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Abstract

Motivated by the behavior of asset prices, trading volume and price volatil-

ity during historical episodes of asset price bubbles, we present a continuous

time equilibrium model where overconfidence generates disagreements among

agents regarding asset fundamentals. With short-sale constraints, an asset

owner has an option to sell the asset to other overconfident agents when they

have more optimistic beliefs. As in Harrison and Kreps (1978), this re-sale

option has a recursive structure, that is, a buyer of the asset gets the option

to resell it. Agents pay prices that exceed their own valuation of future div-

idends because they believe that in the future they will find a buyer willing

to pay even more. This causes a significant bubble component in asset prices

even when small differences of beliefs are sufficient to generate a trade. In

equilibrium, large bubbles are accompanied by large trading volume and high

price volatility. Our model has an explicit solution, which allows for several

comparative statics exercises. Our analysis shows that while Tobin’s tax can

substantially reduce speculative trading when transaction costs are small, it

has only a limited impact on the size of the bubble or on price volatility. We

also give an example where the price of a subsidiary is larger than its parent

firm.
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1 Introduction

The behavior of market prices and trading volumes of assets during historical episodes of

price bubbles presents a challenge to asset pricing theories. A common feature of these

episodes, including the recent internet stock boom, the tulipmania and the South Sea

bubble, is the co-existence of high prices and high trading volume.1 In addition, high

price volatility is frequently observed.2

In this paper, we propose a model of asset trading based on heterogeneous beliefs

generated by agents’ overconfidence, that generates equilibria that broadly fit these ob-

servations. We also provide explicit links between certain parameter values in the model,

such as trading cost and information, and the behavior of equilibrium prices and trading

volume. In particular, this allows us to discuss the effects of trading taxes and informa-

tion on prices and volume. More generally, our model provides a flexible framework to

study speculative trading that can be used to analyze links between asset prices, trading

volume and price volatility.

In the model, the ownership of a share of stock provides an opportunity (option) to

profit from other investors’ over-valuation. For this option to have value, it is necessary

that some restrictions apply to short- selling. In reality, these restrictions arise from

many distinct sources. First, in many markets short selling requires borrowing a security

and this mechanism is costly.3 In particular the default risk if the asset price goes up

is priced by lenders of the security. Second, the risk associated with short selling may

deter risk-averse investors. Third, limitations to the availability of capital to potential

arbitrageurs may also limit short selling.4 For technical reasons, we do not deal with

1See Garber (2001) for the earlier episodes and Lamont and Thaler (2001), Ofek and Richardson (2001)for
the internet boom. Cochrane (2002) emphasizes the joint dynamics of high prices and high turnover rates as the
key characteristics of these bubbles. Ofek and Richardson (2002, page 1) point out that “between early 1998 and
February 2000, pure internet firms represented as much as 20% of the dollar volume in the public equity market,
even though their market capitalization never exceeded 6%.”

2Cochrane (2002, page 6) commenting on the much discussed Palm case:“Palm stock was tremendously volatile
during this period, with 15.4% standard deviation of 5 day returns, which is about the same as the volatility of
the S&P 500 index over an entire year”

3Duffie, Garleanu and Pedersen [2002] provide a search model to analyze the actual short-sale process and
its implication for asset prices. Jones and Lamont [2002], Geczy, Musto and Reed [2002], and D’Avolio [2002]
contain empirical analysis of the relevance of short-sale costs.

4Shleifer and Vishny (1997) argue that agency problems limit the capital available to arbitrageurs and may
cause arbitrage to fail. See also Xiong (2001), Kyle and Xiong (2001), and Gromb and Vayanos (2002) for studies
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short sale costs or risk aversion. Instead we take the extreme view that short sales are

not permitted, although our qualitative results would survive the presence of limited

short sales as long as the asset owners can expect to make a profit when others have

higher valuations.

Our model follows the basic insight of Harrison and Kreps (1978), that, when agents

agree to disagree and short selling is not possible, asset prices may exceed their fundamen-

tal value. This difference was called the speculative component by Harrison and Kreps.

In their model, agents trade because they disagree about the probability distributions

of dividend streams. The reason for the disagreement is not made explicit. We study

overconfidence, the belief of an agent that his information is more accurate than what it

is, as a source of disagreement. Although overconfidence is only one of the many ways

by which disagreement among investors may arise - another way is to postulate priors

that are not absolutely continuous with respect to each other5 - it is suggested by some

experimental studies of human behavior, and generates a mathematical framework that

is relatively easy to treat and allows us to analyze the properties of the equilibrium and

to link the dynamics of observables. Our model may also be regarded as a fully worked

out example of the Harrison-Kreps framework in continuous time, where computations

and comparison of solutions are particularly tractable.

We study a market for a single risky asset with limited supply and many risk-neutral

agents in a continuous time model with infinite horizon. The current dividend of the asset

is a noisy observation of a fundamental variable that will determine future dividends. In

addition to the dividends, there are two other sets of information available at each instant.

The information is available to all agents, however agents are divided in two groups and

they differ in the interpretation of the signals. As a consequence, when forecasting future

dividends, each group of agents place different weights on the three sets of information,

resulting in different forecasts. Although agents in our model know exactly the amount

by which their forecast of the fundamental variable exceeds that of agents in the other

group, behavioral limitations lead them to agree to disagree. As information flows, the

linking the dynamics of arbitrageurs’ capital with asset price dynamics.
5As in Morris (1996).
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forecasts by agents of the two groups fluctuate, and the group of agents that is at one

instant relatively more optimistic, may become in a future date less optimistic than the

agents in the other group. These changes in relative opinion generate trades.

Each agent in the model understands that the agents in the other group are placing

different weights on the different sources of information. When deciding the value of the

asset, agents consider their own view of the fundamental as well as the fact that the

owner of the asset has an option to sell the asset in the future to the agents in the other

group. This option can be exercised at any time by the current owner, and the new owner

gets in turn another option to sell the asset in the future. These characteristics makes

the option “American” and gives it a recursive structure. The value of the option is the

value function of an optimal stopping problem. Since the buyer’s willingness to pay is a

function of the value of the option that he acquires, the payoff from stopping is, in turn,

related to the value of the option. This gives us a fixed point problem that the option

value must satisfy.

We show that when a trade occurs, the buyer has the highest valuation of discounted

future dividends among all agents, and because of the re-sale option, the price he pays

exceeds his valuation of future dividends. Agents pay prices that exceed their own valu-

ation of future dividends, because they believe that in the future they will find a buyer

willing to pay even more. This difference between the transaction price and the highest

fundamental valuation can be reasonably called a bubble.6 A numerical example shows

that the magnitude of the bubble component can be large relative to the fundamental

value of the asset. Fluctuations in the value of this bubble contribute an extra component

to price volatility.

In equilibrium, an asset owner will sell the asset to agents in the other group, whenever

his view of the fundamental is surpassed by the view of agents in the other group by a

critical amount. We call this difference the critical point. Passages through this critical

point determine turnover. When there are no trading costs, we show that the critical

point is zero - it is optimal to sell the asset immediately after the valuation of the

6An alternative would be to measure the bubble as the difference between the asset price and the fundamental
valuation of the dividends by an agent that correctly weights the signals. We opted for our definition because it
highlights the difference between beliefs about fundamentals and trading price.
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fundamentals of the asset owner is “crossed” by the valuation of agents in the other group.

Our agents’ beliefs satisfy simple stochastic differential equations and it is a consequence

of properties of Brownian motion, that once the beliefs of agents cross, they will cross

infinitely many times in any finite period of time right afterwards. This results in a

trading frenzy, in which the unconditional average volume in any time interval is infinite.

Since the equilibria display continuity with respect to the trading cost c, our model with

small trading costs is able to capture the excessive trading observed in bubbles.

When trading costs are small, in addition to large volume, the value of the bubble

and the extra volatility component are maximized. We show that increases in some

parameter values, such as the degree of overconfidence or the information content of the

signals, increase these three key variables. In this way, our model provides an explanation

for the co-movements of price, volume and volatility observed in actual bubbles.7

In the model, increases in trading costs reduce the trading frequency, asset price

volatility, and the option value. For small trading costs, the effect on trading frequency

is very significant. At zero cost, an increase in the cost of trading has an infinite marginal

impact in the critical point and in the trading frequency. The impact on price volatility

and on the size of the bubble is much more modest. As the trading cost increases, the

increase in the critical point also raises the profit of the asset owner from each trade, thus

partially offsetting the decrease in the value of the re-sale option caused by the reduction

in trading frequency. Our analysis suggests that a transaction tax, such as proposed by

Tobin (1978), would, in fact, substantially reduce the amount of speculative trading in

markets with small transaction costs, but would have a limited effect on the size of the

bubble or on price volatility. Since a Tobin tax will no doubt also deter trading generated

by fundamental reasons that are absent from our model,8 the limited impact of the tax on

the size of the bubble and on price volatility cannot serve as an endorsement of the Tobin

tax. The limited effect of transaction costs on the size of the bubble is also compatible

with the observation of Shiller (2000) that bubbles have occurred in real estate market,

7Cochrane (2002) provides direct evidence that prices and volume are correlated in both time series and cross
section of US stocks.

8See Dow and Rahi (2000) and references therein for studies of effects of taxes on trading generated by
asymmetric information.
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where transaction costs are high.

