicLanguage. In Proc. ILPS'95 Workshop on Visions for the Future of Logic Pro-gramming, pages 95{107, 1995.17. M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available athttp://www-i2.informatik.rwth-aachen.de/~hanus/curry, 1999.18. G. Huet and J.J. L�evy. Computations in Orthogonal Rewriting Systems, Part I+ II. In J.L. Lassez and G.D. Plotkin, editors, Computational Logic { Essays inHonor of Alan Robinson, pages 395{443, 1992.19. T. Johnsson. Lambda Lifting: Transforming Programs to Recursive Equations. InFPLCA'85, pages 190{203. Springer LNCS 201, 1985.20. T. Kawamura and T. Kanamori. Preservation of Stronger Equivalence in Un-fold/Fold Logic Program Transformation. TCS, 75:139{156, 1990.21. M.J. Maher. A Transformation System for Deductive Database Modules withPerfect Model Semantics. Theoretical Computer Science, 110(2):377{403, 1993.22. J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logic Programming with Func-tions and Predicates: The language Babel. JLP, 12(3):191{224, 1992.23. A. Pettorossi and M. Proietti. Transformation of Logic Programs: Foundationsand Techniques. Journal of Logic Programming, 19&20:261{320, 1994.24. A. Pettorossi and M. Proietti. Rules and Strategies for Transforming Functionaland Logic Programs. ACM Computing Surveys, 28(2):360{414, 1996.25. A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakrish-nan. A Parameterized Unfold/Fold Transformation Framework for De�nite LogicPrograms. In Proc. of PPDP'99, Springer LNCS, 1999. To appear.26. D. Sands. Total Correctness by Local Improvement in the Transformation ofFunctional Programs. ACM ToPLaS, 18(2):175{234, March 1996.27. W.L. Scherlis. Program Improvement by Internal Specialization. In Proc. of 8thACM POPL, pages 41{49. ACM Press, 1981.28. H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs. InS. T�arnlund, editor, Proc. of 2nd ICLP, pages 127{139, 1984.29. P.L. Wadler. Listlessness is better than Laziness. Computer Science Department,CMU-CS-85-171, Carnegie Mellon Univertsity, Pittsburgh, PA, 1985. Ph.D. Thesis.30. P.L. Wadler. Deforestation: Transforming programs to eliminate trees. TheoreticalComputer Science, 73:231{248, 1990.

