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An Interactivist-Constructivist Approach to Intelligence: Self-
Directed Anticipative Learning

W.D. Christensen & C.A. Hooker

Abstract  This paper outlines an original interactivist-constructivist (I-C) approach to
modeling intelligence and learning as a dynamical embodied form of adaptiveness and
explores some applications of I-C to understanding the way cognitive learning is realised in
the brain. Two key ideas for conceptualising intelligence within this framework are developed.
These are: (i) intelligence is centrally concerned with the capacity for coherent, context-
sensitive, self-directed management of interaction, (ii) the primary model for cognitive
learning is anticipative skill construction. Self-directedness is a capacity for integrative
process modulation which allows a system to ‘steer’ itself through its world by anticipatively
matching its own viability requirements to interaction with its environment. Because the
adaptive interaction processes required of intelligent systems are too complex for effective
action to be prespecified (e.g. genetically) learning is an important component of intelligence. A
model of self-directed anticipative learning (SDAL) is formulated based on interactive skill
construction, and argued to constitute a central constructivist process involved in cognitive
development. SDAL illuminates the capacity of intelligent learners to start with the vague,
poorly defined, problems typically posed in realistic learning situations and progressively
refine them, transforming them into problems with sufficient structure to guide the construction
of a solution. Finally, some of the implications of I-C for modeling of the neuronal basis of
intelligence and learning are explored; in particular, Quartz and Sejnowski’s recent neural
constructivism (NC) paradigm, enriched by Montague and Sejnowski’s dopaminergic model
of anticipative-predictive neural learning, is assessed as a promising, but incomplete,
contribution to this approach. The paper concludes with a four-fold reflection on the
divergence in cognitive modeling philosophy between the I-C and the traditional computational
information processing (CIP) approaches.

1. Introduction

This paper outlines an original interactivist-constructivist (I-C) approach to modeling
intelligence and learning, and explores some applications of I-C to understanding the way
cognitive learning is implemented in the brain. I-C is a dynamical
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embodied approach which falls broadly within the recently resurgent school emphasising
adaptive interaction rather than internal computation.[1] However, there is much controversy
concerning just what, if anything, claims to a ‘new non-cognitivist paradigm’ might amount to
(e.g. the commentaries on van Gelder 1998). Whilst a suite of new tools and a number of
important issues for modeling intelligence are highlighted by dynamical and adaptive systems
approaches, a consistent weakness is the absence of a positive conception of what intelligence
and cognition are (cf. Keijzer and Bem 1996). This paper addresses the issue by initially
outlining some principles for modeling the complex embedding relations involved in even
simple adaptive behaviour, and then by developing two key ideas for conceptualising
intelligence within the dynamically oriented I-C framework. These are: (i) intelligence is
centrally concerned with the capacity for coherent, context-sensitive, self-directed
management of interaction, and cognitive processes are the high order modulatory processes
that produce this capacity, (ii) the primary model for cognitive learning is anticipative skill
construction. The upshot of these features is that (iii) intelligence involves a sophisticated
form of the root process of gradient tracking, with self-directed interaction arising as gradients
become increasingly internally constructed and modified.

Living systems must so interact with their environment as to acquire, within their
means, the resources they need for survival, and must so interact within themselves that these
resources are used to regenerate themselves, including these capacities. In general there are
many variant interactions available, both within living systems and in their environment, most
maladaptive. Thus the basic problem intelligent systems have to solve is the coherent context-
sensitive management of interaction processes with many degrees of freedom. Self-
directedness is theorised as the capacity for high order integrative process modulation geared
to solving this problem. Self-directed systems anticipate and evaluate interaction processes,
generating and modifying action context-sensitively in order to achieve specific interaction
goals (e.g. catching the gazelle) and maintain fundamental system parameters (e.g. nutrition).
Learning is an important component of intelligence because of the complexity that intelligent
systems must adaptively cope with. Instructional prespecification, such as through
genetically determined phenotypic (including cognitive) ‘modules’, isn’t an effective strategy
for dealing with this type of complexity. Indeed, the adaptive problems that intelligent
systems must solve are typically poorly or incompletely specified; the details must be filled in
context-sensitively. Intelligent learners must start with vague, poorly defined, problems
(‘catch some food’) and progressively refine them (‘catch this gazelle’), transforming them
into problems with sufficient structure to guide the construction of a solution (‘run this way
here’).

These problems take the form of a requirement for skillful bodily interaction and
hence skill construction is seen as a primary model for understanding learning processes. This
represents a shift away from internal computation of a correct solution-algorithm as the core
model of learning to the dynamics of generating and modifying bodily interaction processes.
This framework brings to the fore what searching for algorithms suppresses, namely the ways
in which the ongoing
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interaction process itself generates information for the interacting system which it can use to
further modify subsequent interaction. Among the adaptive flexibilities this provides, it
allows such systems to progressively construct improved anticipations of these processes,
thus simultaneously improving their position as they move toward their goal and their
capacity to get there. (A cheetah learns the dodging characteristics of its prey even while
closing in on it.) This makes it possible for systems to flexibly refine and solve initially vague
problems.

Such vague problems are ubiquitous for living creatures because their root problems
are viability problems of which they have no understanding, yet which they must transform
into specific sensori-motor problems within their performance capacities; hence it is the
essence of survival that there should be processes that both guide action and improve the
capacity to guide action while doing so. However the CIP approach subverts this perspective
because, among other things, it deals in algorithms whose precision assumes explicitly defined
problems to which they are eternal, optimal, solutions. Instructively, even when dual
action/learning processes are broached, as in the illuminating work by Montague et al.
discussed in Section 4 below, a CIP perspective leaves the cognitive character and significance
of using action to shape the learning problem unclear (see Section 5 below).

Processes that both guide action and improve the capacity to guide action while doing
so are here taken to be the root capacity for all intelligent systems. An account of self-
directed anticipative learning (SDAL) is formulated in these terms and argued to constitute a
central constructivist process involved in both cognitive development and performance.
SDAL involves the generation of high order anticipative structures that improve self-direction
in ways that help complex organisms satisfy life regulatory processes.

After setting out these ideas in sections 2 and 3, section 4 explores some of the
implications of the I-C approach to intelligence for modeling the neuronal basis of intelligence
and learning. The neural constructivism (NC) paradigm of Quartz and Sejnowski (1997) is
assessed as a promising, but incomplete, contribution to this type of approach. NC argues
that empirical evidence concerning activity-directed plasticity in neuronal connectivity
supports a constructivist model of learning, which in turn provides a direct link between
neuronal and cognitive organisation. The great benefit of this research is that it demonstrates
strong empirical grounds supporting a constructivist approach to intelligence and cognition.
The primary deficits of NC are that, though constructivist, it retains a CIP formulation which
contributes to an almost exclusive focus on internal brain processes and, partly as a result, it
lacks an account of the way learning is shaped by interaction processes, and lacks an account
of the type of high order modulatory processes required for SDAL. Other neural learning
models involving attentional and motivational modulation of learning processes are examined
as example cases which may provide a basis for remedying these problems, in particular a
complementary error prediction model of Montague et al.

Our purpose in discussing neural models is both to explore the applicability of the I-C
conception of intelligence developed in Section 3 and to reinforce the
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relevance of its conceptual analyses by showing how they can usefully illuminate current
empirical work. Readers approaching this paper from an empirical modeling background might
prefer to first read Section 4 and then return to consider the conceptualisation offered in
Sections 2 and 3.

The paper concludes with some broader philosophical reflections on the fundamental
assumptions underlying the I-C adaptive approach to understanding intelligence, including
their divergence from the CIP approach.

2. Core principles for an interactivist-constructivist model of intelligence

It is becoming increasingly common to note, as a significant theoretical issue for cognitive
science, that brains are embedded in bodies and bodies are embedded in environments (e.g. van
Gelder 1998). I-C shares this concern with the embeddedness of intelligence, and attempts to
set it out in a systematic way by modeling intelligence and learning as a natural part of a more
general, biologically based, account of adaptive systems and behaviour. By grounding
intelligence and learning in an adaptive context the goal is to illuminate both the genesis of
intelligence and its organisational characteristics as an embodied phenomenon. A biologically
based approach to modeling intelligence turns out to produce a very different conception of
what the central modeling issues are than that underlying (often implicitly) mainstream
cognitive science models. Our first task is to make clear what these founding differences are.
In this section we will outline the basic ingredients required for dynamically modeling
adaptive systems, and we will contrast different ways of being adaptive, highlighting the
general characteristics of the organisational mode involved in intelligence.

2.1. Modeling the problem holistically

The most fundamental and challenging aspect of modeling intelligence in an adaptive context
lies in capturing the various kinds of holistic relations that are involved. We identify three
kinds of holistic relations that are relevant: (i) the fundamental organisation of adaptive
systems to achieve a sustained interactively based bodily integrity we call autonomy, (ii) the
distribution of the dynamical organisational factors involved in adaptive interaction through
the system-environment complex, and (iii) action coherency across multiple constraints and
timescales. These holistic relations crisscross the boundaries drawn by standard models of
adaptiveness and intelligence, requiring both that more of the system-environment context be
included than is usually the case and that the conceptualisation of the processes involved be
modified in important ways. As we will argue, incorporating these factors leads to a shift
away from decontextualised conceptions of adaptive processes as locally modular unitary
adaptations and/or optimising computations towards an integrated conception of
adaptiveness as dynamic organised interaction in a complex environment satisfying many
constraints simultaneously, over extended periods. We now discuss these three aspects in
turn.
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2.1.1. Autonomy.   To understand intelligence biologically it is necessary to begin by focusing
on the fundamental predicament of being alive. Living things are delicate and dissipative,
features that might be expected to lead to their rapid disintegration. The secret to living lies in
having a basic organisation that mitigates these perils for a time, which we call autonomy.
Living things are delicate because their chemical bonds are of very low energy, easily
disrupted by this world’s physical forces and other biological agents; living systems need to
constantly avoid such disruptions and repair themselves when they do occur. Living things
are dissipative because they are constituted by far-from-equilibrium thermodynamic
processes; they must constantly seek out sources of ordered free energy with which to
replenish dissipated cellular structures and sustain the capacity for the processes that acquire
these resources (e.g. foodsearch), and repair damage (e.g. reconstituting damaged tissue) or
avoid damage (e.g. escaping a predator). Living creatures must do all this using only their own
decidedly finite bodily capacities, and in the face of much ignorance about what these
capacities really are and what the world is like. The basic problem of living then is: how to
use one’s own capacities to manage one’s interaction with the world, and within oneself, so as
to achieve these goals. Autonomous systems are those whose overall organisation is such as
to do this. Autonomy is a subtle, enormously complex global requirement on the whole
organism, for its constellation of processes must continually so interrelate as to regenerate the
whole of itself.[2]

The significance of this for developing models of adaptiveness is that the basic
normative constraint on adaptive processes is a global one; they must interrelate in globally
organised patterns focused on the autonomy of the system. All of the more specific
normative constraints on particular actions (e.g. avoid hunger, pain) derive from this global
constraint. This contrasts with standard models which characterise normative constraints
locally: selectionist adaptive models in terms of separate correspondences between individual
traits and environmental features, and CIP models in terms of self-contained input-output
optimisation problems.