The existence of the option component in the asset price creates potential violations

to the law of one price. Through a simple example, we illustrate that the bubble may

cause the price of a subsidiary to be larger than that of its parent firm. The intuition

behind the example is that if a firm has two subsidiaries with fundamentals that are

perfectly negatively correlated, there will be no differences in opinion, and hence no

option component on the value of the parent firm, but possibly strong differences of

opinion about the value of a subsidiary. In this example, our model also predicts that

trading volume on the subsidiaries would be much larger than on the parent firm. This

nonlinearity of the option value may help explain the “mispricing” of carve-outs that

occurred in the late 90’s such as the 3Com-Palm case.9

Our model often exhibits a stationary bubble and, at first glance, does not seem

appropriate to analyze the appearance of bubbles or crashes. In subsection 6.4, we discuss

how to accommodate fluctuations in parameter values that can generate fluctuations in

the average size of the bubble. This can accommodate crashes and the appearance of

bubbles, but does not explain why parameter values fluctuate.

The structure of the paper follows. In Section 2, we present a brief literature review.

Section 3 describes the structure of the model. Section 4 derives the evolution of agents’

beliefs. In Section 5, we discuss the optimal stopping time problem and derive the

equation for equilibrium option values. In Section 6, we solve for the equilibrium. Section

7 discusses several properties of the equilibrium dynamics when trading costs are small.

In Section 8, we focus on the effect of trading costs on the equilibrium dynamics. In

Section 9, we construct an example where the price of a subsidiary is larger than its

parent firm. Section 10 concludes with some discussion of corporate strategies that may

be justified in the presence of overconfidence and would not be rewarding in the absence

of heterogeneous beliefs.

9Lamont and Thaler (2001), Mitchell, Pulvino and Stafford (2001), and Schill and Zhou (2000) empirically
analyze mispricings and trading volume in recent carve-outs. In particular, Lamont and Thaler (2001) remarked
that the turnover rate of the subsidiaries’ stocks was on average six times higher than that of the parent firms’
stocks, consistent with our model.
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2 Related literature

There is a large literature on the effects of heterogeneous beliefs. In a static framework,

Miller (1977), and Chen, Hong and Stein (2002) point out that when investors have

heterogeneous beliefs, assets will be held by those with highest beliefs and, if short

sales are ruled out and beliefs are unbiased, this will produce overvaluation of assets.

This static framework cannot generate an option value. Harris and Raviv (1993) use

heterogeneous beliefs in a dynamic model to generate trading. In their model, prices

always equal the discounted payoffs expected by a fixed group of agents, and thus there

is no option value and no bubble. Kandel and Pearson (1995) study a variation of the

Harris-Raviv model and also provide some empirical evidence that heterogeneous beliefs

is a driving force for trading. Kyle and Lin (2002) study the trading volume caused by

overconfident traders in a model without short-sale constraints and hence no option value

or bubbles.

Psychology studies suggest that people may display overconfidence in some circun-

stances. Alpert and Raiffa (1982), and Brenner et al. (1996) find that subjects over-

estimate the precision of their knowledge, especially for challenging judgement tasks

(Lichtenstein, Fischhoff, and Phillips (1982)). Camerer (1995) argues that even experts

can display overconfidence. A similar phenomena is illusion of knowledge the fact that

persons who do not agree become more polarized when given arguments that serve both

sides (Lord, Ross and Lepper (1979)). Hirshleifer (2001) and Barber and Odean (2002)

contain reviews of the literature.

In finance, researchers have developed theoretical models to analyze the implications

of overconfidence on financial markets. Odean (1998) demonstrates that overconfidence

causes excessive trading in a static asymmetric information model. Kyle and Wang

(1997) show that overconfidence can be used as a commitment device over competitors

to improve one’s welfare. Daniel, Hirshleifer and Subrahmanyam (1998) use overconfi-

dence to explain the predictable returns of financial assets. Bernardo and Welch (2001)

discuss the benefits of overconfidence to entrepreneurs through the reduced tendency to

herd. In these studies, overconfidence is modelled as overestimation of the precision of
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one’s information. We follow a similar approach, but emphasize the speculative motive

generated through overconfidence in this paper.

The bubble proposed in our model, based on the recursive expectations of traders to

take advantage of the mistakes of each other, is very different from the rational bubbles

studied in the previous literature including Blanchard and Watson (1982) and Santos and

Woodford (1997). In contrast to our set up, these models are incapable of connecting

bubbles with large volumes of trade. In addition, in the models of rational bubbles, assets

must have (potentially) infinite maturity to generate bubbles. In our case although we

chose, for mathematical simplicity, to treat the infinite horizon case the bubble in our

model does not require infinite maturity. If an asset has a finite maturity the bubble will

tend to diminish as maturity approaches, but it would nonetheless exist in equilibrium.

Other mechanisms have been proposed to generate asset price bubbles, e. g., Allen and

Gorton (1993) through agency problem, Allen, Morris, and Postlewaite (1993) through

higher order beliefs, Horst (2001) using social interaction among agents, and Duffie,

Garleanu, and Pedersen (2002) using fees from lending stocks to short-sellers. None of

these models emphasize the joint dynamics of bubble and trading volume observed in

historical episodes.

3 The model

There exists a single risky asset with a dividend process that is the sum of two com-

ponents. The first component is the fundamental variable that will determine future

dividends. The second is “noise”. More precisely, the cumulative dividend process Dt

satisfies:

dDt = ftdt + σDdZD
t , (1)

where ZD is a standard Brownian motion and σD is a constant volatility parameter. The

fundamental variable f is not observable. However, it satisfies:

dft = −λ(ft − f̄)dt + σfdZ
f
t , (2)

where λ ≥ 0 is the mean reversion parameter, f̄ is the long-run mean of f , σf is a

constant volatility parameter and Zf is a standard Brownian motion. The asset is in
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finite supply and we normalize the total supply to unity.

There are two sets of risk-neutral agents. The assumption of risk neutrality not only

simplifies many calculations, but also serves to highlight the role of information in the

model. Since our agents are risk-neutral, the dividend noise in equation (1) has no direct

impact in the valuation of the asset. However, the presence of dividend noise makes

it impossible to infer f perfectly from observations of the cumulative dividend process.

Agents will use the observations of D and any other signals that are correlated with f to

infer current f and to value the asset. In addition to the cumulative dividend process,

all agents observe a vector of signals sA and sB that satisfy:

dsA
t = ftdt + σsdZ

A
t (3)

dsB
t = ftdt + σsdZ

B
t , (4)

where ZA and ZB are standard Brownian motions. We assume that all four processes

ZD, Zf , ZA and ZB are mutually independent.

Agents in group A (B) think of sA (sB) as their own signal although they can also

observe sB (sA). Heterogeneous beliefs arise because each agent believes that the informa-

tiveness of his own signal is larger than its true informativeness. Agents of group A (B)

believe that innovations dZA (dZB) in the signal sA (sB) are correlated with the innova-

tions dZf in the fundamental process, with φ (0 < φ < 1) as the correlation parameter.

Specifically, agents in group A believe the process for sA is

dsA
t = ftdt + σsφdZf

t + σs

√
1− φ2dZA

t . (5)

Although the unconditional volatility of the signal sA is still σs in group A agents’ mind,

the correlation in the innovations causes them to over-react to signal sA. Similarly, agents

in group B believe the process for sB is

dsB
t = ftdt + σsφdZf

t + σs

√
1− φ2dZB

t . (6)

Lemma 1 below shows that a larger φ, increases the precision that agents attribute to

their own forecast of the current level of fundamentals. For this reason, we will refer to
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φ as the overconfidence parameter.10

Each group is large and there is no short selling of the risky asset. We assume the

market to be perfectly competitive in the sense that agents in each group value the asset

at their reservation price. To value future cash flows, we may either assume that every

agent can borrow and lend at the same rate of interest r, or equivalently that agents

discount all future payoffs using rate r, and that each group has infinite total wealth.

These assumptions will facilitate the calculation of equilibrium prices.

4 Evolution of beliefs

The model described in the previous section implies a particularly simple structure for

the evolution of the difference in beliefs among traders in the two groups. The difference

in beliefs is a Markov diffusion with a volatility that is proportional to φ. (see Proposition

1 below).

Since all variables are Gaussian, the filtering problem of the agents is standard. With

Gaussian initial conditions, the conditional beliefs of agents in group C ∈ {A, B} is

Normal with mean f̂C and variance γC . We will characterize the stationary solution.

Standard arguments11 allow us to compute the variance of the stationary solution and

the evolution of the conditional mean of beliefs. The variance of this stationary solution

is the same for both groups of agents and equals

γ ≡

√
(λ + φσf/σs)2 + (1− φ2)(2σ2

f/σ
2
s + σ2

f/σ
2
D)− (λ + φσf/σs)

1
σ2

D
+ 2

σ2
s

. (7)

The following lemma justifies using the term ”overconfidence” to describe the effect of a

positive φ. It states that an increase in φ increases the precision that agents attribute to

their own forecast.

Lemma 1 The stationary variance γ decreases with φ.

Proof: See appendix

10In an earlier draft, we assumed that agents overestimate the precision of their signal. We thank Chris Rogers
for suggesting that we examine this alternative framework.

11e.g. section VI.9 in Rogers and Williams (1987) and Theorem 12.7 in Liptser and Shiryayev (1977)
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In addition, the conditional mean of the beliefs of agents in group A satisfies:

df̂A = −λ(f̂A − f̄)dt +
φσsσf + γ

σ2
s

(dsA − f̂Adt) +
γ

σ2
s

(dsB − f̂Adt) +
γ

σ2
D

(dD − f̂Adt). (8)

Since f mean-reverts, the conditional beliefs also mean-reverts. The other three terms

represent the effects of “surprises.” These surprises can be represented as standard mu-

tually independent Brownian motions for agents in group A:

dWA
A =

1

σs

(dsA − f̂Adt), (9)

dWA
B =

1

σs

(dsB − f̂Adt), (10)

dWA
D =

1

σD

(dD − f̂Adt). (11)

Note that these processes are only Wiener processes in the mind of group A agents. Due

to overconfidence (φ > 0), agents in group A over-reacts to surprises in sA.

Similarly, the conditional mean of the beliefs of agents in group B satisfies:

df̂B = −λ(f̂B − f̄)dt +
γ

σ2
s

(dsA − f̂Bdt) +
φσsσf + γ

σ2
s

(dsB − f̂Bdt) +
γ

σ2
D

(dD − f̂Bdt).(12)

These surprise terms can be represented as standard mutually independent Wiener pro-

cesses for agents in group B:

dWB
A =

1

σs

(dsA − f̂Bdt), (13)

dWB
B =

1

σs

(dsB − f̂Bdt), (14)

dWB
D =

1

σD

(dD − f̂Bdt). (15)

Again, we emphasize that these processes form a standard 3-d Wiener process only for

agents in group B.

Since the beliefs of all agents have constant variance, we will refer to the conditional

mean of the beliefs as their beliefs. We let gA and gB denote the differences in beliefs:

gA = f̂B − f̂A (16)

gB = f̂A − f̂B. (17)

The next proposition describes the evolution of these differences in beliefs:
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Proposition 1

dgA = −ρgAdt + σgdWA
g , (18)

where

ρ =

√√√√(λ + φ
σf

σs

)2

+ (1− φ2)σ2
f

(
2

σ2
s

+
1

σ2
D

)
, (19)

σg =
√

2φσf , (20)

and WA
g is a standard Wiener process for agents in group A, and it is independent to

innovations to f̂A.

Proof: see appendix.

Proposition 1 implies that the difference in beliefs gA follows a simple mean reverting

diffusion process in the mind of group A agents. In particular, the volatility of the

difference in beliefs is zero in the absence of overconfidence. A larger φ leads to greater

volatility. In addition, −ρ
2σ2

g
measures the pull towards the origin.12 A simple calculation

shows that this mean-reversion decreases with φ. A positive φ causes an increase in

fluctuations of opinions and a slower mean-reversion.

In an analogous fashion, for agents in group B, gB satisfies:

dgB = −ρgBdt + σgdWB
g , (21)

where WB
g is a standard Wiener process, and it is independent to innovations to f̂B.

5 Trading

Fluctuations in the difference of beliefs across agents will induce trading. It is natural to

expect that investors that are more optimistic about the prospects of future dividends

will bid up the price of the asset and eventually hold the total (finite) supply. We will

allow for costs of trading - a seller pays c ≥ 0 per unit of the asset sold. This cost may

represent an actual cost of transaction or a tax.

12See Conley et al. (1997) for an argument that this is the correct measure of mean-reversion.
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At each t, agents in group C = {A, B} are willing to pay pC
t for a unit of the asset. The

presence of the short-sale constraint, a finite supply of the asset, and an infinite number of

prospective buyers, guarantee that any successful bidder will pay his reservation price.13

The amount that an agent is willing to pay reflects the agent’s fundamental valuation

and the fact that he may be able to sell his holdings at a later date at the demand price

of agents in the other group for a profit. If we let o ∈ {A, B} denote the group of the

current owner, ō be the other group, and Eo
t be the expectation of members of group o,

conditional on the information they have at t, then:

po
t = sup

τ≥0
Eo

t

[∫ t+τ

t
e−r(s−t)dDs + e−rτ (pō

t+τ − c)
]
, (22)

where τ is a stopping time, and pō
t+τ is the reservation value of the buyer at the time of

transaction t + τ . Note that pō
t+τ − po

t+τ − c represents the trading profit to the seller.

Since, dD = f̂ o
t dt + σDdW o

D, we have, using the equations for the evolution of the

conditional mean of beliefs (equations (8) and (12) above) that:∫ t+τ

t
e−r(s−t)dDs =

∫ t+τ

t
e−r(s−t)[f̄ + e−λ(s−t)(f̂ o

t − f̄)]ds + Mt+τ , (23)

where Eo
tMt+τ = 0. Hence, we may rewrite equation (22) as:

po
t = max

τ≥0
Eo

t


t+τ∫
t

e−r(s−t)[f̄ + e−λ(s−t)(f̂ o
t − f̄)]ds + e−rτ (pō

t+τ − c)

 . (24)

To characterize equilibria, we will start by postulating a particular form for the equi-

librium price function, equation (25) below. Proceeding in a heuristic fashion, we derive

properties that our candidate equilibrium price function should satisfy. We then con-

struct a function that satisfies these properties, and verify that in fact we have produced

an equilibrium.14

Since all the relevant stochastic processes are Markovian and time-homogeneous, and

traders are risk-neutral, it is natural to look for an equilibrium in which the demand

13This observation simplifies our calculations, but is not crucial for what follows. We could partially relax the
short sale constraints or the division of gains from trade, provided it is still true that the asset owner expects to
make speculative profits from other investors.

14The argument that follows will also imply that our equilibrium is the only one within a certain class. However,
there are other equilibria. In fact, given any equilibrium price po

t and a process Mt that is a martingale for both
groups of agents, then p̃o

t = po
t + ertMt is also an equilibrium.
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price of the current owner satisfies

po
t = po(f̂ o

t , go
t ) =

f̄

r
+

f̂ o
t − f̄

r + λ
+ q(go

t ). (25)

with q > 0 and q′ > 0. This equation states that prices are the sum of two components.

The first part, f̄
r

+
f̂o

t −f̄

r+λ
, is the expected present value of future dividends from the view-

point of the current owner. The second is the value of the resale option, q(go
t ), which

depends on the current difference between the beliefs of the other group’s agents and the

beliefs of the current owner. We call the first quantity the owner’s fundamental valuation

and the second the value of the resale option. Applying equation (25) to evaluate pō
t+τ ,

and collecting terms, we may rewrite the stopping time problem faced by the current

owner, equation (24) as:

po
t = po(f̂ o

t , go
t ) =

f̄

r
+

f̂ o
t − f̄

r + λ
+ sup

τ≥0
Eo

t

[(
go

t+τ

r + λ
+ q(gō

t+τ )− c
)

e−rτ
]
. (26)

Equivalently, the resale option value satisfies

q(go
t ) = sup

τ≥0
Eo

t

[(
go

t+τ

r + λ
+ q(gō

t+τ )− c
)

e−rτ
]
. (27)

Hence to show that an equilibrium of the form (25) exists, it is necessary and sufficient to

construct an option value function q that satisfies equation (27). This equation is similar

to a Bellman equation. A candidate function q when plugged into the right hand side

must yield the same function on the left hand side. The current asset owner chooses an

optimal stopping time to exercise his re-sale option. Upon the exercise of the option, the

owner gets the “strike price”
go

t+τ

r+λ
+q(gō

t+τ ), the amount of excess optimism that the buyer

has about the asset’s fundamental value and the value of the resale option to the buyer,

minus the cost c of exercising the option. In contrast to the optimal exercise problem of

American options, the “strike price” in our problem depends on the re-sale option value

function itself.

It is apparent from the analysis in this section that one could, in principle, treat an

asset with a finite life. Equations (22) to (24) would apply with the obvious changes to

account for the finite horizon. However, the option value q will now depend on the re-

maining life of the asset, introducing another dimension to the optimal exercise problem.
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The infinite horizon makes the stopping time problem stationary, greatly reducing the

mathematical difficulty.

6 Equilibrium

In this section, we derive the equilibrium option value, duration between trades, and

contribution of the option value to price volatility. In addition, we also provide a simple

way to accommodate crashes.

6.1 Resale option value

Intuitively, the value of the option q(x) should be at least as large as the gains realized

from an immediate sale. The region where the value of the option equals that of an

immediate sale is the stopping region. The complement is the continuation region. In

the mind of the risk neutral asset holder, the discounted value of the option e−rtq(go
t )

should be a martingale in the continuation region, and a supermartingale in the stopping

region.15 These conditions can be stated as:

q(x) ≥ x

r + λ
+ q(−x)− c (28)

1

2
σ2

gq
′′ − ρxq′ − rq ≤ 0, with equality if (28) holds strictly. (29)

In addition, the function q should be continuously differentiable (smooth pasting). We

will derive a smooth function q that satisfies equations (28) and (29) and then use these

properties and a growth condition on q to show that in fact the function q solves (27).

To construct the function q, we guess that the continuation region will be an interval

(−∞, k∗), with k∗ > 0. k∗ is the minimum amount of difference in opinions that generates

a trade. As usual, we begin by examining the second order ordinary differential equation

15In equilibrium, risk-neutrality requires that the price of the asset today is not less than the discounted
expected price in the future plus the expected discounted dividends that will accrue. In addition, if an agent
holds the asset, these two quantities must coincide. According to equation (25), the price of the asset is the sum

of two components. The first term, f̄
r

+
f̂o

t −f̄

r+λ
, is a martingale once we discount and add the expected dividends.

Hence the discounted option value must be a martingale in the continuation region and a supermartingale in the
stopping region.
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that q must satisfy, albeit only in the continuation region:

1

2
σ2

gu
′′ − ρxu′ − ru = 0 (30)

The following proposition helps us construct an “explicit” solution to equation (30).