2.1.2. Distributed dynamical organisation.   Another important class of holistic relations
involved in adaptiveness concern the distribution across system and environment of the
dynamical organisational factors involved in the processes of adaptiveness. Standard models
of adaptiveness and intelligence associate the generation of adaptive organisation with
centralised classical control (Hooker etal. 1992), with control located either in the genes
(selectionist models) or in the brain-mind (CIP models). However this centralised control
picture is being challenged on both these fronts. In biology it is being increasingly recognised
that gene action operates within, and acts as a modulator on, developmental processes that
have their own rich dynamical organisational characteristics (e.g. Jablonka and Lamb 1995,
Raff 1996). Indeed, it has been argued that the range of factors involved in generating the
adaptive phenotype includes such a rich set of extra-genetic developmental and environmental
resources that biological theory should recognise development as a holistic dynamical process
rather than as a genetic control process (e.g. Oyama 1985, Griffiths and Grey 1994). Whether
the evidence warrants an extreme holism in which there are no distinctive sub-processes
within the full
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developmental complex is debatable, but the evidence for distributed organisation is
sufficiently strong to seriously undermine the gene-control approach.

Likewise, in cognitive science dynamical embodied approaches have challenged the
centralised control picture of cognition. For instance, Brooks (1991) has argued that the
centralised senseplan-act model of intelligence presents an architectural form that is inherently
clumsy and slow, and has supported this argument by constructing highly functional robots
that employ a distributed ‘subsumption’ architecture. Bickhard (1992) and Clark (1998) have
pointed to the widespread role of ‘scaffolding’ in adaptive behaviour, in which the system
uses organisation in the environment to shape interaction in ways that achieve the
appropriate outcomes. Other researchers have drawn the conclusion that the factors involved
in intelligent action are sufficiently distributed and rich in temporal structure that dynamical
systems theory, rather than information processing, is the appropriate general theoretic
framework for cognitive science (e.g. Beer 1995, Smithers 1995, Smith and Thelen 1993, van
Gelder 1995, 1998). Again, it is debatable whether the extreme holism of dynamical systems
theory is warranted, at least as the appropriate general framework for cognitive theory (see
Section 5 below), nonetheless, the evidence that the processes of intelligent interaction
involve extensive distributed dynamical organisation is strong.

The parallel between the debates in the two domains is striking, and suggests that in
general centralised control models—attractive as a first approximation because they identify a
single or small number of determining factors for adaptive organisation—are too simplistic.
Though the form it will ultimately take is unclear, some form of holistic conceptual
framework recognising distributed processes is required. The approach we are proposing
offers a unified solution in the form of an account of adaptive organisation which bridges the
biological and cognitive domains.

2.1.3. Action coherency across multiple constraints and timescales.   If the processes of
adaptiveness are dynamical they are, of course, temporally extended. However the autonomy
account presented above adds to the very general concern with timing emphasised by
advocates of dynamical models (cf. van Gelder and Port 1995) an additional and more specific
set of issues. A creature’s problem is to match the constraints of autonomy up with the
organisation of the environment in the appropriate way across space and time through
interactive relationships. In this setting the way the basic adaptive problem presents itself to
creatures is as the requirement for organised whole activities. Such activities are complexes of
processes across multiple timescales (hunting to the kill, defending a territorial range, raising
cubs) that must satisfy multiple constraints both simultaneously and across time (avoiding
injury whilst acquiring food, acquiring enough food to sustain both self and cubs, etc.). Thus,
adaptive problems do not come as small, well defined, independently optimisable, units as
textbook problems do. Generating adaptive action is therefore more like continuously
modulating an extended process, rather than assembling complex activity from individually
well-formed scripts. The human baby learns to crawl when a holistic functional movement
emerges (lifting and repositioning limbs and torso whilst continuously adjusting center of
balance and forward motion) which it
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can modulate, not by computing and assembling discrete motor actions, such as calculating the
next optimal incremental shift of each limb (Smith and Thelen 1993).

2.1.4. The contrast with standard cognitive science.   In Section 5 we will use these issues as a
basis for a critique of some of the standard assumptions within cognitive science. Here we
note that incorporating these holistic relations results in a formulation of intelligence that is
very different from traditional CIP accounts. Traditionally intelligence is conceived in terms
of solving problems and modeled as providing formally correct solutions to many local,
semantically interpretable, independently optimisable, formally well defined problems (e.g.
Newell 1980a, b). The problem/solution domain lies wholly within the mind arena, the
sensory and motor interfaces with the body being separate matters and the environment
separate again. Instead here intelligence is understood to be a continuous management process
that possesses the three kinds of holisms mentioned (the need to achieve autonomy,
distributed organisation, and the need to produce functionally coherent activity complexes).
Cognitive processes are embedded within an autonomous system involved in organised
dynamic interaction processes in a structured environment and they operate by continuously
modulating (rather than  controlling) these interaction processes so as to be coherent across
multiple constraints and timescales.

2.2. Adaptive management strategies

In this conception of richly embedded adaptive processes, process modulation plays a central
role. Adaptive systems must shape an already dynamic interaction process by applying
action which modifies the interaction flow in organised ways, rather like the way inserting a
stick into a fast flowing stream modifies the pattern of the water flow. To understand such
processes it is important to model the complex interrelations between the processes that
generate action and the effects that result. We shall term the signals which a system uses to
differentiate an appropriate context for performing action the system’s explicit norm signals.
For example, hunger signals differentiate blood sugar levels and act to initiate and focus
foodsearch activity. Explicit norm signals provide information about appropriate action
because they differentiate more and less discrepancy between some current system condition
and a reference condition, the norm satisfaction state, which modulates subsequent
performance.[3] For viability, these norm signals should reflect aspects of the system’s
autonomy conditions, in the way that hunger reflects nutrition levels. Process modulation
always involves at least one or a few explicit norms since there must be some specific
dynamical comparison basis which differentiates the context in which action is produced,
even though many of the effects of the action may not be internally differentiated by the
system.

Organisms typically possess an array of norm signals, many of which can be
simultaneously relevant in a given context (cf. cheetah hunting). We shall refer to the full array
of performance norm signals a system possesses as its norm matrix. These norms may often
conflict, as when thirst or pain motivates the cessation of hunting while hunger motivates its
continuance. The norm matrix thus establishes
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a web of tensions which the system must continually balance by modifying its interaction
processes so as to ‘steer’ itself along a path that provides sufficient satisfaction of all relevant
performance norms. If the system is adaptively successful this dynamic modulation of
activity will shape interaction in ways that satisfy the fundamental conditions of viability for
the system.

A large part of understanding adaptiveness in this picture involves modeling the way
the system manages, by modulating its actions, the interaction patterns that are generated.
Characterising intelligence as a form of adaptiveness then becomes framed as characterising a
particular type of management strategy. A management strategy is an organisational recipe
for generating the interactional outcomes the system requires. It involves the interaction of the
system’s norm matrix, action generation processes (including anticipative modeling, see
Section 3 below), and interaction dynamics. In order to characterise intelligence we shall be
principally concerned with distinguishing low order and high order management strategies.

2.2.1. Low order management: the mosquito.   Although adaptive action must satisfy complex
holistic constraints, it is not necessary that the system explicitly recognise all or even a
significant proportion of these constraints in its modulatory processes. A low order
management strategy employs normative signals which explicitly differentiate only a narrow
slice of the overall interaction process as it relates to the constraints the system faces. For
instance, female mosquitos use heat tracking and chemotaxic processes, including flying up
carbon-dioxide (CO2) gradients, to home in on blood hosts (see Klowden 1995). Females must
feed on blood prior to laying eggs because the blood meal supplies necessary protein for egg
development; this is the overall criterion for achieving adaptive success (in contrast, males
consume nectar). However the connections between CO2 gradient tracking, blood hosts and
egg production need not be recognised by the mosquito. CO2 gradient tracking can be
effectively achieved simply by sampling local CO2 concentration and modifying flight in the
direction of highest concentration. That this action generates an interaction process which
allows the mosquito to find a blood host depends on a set of further relations, including the
fact that blood hosts like mammals also emit characteristic chemical signals such as
perspiration and carbon dioxide, and the concentration gradients of these chemicals can be
used to locate the blood host. Thus, the mosquito’s adaptive management strategy is low
order because the information it uses to modulate its actions concerns only a very narrow
aspect of the interaction process; most of the relations on which it depends are implicit.[4]

2.2.2. High order management: the cheetah.   Because a low order management strategy uses
only a few parameters to direct action its success depends on simple regularity in the
environment. However if the interaction processes the system must engage in for adaptive
success possess many degrees of freedom, and are therefore complex and variable, a low order
strategy will be inadequate. The system must differentiate more aspects of the interaction
process in order to produce effective action. The action’s success still depends on regularity
in the environment, though now it will be more complex and subtle. Cheetah hunts, e.g., are
rapid,



INTERACTIVIST-CONSTRUCTIVIST APPROACH TO INTELLIGENCE 13

uncertain and dangerous; they must respect a range of practical norms, such as avoiding
debilitating physical damage during a chase (like breaking a leg) and during the kill (e.g. from a
kick), avoiding exhaustion before a kill is assured and avoiding a kill in insecure circumstances
(e.g. where the food might be taken by others). In consequence, a cheetah must select an
appropriate type of animal to target (such as a gazelle), an appropriate context (young or
small isolated animals are preferred, in conditions permitting both stalking and rapid, safe
chasing), and must attack using an effective technique (using cover, fluid movement and
observation of the prey’s attention for effective stalking, initiating the chase from a
sufficiently close distance, rapid killing by crushing the throat of the prey, etc.) Despite the
great speed and agility of cheetahs only half of their hunts are successful (see Eaton 1974).

To manage the complexity, variability and danger of their hunting cheetahs possess far
more complex sensori-cognitive-motor processes than the internal processes of mosquitos,
and this provides them with the type of high order modulatory capacity required to
continuously integrate the many factors involved in producing effective action. Indeed,
cheetahs show a complex interplay between interaction dynamics, internal affective norm
processing and action generation. In particular, they are able to evaluate their own
performance and use information from interaction to improve performance. Gaining the skills
required for successful hunting requires extensive learning. As cubs, cheetahs spend a great
deal of time learning hunting skills by playing with siblings, chasing lizards, and so forth. The
mother facilitates this process by bringing small live prey, such as a hare, back to the cubs,
allowing them to practice chasing and killing techniques. As the cubs begin to mature they
accompany the mother on hunts and observe the real process first-hand. Even so actual
hunting experience is required before proficiency is achieved; many juveniles, for instance,
make the mistake of initiating the chase from too great a distance. The hunting capacity of a
mature cheetah is thus a complex product of an extended history of mutual shaping between
internally generated action and the success and failure of the ensuing interaction processes.