Proposition 2 Let

h(x) =


U
(

r
2ρ

, 1
2
, ρ

σ2
g
x2

)
if x ≤ 0

2π

Γ( 1
2
+ r

2ρ)Γ( 1
2)

M
(

r
2ρ

, 1
2
, ρ

σ2
g
x2

)
− U

(
r
2ρ

, 1
2
, ρ

σ2
g
x2

)
if x > 0

(31)

where Γ(·) is the Gamma function, and M : R3 → R and U : R3 → R are two Kum-

mer functions described in the appendix. h(x) is positive and increasing in (−∞, 0). In

addition h solves equation (30) with

h(0) =
π

Γ
(

1
2

+ r
2ρ

)
Γ
(

1
2

) . (32)

Any solution u(x) to equation (30) that is strictly positive and increasing in (−∞, 0)

must satisfy: u(x) = β1h(x) with β1 > 0.

Proof: see appendix.

We will also need properties of the function h that are summarized in the following

Lemma.

Lemma 2 For each x ∈ R, h(x) > 0, h′(x) > 0, h′′(x) > 0, h′′′(x) > 0, lim
x→−∞

h(x) = 0,

and lim
x→−∞

h′(x) = 0.

Proof: See appendix.

Since q must be positive and increasing in (−∞, k∗), we know from Proposition 2 and

Lemma 2 that

q(x) =

{
β1h(x), for x < k∗

x
r+λ

+ β1h(−x)− c, for x ≥ k∗.
(33)

Since q is continuous and continuously differentiable at k∗,

β1h(k∗)− k∗

r + λ
− β1h(−k∗) + c = 0, (34)

β1h
′(k∗) + β1h

′(−k∗)− 1

r + λ
= 0. (35)
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These equations imply that

β1 =
1

(h′(k∗) + h′(−k∗))(r + λ)
, (36)

and k∗ satisfies

[k∗ − c(r + λ)](h′(k∗) + h′(−k∗))− h(k∗) + h(−k∗) = 0. (37)

The next theorem shows that for each c, there exists a unique pair (k∗, β1) that solves

equations (36) and (37). The smooth pasting conditions are sufficient to determine the

function q and the “trading point” k∗.

Theorem 1 For each trading cost c ≥ 0, there exists a unique k∗ that solves (37). If

c = 0 then k∗ = 0. If c > 0, k∗ > c(r + λ).

Proof: see appendix.

When a trade occurs, the buyer has the highest fundamental valuation. The difference

between what a buyer pays and his fundamental valuation can be legitimately named a

bubble. In our model, this difference is given by

b = q(−k∗) =
1

(r + λ)

h(−k∗)

(h′(k∗) + h′(−k∗))
. (38)

Using equation (38), we can write the value of the re-sale option as

q(x) =

{ b
h(−k∗)

h(x), for x < k∗

x
r+λ

+ b
h(−k∗)

h(−x)− c, for x ≥ k∗.
(39)

The next theorem establishes that in fact q solves (27). The proof consists of two parts.

First, we show that (28) and (29) hold and that q′ is bounded. We then use a standard

argument16 to show that in fact q must solve equation (27).

Theorem 2 The function q constructed above is an equilibrium option value function.

The optimal policy consists of exercising immediately if go > k∗, otherwise wait until the

first time in which go ≥ k∗.

Proof: see appendix.

16See e.g. Kobila (1993) or Scheinkman and Zariphopoulou (2001) for similar arguments.
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6.2 Duration between trades

We let

w(x, k, r) = Eo[e−rτ(x,k)|x], with τ(x, k) = inf{s : go
t+s > k}, given go

t = x ≤ k. (40)

w(x, k, r) is the discount factor applied to cashflows received the first time that the

difference in beliefs reaches the level of k given that the current difference in beliefs is x.

Standard arguments17 show that u is a non-negative and strictly monotone solution to:

1

2
σ2

gwxx − ρxwx = rw, w(k, k, r) = 1. (41)

Therefore, Proposition 2 implies that

w(x, k, r) =
h(x)

h(k)
. (42)

Note that the free parameter β1 does not affect w.

Using the discount factor w(x, k, r), we can interpret the optimal stopping problem

in equation (27) as choosing the optimal trading point k∗ that solves

sup
k≥0

[(
k

r + λ
+ q(−k)− c

)
w(x, k, r)

]
, (43)

where x is the current difference in agents’ beliefs. The optimal trading point k∗ balances

the trade-off between larger trading profits k
r+λ

+ q(−k)− c and a smaller discount factor

w(x, k, r). Solving this optimization problem gives exactly the same optimal trading point

k∗ as the one obtained above.

If c > 0, trading occurs the first time t > s when go
t = k∗ given that go

s = −k∗. The

expected duration between trades provides a useful measure of trading frequency. Since

w is the moment generating function of τ ,

E[τ(−k∗, k∗)] = − ∂w(−k∗, k∗, r)

∂r

∣∣∣∣∣
r=0

. (44)

When c = 0, the expected duration between trades is zero. This is a consequence of

Brownian local time, as we discuss below.

17e.g. Karlin and Taylor (1981), page 243
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6.3 An extra volatility component

The option component introduces an extra source of price volatility. Proposition 1 states

that the innovations in the asset owner’s beliefs f̂ o and the innovations in the difference of

beliefs go are orthogonal. Therefore, the total price volatility is the sum of the volatility

of the fundamental value in the asset owner’s mind, f̄
r

+
f̂o

t −f̄

r+λ
, and the volatility of the

option component.

Proposition 3 The volatility from the option value component is

η(x) =

√
2φσf

(r + λ)

h′(x)

(h′(k∗) + h′(−k∗))
, ∀x ≤ k∗. (45)

Proof: see appendix.

Since h′ > 0, and in equilibrium go ≤ k∗, the volatility of the option value is maximum

at the trading point go = k∗.

The variance of an agent’s valuation of the discounted dividends is:

1

(r + λ)2


(

φσsσf + γ

σs

)2

+
(

γ

σs

)2

+
(

γ

σD

)2


=
1

(r + λ)2

1

(2/σ2
s + 1/σ2

D)

[
2λ2 + 2λφσf/σs + 2σ2

f/σ
2
s + σ2

f/σ
2
D

−2λ
√

λ2 + 2λφσf/σs + (2− φ2)σ2
f/σ

2
s + (1− φ2)σ2

f/σ
2
D

]
,(46)

which increases with φ if λ > 0, and equals
σ2

f

(r+λ)2
if λ = 0. Therefore, an increase in

overconfidence increases the volatility of the agent’s valuation of discounted dividends.

In the remaining of the paper, we ignore this effect, that vanishes when λ = 0, to focus

on the extra volatility component caused by the option value.

6.4 Crashes

There are several ways in which we can imagine a change in equilibrium that brings the

bubble b to zero. The fundamental of asset may become observable. The over-confident

agents may correct their over-confidence. The fundamental volatility of the asset may
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disappear. For concreteness, imagine that agents in both groups believe that the asset

fundamental will become observable at a date determined by a Poisson process that has

a parameter θ, and is independent of the four Brownian motions described earlier in the

model. Once the fundamental becomes observable, agents in each group believe that the

beliefs of agents in the other group will collapse to their own. In this case, it is easy to

see that the option value

q(x) = max
k

[(
k

r + λ
+ q(−k)

)
Eo

te
−(r+θ)τ

]
. (47)

Effectively, a higher discount rate r + θ is used for the profits from exercising the option.

More generally, we may postulate that some parameter, σf or φ, changes according to

Poisson times that are independent of all the other relevant uncertainty. The model will

then produce results that are qualitatively similar to the case in which these parameters

are constant, except that the average size of the bubble at any time will depend on the

current value of the parameter. In this way, we can admit the appearance of bubbles

and market crashes, although a more interesting discussion should account for reasons

for the parameter fluctuations.

In the following sections, we discuss several properties of the equilibrium pricing

function and the associated bubble.

7 Properties of equilibria for small trading costs

In this section, we discuss several of the characteristics of the equilibrium dynamics for

small trading costs, including the volume of trade and the magnitudes of the bubble and of

the extra volatility component caused by the bubble. We also provide some comparative

statics and show how parameter changes co-move price, volatility, and turnover.

7.1 Trading volume

It is a property of Brownian motion that if it hits the origin at t, it will hit the origin

at an infinite number of times in any non-empty interval [t, t + ∆t). In our limit case of

c = 0, this implies an infinite amount of trade in any non-empty interval that contains a

single trade. When the cost of trade c = 0, in any time interval, turnover is either zero
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or infinity, and the unconditional average volume in any time interval is infinity.18 The

expected time between trades depends continuously on c, so it is possible to calibrate the

model to obtain any average daily volume. However, a serious calibration would require

accounting for other sources of trading, such as shocks to liquidity, and should match

several moments of volume, volatility and prices.

7.2 Magnitude of the bubble

When c = 0, a trade occurs each time traders’ fundamental beliefs “cross”. Nonetheless,

the bubble is strictly positive, since

b =
1

2(r + λ)

h(0)

h′(0)
. (48)

Owners do not expect to sell the asset at a price above their own valuation, but the

option has a positive value. This result may seem counterintuitive. To clarify it, it is

worthwhile to examine the value of the option when trades occur whenever the absolute

value of the differences in fundamental valuations equal an ε > 0. An asset owner in

group A (B) expects to sell the asset when agents in group B (A) have a fundamental

valuation that exceeds the fundamental valuation of agents in group A (B) by ε, that is

gA = ε (gA = −ε). If we write b0 for the value of the option for an agent in group A that

buys the asset when gA = −ε, and b1 for the value of the option for an agent of group B

that buys the asset when gA = ε, then

b0 =
[

ε

r + λ
+ b1

]
h(−ε)

h(ε)
, (49)

where h(−ε)
h(ε)

is the discount factor from equation (42). Symmetry requires that b0 = b1

and hence

b0 =
ε

(r + λ)

h(−ε)

[h(ε)− h(−ε)]
. (50)

Another way of deriving b0 is to note that by symmetry:

b1 =
[

ε

r + λ
+ b0

]
h(−ε)

h(ε)
, (51)

18The unconditional probability, that it is zero, depends on the volatility and mean reversion of the process
of the difference of opinions and on the length of the interval. As the length of the interval goes to infinity, the
probability of no trade goes to zero.
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and hence we may derive an expression for b0 that reflects the value of all future options

to sell, properly discounted:

b0 =
ε

r + λ

h(−ε)

h(ε)
+

(
h(−ε)

h(ε)

)2

+

(
h(−ε)

h(ε)

)3

+ · · ·


=

ε

(r + λ)

h(−ε)

[h(ε)− h(−ε)]
. (52)

As ε → 0,

b0 →
1

2(r + λ)

h(0)

h′(0)
= b. (53)

In this illustration, as ε → 0, trading occurs with higher frequency and the waiting time

goes to zero. In the limit, traders will trade infinitely often and the small gains in each

trade compound to a significant bubble. This situation is similar to the cost from hedging

an option using a stop-loss strategy studied in Carr and Jarrow (1990).

It is intuitive that when σg becomes larger, there is more difference of beliefs, resulting

in a larger bubble. Also, when ρ becomes larger, for a given level of difference in beliefs,

the re-sale option is expected to be exercised quicker, and therefore there is also a larger

bubble. In fact we can show that:

Lemma 3 If c is small, the bubble b increases with σg and ρ, and decreases with r and

θ. For all x < 0, q(x) = b h(x)
h(−k∗)

increases with σg and ρ, and decreases with r and θ.

Proof: See appendix.

The proof of Lemma 3 actually shows that whenever c is small, the effect of a change

in a parameter on the barrier is second order.

Proposition 1 allows us to write σg and ρ using the parameters φ, λ, σf , is =
σf

σs
, and

iD =
σf

σD
. is and iD measure the information in each of the two signals and the dividend

flow respectively. To simplify mathematics, we set λ = 0, then,

σg =
√

2φσf (54)

ρ =
√

(2− φ2)i2s + (1− φ2)i2D (55)

Differentiating these equations, one can show the following:
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As σf increases, σg increases and ρ is unchanged. Therefore, b and q(x), for x < 0,

increase. The bubble and the option value increase with the volatility of the fundamental

process.

As is or iD increases, σg is unchanged and ρ increases, since 0 < φ < 1. Therefore, b

and q(x), for x < 0, increase. The bubble and the option value increase with the amount

of information in the signals and the dividend flow.

As φ increases, σg increases and ρ decreases. Thus, an increase in φ has offsetting

effects on the size of the bubble. However, numerical exercises indicate that the size of

bubble always increases with φ.

7.3 Magnitude of the extra volatility component

The volatility of the option value at the trading point is
√

2φσf

(r+λ)
h′(k∗)

h′(k∗)+h′(−k∗)
. Following

the proof of Lemma 3, one can establish:

Lemma 4 If c is small, the volatility of the option value at the trading point decreases

with the interest rate r and the degree of mean reversion λ, and increases with the over-

confidence parameter φ and the fundamental volatility σf .

This Lemma states, in particular, that an increase in the volatility of fundamentals

has an additional effect on price volatility at trading points, through an increase in the

volatility of the option component.

7.4 Price, volatility and turnover

Our model provides a link between asset prices, price volatility and share turnover.

Since these are endogenous variables, their relationship will typically depend on which

exogenous variable is shifted. In this section, we illustrate this link using numerical

examples with a small trading cost.

Figure 1 shows the effect of changes in φ on the equilibrium when there is a small

transaction cost on the trading barrier k∗, expected duration between trades, the bubble

b, and η(0) (the extra volatility component when beliefs coincide). The expected duration

between trades is measured in years. The trading barrier, extra volatility η(0) and the
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Figure 1: Effects of overconfidence level. The following parameters have been specified: r =
5%, λ = 0, θ = 0.1, is = 2.0, iD = 0, c = 10−6. The trading barrier, the bubble and the extra
volatility component are all measured as multiples of σf

r+λ , the fundamental volatility of the
asset.
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Figure 2: Effects of information in signals. The following parameters have been specified:
r = 5%, λ = 0, θ = 0.1, φ = 0.7, iD = 0, c = 10−6. The trading barrier, the bubble and the
extra volatility component are all measured as multiples of σf

r+λ , the fundamental volatility of
the asset.

bubble b are measured in multiples of the fundamental volatility
σf

r+λ
.19 Recall that, as φ

increases, the volatility parameter σg in the difference of beliefs increases, while the mean

reversion parameter ρ decreases. As a result, the resale option becomes more valuable

to the asset owner, the bubble and the extra volatility component become larger and

the optimal trading barrier becomes higher. The duration between trades is determined

by two offsetting effects as φ increases. On the one hand, the trading barrier becomes

higher making the duration between trades longer. On the other hand, the volatility σg

of the difference in beliefs increases, causing the duration to be shorter. As we stated,

the proof of lemma 3 shows that, when c is small, the change in the trading barrier k∗

is second-order. Thus the duration between trades typically decreases, as illustrated in

panel B.

19Since the bubble is generated through an option value, it is natural to normalize it by the volatility of the
underlying fundamental value, that is, the price volatility that would prevail if fundamentals were observable.
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Figure 2 shows the effect of changes in the information in signals is =
σf

σs
on the

equilibrium, again with a small transaction cost. As is increases, the mean reversion

parameter ρ of the difference in beliefs increases, and the volatility parameter σg is

unchanged. Intuitively, the increase in ρ causes the trading barrier and the duration

between trades to drop. Nevertheless, the bubble becomes larger due to the increase in

trading frequency. The extra volatility component η is almost independent of is, since it

is essentially determined by φ and σf as shown in equation 45.

In both cases, there is a monotonically increasing relationship between the size of

bubble and duration between trades. In addition, the extra price volatility either increases

or it does not decrease. We have also verified that this qualitative relationship holds for

many other parameter values. In this way, our model is potentially capable to capture a

key feature of many historical bubbles. This key feature is discussed by Cochrane (2002)

who argues that there was a (time series) correlation between the NYSE index and

NYSE volume through the 1929 boom and crash, and between the NASDAQ index and

NASDAQ volume troughout the internet bubble. Cochrane also documents a significant

cross-sectional correlation between log market/book and log turnover for all stocks in

CRSP and NASDAQ in the period of 1996-2000.

8 Effects of trading costs

Using the results established in subsection 6.1, we can show that increasing the trading

cost c raises the trading barrier k∗, and reduces b, q(x) and η(x). In fact:

Proposition 4 If c increases, the optimal trading barrier k∗ increases. Furthermore, the

bubble b, the option component q(x) and the excess volatility η(x) (∀x ≤ k∗(c) ) decrease.

As c → 0, dk∗

dc
→∞, but the derivatives of b, q(x), and η(x) are always finite.

Proof: See appendix.

In order to illustrate the effects of trading costs, we use the following parameter values

from our previous numerical exercise, r = 5%, φ = 0.7, λ = 0, θ = 0.1, is = 2.0, iD = 0.

Figure 3 shows the effect of trading costs on the trading barrier k∗, expected duration
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Figure 3: Effects of trading costs. The following parameters have been specified: r = 5%, φ =
0.7, λ = 0, θ = 0.1, is = 2.0, iD = 0. The trading barrier, the bubble, the extra volatility
component, and trading cost are all measured as multiples of σf

r+λ , the fundamental volatility
of the asset.

between trades, the bubble b, and η(0) (the extra volatility component when beliefs

coincide).

Panel A of Figure 3 shows the equilibrium trading barrier k∗. For comparison, we

also graph the amount c(r +λ), which corresponds to the difference in beliefs that would

justify trade if the option value was ignored. The difference between these two quantities

represents the “profits” that the asset owner thinks he is obtaining when he exercises the

option to sell. When the trading cost is zero, the asset owner sells the asset immediately

when it is profitable and these profits are infinitely small. As the trading cost increases,

the optimal trading barrier increases, and the rate of increase near c = 0 is dramatic,

since the derivative dk∗

dc
is infinite at the origin. As a result, the trading frequency is

greatly reduced by the increasing trading cost as shown in Panel B.

Panels C and D show that trading costs also reduce the bubble and the extra volatility

component, but as guaranteed by Proposition 4, at a limited rate even near c = 0.
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Although one could expect that the strong reduction in trading frequency should greatly

reduce the bubble, this effect is partially offset by the increase in profits in each trade.20

Similar intuition applies to the effect of the trading cost on the extra volatility component.

To estimate the impact of an increase on trading costs, measured as a proportion of

price, as opposed to a multiple of fundamental volatility, we must take a stand concerning

the relationship between price and volatility of fundamentals. For the parameter values

used in our example, Panel C shows that the bubble, for c ∼ 0, is close to four times

the fundamental volatility parameter
σf

r+λ
. If we accept that in the case of the internet

bubble, the size of the bubble in the late 90’s was of the order of 80% of the price that

prevailed in the same period by comparing average prices in the late 90’s with the post

bubble prices, then the size of the fundamental volatility is of the same magnitude as

20% of trading prices, and we can reinterpret the values in the figures as multiples of

prices. The numerical results indicate that in this case a tax of 1% of prices would have

caused a reduction of less than 20% to the magnitudes of both the bubble and the extra

volatility component.