Sophisticated action requires a high order modulation capacity and on our account, to
be given in Section 3, degree of intelligence corresponds roughly with degree of capacity for
high order integrative process modulation. Cheetah hunting is a paradigm animal example of
intelligent, intentional action, and its sophisticated context-sensitivity stems from the
cheetah’s capacity for high order integrative process modulation. Because process modulation
generally is geared to serving the requirements of autonomy, as it becomes increasingly
normatively elaborated it yields an increasingly integrated sense of ‘self’ acting in this way.
According to our account, this is the essence of intelligence. This is a more complex
framework for understanding intelligence and learning than the standard CIP framework, but
we show in Section 3 how this context provides important insights for understanding the
dynamics of learning processes. As we emphasised at the outset, adopting an adaptive
systems perspective motivates a shift in the basic model of learning from internal formal
computation to anticipative managerial skill construction.
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3. What is intelligence? Self-directedness and self-directed anticipative learning

3.1 Self-directedness

Within this basic theoretical context we can now begin to outline an I-C account of
intelligence. Although the term intelligence is often used in a fairly loose way, at times as
virtually equivalent to adaptiveness (not least by non-cognitivist dynamics and robotics-
oriented researchers), there are important distinctions that need to be drawn. The
characteristic which most strongly suggests intelligence is the capacity for fluid, adaptable,
context-sensitive (in some cases ‘insightful’) action. We are more likely to call the actions of a
chimpanzee building a social network of allies intelligent than we are a spider building a web,
even though they are both striking instances of complex adaptive behaviour. Likewise, to
return to the earlier examples, a cheetah’s hunting ability seems more intelligent than a
mosquito’s procedure for finding blood hosts, even if the mosquito were to prove equally (or
more) successful.

In this section we develop an account of self-directedness as the basis for the type of
context-sensitive adaptability shown by cheetahs and chimpanzees, but not mosquitos and
(mostly?) not spiders.[5] Self-directedness is based on a constructive capacity for high order
integrative process modulation geared to managing interaction processes with many degrees of
freedom. Self-directed systems anticipate and evaluate the interaction process and modulate
system action accordingly, thus generating action context-sensitively in order to achieve
specific interaction goals (e.g. run smoothly, catch the gazelle) and thereby satisfy system
norms (e.g. freedom from injury and adequate nutrition levels). We now discuss the major
features of self-directedness—action modulation, anticipation, evaluation, and constructive
gradient tracking—then show how they combine to form a complex integrated capacity for
context-sensitive action.

3.1.1. Action modulation: generating the right kind of extended interaction sequences.   As
argued in Section 2, the general problem for adaptive systems is to produce environmental
feedback that supports autonomy, and this requires coordinating internal to external
conditions. The solution is to generate actions that form coherent whole sequences which
yield the required outcomes. Appropriately shaping action to generate these coherent
sequences is the system’s management problem, and in Section 2 we contrasted low and high
order strategies for solving the problem. As we noted, the high order strategy of a cheetah
involves integrating many more parameters in producing action than does the low order
strategy of a mosquito. However the difference does not simply lie in the number of
parameters integrated, it also concerns the type of parameters involved. A low order strategy
employs localised parameters, where the localisation is characteristically spatial, temporal,
and functional (e.g. momentary spatially local variations in CO2 concentration producing local
flight settings). This localisation effectively means that the system only manages the
interaction process with respect to temporally and spatially small scale, functionally limited
aspects of the overall interaction process. To put it another way, the management horizon of
a low order strategy only incorporates a
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small slice of the overall interaction pattern. Higher order strategies, on the other hand, open
up the management horizon to incorporate larger scale features of the interaction pattern.[6]
The hunger-satiation signals of a cheetah, e.g., are temporally non-local in the sense that they
measure variation over time of blood sugar levels and indicate roughly how soon another meal
should be acquired. They are also functionally non-local in the sense that they measure a
global system condition, degree of starvation, and affect a plethora of functions in an
organised way. Thus, not only are more parameters integrated in action generation, but the
parameters themselves are frequently non-local in important ways.

Self-directed systems generate the right kinds of interaction sequences through higher
order process modulation (cf. Thelen 1995). In this way they effectively expand the
management horizon to include more of the interaction process, thereby adopting a more
holistic approach to modulating action. This is, of course, a matter of degree rather than a
sharp division. Simple self-directed systems only expand the horizon to a limited degree. The
bumblee example we discuss below provides an instance where there is a small, but
nonetheless highly significant, expansion of the horizon of management as compared with
mosquitos. Increases in self-directedness are marked by a progressive extension and
enrichment of the management horizon, such that highly self-directed systems manage
interaction with respect to many features of interaction from the local to the global, in time,
space and functioning. The capacities for anticipation and evaluation which we now discuss
are tools for achieving this type of management expansion.

3.1.2. Anticipation: how will/should the interaction go?   In Section 2 we pointed out that
increasing the degree of high order management a system employs increases the capacity for
context-sensitive action, but that it also increases the need for high order management by
opening up degrees of freedom in the interaction process (involving complexity in both the
system and environment). This means that the interaction flows will typically display a high
degree of temporal variability because variations in any of multiple factors may produce
highly divergent interaction pathways, many of which will not be adaptive for the system.
E.g., to pick out just one relevant factor, if the gazelle detects the cheetah too early it may
escape and the cheetah will go hungry. Faced with this kind of problem adaptive systems
must be selectively sensitive to temporal patterns in interaction. Specifically, they must
anticipate the interaction flow by predictively modulating action so that action generation in a
particular context is coordinated with reward outcomes in that context. Thus, increased
temporal variability in interaction introduces the need for anticipative action management,
which should combine predictive and normative expectancies about how the interaction flow
will and should go.

Constructing such anticipation involves extracting one or more parameters from
interaction and using the parameter values to modulate action. A simple example has been
shown to occur in bee foraging. (We examine a model of the neurological basis of this
behaviour by Montague et al. in Section 4.) Real (1991) has demonstrated in experiments with
bumblebees that the bees can modify their foraging behaviour to selectively land on flowers
whose colour reliably predicts
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nectar reward. Placed in an environment of artificial blue and yellow flowers, where blue
flowers contained a constant 2 microlitres of nectar, yellow flowers contained 6 microlitres
and the remaining yellow flowers contained no nectar, 85% of the bumblebees visits were to
blue flowers. In other words, the bees were able to anticipatively associate flower colour with
reliable reward and use this to shape their behaviour. This capacity for anticipation marks a
significant increase in sophistication over the capacity of mosquitos, whose actions are largely
stereotypical reactions. Bumblebee foraging, in contrast, is context-sensitively shaped through
predictive reward learning.

Anticipative process modulation is a widespread phenomenon, and is central to fluid
intelligence. Further examples include the following: Catching a ball by observing its flight and
predicting its future trajectory, and moving one’s hand to intersect with this trajectory. A
cheetah using visual information about prey alertness and available cover, combined with
expectancies about the prey’s speed and agility, to judge the appropriate point at which to
initiate the chase. A detective (whom we shall call Sleuth for later reference) using evidence
from a murder scene to construct a profile of the murderer which creates expectations about
the murderer’s behaviour, and in turn using the profile to direct the investigation.

3.1.3. Evaluation: how did the interaction go?   Self-directedness also involves evaluation of
the success of interaction. The norm matrices discussed in Section 2 provide the means to
achieve this. An organism globally evaluates its interactions with respect to whether they
result in it maintaining coherence within its norm matrix (putting it roughly, staying pain-free,
well fed and happy). Within this general constraint, each of the norm signals a system
possesses provides characteristic information about the relations between interaction and the
system’s autonomy closure conditions, such as the way that satiation reflects starvation
avoidance (though, just as in the case of satiation, the reflection will generally be imperfect).
Norm signals range from relatively low order (localised) evaluators to higher order (more
holistic) evaluators. Proprioceptive signals such as stretch and pressure sensing used to
modulate motor tasks like grasping provide examples of relatively low order success/error
signals, while signals such as generalised discomfort and euphoria are high order signals
indicating conditions of malfunction or success without being activity-specific (that is why
they are high order). The norm matrix of a system thus provides it with an array of ‘steering’
information for remaining adaptive and, as we will discuss in Section 3.2 below, the
organisational characteristics of the array are important for understanding the system’s
adaptive characteristics, including what types of learning processes it may be capable of.

Anticipation itself can form a very important aspect of evaluation because a system
can evaluate whether its anticipations are correct, as measured by whether they yield
successful action completion. This provides a means for the system to generate new
information, including both predictive and normative information, about the conditions of
successful interaction.[7]
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3.1.4. Constructive gradient tacking: learning to improve performance.   Anticipation and
evaluation are each important for context-sensitively shaping action, and in combination over
extended interaction sequences they facilitate constructive gradient tracking processes. A
simple gradient tracking process, of the sort displayed by mosquitos, involves no
modification to the tracking process, e.g. the mosquito flight orientation process itself never
changes in response to variations in CO2 concentration, only the flight direction. In contrast, a
constructive gradient tracking process involves having changes induced in the system by the
unfolding interaction that in turn change the way it subsequently interacts. Because of this
constructive gradient tracking is a fundamental aspect of learning processes. When hunting,
e.g., a cheetah develops anticipations about the hunting process, about the speed and agility
of the prey and the like, anticipations which in turn modify the way the cheetah subsequently
conducts the next moves in the hunt. In turn this modified behaviour is evaluated, generating a
new set of anticipations that further modify the cheetah’s hunting behaviour, and so on. This
is a much more powerful type of gradient tracking process in which performance capacity, as
well as current state, tracks the situation. And what is tracked is no longer a simple
environmental gradient, like a CO2 concentration gradient, but a combination of system
interaction processes and environmental organisation, as evaluated by system norms. Thus,
cheetahs track something like ‘effective hunting’, specified as a relationship between injury-
free movement  effort and prey character (kind, size, health, etc.)  terrain style  ecological
location, as evaluated against injury risk  hunger urgency  satiation potential  ecological
risk.[8] In this way constructive gradient tracking provides a means for a system to increase
its self-directedness by enriching its anticipative and evaluative capacity.

3.1.5. The integrated self-directed agent.   Anticipation, evaluation and constructive gradient
tracking combine to allow a system to achieve fluid context-sensitive coordination of whole
action sequences. The self-directed system is able to improve its context-sensitivity—its
sensitivity to the environment and to its normative requirements—by replacing lower-order
(stereotypical) management with higher-order integrative management, in which action is
constantly re-shaped both by system norms and by information derived from interaction.
This provides the basic form of learning capacity in constructive gradient tracking processes:
improvements in performance capacity track organisation in the environment (such as
ecological relations like prey behaviour). The mosquito can be said to learn its next flight
orientation through environmental interaction, in an attenuated sense of that term, but the
advent of constructive gradient tracking marks a distinctive increase in learning capacity.
Moreover, in coordinating its autonomy constraints with the environment this kind of
management generates an increasingly rich normative perspective, yielding an increasingly
integrated sense of ‘self’ geared to serving the requirements of autonomy. This is the ‘self’
proper of self-directedness. The system that anticipatively steers itself through its
environment to satisfy its own norms, learning to improve its performance as it goes,
displays a distinctively intentional selfhood.[9]
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Our general hypothesis is that intelligence, as a distinct form of adaptiveness, evolved
as increasing complexity of organism and interaction necessitated increasingly sophisticated
forms of self-directed high order integrative process management. Degrees of intelligence thus
correspond with degrees of self-directedness. Mosquitos are directed but not self-directed
systems: whilst they do engage in a complex dance as actions and environmental organisation
combine to produce shaped interaction processes that achieve adaptive closure conditions,
they do not learn to modify their interaction processes to improve performance. Cheetahs, on
the other hand, are powerful learners in just this sense. Whether their interaction strategies
work or not is of course not fully under their control, but it is much more so than it is for
mosquitos. The detective Sleuth investigating a murder scene is more self-directed again, being
able to modify the investigation process much more extensively (e.g. switching the whole
crime profile from a business crime to a crime of passion, with attendant changes to
investigative direction and methods), and on very finely discriminated information (e.g. on the
basis of a distinctive cigarette butt).