The effectiveness of a trading tax in reducing speculative trading has been hotly

debated since James Tobin’s (1978) initial proposal for a transaction tax in the foreign

currency markets. Shiller (2000, pages 225-228) provides an overview of the current

status of this debate. Our model implies that for small trading costs, increases in trading

costs have a much larger impact in trading frequency than in excess volatility or the

magnitude of the price bubble. In reality, trading also occurs for other reasons, such

as liquidity shocks or changes in risk bearing capacity, that are not considered in our

analysis and, for this reason, the limited impact of transaction costs on volatility and

price bubbles cannot serve as an endorsement of a tax on trading. Our numerical exercise

can also answer a question raised by Shiller (2000) of why bubbles can exist in real estate

markets, where the transaction costs are typically high.

20Vayanos (1998) makes a similar point in a different context, when analyzing the effects of transaction cost
on asset prices in a life-cycle model. Vayanos shows that an increase of transaction cost can reduce the trading
frequency but may even increase asset prices.

27



9 Can the price of a subsidiary be larger than its parent firm?

The existence of the option value component in asset prices can potentially create vio-

lations to the law of one price and even make the price of a subsidiary exceed that of a

parent company. In this section, we use an example to illustrate this type of situation.

There are two firms, indexed by 1 and 2. For simplicity, we assume the dividend

processes of both assets follow the process in equation (1) with the same parameter σD,

but with independent innovations, and with different fundamental variables f1 and f2

respectively. The fundamental variables f1 and f2 are unobservable and both follow the

linear mean-reverting process in equation (2) with the same parameters λ, f̄ and σf . To

illustrate our point, we consider a special case in which the innovations in the processes

of f1 and f2 are perfectly negatively correlated and there are no trading costs.

There is a third firm, and the dividend flow of firm 3 is exactly the sum of the dividend

flows of firms 1 and 2. In this sense, firms 1 and 2 are both subsidiaries of firm 3, and the

fundamental variable of firm 3 is the sum of that of firms 1 and 2: f3 = f1 +f2. Since the

innovations of f1 and f2 are perfectly negatively correlated, f3 is a constant determined

by initial conditions.

Shares of these three firms are traded by the two groups of agents described in Section

2. Since the fundamental variables of firms 1 and 2 fluctuate and are unobservable,

these agents try to infer their values. According to our earlier discussion, overconfidence

generates heterogeneous beliefs among agents in different groups. As a result, an option

component exists in the prices of the shares of firm 1 and firm 2. Since innovations to the

fundamental variables f1 and f2 are perfectly negatively correlated, the beliefs of agents

about these two assets are also perfectly negatively correlated, i.e., when f̂A
1 ( f̂B

1 ) moves

up by certain amount, f̂A
2 (f̂B

2 ) moves down by the same amount. Since c = 0, agents

with higher beliefs hold the asset. Therefore, when agents in group A are holding firm

1, agents in group B must be holding firm 2, and the option components in the prices

of these two firms are always the same. Therefore, the prices of firms 1 and 2 can be

expressed as

p1 =
f̄

r
+

f̂1 − f̄

r + λ
+ q(x), p2 =

f̄

r
+

f̂2 − f̄

r + λ
+ q(x), (56)
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where x = f̂ ō
1 − f̂ o

1 = f̂ ō
2 − f̂ o

2 < 0.

Since agents in both groups know that the fundamental variable of firm 3 is a constant,

there are no heterogeneous beliefs about f3. Therefore, there is no option component or

bubble in the price of firm 3. The price of firm 3 can be expressed as

p3 =
2f̄

r
+

f̂1 + f̂2 − 2f̄

r + λ
. (57)

According to the numerical exercise in Subsection 7.4, the magnitude of the option com-

ponent in the prices of assets 1 and 2 can equal four or five times their fundamental

volatility. If fundamental volatility is large relative to the discounted value of funda-

mentals, the value of one of the subsidiaries will exceed the value of firm 3, even though

all prices are nonnegative.21 Although highly stylized, this analysis may help clarify the

episodes such as 3Com’s equity carve-out of Palm and its subsequent spinoff.22 In early

2000, for a period of over two months the total market capitalization of 3Com was signif-

icantly less than the market value of its holding in Palm, a subsidiary of 3Com. Similar

situations also happened in other carve-out cases studied in Lamont and Thaler (2001),

Mitchell, Pulvino and Stafford (2001), and Schill and Zhou (2000). In this example, our

model also predicts that trading in the subsidiary would be much higher than trading in

the parent company, because of the higher fluctuation in beliefs about the value of the

subsidiary. In fact, Lamont and Thaler (2001) remarked that the turnover rate of the

subsidiaries’ stocks was on average six times higher than that of the parent firms’ stocks.

This example also illustrates the fact that the diversification of a firm reduces the

bubble component in the firm’s stock price because diversification reduces the funda-

mental uncertainty of the firm and therefore reducing the potential disagreements among

investors. This result is consistent with the diversification discount “puzzle” - the fact

that the stocks of diversified firms appear to trade at a discount compared to the stocks

of undiversified firms.23

21Duffie, Garleanu, and Pedersen (2001) provide another mechanism to explain this phenomenon based on the
lending fee that the asset owner can expect to collect.

22The missing link is to demonstrate that the divergence of beliefs on the combined entity was smaller than
the divergence of beliefs on the Palm spinoff.

23See Lang and Stultz (1994), Burger and Ofek (1995), and others.
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10 Conclusion and further discussions

In this paper, we provide a simple model to study bubbles and trading volume that

result from speculative trading among agents with heterogeneous beliefs. Heterogeneous

beliefs arise from the presence of overconfident agents. With a short-sale constraint, an

asset owner has an option to sell the asset to other agents with more optimistic beliefs.

Agents value this option, and consequently pay prices that exceed their own valuation

of future dividends, because they believe that in the future they will find a buyer willing

to pay even more. We solve the optimal exercise problem of an asset owner and derive,

in an almost analytic form, many of the equilibrium variables of interest. This allows us

to characterize properties of the magnitude of the bubble, trading frequency, and asset

price volatility and to show that the model is consistent with observations that have

been made about actual historical bubbles. Theoretical results and numerical exercises

suggest that a small trading tax may be effective in reducing speculative trading, but it

may not be very effective in reducing price volatility or the size of the bubble. Through

a simple example, we also illustrate that the bubble can cause the price of a subsidiary

to be larger than its parent firm, a violation of the law of one price.

It is natural to conjecture that the existence of a speculative component in asset

prices has implications for corporate strategies. Firm managers may be able to profit by

adopting strategies that boost the speculative component.

The underpricing of a firm’s initial public offering (IPO) has been puzzling. As

reviewed by Ritter (2002), the average first day return of an IPO is about 10 to 15

percent. For the recent internet stock IPOs, it was common to see first day returns of

50% or even more than 100%. In some cases hundreds of millions of dollars were left

on the table. Rajan and Servaes (1997), and Aggarwal, Krigman, and Womack (2001)

show that higher initial returns on an IPO lead to more analysts and media coverage.

Since investors may disagree about the precision of information provided by analysts and

media, the increase in this coverage could increase the option component of the stock.

Therefore, IPO unerpricing could be a strategy used by firm managers to boost the

price of their stocks. Firm managers, who typically hold residual shares, can get greater
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payoffs from subsequent sales of their own personal shares after the lock-up period. If

this mechanism is operative, underpricing is more likely to occur when managers hold a

larger share of the firm. This agrees with the empirical results in Aggarwal, Krigman,

and Womack (2001) who show that managerial share and option holdings are positively

related to first day IPO underpricing. If underpricing occurs because of the mechanism

we propose, a larger underpricing should be associated with a larger trading volume.

In fact, Reese (2000) finds that the higher initial IPO returns is associated with larger

trading volume for more than three years after issuance.

Another popular corporate strategy during the recent internet stock bubble was to

change firm name to a “dotcom” name. Cooper, Dimitrov, and Rau (2001) use a sample

of 147 firms that changed their names to a dotcom name between June 1998 and July

1999, to document abnormal returns on the order of 53 percent in the five days around

the announcement date. Lee (2001) also documents that the average trading volume

rises twelve fold on the announcement date in a sample of 114 firms that change their

names to dotcom between January 1995 and June 1999, even though these name changes

were not accompanied by any changes in strategy. If, as it seems likely, the name change

increased the attention of the analyst and media, and if investors disagree on the precision

of information provided by analysts and media, the name change would increase the

speculative component of price.

Since stocks have been widely used in compensation contracts for firm executives,

the presence of bubbles in stock prices will lead to different managerial incentives than

those discussed in standard theories of executive compensation that assume unbiased

stock prices. In Bolton, Scheinkman, and Xiong (2002), we formally analyze managerial

contracts in a model of speculative markets that is based in the framework presented in

this paper. We show that the presence of overconfidence on the part of potential stock

buyers could induce incumbent shareholders to use short-term stock compensation to

motivate managerial behavior that increases short term prices at the expense of long

term performance. This provides an alternative to the common view that the recent

corporate scandals were caused by a lack of adequate board supervision.
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A Proofs

A.1 Proof to Lemma 1

Let ϑ(φ) = λ + φ
σf

σs
and ι(φ) = (1− φ2)(2σ2

f/σ
2
s + σ2

f/σ
2
D). Then

dγ

dφ
∼ 1

2

2ϑdϑ
dφ

+ dι
dφ√

(ϑ2 + ι)
− dϑ

dφ
=

(
ϑ√

ϑ2 + ι
− 1

)
dϑ

dφ
+

1

2
√

ϑ2 + ι

dι

dφ
≤ 0. (A1)

A.2 Proof to Proposition 1

The process of gA can be derived from the conditional beliefs f̂A and f̂B in equations (8)

and (12):

dgA = df̂B − df̂A = −
[
λ +

2γ + φσsσf

σ2
s

+
γ

σ2
D

]
gAdt +

φσf

σs

(dsB − dsA). (A2)

The difference of beliefs gA mean-reverts with a parameter of

ρ = λ +
2γ + φσsσf

σ2
s

+
γ

σ2
D

=

√√√√(λ + φ
σf

σs

)2

+ (1− φ2)σ2
f

(
2

σ2
s

+
1

σ2
D

)
. (A3)

In the mind of agents in group A,

dsA = f̂Adt + σsdWA
A , (A4)

dsB = f̂Adt + σsdWA
B , (A5)

according to equations (9) and (10). Therefore,

dgA = −ρgAdt +
φσf

σs

(
σsdWA

B − σsdWA
A

)
. (A6)

We can simplify the notation to

dgA = −ρgAdt + σgdWA
g (A7)

with

σg =
√

2φσf , (A8)

dWA
g =

1√
2

(
dWA

B − dWA
A

)
. (A9)
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It is easy to verify that WA
g is independent to the innovations to f̂A in the mind of agents

in group A.

Similar derivation can be done for the difference of beliefs gB in the mind of agents

in group B.

A.3 Proof to Proposition 2

Let v(y) be a solution to the differential equation

yv′′(y) + (1/2− y)v′(y)− r

2ρ
v(y) = 0. (A10)

It is straightforward to verify that

u(x) = v

(
ρ

σ2
g

x2

)
(A11)

satisfies the equation :

1

2
σ2

gu
′′(x)− ρxu′(x) = ru(x). (A12)

The general solution of equation (A10) is24

v(y) = αM

(
r

2ρ
,
1

2
, y

)
+ βU

(
r

2ρ
,
1

2
, y

)
. (A13)

M(·, ·, ·) and U(·, ·, ·) are Kummer functions defined as

M(a, b, y) = 1 +
ay

b
+

(a)2y
2

(b)22!
+ · · ·+ (a)ny

n

(b)nn!
+ · · · (A14)

where

(a)n = a(a + 1)(a + 2)...(a + n− 1), (a)0 = 1, (A15)

and

U(a, b, y) =
π

sin πb

{
M(a, b, y)

Γ(1 + a− b)Γ(b)
− y1−b M(1 + a− b, 2− b, y)

Γ(a)Γ(2− b)

}
. (A16)

24See Abramowitz and Stegum (1964), chapter 13.
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In addition:

My(a, b, y) > 0, ∀y > 0 (A17)

M(a, b, y) → +∞, U(a, b, y) → 0, as y → +∞. (A18)

Given a solution u to equation (A12) we can construct two solutions v to equation

(A10), by using the values of the function for x < 0 and for x > 0. We will denote the

corresponding linear combinations of M and U by α1M + β1U and α2M + β2U. If these

combinations are constructed from the same u their values and first derivatives (and

consequently second derivatives) must have the same limit as x → 0. To guarantee that

u(x) is positive and increasing for x < 0, α1 must be zero. Therefore,

u(x) = β1U

(
r

2ρ
,
1

2
,

ρ

σ2
g

x2

)
if x ≤ 0. (A19)

The solution must be continuously differentiable at x = 0. From the definition of the

two Kummer functions, we can show that

x → 0−, u(x) → β1π

Γ( 1
2
+ r

2ρ)Γ( 1
2)

, u′(x) → β1π
√

ρ

σgΓ( r
2ρ)Γ( 3

2)

x → 0+, u(x) → α2 + β2π

Γ( 1
2
+ r

2ρ)Γ( 1
2)

, u′(x) → − β2π
√

ρ

σgΓ( r
2ρ)Γ( 3

2)

(A20)

By matching the values and first order derivatives of u(x) from the two sides of x = 0,

we have

β2 = −β1, α2 =
2β1π

Γ
(

1
2

+ r
2ρ

)
Γ
(

1
2

) . (A21)

The function h is obviously a solution to equation (A12) that is twice differentiable

and satisfies

h(0) =
π

Γ
(

1
2

+ r
2ρ

)
Γ
(

1
2

) > 0, (A22)

and h(−∞) = 0. Equation (A12) guarantees that at any critical point where h < 0, h

has a maximum, and at any critical point where h > 0 it has a minimum. Hence h is

strictly positive and increasing in (−∞, 0).
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A.4 Proof to Lemma 2

h(x) is solution to the

αh′′ − xh′ − βh = 0, (A23)

where α =
σ2

g

2ρ
> 0 and β = r

ρ
> 0, that is positive and increasing in (−∞, 0).

If x∗ ∈ R with h(x∗) > 0 and h′(x∗) = 0 then h′′(x∗) = βh(x∗)/α > 0. Hence h has

no local maximum while it is positive and as a consequence it is always positive and has

no local maxima. In particular h is monotonically increasing. Since h′ > 0 for x ≤ 0 and

h′′ ≥ 0 for x ≥ 0, h′(x) > 0 for all x. From the solution constructed in Proposition 2,

limx→−∞ h(x) = 0.

Note any solution to the differential equation is infinitely differentiable. Next, we

show that h is convex. For x > 0, h′′(x) = xh′(x)/α + βh(x)/α > 0. To prove that h is

also convex for x < 0, let us assume that there exists x∗ < 0 such that h′′(x∗) ≤ 0. Then

h′′′(x∗) = x∗h′′(x∗)/α + (β + 1)h′(x∗)/α > 0. (A24)

This directly implies that h′′(x) < 0 for x < x∗. Then limx→−∞ h′(x) = ∞. In this

situation the boundary condition h(−∞) = 0 can not be satisfied. In this way, we get a

contradiction.

Let v(x) = h′(x). v(x) is positive and increasing from the properties that we have

proved for h(x). v also satisfies the following equation:

αv′′(x)− xv′(x)− (β + 1)v(x) = 0. (A25)

This equation is very similar to the one satisfied by h(x). By repeating the same proof

for h, one can show that v(x) is also convex and limx→−∞ v(x) = 0.

Actually, one can show that any higher order derivative of h(x) is positive, increasing

and convex.

A.5 Proof to Theorem 1

Let

l(k) = [k − c(r + λ)](h′(k) + h′(−k))− h(k) + h(−k). (A26)
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We first show that there exists a unique k∗ that solves l(k) = 0.

If c = 0, l(0) = 0, and

l′(k) = k[h′′(k)− h′′(−k)] > 0, for all k 6= 0. (A27)

Therefore k∗ = 0 is the only root to l(k) = 0.

If c > 0, then

l(k) < 0, for all k ∈ [0, c(r + λ)]. (A28)

Also, since h′′ and h′′′ are increasing (Lemma 2),

l′(k) = [k − c(r + λ)][h′′(k)− h′′(−k)] > 0, ∀k > c(r + λ), (A29)

l′′(k) = h′′(k)− h′′(−k) + [k − c(r + λ)][h′′′(k)− h′′′(−k)] > 0, ∀k > c(r + λ).(A30)

Therefore l(k) = 0 has a unique solution k∗ > c(r + λ).

A.6 Proof to Theorem 2

First we show that q satisfies equation (28). Using equation (39), we have

q(−x) =

{ b
h(−k∗)

h(−x) for x > −k∗

−x
r+λ

+ b
h(−k∗)

h(x)− c for x ≤ −k∗.
(A31)

We must establish that

U(x) = q(x)− x

r + λ
− q(−x) + c ≥ 0, ∀x. (A32)

A simple calculation shows that

U(x) =


2c for x < −k∗
−x
r+λ

+ b
h(−k∗)

[h(x)− h(−x)] + c for −k∗ ≤ x ≤ k∗

0 for x > k∗
(A33)

Thus,

U ′′(x) =
b

h(−k∗)
[h′′(x)− h′′(−x)], −k∗ ≤ x ≤ k∗. (A34)

From lemma 2 we know for U ′′(x) > 0 for 0 < x < k∗, and U ′′(x) < 0 for −k∗ < x < 0.

Since U ′(k∗) = 0, U ′(x) < 0 for 0 < x < k∗. On the other hand, U ′(−k∗) = 0, so U ′(x) <
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0 for −k∗ < x < 0. Therefore U(x) is monotonically decreasing for −k∗ < x < k∗. Since

U(−k∗) = 2c > 0 and U(k∗) = 0, U(x) > 0 for −k∗ < x < k∗.

We now show that equation (29) holds. By construction, equation (29) holds in the

region x ≤ k∗. Therefore we only need to show for x ≥ k∗,

1

2
σ2

gq
′′(x)− ρxq′(x)− rq(x) ≤ 0. (A35)

In this region, q(x) = x
r+λ

+ b
h(−k∗)

h(−x) − c, thus q′(x) = 1
r+λ

− b
h(−k∗)

h′(−x) and

q′′(x) = b
h(−k∗)

h′′(−x). Hence,

1

2
σ2

gq
′′(x)− ρxq′(x)− rq(x)

=
b

h(−k∗)

[
1

2
σ2

gh
′′(−x) + ρxh′(−x)− rh(−x)

]
− r + ρ

r + λ
x + rc

= − r + ρ

r + λ
x + rc ≤ −(r + ρ)c + rc = −ρc < 0 (A36)

where the inequality comes from the fact that x ≥ k∗ > (r + λ)c from Theorem 1.