3.2. Self-directed anticipative learning

As we have seen, learning plays an important role in self-directedness. Self-directed context-
sensitive action is achieved by allowing performance to be learned. The learning problem for
self-directed organisms is to translate open-ended high order viability requirements (e.g.
obtain satiation) into specific sensori-motor problems (e.g. catch this gazelle) by constructing
a set of effective interaction strategies (such as hunting techniques). Thus, constructivism is
the second plank (with interactivism) of the I-C approach to modelling intelligence. In this
respect, note that instructional prespecification is not an effective strategy for managing
complex processes with many degrees of freedom because the potential process complexions
rapidly overwhelm the instruction set. For this reason constructivism is a much more
plausible approach to intelligence than nativism, and traditional artificial intelligence
‘programming’ models of cognition will be poor approximations to the kind of capacities that
we are suggesting are central to intelligence.

We shall now outline an account of self-directed anticipative learning (SDAL) as an
important constructivist mechanism involved in cognitive development. There is a spectrum
of learning processes ranging in power from the virtually null case of momentary acquisition
of information (e.g. local direction of maximum CO2 concentration), to cases such as the
bumblebee in which performance is modified by learning but learning capacity is not modified,
through to cases in which the ability to learn is itself improved by the learning process, such
as the way improvements in a cheetah’s hunting technique allow it to learn more about a
prey’s behaviour, which in turn improves its capacity to modify its hunting. Likewise, but
even more powerfully, as Sleuth acquires evidence in the murder investigation the profile of
the murder and surrounding events improves, which in turn improves the ability to find and
recognise new evidence. SDAL processes are of this last type: they involve a virtuous cycle
of interactions in which progressive self-modification improves both performance and learning
ability as a function of interaction. It is because of this
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progressive character that we believe SDAL is a central feature of the development of high
order cognition.

Earlier we noted that anticipation and evaluation can operate in tandem over extended
interaction processes to produce learning in the form of constructive gradient tracking
processes. The nature of the learning process depends a great deal on the organisation of the
norm matrix and the way the system forms anticipations. SDAL requires significant
asynchrony and a spread of low and high order norms. Asynchrony is required because some
norms must be held relatively constant against other norms and interaction processes in order
to serve as a directive scaffold shaping learning. Thus, hunger is an ongoing feature of a
cheetah’s learning process, and it is relative to this evaluative signal that it refines its hunting
technique. Similarly, pain signals allow an animal to modify and refine its motor skills so as to
avoid those kinds of actions which result in damage.[10]

Because high order norms leave open the details of which particular conditions best
satisfy them, these conditions can be learned. Not only does this provide a powerfully
permissive learning framework—any exploratory activity is acceptable that is efficacious in
generating learning (see e.g. Section 4 below)—it also opens up the possibility of establishing
refined lower-order norms served by learned signals to more specifically guide the
achievement of their satisfaction. As a result of developing its prey-chase experience, a young
cheetah may learn to creep close enough to prey (new norm) in order to chase safely and
effectively. In this way the embedding autonomy-supporting closure conditions (e.g. damage
control) that are the ultimate, if initially implicit, rationale for behaviour are increasingly
enfolded into operational closure conditions (e.g. specific chasing styles) and made more
explicitly accessible to organism self-direction through the learned signals which indicate them
(e.g. visual perception of terrain combined with kineasthetic perception of muscular strain).

However, both low and high order normative signals have limitations in the kind of
information they can provide. Low order signals may specifically indicate that a process has
failed to achieve an operational closure condition, without indicating the underlying reasons
for this failure, especially higher order organisational reasons. Sudden loss of pressure
sensation may, e.g., indicate that the motor action used to grasp a glass was unsuccessful, but
not indicate why. Conversely, a high order signal like generalised discomfort may indicate that
a process has resulted in damage or distortion to the system (e.g. poor running technique, or
poor diet), without indicating the specific features of the process that were at fault. In either
case these signals can be sufficient to facilitate the retention or elimination of operational
strategies, thereby permitting learning in the manner just described, however this learning
process is in itself only weakly self-directed because a system furnished with it alone will
have none but cognitively rudimentary means to improve its interaction processes (copying,
blind trial and error). The young cheetah’s hunger may provide incentive to learn improved
hunting technique, but does not in itself indicate what needs improvement, for that trial and
error and/or copying mother may be all that is available. Of course, these techniques, though
cognitively unsophisticated, also remain our own basic techniques in the face of sufficient
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ignorance, and unavoidably must do so, but we can do better by building on their past use.
SDAL processes gain increased power through the construction of anticipatory

models of the interaction process. These anticipations generate new information by modifying
interaction, and modification and enrichment of the anticipations results in improved ability
to localise success and error, thereby improving learning capacity. For instance, as our young
cheetah constructs its chase anticipative model through practice and perhaps copying mother,
and becomes better able to anticipate the speed and movement of its prey during a chase and
to evaluate that against its own capacity, it might learn that to be successful it must initiate
the chase from a closer distance, or choose a constant swerving policy in the face of more
erratic prey swerving, in order to give the prey less time to react and prolong the pursuit to
the point where the cheetah becomes exhausted. In this case the anticipative model, combined
with normative feedback (e.g. about exhaustion, as well as hunger) allows the cheetah to
localise the defect(s) in its hunting technique. In turn, this refines the ability of the cheetah to
form and evaluate anticipations about the hunting process (and, as noted earlier, to form new
lower order norms).

This improvement may happen both within a particular problem solving episode and
across episodes. Within a single investigation, e.g., Sleuth’s investigation begins
‘mechanically’, following a set of general investigation techniques that are applied in all
similar situations, but becomes increasingly self-directed as context information emerges in the
form of clues and an articulated suspect profile. The changing suspect profile changes the
search procedure, thereby changing the information generated by the investigation, and at the
same time it changes Sleuth’s expectations about what information is useful, and what
investigation strategies are likely to be successful. In turn, the new information may change
the suspect profile, either by enriching it with more detail, or by forcing a substantial revision
of the profile (e.g. when some norm is violated or the clue trail evaporates). Beyond the single
investigation, practice in applying investigative techniques and opportunistically elaborating
crime profiles leads to learning about higher order features of crime patterns and clue types.
Over many investigations, Sleuth’s general investigative, including profiling, techniques
improve.[11]

Rich anticipative models and normative matrices thus play a critical role in making the
learning process powerfully self-directed, because between them they provide the system an
appropriate array of internally accessible signals which it may use to direct its own behaviour
and internal processes. It is able to construct a correspondingly rich gradient to track which is
sensitively correlated with its autonomy-relevant environmental context. When this capacity
is effective, as when Sleuth’s suspect profile changes the investigation in ways that lead to
new clues, further improving the profile, the result is a virtuous self-modifying interaction
cycle in which initial learning improves the system’s learning ability, leading to a progressive
increase in the system’s anticipative depth. This is the essence of solving a divergent
problem, where the correct problem definition, solution criteria and method all come clear at
the same time as does the solution.
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In this manner the I-C approach provides a natural and integrated approach to
intelligence. As systems get more complex, and their interaction processes gain many degrees
of freedom, they face a process management problem. They must integrate multiple
normative constraints using divergent information to produce coherent interaction. The
solution is increasingly high order process modulation capacity that generates increasingly
holistic, self-directed process management. As these high order self-directed processes
become increasingly sophisticated they incorporate anticipative learning processes of an
increasingly powerful and cognitive nature. We believe that a theory of this type must form
the central plank of an account of the emergence of high order cognition, in particular of
human cognition. We shall now turn to examining some implications of this interactivist-
constructivist approach to intelligence for modeling learning processes in the brain. Our
ultimate aim is to use these theoretical considerations to develop testable empirical
predications about at least some features of neural learning processes.

4. Modelling constructive learning in the brain

For brains to participate in the kinds of constructive learning processes characterised above
they must possess certain features. Articulating the nature of these features provides one way
of providing I-C with some empirical “bite”: a way of evaluating the biological plausibility of
the proposed learning models and of developing a concrete basis for comparison with
competing theories in cognitive science. In this section we will take some initial steps towards
this end. Our focus will be the Neural Constructivism (NC) paradigm recently put forward by
Quartz and Sejnowski (1997). Quartz and Sejnowski’s work is significant because it provides
strong empirical evidence supporting a constructivist interpretation of cognitive development,
and presents a neural learning mechanism that may play an important role in constructive
learning. It thus serves as a powerful argument for cognitive constructivism. However it also
possesses weaknesses which our analysis can illuminate: although the NC paradigm is
constructivist it is not particularly interactivist, and partly as a result does not model the
kinds of interaction processes or high order process modulation involved in self-directedness
and SDAL. In consequence it currently fails to capture the construction of high order
anticipation, and hence to capture a central aspect of cognitive development and intelligent
capacity; but this evidently need not be so and we urge its further development.

One of the principle requirements of a constructivist brain is extensive activity-
dependent plasticity. Brains must be capable of rich self-organisation in response to (and
partly generating) the changing interaction context. Quartz and Sejnowski have compiled
extensive evidence for such neural activity-dependent plasticity and used it as the cornerstone
for a ‘neural constructivist’ programmatic framework for cognitive neuroscience that
emphasises the self-structuring aspects of neural organisation. The central theme of the NC
paradigm is that learning guides brain development. They argue that the cognitive features of
the brain are “built from the dynamic interaction between neural growth mechanisms and
environmentally derived neural activity” (1997, p.537). Because cognitive activity and brain
development function as mutual constraints on one another, the result is “nonstationary”
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learning—learning that changes the learning architecture, which in turn changes the learning
process, thus changing learning, and so on. Because the learning architecture is not fixed,
cognition cannot be considered an inherent manifestation of brain capacity; rather, Quartz and
Sejnowski claim, the mind and brain essentially co-develop as cognition is constructed from
the learning process. The principal developmental mechanism they point to as responsible for
this constructivist learning process is activity-dependent neuronal growth.

The general model of NC learning presented by Quartz and Sejnowski is (roughly) as
follows: The learning system starts as a simple network, i.e. one with relatively few
connections (as well as inappropriate connection weights) in relation to what would be
needed for the objectively accurate representation of input information. This latter is the
functional task of the network and those network functions which achieve it are the
network’s target functions. The learning task is to somehow pass from the network’s initial
functions, which will be far from the target functions because of the network’s initial
condition, to the target functions. However improvement is tractable because the system can
relatively easily find its best approximation to the target function without being swamped by
an unmanageably large number of possible states, as would be the case if the network was
initially large. In addition to conventional weight modification, the system has a learning
algorithm that adds structure to the network according to some performance criteria. As the
network grows its representational capacity increases, and hence its bias decreases, and this
increase in representational capacity is guided by the problem domain itself. Essentially the
environment[12] acts as a scaffold for network development. Moreover, because the increase
in network complexity and organisation is progressive, and guided by increases in
performance competency, the system can find its way to a relatively unbiased representation
of its target function when that would be computationally intractable if the representational
space was fixed.

In support of the NC paradigm as a model of human cognitive development, Quartz
and Sejnowski review an extensive body of empirical evidence that brain development exhibits
significant activity-dependent directedness. Here the evidence is briefly summarized.
Contrary to maturational and selectionist models of brain development, empirical studies
show that synaptic density, and axonal and dendritic arborization all increase during
development. Quartz and Sejnowski argue that the most cognitively significant measure is
dendritic arborization. Dendrites are the primary receptive surface of the neuron, and the
integration of synaptic activity depends on the geometry of the dendritic branches. In
addition, dendritic change has localised effects, which means that change can be accumulated
progressively—an important property for cumulative learning. Quartz and Sejnowski
highlight the following developmental characteristics of dendritic growth as evidence for the
NC model:

•  dendritic length increases dramatically during development, and its greatest period of
growth corresponds to the periods of intense cognitive development;

•  dendritic structure is heavily activity-dependent;
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•  it is the degree of correlation in the afferent activity rather than simply the presence of
activity that underlies dendritic organization. Dendritic segments detect correlated activity
and grow preferentially in such regions;

•  hebbian learning can occur in local dendrite areas;
•  local stimulation can induce dendritic branching.

Quartz and Sejnowski claim that one of the primary mechanisms responsible for this pattern
of dendritic activity is likely to be a Hebbian volume learning process based on nitric oxide
(NO) diffusion. NO is a membrane permeable gas whose synthesis is induced by NMDA
receptor activation—since NMDA receptors are Hebbian filters (they detect pre-post
coincidence), NO production obeys Hebbian rules. NO rapidly diffuses into surrounding
tissue, and is known to act as a retrograde signal in the induction of long-term potentiation;
NO also affects local blood supply. Quartz and Sejnowski speculate that, in addition, NO
concentration acts to regulate dendritic branching. This would allow the probability of
branching or retraction to be proportional to the activity of nearby synapses over time,
effectively translating the associative conditions for synaptic weight change to those
responsible for connection modification. The result is that neurons can sample their local
region for correlated afferent activity, using this activity to direct connection modification
(pp.549-550). Thus, the development of neuronal organisation is the result of feedback
between occurrent synaptic activity and neuronal plasticity mechanisms such that correlated
activity is amplified, not only through Hebbian synaptic mechanisms, but also through
Hebbian connection modification mechanisms which induce new neural connections from
correlated upstream sources.

The picture of brain development which Quartz and Sejnowski claim follows from
these considerations is this:

[T]he human brain’s development is a prolonged period in which environmental
structure shapes the brain activity that in turn builds the circuits underlying thought.
In place of pre-wired modules, patterned activity builds up increasingly complex
circuits, with areas staging their development. Cortical areas further away from the
sensory periphery wait in anticipation of increasingly complex patterns of activity
resulting from development in lower areas. As this development proceeds, areas of the
brain become increasingly specialized for particular functions, reflecting a cascade of
environmental shaping. Some brain circuits close to the sensory periphery, such as in
our early visual system, are in place by six months of age; but those in language areas,
further away from the sensory periphery, do not begin to complete their development
until the eighth year of life.[13]
(p.550)

This represents a shift away from the tendency of conventional cognitive science towards
modelling learning processes in terms of self-contained algorithmic solutions, of which the
assumption of a fixed learning architecture is just one manifestation and, insofar, it resonates
with the I-C perspective. The empirical evidence for nonstationarity in brain development is
strong, and does indeed open a new and
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exciting window onto the relationship between mind and brain—a window which is strongly
constructivist in perspective.

From the standpoint of the I-C framework for modelling intelligence, however, NC has
flaws which ultimately stem from the retention of classical cognitive science modelling
assumptions. The most significant problematic assumptions are as follows:
1. A focus on internal brain processes which suppresses the role of extra-neural

interaction as an extended process in learning. The learning problem is idealised as
matching a pattern of input activity, and learning is treated atomistically as a
collection of separate, abstracted processes of conformation to the pattern. The model
ignores the fact that real interaction is a temporally and spatially extended process,
and that much incoming neuronal activity will be feedback and feedforward from prior
neural activity via the body and environment.

2. No endogenous evaluative constraints, no self-directedness. All information directing
neuronal development is externally sourced. Constructive learning is conceived as
environmentally guided neural circuit building. There is no self-directedness, no
anticipative action modulation.

These assumptions are interlinked, and complemented by a tendency to regard neural
development as a process of pattern-fitting to environmentally derived information, which
neural structure comes to ‘represent’, with representation becoming a blanket term for
cognitive significance. It is not the notion of representation per se that is at issue, but the
model chosen for it, namely one focused on environmentally directed implantation (a literal
‘in-forming’) that excludes the role of organism directed interaction and construction
processes.[14] By contrast, the I-C approach highlights the multiple errors created by three
interlocking biases: suppressing the role of interaction in learning, idealising away the
temporality of the learning problem, and ignoring the active role of neurons in generating
feedback which directs the learning process. For instance, it is only when interaction based
feedback is included in the picture that the significance of normative signals becomes apparent
(Section 2 and 3.2). Such signals are the basis of an organism’s ability to evaluate its
behaviour, and therefore play a critical role in producing learning which is self-directed.

Indeed, there is an absence of endogenous evaluative constraints on learning in the NC
paradigm. The only significant constraint on neuronal development that is picked out by the
NC model is correlated afferent activity, which is assumed to be derived from environmental
organisation. Apart from the staged layer architecture, internal constraints are essentially
local. There is no obvious reason to expect that such a learning process will be self-directed or
recognisably cognitive. In Section 3 it was suggested that dynamical asynchrony is a critical
factor in the capacity for self-organisational richness which underwrites learning capacity
(note 11 and text), and that evaluative signals are probably an important source of such
asynchrony in brains. Essentially such signals provide an additional scaffolding structure for
neuronal self-organisation—a structure which classifies conjoint environment/behaviour
contexts. This scaffolding makes the learning process self-directed, because the
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system has an internal measure for appropriate activity. Learning is in effect jointly
scaffolded by the organisation of environmental interaction and endogenous evaluative
measures of the success of the interaction.

The role of such constraints in learning gives us additional reason to be interested in
embodiment. Not only will the system’s physical characteristics be an important structuring
factor in interaction, but bodily factors such as damage, starvation, etc. will provide a major
source of evaluative constraints which direct learning. In reconciling the modulation of
interaction with its endogenous normative constraints, the system needs to integrate diverse
sources of information, an inherently higher ordered problem than mere passive pattern-
conformation, requiring construction of high order regulators, e.g. through use of anticipative
models. Thus, for the reasons provided in Sections 2 and 3, adding these additional
constraints to the learning process does give us a reason to expect that learning will become
increasingly self-directed, and recognisably cognitive.

The SDAL model of learning provides a process account of how progressive increases
in high order anticipative directedness can occur. It highlights the fact that increasing directed
interaction competency actually improves the system’s ability to discriminate environmental
information, providing a basis for further improvement in learning. No such process is
suggested by the NC model, which implicitly assumes that the complexity of input
information lies outside the shaping capacity of the system, and indeed the NC model directs
attention away from the possibility of such a process by ignoring output. The interaction of
mind and brain in cognitive development, highlighted by NC, is only part of the constructivist
story—mind, brain, body, and environment are intimately intertwined. An adequate cognitive
neuroscience must include all of these factors in its theoretical framework.

In this connection the neural mechanism central to the bee foraging case described in
Section 3 provides an illuminating extension of NC. Montague et al. (1995) develop a model
of the bee learning process found by Real 1991. The neural architecture used in the model is
based on a neuron with widespread projections within the bee brain whose activity carries
information concerning the
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reward value of nectar. Bee foraging is modeled using visually guided flight in a simulated
three dimensional environment. The model is designed to show how neuromodulatory effects
can bias actions and regulate synaptic plasticity to generate a form of predictive Hebbian
learning. In the model the simulated bee, which possessed a cone shaped field of view, moved
around a three dimensional arena whose floor consisted of blue and yellow squares. The
architecture of the model is as follows (see Fig. 1).

P is a linear unit that receives sensory information from B, N, and Y concerning the
percentage of blue, yellow and neutral input in the visual field, weighted by WB, WN, and WY,
and reward information from R. P responds transiently to time-averaged changes in input
activity. Its output represents an ongoing comparison of net previous activity and the sum of
current reward and sensory activity. P serves to label changes in sensory input as ‘better than
expected’ when change in output is positive (d(t)>0), or ‘worse than expected’ when change
in output is negative (d(t)<0). P output models changes in neuromodulator release by
modifying weights WB and WY. (In the models discussed here WN was held constant.) As the
model bee moved above the colour field changes in the activity of its sensory neurons
occurred. When there was no reward signal, P output biased actions by determining whether
the bee continued on its present direction or tumbled randomly. When the bee collided with a
coloured square it received a reward according to the volume of nectar, generating activity in
r(t). This caused an adjustment to the weights WB and WY. Thus, P output continuously
guided actions but regulated learning only during the receipt of reward. With respect to our
discussion of self-directedness, P output is a higher order parameter with which the model bee
modulates subsequent interactive activity and it provides the model bee with an elementary
self-directing capacity. With this architecture the model bee provided a reasonable simulation
of real bee foraging, learning to preferentially visit the flowers whose colour was a reliable
predictor of nectar reward (73%-85%, as compared with 85% for real bees).

As Montague et al. put it, the model shows, “how the learned weights can be used to
choose appropriate actions and how the resulting action choices influence the learning. In
addition, the actions taken by the model are also influenced by the structure of the simulated
environment in which it moved.” (1995, p.728) The noteworthy feature of this model from
our perspective is that it incorporates interaction, evaluation and anticipation into the learning
process, making it a prime candidate to serve as a model of the type of neural architecture that
subserves self-directedness.

This hypothesis is strengthened by research showing that the mesencephalic
dopamine system in mammals performs an analogous functional role. Dopaminergic sub-
cortical nuclei in the midbrain and basal forebrain project diffuse ascending axons which
innervate large regions of the cortical mantle, and play a role in many aspects of development,
learning and behavioural control, including the regulation of attentional and motivational
states. Montague et al. (1996) shows how this system could serve to provide information
about reward to cortical regions in the same way as P does in the bee model (see also
Montague and Sejnowski 1994). In their interpretation activity in the cortex anticipates the
future receipt of reward. Fluctuations in the activity levels of neurons in the dopaminergic
system provide a measure
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of error in these anticipations, and this error signal delivers neuromodulators to cortical and
subcortical regions that influence synaptic plasticity and thereby act to modify the
anticipations of those areas. Montague et al. are able use the theory to make empirically
supported predictions about human decision making behaviour in simple tasks.

There is no reason why the activity-dependent connection growth mechanisms Quartz
and Sejnowski base the NC paradigm on cannot be complemented with the type of
anticipative reward mechanism involved in the bee and mammalian dopaminergic systems.
Indeed, Sejnowski is involved in all of the research we have discussed. Our argument is that
only when interaction, evaluation and anticipation are conjointly incorporated into the learning
picture can distinctively cognitive features, such as self-directedness and the constructive
learning processes involved in SDAL, be characterised. The omission of these factors is a
significant flaw in the current formulation of the NC paradigm. If these additional features are
added, we believe, a highly promising neuronally based constructivist account of cognitive
learning is possible.

Combining the Hebbian connection growth mechanism with the anticipative-reward
learning mechanism provides an intriguing insight into some of the neural characteristics
required for powerful SDAL processes of the kind humans are capable of, and how these
capacities may grade up from very simple forms of self-directedness in which learning
capacity is limited. Simpler forms of self-directedness involve anticipative reward modulation
of activity, and this can be achieved with the type of simple modulatory architecture found in
bees. Stronger forms of SDAL require extensive plasticity and the capacity to progressively
acquire pattern recognition and motor skill capacity. A large cortex featuring activity-
dependent connection growth may provide the basis for this. Continuous increases in self-
directedness, generating increasingly powerful constructive learning capacities, could therefore
be achieved by continuously adding cortical capacity to the basic sub-cortically based
anticipative reward architecture.