Also q has an increasing derivative in (−∞, k∗) and has a derivative bounded in

absolute value by 1
r+λ

in (k∗,∞). Hence q′ is bounded.

If τ is any stopping time, the version of Ito’s lemma for twice differentiable functions

with absolutely continuous first derivatives (e.g. Revuz and Yor (1999), Chapter VI)

implies that

e−rτq(go
τ ) = q(go

0) +
∫ τ

0

[
1

2
σ2

gq
′′(go

s)− ρgo
sq
′(go

s)− rq(go
s)
]
ds +

∫ τ

0
σgq

′(go
s)dWs (A37)

Equation (29) states that the first integral is non positive, while the bound on q′ guar-

antees that the second integral is a Martingale. Using equation (28) we obtain,

Eo
{
e−rτ

[
go

τ

r + λ
+ q(−go

τ )− c
]}

≤ Eo
[
e−rτq(go

τ )
]
≤ q(go

0). (A38)

This shows that no policy can yield more than q(x).

Now consider the stopping time τ = inf{t : go
t ≥ k∗}. Such τ is finite with probability

one, and go
s is in the continuation region for 0 ≤ s < τ. Hence using exactly the same

reasoning as above, but recalling that in the continuation region (29) holds with equality

we obtain that

q(go) = Eo
{
e−rτ

[
go

τ

r + λ
+ q(−go

τ )− c
]}

. (A39)
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A.7 Proof to Proposition 3

Since q(x) = 1
(r+λ)

h(x)
h′(k)+h′(−k)

, the volatility of q(go
t ) is given by 1

(r+λ)

h′(go
t )

h′(k)+h′(−k)
multiplied

by the volatility of go
t . From the proof to proposition 1,

dgo
t = −ρgo

t dt +
φσf

σs

(dsō − dso). (A40)

We need to determine the volatility of this process from the perspective of an objective

econometrician. From equations (3) and (4) the volatility of sō−so is
√

2σs in an objective

measure. Hence the volatility of go is
√

2φσf .

A.8 Proof to Lemma 3

When c = 0, the magnitude of the bubble is

b0 =
σg

2
√

2ρ(r + λ)

Γ
(

r+θ
2ρ

)
Γ
(

1
2

+ r+θ
2ρ

) . (A41)

It is obvious that b0 increases with σg. We can directly show that b0 increases with ρ and

decreases with r and θ by plotting it.

When c = 0, the option value component is q0(x) = b0
h(x)
h(0)

where h(x) is a positive

and increasing solution to

1

2
σ2

gh
′′(x)− ρxh′(x)− (r + θ)h(x) = 0, h(0) =

π

Γ
(

1
2

+ r+θ
2ρ

)
Γ
(

1
2

) . (A42)

Note that q0(x) is not effected by letting h(0) = 1.

Assume σ̃g > σg, let h̃(x) satisfy the following differential equation

1

2
σ̃2

g h̃
′′(x)− ρxh̃′(x)− (r + θ)h̃(x) = 0, h̃(−∞) = 0, h̃(0) =

π

Γ
(

1
2

+ r+θ
2ρ

)
Γ
(

1
2

) .(A43)

We can show h̃(x) > h(x) for all x < 0. Let

f(x) = h̃(x)− h(x). (A44)

Then f(−∞) = f(0) = 0 using Lemma 2. f(x) has no local minimum x∗ with f(x∗) < 0.

If such a local minimum exists, f ′(x∗) = 0 and f ′′(x∗) ≥ 0. On the other hand, from the

equations satisfied by h̃(x) and h(x), we have

1

2
[σ̃2

g h̃
′′(x)− σ2

gh
′′(x)]− ρx[h̃′(x)− h′(x)]− (r + θ)[h̃(x)− h(x)] = 0. (A45)
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This equation implies that

σ̃2
g h̃
′′(x∗) < σ2

gh
′′(x∗). (A46)

Since σ̃2
g > σ2

g , this further implies that h̃′′(x∗) < h′′(x∗). This is equivalent to f ′′(x∗) < 0,

which contradicts with x∗ being a local minimum. Therefore, f(x) cannot have a local

minimum with its value less than zero. Since f(−∞) = f(0) = 0, f(x) must stay above

zero for x ∈ (−∞, 0). Therefore, h̃(x) > h(x) for all x < 0. This directly implies that

the option value component q0(x) increases with σg for all x < 0.

Assume ρ̄ > ρ, let h̄(x) satisfy the following differential equation

1

2
σ2

g h̄
′′(x)− ρ̄xh̄′(x)− (r + θ)h̄(x) = 0, h̄(−∞) = 0, h̄(0) =

π

Γ
(

1
2

+ r+θ
2ρ

)
Γ
(

1
2

) .(A47)

We can show h̄(x) < h(x) for all x < 0. Again let

f(x) = h̄(x)− h(x). (A48)

We first establish that f(x) has no local minimum x∗ with f(x∗) < 0. If such a local

minimum exists, f ′(x∗) = 0 and f ′′(x∗) ≥ 0. On the other hand, from the equations

satisfied by h̄(x) and h(x), we have

1

2
σ2

g [h̄
′′(x)− h′′(x)]− ρx[h̄′(x)− h′(x)]− (r + θ)[h̄(x)− h(x)] = (ρ̄− ρ)xh̄′(x). (A49)

This equation implies that

h̄′(x∗) < 0, (A50)

which contradicts with h̄(x) as an increasing function. Therefore, f(x) cannot have a

local minimum below zero. Since f(−∞) = f(0) = 0, f(x) must stay above zero for

x < 0. This directly implies that h̄(x) > h(x) for all x < 0, and q0(x) increases with ρ

for all x < 0. Similarly, we can prove that q0(x) decreases with r and θ for all x < 0.

One can extend the comparative statics we established for c = 0 for the case of c

small. Let ζ ∈ {σg, ρ, θ}. From equation (38) it follows that if ∂k∗(ζ,c)
∂ζ

= o(k∗) then the

comparative statics of b with respect to ζ is preserved for small c.
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Using the definition of function h in equation (31), we write h as h(x, ζ). From

equation (37),

∂k∗(ζ, c)

∂ζ
= −

[k∗ − c(r + λ)]
(

∂2h(k∗,ζ)
∂x∂ζ

+ ∂2h(−k∗,ζ)
∂x∂ζ

)
−
(

∂h(k∗,ζ)
∂ζ

− ∂h(−k∗,ζ)
∂ζ

)
[k∗ − c(r + λ)][∂2h(k∗,ζ)

∂x2 − ∂2h(−k∗,ζ)
∂x2 ]

. (A51)

As c → 0, k∗ → 0 and hence both the numerator and denominator go to zero. To find

the limit behavior, we use the explicit form of h given in the proof of Proposition 2, and

write

h(x, ζ) = C0 + C1x + C2x
2 + C3x

3 + o(x4) (A52)

with

C0 =
π

Γ
(

r
2ρ

+ 1
2

)
Γ
(

1
2

) (A53)

C1 =
π
√

ρ

Γ
(

r
2ρ

)
Γ
(

3
2

)
σg

(A54)

C2 =
πr

4Γ
(

r
2ρ

+ 1
2

)
Γ
(

1
2

)
σ2

g

(A55)

C3 =
π
√

ρ(r + ρ)

3Γ
(

r
2ρ

)
Γ
(

3
2

)
σ3

g

(A56)

We can use equation (37) to replace the term k∗ − c(r + λ) in the right hand side of

equation (A51) by h(k∗,ζ)−h(−k∗,ζ)
∂h(k∗,ζ)

∂x
+

∂h(−k∗,ζ)
∂x

. Taking limits as k∗ → 0 we obtain,

∂k∗(ζ, c)

∂ζ
∼ o(k∗), (A57)

ζ ∈ {σg, ρ, θ}. A small variation establishes the same result for ∂k∗(r,c)
∂r

. Hence, for small

c, b increases with σg and ρ, and decrease with r and θ. In addition we can show that

q(x) for x < k∗ increases with σg and ρ, and decreases with r and θ.

A.9 Proof to Proposition 4

Let

l(k, c) = [k − c(r + λ)](h′(k) + h′(−k))− h(k) + h(−k). (A58)
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k∗(c) is the root of l(k, c) = 0. If c > 0

dk∗

dc
=

(r + λ)

[k∗ − c(r + λ)]

[h′(k∗) + h′(−k∗)]

[h′′(k∗)− h′′(−k∗)]
> 0. (A59)

Hence k∗(c) is differentiable in (0,∞). Now suppose cn → 0. The sequence k∗(cn) is

bounded and every limit point k̄∗ must solve l(k̄∗, 0) = 0. Hence, as we argued in the

proof in the proof of Theorem 1, k̄∗ = 0 and the function k∗(c) is continuous. Hence dk∗

dc

approaches ∞ as c → 0. The claims on b and q(x) follow from equations equations (38)

and (39), and Lemma 2. The derivative of η(x) with respect to c is

dη(x)

dc
=

√
2φσf

(r + λ)

h′(x)(h′′(k∗)− h′′(−k∗))

(h′(k∗) + h′(−k∗))2

(
−dk∗

dc

)

= −
√

2φσfh
′(x)

[k∗ − c(r + λ)](h′(k∗) + h′(−k∗))
< 0. (A60)

Therefore, η(x) decreases with c. However, note that dη(x)
dc

is finite as c → 0 although

dk∗

dc
→∞ as c → 0.
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