5. Philosophical reflections on models and methods in cognitive science

In this section we conclude our account with some reflections concerning the deeper
implications of adopting a thoroughgoing I-C approach in cognitive science and philosophy.
In particular, we reflect briefly on the fundamental ways a biologically grounded I-C approach
to modelling and method diverges from that of the currently dominant CIP paradigm in
respect of four interrelated groups of modelling assumptions. These were summarised early in
Section 2 and have been commented on in various places as the I-C model was developed; in
keeping with the I-C conception of making performance norms more explicit, here we briefly
focus on them more explicitly.

5.1. The modelling problem: holism versus modularity

Recall that the basic adaptive problem all creatures must solve is how to coordinate their
internal autonomy needs to their external environment, in ways that lie within
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their capacities. This problem presents itself to creatures episodically as a requirement for
organised whole activities (e.g. hunting to the kill). In response to complex variable versions
of the problem (hunt this gazelle here, etc.) some creatures self-organisingly construct higher
order regulation to manage these interaction flows as shaped wholes, e.g. by extracting one or
a few parameters which regulate that shape (cf. learning to crawl). Moreover, the appropriate
kinds of higher order management endow creatures with forms of self-direction which in turn
provide the organisational foundation for intelligence. In this conception, we noted, an
intelligent system is thrice globally holistic in character: (a) the underlying autonomy
constraint is a whole system constraint, (b) the required actions are whole integrated flow
sequences of autonomy significance, and (c) the required coordinating management
organisation is a holistic feature of whole-system (embodied mind)-environment interaction.
As against this methodological and substantive holism or non-modularity, the standard
approaches to cognitive science attempt to simplify the situation by eliminating aspects
and/or components of the models.

The problems begin at the broadest level where standard conceptions of adaptive
modelling suppress process relationships that are important to a systematic understanding of
intelligence. Selection theoretic models of adaptiveness, e.g., while useful for modeling the
outcomes of populational adaptation processes, abstract away from the dynamical interaction
and developmental processes of the individual organism that underlie those outcomes and
hence are not very useful for capturing the dynamical embodiment factors involved in
intelligence (see Christensen and Hooker 1989c for discussion). A selectionist explanation of
even mosquito gradient tracking behaviour (it was reproductively advantageous) already fails
to shed any light on mosquito interaction dynamics and internal process organisation; it can
do no better for cheetahs, rather the explanatory lacunae loom still larger. Likewise, CIP
models of cognition characteristically focus on hypothesising a special subset of internal
formal problem solving processes and treat the detailed dynamical features of embodiment
and interaction as outside the purview of the model. The greater sophistication of the internal
modulatory processes of cheetahs deservedly command more attention than that of
mosquitos, but this does not make them better candidates for internalist cognitive modelling.
Cheetah interaction dynamics and internal action-generating processes are intimately
connected in a single dynamical system and cannot sensibly be understood separately. In
short, the standard adaptive models now available are deficient, and crucially so where it
comes to understanding the roots of intelligence. Selectionist models treat the system interior
and most of the interactive dynamics as a black box, internalist AI-style models treat
everything else but the ‘mental’ part of the system interior as a black box; neither is alone
satisfactory, nor in combination do they remove each other’s deficits. In contrast with these
approaches to adaptiveness, I-C incorporates dynamical interaction and developmental
processes within an autonomy-based general theory of adaptive systems, and shows how
modelling these factors directly provides a natural framework for a theory of intelligence.

In this context, classical internalism, according to which cognition is characterisable as
a distinctive form of process ‘inside the head’, is worth further comment.
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In classical artificial intelligence (AI) internalism takes the form of an obvious and extreme
modularism. Cognitive processes are characterised as symbol string inputs ordered under
logical syntax and operated on by logical transformation functions to produce symbol string
outputs. Intelligence is treated as confined to the middle of a triad of modules: (I) sensory
reception and symbolic encryption as planner input, (T) intelligent central planner as logical
input-output transformer, (O) motor encryption of planner output and motor effector as
behavioural output. This divides up the overall adaptive capacities of an intelligent system
into a group of functionally distinct capacities corresponding respectively to interaction
capacity produced by the body of the system and its sensors and motor effectors, and control
capacity produced by a central planning module (CPM, = T). Then the capacities of the
CPM are further modularised into the capacities to execute formal algorithmic solutions to
self-contained formal problems. Connectionism is, or can be, far less modular, especially in
respect to the latter CPM modularity, however standard connectionism retains the general
internalist assumption and its I-T-O expression.[15]

I-T-O modularity encapsulates a set of powerful modelling assumptions for cognitive
sciences. The very distinctiveness of the mental operations separates mind from bodily
dynamics, however materialist its proponents may consider themselves; all evolution carries
on dynamically until the distinctive mental states/entities appear, whence the distinctive
mental processes arise and for the first time intelligence becomes possible. Psychology
becomes an independent discipline sui generis. (Methodological solipsism is a strong version
of internalism.) Of course, cognitive processes must have some important relation to the
‘outside’, but this is finessed as representation, where the relations to the ‘outside’ are
collapsed into some kind of referring relation and the focus is on the internally characterised
representational contents. The referring relation ‘skims over’ all the detail of process
organisation and interactive dynamics to magically directly connect internal mental entities to
the ‘outside’ world. Once the general character of this relation is specified the details are
suppressed and attention focused on the ‘inner workings’. By contrast, under an I-C
approach intelligence is conceived in terms of dynamical organisational processes that grade
up by degrees from very elementary dynamical capacities, such as the mosquito’s carbon
dioxide gradient tracking, to more properly intelligent ones.

Needless to say, the I-C approach is also radically at odds with the modularising of
the internal structure of T (the CPM of the AI version). These ‘micro modular’ modelling
assumptions in cognitive science are closely related to the general modelling strategies of
abstraction and functional decomposition. In attempting to model a complex system it assists
tractability to abstract a general pattern of organisation thought to correspond to the
‘essential’ features of the system. This general pattern may ignore many aspects of the
system deemed to be peripheral. Conversely, in attempting to understand global properties of
the system it can be helpful to functionally decompose the system both by functional order
(where complex functional capacities are decomposed into simpler, more basic sub-functions)
and by task (where more global functional organisation is decomposable into structurally
localised capacities of specific material components of the system).[16] Abstraction and
functional decomposition are indispensable tools for effective research in biology and
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cognitive science because they make complexity more manageable (see Bechtel and
Richardson 1993, Wimsatt 1987). Nevertheless, they should be recognised as methodological
strategies which must be sensitive to the actual empirical details.

In particular, it is reasonable to expect that non modular process organisation will
often occur in evolved organisms. Natural biological and cognitive systems have been
constructed from the ground up, and as a result they display complex process
interdependencies and functional multiplexing that can be highly counterintuitive, particularly
from a perspective conditioned by human top-down engineering practices.[17] In these
circumstances systems may not (and in many important cases won’t) possess the kind of
general functional organisation that an analytical abstraction is inclined to posit. Likewise,
they may not possess the kind of modular organisation which functional decomposition
presupposes as its first approximation, and which we humans are still inclined to build
structurally into our engineering designs to preserve analytic simplicity and division of labour.
Thus, any particular modularity assumptions must be subjected to careful scrutiny, and
abandoned if it is found that the system process organisation does not in fact respect the
hypothesised partitioning. In particular, whether or not it proves empirically supported the I-
C organisational analysis of intelligent capacities is a demonstration that formal
decompositions, no matter how compelling they may seem within a formal context, cannot
thereby be assumed to apply modelling real world systems, empirical support for their
underlying structural assumptions must be demonstrated. It is a mistake to buttress one’s
preferred modularities as metaphysical principles in the manner of Fodor 1992.

Our point is not that modularity doesn’t occur; it clearly does (e.g. cells, organs,
organisms, etc.), and is just as clearly highly important. Rather, the point is that much of
what is found is what may be termed ‘soft’ modularity. Soft modularity involves partial
partitioning of structure and function combined with complex process interdependencies.
Such modules as occur are in fact generated and sustained by processes; interactions across
very complex pathways and at multiple timescales are often involved in these processes.[18]
Simplifications made for modelling tractability must be recognised as partial approximations
that can omit or distort relationships which are important in a broader perspective. The
interconnections across diverse structural and functional aspects of the system may be just as
important as more localised or functionally specialised features. Moreover, because of this
interconnectedness a too narrow focus on very specific empirical data can easily lose the more
global process relations which are just as important. This means that there is an important
role for qualitative modelling at the meso and macro level that attempts to capture these
relations, and that qualitative modelling and more concrete modelling and empirical
investigation strategies should be pursued in close communication with one another.

This type of highly interconnected ‘soft modular’ organisation is precisely what we
have argued occurs in intelligence. Interaction dynamics and the internal processes that
generate and evaluate action are intimately interwoven, such that illuminating models must
capture all of these factors simultaneously. Our account of self-directedness is an attempt to
develop an integrated model of intelligence which captures at least the broad shape of the
relations. The need for integrative models only becomes more pressing as cognition becomes
more sophisticated; learning
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processes must actively integrate diverse constraints to produce coherent efficacious
performance. SDAL utilises interaction to generate anticipations, and uses the information
generated by the way interaction is modified by these anticipations to further modify
learning. It is a thoroughly integrated process, and its power derives from this.

5.2. The modelling problem: ‘frames’ versus information

The managerial modularity of CIP leads naturally to a modular formulation of cognitive
function: it is assumed that action can always be analysed into a collection of preexisting well-
defined problems posed within the T module to which the system individually computes
optimal, typically algorithmic, solutions, which are provided as additional information to the
T module (to transduce into motor output). It is in the nature of optimal algorithmic solutions
that they are complete and so self-contained within their particular problem definition or
space. A ‘frame’ for each such problem module, or class of closely related problem modules,
i.e. a set of constraints which together provide the broad structure of possibilities in the
situation, is thus presupposed. (Cf. e.g. the Task and Problem spaces of Newell 1980b.) The
assumption is applied universally; even the bumblebee model discussed earlier introduces a
bee problem frame, that of the so-called two-arm bandit problem.[19] The formal optimality
analysis then utilises the constraints the frame identifies. Notoriously, this way of modelling
intelligent systems leads to fundamental problems, perhaps the most important being the
‘frame problem’: how can systems feasibly manage the storage and context-sensitive choice of
problem frames themselves? Because of the variety, complexity, and metamorphosis of
frames, the frame problem has proven notoriously intractable within CIP.

Indeed, the CIP conception of the basic problem/optimisation module obscures the
following facts. First, the adaptive problems faced by a system are frequently poorly defined.
Adaptive systems must often transform vague problems into more specific ones, as do
cheetahs faced with hunger when they learn how to acquire food by developing an effective
hunting technique. To do so they must uncover a great deal of implicit information about
adaptive interaction and enfold it into explicit anticipative process modulation. A focus on
algorithms prevents an understanding of how it is possible to learn things that haven’t already
been clearly conceptualised, but doing this is central to solving life problems. How is
conceptual progress possible? This is a basic cognitive problem, for which CIP approaches
have no easy answer. From our perspective the answer must be that it is only possible by
doing more that is relevant than can be initially explicitly known, but having processes that
will render it explicit in a relevant way. Understanding how the resolution of initially vague
problems is possible is central to understanding how intelligence is organised and how it is
linked to creativity.

Second, every adaptive process is embedded in a complex matrix of norms, making
often conflicting demands, and hence the problem for the organism is something like
maintaining sufficient coherency within the matrix, over sufficient time. Some degree of
dehydration is permissible while in opportunistic pursuit of food, but before too long it must
be given dominance until reduced; injury can be
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briefly risked where a kill or protection of cubs is at issue, but only cautiously, or in
extremity; and so on. This means that the ‘problem’ may not be locally well-defined in a way
that sensibly allows treatment as an optimisation. Success may be a matter of continually
balancing a complex web of tensions. (In terms of traditional rationality theory, this can
roughly be thought of as a multi-dimensional, dynamic satisficing process, but one which
cannot in principle be transformed into an optimisation process under additional constraints.)
Moreover the ‘problem’ itself is typically nonstationary for constructivist learners: they
construct further norms from their initial norms and anticipative modelling and elaborate
anticipative modelling from norms and experience, and these elaborations alter, respectively,
the criteria for success and the operative constraints.

Third, the basic form of gradient tracking is that of an iterative process in real time in
which the actual course of action is not fixed in advance but depends on the feedback received
as interaction proceeds. This means that, while the anticipative goal of the action sequence is
some autonomy-relevant outcome, the iterative, feedback-dependent nature of the process
renders that achievement in principle inaccessible to a global optimisation formulation.[20]

For all these reasons algorithmic optimisation makes little sense as a focus for
modelling intelligence. Rather, it is the constructive transformation of the problem itself that
involves the real learning, the place where real intelligence is displayed. Following rules can be
‘mechanised’ (a computer can do it), creating appropriate rules requires intelligence. In
particular, finding an optimal solution with well worked out rules to a well worked out
problem is merely a technical prowess; but when faced with an open-ended, under-specified,
multi-tensioned, issue of how to organise oneself on many timescales across sufficient time
and in relation to a dynamic environment, transforming that issue into a nested set of complex
integrated routines that maintain viability is quintessentially an exercise in intelligence.

There is thus a natural link between interactivism and constructivism. Constructivism
claims that cognitive capacity progressively emerges as the system uses mutual shaping
between interaction and internal processes to generate increasing differentiation and adaptive
competence in its interactive capacity.[21] The key intuition is that the mature form taken by
cognitive processes is deeply shaped by the interaction of system and environment. In
contrast, nativist approaches assume that the primary basis of cognitive ability is an
internally specified cognitive architecture, for which development is merely a maturation
process. The evidence for extensive activity-dependent plasticity in the brain strengthens the
case for constructivism, but also reinforces the importance of interaction, as our criticisms of
Quartz and Sejnowski’s NC paradigm have suggested. Furthermore the complexity of the
adaptive problems intelligent systems must solve also strengthens the case for
constructivism. Transforming vague problems into more specific, solvable ones requires the
use of high-order modulation coupled with environment-sensitive construction of more
specific interaction processes (Section 2).

To sum up. On the one hand, the presuppositions within which the frame problem
arises are mis-posed. As the discussion of optimisation shows, to suppose that living
successfully can be analysed in terms of optimisable solutions to self-
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contained, well defined problems is itself to mis-frame the task facing real intelligent systems.
And that in turn mis-directs attention in looking for the underlying organised processes that
might sustain viable behaviour and learning. On the other hand, the kind of learning intelligent
creatures actually and most appropriately engage in when facing their life tasks is of a sort
that has an intrinsically context-sensitive structure to it which is much more suited to
providing smooth regulation of transitions among situations than is frame transition. Higher
order regulation to manage the coordinated flows of interaction as shaped wholes, e.g. by
extracting one or a few parameters which regulate that shape, also specifies
possibilities/constraints for the situation and in this sense replaces frames; but it provides the
capacity to modulate interaction coherently across multiple processes and timescales through
suitable interlocking parameter regulation.

5.3. The modelling problem: modelling semantics

Underlying and supporting the modular problem formulation that gives rise to the frame
problem is a complementary pair of crippling semantic assumptions. These are worth
exposing to critical assessment since they are widely, if often tacitly, adopted, and doing so
will also serve to highlight the different character of our own approach to semantics.

The first assumption is implicit in the presentation of the bumblebee modelling of
Montague etal. 1995. On the one hand, it is clear from their modelled constitution that all that
the bees learn, and can learn, is to extract probabilistic correlations between flower colour and
nectar presence. On the other hand, bees are taken to be solving a formal decision-theoretic
two-arm bandit problem, a problem posed and solved in the already-meaningful symbolism of
costs and benefits to an agent. How is the slide from the one formulation to the other made?
Well, it is assumed that the bees have a problem to solve and that the solution will be arrived
at computationally, whence the use of the formal decision-theoretic model. But this last
moves slides across a crucial ambiguity in the notion of computational modelling. A
computation is an allowed syntax-respecting transform in some syntactically specified formal
system or ‘language’. So it is important to specify the syntax within which some state change
is a computation. It is distinctive of CIP that its computations are in the syntax within which
both the problem and the action solution (both input and output) are expressed as cognitive
issues for the agent in question. That is why its internal algorithms are so easily read as
symbol manipulations acting on symbolic representations. However, there is an ambiguity
between this sense of computation and typical models in the scientific literature which
describe themselves as computational, intending instead only the claim that the models are
quantitative and hence can be modelled on a digital computer. This is computation in
numerical syntax and is not at issue here; indeed, clearly both CIP and many non-cognitivist
models, including van Gelder’s dynamical models, can be captured in numerical computational
models.[22] The shift from correlation extraction to solving the two-arm bandit problem is
then tantamount to the shift from the latter to the former sense of computation, and this is
then taken to license the use of problem-defining
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terms that are already semantically interpreted in terms of agent goals, costs and benefits. By
thus borrowing from an assumed well understood semantics the issue of modelling semantics
is finessed, suppressing all questions concerning the basis in interactive process organisation
for attributing agency conceptions.

This approach leaves open still the semantics of those internal states which model
environmental interaction conditions and this is typically settled by the complementary
adoption of a representational, referential semantics for them (second assumption). In this
conception the semantic significance of a cognitive system’s interaction states is what they
refer to, in the linguistic sense of reference, and this is to be identified with the environmental
situation which gave rise to them (see note 15). Here the reference relation leaps over all the
idiosyncratic interactive complexity through which a creature relates to its environment to
‘directly’ connect inner state with outer condition. Once again, by thus borrowing from an
assumed well understood semantics the issue of modelling semantics is finessed, this time
suppressing all questions concerning the interactive basis for attributing representational
conceptions.

Taken together, these assumptions make semantic modelling ‘very easy’. One has
only to find some causal correlations between environmental features and creature behaviour
(e.g. flower colour and bee feeding behaviour) to postulate internal representations and then
construct an abstract problem model in these terms (e.g. the two-arm bandit decision
problem) which is empirically predictive for the representing behaviours, to then be able to
read off the significance of inner processes and states from the model’s agency terms (e.g. that
bees are security oriented in their nectar gathering decisions). Moreover this procedure is very
general, the correlation-based reference relation can bridge between the world and the internal
condition of both the most complex and the simplest creatures, and similarly for the use of
abstract problem models.

Unfortunately, adopted thus simplistically, this is altogether too powerful a modelling
procedure - it provides a cognitive-semantic ‘just so’ story for any nearly system whatever.
Even Braitenberg’s simple photo-taxic vehicle can be modelled as solving the ‘path orientation
decision problem’, making decisions in terms of representations of its current orientation to a
light source and its goal of arriving at the source.[23] But here all the directionality resides in
the spatial arrangement of the body of the vehicle in relation to the inverse-square radial
organisation of the electromagnetic field emanating from the light source. (Between them they
literally frame the problem, as all body-environments do.) There are no representations or
decisions, and so nothing to interpret semantically. More generally, just as the selectionist
evolutionary ‘just so’ stories that form its biological counterpart cannot be transformed into
powerful explanatory insight (cf. the modularity discussion above) so too do these semantic
strategies in themselves similarly fail to provide explanatory insight - as the Breitenberg
vehicle example illustrates. Indeed, direct reference in the required sense is dynamically
inaccessible to creatures (note 15) and the attempt to characterise it causally has proven a
notorious quagmire, while well-defined, optimally soluble problems are also largely similarly
inaccessible to creatures (cf. preceding discussion).[24]
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In the I-C approach, by contrast, semantics is a more complex multidimensional,
context sensitive, phenomenon. Norms are determined by the autonomy conditions of the
system and semantic content is determined by norm-referenced differentiated modulation of
downstream effect (note 15). An electromagnetic radiation field has no significance for a
Breitenberg vehicle, though it moves systematically with respect to it (above), a CO2 stream
has (roughly) the significance of ‘now is a time to orient and fly’ because the mosquito’s
directive organisation includes at least an implicit flight orientation norm as reference (Section
2). On the other hand, because of its greater organisational complexity, the sight of a gazelle
has (roughly) the significance of ‘now is a good time to determine hunting priority in relation
to the likely risks and rewards of this opportunity and the state of various other activity
requirements competing with hunger for attention’. Thus semantics must be modelled in a
way that is sensitive to the organisation of the system, and cannot be generically ascribed. A
semantic analysis provides, not an easy ‘just so’ story, but must be constructed from a
detailed account of the dynamical organisation of the system; it cannot be provided until that
account is available and has all of the empirical content of that account.

This is not to say that CIP modelling is never useful. To the contrary, aptly
constructed CIP models may prove informative at least where external behavioural modelling
is a useful first step (e.g. the bee foraging model above) and of course wherever there is reason
to attribute real internal symbolic computation.[25] The point is that particular
computational models and their semantic interpretation must be constructed in ways that are
sensitive to the interaction dynamics and normative constraints of embodied adaptive
systems. Ignoring the isolation of process from context involved in CIP modelling, and the
approximations involved in its abstractions, is what causes difficulty.

5.4. The modelling problem: dynamics and meso modelling

While the preceding discussion demonstrates the importance of a dynamically grounded
holistic approach within an adaptive framework, dynamical modelling in itself will not
capture the process organisational considerations I-C introduces. Dynamical embodiment
research has tended to focus exclusively on the study of emergent dynamical patterns, their
critical bifurcation points and control parameters, and the like using as the fundamental
framework the dynamical modelling of differential equations (d.e.’s) as fields on differential
manifolds, e.g. on phase space.[26] This is a very important new tool in the armoury of
cognitive science and its significance has been rightly emphasised. However, this type of
model also possesses limitations which mean that it can only be a part, not the whole, of the
conceptual framework for cognitive science. In particular, it does not explicitly describe the
physical organisation of the system—a chemical clock and a pendulum, for instance, may be
modeled as equivalent dynamical oscillators. Only the global dynamical outcome is specified,
not the organised processes which produced it and which, according to the I-C account, are
crucial for understanding its cognitive nature and significance.[27]
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In particular, we believe that our analysis makes clear why it is that the challenge of
introducing high order, self-steering modulatory capacities must eventually be faced. The
recent work of Brooks, a passionate advocate of the dynamical embodied modelling approach
(see Brooks 1991), perhaps provides a first hint of this. Brooks’ early work focused on the
development of simple robots called Creatures designed to mimic insect-level performance in
much the way illustrated in the mosquito example. However, in a dramatic shift of research
focus Brooks’ switched from attempting to model insect-level intelligence with Creatures to
modelling human intelligence by building a humanoid robot capable of interacting in a human-
like fashion. This new research was called the Cog project (see Brooks and Stein 1993). A
humanoid robot, though, possesses far greater sensori-motor complexity than a Creature, and
this increase in complexity raises a new set of design issues. Creatures are designed with
simple sensors, limited behaviour repertoires, and few goals. Because their modes of
adaptiveness are so simple it is safe to allow their behaviour to be largely situation-driven. A
humanoid robot, on the other hand, has much more complex sensory information and many
more possibilities for action, so it cannot avoid the issue of somehow selecting actions
appropriate to its situation. For example:

Suppose the humanoid robot is trying to carry out some manipulation task and is
foveating on its hand and the object with which it is interacting. But, then suppose
some object moves in its peripheral vision. Should it saccade to the motion to
determine what it is? Under some circumstances this would be the appropriate
behavior, for instance when the humanoid is just fooling around and is not highly
motivated by the task at hand. But when it is engaged in active play with a person,
and there is a lot of background activity going on in the room, this would be entirely
inappropriate. If it kept saccading to everything moving in the room it would not be
able to engage the person sufficiently, who no doubt would find the robot’s behavior
distracting and even annoying. (Brooks 1997, p.298)

The robot must be able to orchestrate its many low-level processes to produce coherent high
level context-sensitive behaviour. In order to achieve this Brooks argues that the robot must
have some form of motivation which provides it with preferences over courses of action. In
effect, motivation here can be understood as a form of high order process modulation. For us
the implication is clear, a robot like Cog must be self-directed if it is to function
effectively.[28] However to adequately capture this phenomenon we need to model the
processes at this intermediate (meso) scale. There is, then, no way to avoid all three of
(relatively) micro, meso and macro modelling if intelligence is to be adequately captured.
Micro models are essential to specify the basic dynamical interactions which set the broadest
constraints on what is possible and thence to provide the basic dynamical modelling
framework for investigating collective phenomena. Macro models are essential to specify the
global features of cognitive significance, and capture those emergent dynamical features which
have no relevant finer analysis, and to relate them both to the bulk of the salient empirical
data. However, complex nonlinear systems frequently have process structure at many scales,
and hence meso models are required to capture the process structure



INTERACTIVIST-CONSTRUCTIVIST APPROACH TO INTELLIGENCE 37

intermediate between the micro and macro scales. In particular, on our account it is meso scale
processes, like the high order modulatory processes involved in self-directedness, that are
central to understanding intelligence.

6. Conclusion

The paradigms that we use shape the questions we ask. We have presented an interactivist-
constructivist (I-C) approach to theorising intelligence as a particular type of adaptive
capacity, one that emphasises the smooth, high order integration of internal with external
interaction processes to sustain coherent living conditions. We propose that the complexity
of this management task leads to the emergence of a self-directing or self-steering capacity
capable of exercising high order regulation to coordinate, through the modulation of these
interactive processes, the joint satisfaction of multiple performance norms. Learning and
intelligence emerge as sophisticated forms of self-directedness where the normative and
anticipative information made available through interaction is used to improve both the
current performance and the capacity for such performances, creating a virtuous interactive
cycle that permits the solution of initially vague problems. This directs our attention to the
search for such integrative capacities in both nervous systems and robots, design questions of
a quite different kind than conventional CIP cognitive modelling encourages. Nonetheless,
preliminary investigation leads us to believe that this perspective can be fruitfully fused with
contemporary empirical work in neuroscience (and robotics) and, we would hope, with
studies in the evolution of intelligent organisation (cf. Miklos et al. 1994). Thus we have a
new set of questions to pose and a new set of organisational ideas to proffer whose
investigation we hope will make a contribution to the long awaited emergence of an integrated
theory of cognition from the disciplines of neuroethology, psychology, cognitive robotics and
philosophy.

Notes

[1] For characteristic works in this approach see, e.g., Beer 1995, Bickhard and Terveen 1995, Brooks 1991,
Clark 1997, Etxeberria 1998, Hendriks-Janson 1996, Lakoff and Johnson 1999, Smith and Thelen 1993,
Smithers 1995, van Gelder 1995, 1998. See further note 27. This approach often labels itself non-
cognitivist or non-representationalist to make the point that, in contrast with the currently dominant
computationalist information processing (CIP) approach (see Section 5), it does not begin with
cognitively interpretable elements but with more basic dynamical processes, though it is ultimately just as
concerned to illuminate and explain standard cognitive phenomena.

[2] There are, e.g., several thousand biochemical interactions going on simultaneously in a single cell and
between them these must continuously regenerate the whole cell. Note however that autonomy is not to be
identified with structural reproduction of all the parts (as autopoiesis is defined), since in adaptive
creatures organised structural change must occur as they develop and adapt. Rather it is the regeneration of
the organised interactive processes of  a continuously viable whole system that is key. For further
discussion see Christensen and Hooker 1998c, 1999a.

[3] Or, if you wish, selects among possible subsequent performances. Explicitness is thus with respect to
what the system itself can differentiate with its internal dynamical processes. See Bickhard 1993 and
Bickhard and Terveen 1995 for extensive arguments for taking a ‘system-level’ perspective in
understanding representation and epistemics. The explicitness of norms grades up
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continuously from a-normative dynamical interaction to dynamically distinguished standing reference
conditions. The degree to which a dynamical state or condition is an explicit reference condition or norm
is roughly determined by the relative longevity and system-wide impact of the constraints it imposes. We
do not assume that such norm indicating conditions are symbolic or involve consciousness.

[4] This formulation leaves open the nature of the mosquito’s internal process organisation through which
orientation is achieved. The mosquito may have at least one explicit norm for its gradient tracking process
in the form of an internal process which constructs a signal measuring the divergence between actual
spatial orientation and the direction of maximal local CO2 concentration, using the signal to reduce
divergence by modifying flight orientation.. This would be a very rudimentary norm because its operation
is momentary, spatially local and limited to flight behaviour. However it need not be the case that there
actually is an internal signal in the mosquito which performs this function: flight orientation may work
through the type of simple contralateral sensori-motor connection that Braitenberg’s light-tracking vehicle
uses (see note 24 and text). If this is the case the spatial difference in CO2 concentration is not directly
integrated by a signal within the mosquito, but is instead integrated by the whole structure of the
mosquito body: sensors simply connect directly to separate motor systems, so that activation differences
between sensors generate laterally different motor outputs which are finally integrated as an orienting
torque through the relative rigidity of the mosquito’s body. (It must maintain some appropriate spatial
relation between the motor systems and between them and the body as a whole.) There is thus, on our
account, a real organisational difference between having an explicit norm and not having one. Whether
mosquitos have them for their blood-acquiring activity is an open issue, though there is neuronal evidence
that, as with bumblebees (Section 4), they in fact have several operative norms (see Klowden 1995). Our
contention that intelligent organisms have many such norm signals available is based on the
sophistication already found in insects, and qualitative arguments concerning the need for intelligent
organisms to integrate many factors in producing appropriate action, and on neuronal evidence of at least
one major plausible supportive architecture (the mesencephalic dopaminergic architecture, discussed in
Section 4). Equally, we recognise that the mosquito may have more than one operative norm governing
flight, while still responding stereotypically, and/or it may possess dynamical integration of behaviour
over time that goes beyond stereotypical reaction (cf. Section 3). Experience with detailed modeling of
even apparently very simple real and artificial systems quickly reveals their surprising dynamical
complexity (e.g. Beer 1995). We use the mosquito, and the cheetah (see below) and later the detective,
effectively as model systems to develop the distinctions we consider important to understanding the
process organisation underlying intelligence; while we have tried to remain empirically reasonable in what
we do attribute to these creatures, we attribute no more to them than is necessary for our purpose. (In this
we parallel the treatment of the bumblebee to be discussed below.) Were it shown that any of these were
still more cognitively complex that our attributions warrant (they are certainly more dynamically complex),
that in itself would only alter our cognitive classification of them, not our analysis of cognitive
organisation which is the focus here.

[5] We shall shortly discuss an empirically-based neural bee foraging model which assigns to bees an
elementary self-directive capacity, so we have no desire to preclude other arthropods such as spiders from
showing similar rudimentary capacities, and we leave the issue as an open empirical one, though we hope
that the conception of self-directedness developed here will lead to a sharper, experimentally accessible
characterisation of such capacities. We are indebted to Naor 1993 and to David Naor for stimulating
discussion on generalised gradient tracking as intelligent heuristic policy.

[6] Cf. Smithers’ concept of expanding the interactive present (Smithers 1995).
[7] As the mosquito illustrates vividly, for primitive creatures there is no separation of anticipatory and

normative signals or conditions, rather both are simply implicit in the overall organisation of the
interactive dynamics. Separation of anticipatory and normative aspects comes by degree and is a feature of
more sophisticated systems like the cheetah. If, e.g., there are explicit reward/punishment norm signals
(such as pain) available to the system then it can distinguish this
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information from sensory-derived anticipatory information. But even for creatures like cheetahs all signals
will carry both kinds of information; perception of a gazelle carries both its physical character and its
salience as hunger satiator, and pain itself can not only indicate malfunction but provide useful
kineasthetic and proprioceptive information about bodily disposition. The anticipatory and normative
aspects emerge only in terms of how the system uses the signals to modulate its activity; they are
differentiated by the system, not inherent in the signal. To the extent that a system uses a signal to
modulate the time structure of its interactive dynamics in relation to the environment it treats the signal as
carrying anticipatory information and to the extent that it uses a signal to modulate the generation of
action in relation to bodily conditions it treats the signal as carrying normative information. In the case of
humans the young baby does not immediately show strong anticipatory/evaluative differentiation, rather,
that only emerges through subsequent development; in the adult, anticipatory modeling of interaction is
sufficiently well differentiated from evaluation, at least at the conscious level and for normal functioning,
that it is reflected in a separation of descriptive from prescriptive, fact from value. It because anticipation
has both predictive and normative aspects that we are able to learn about values as well as facts.

[8] Ecological risk concerns the likelihood while chasing of being attacked by others, e.g. lions or elephants,
or of one’s cubs being attacked, the risk of not instead satisfying other needs, like thirst, in those
circumstances, and so on, and ecological location includes the physical features relevant for such risks:
presence of other species, location of water and cubs, etc.

[9] Thus intentionality, like intelligence, is measured by, and derives from, self-directedness. They are thus
understood to be distinct, yet intimately interrelated, aspects of the same directive process organisation, in
much more richly articulated ways than CIP, with its I-T-O modularism, can naturally provide.

[10] The severe incapacitation which results from absence of such signals can be seen in leprosy. Further to our
text remarks on the importance of asynchrony, we note here that the dynamics of all the processes we
discuss depends on asynchronous interaction; some elements of the system’s structure and organisation
must be relatively invariant compared to others in order to serve as directing constraints on them. For
example, that the human skeleton in general changes on a longer timescale than that of behavioural
processes is crucial to its providing constraints which precisely enable coherent, predictable behaviour like
running and throwing. In particular, the dynamics of self-directing processes depends on asynchronous
interaction between high and low order processes; overall goals and organisation must remain sufficiently
constant for specific component activities to have coherence and point. If Sleuth's overall conception of the
case changes more rapidly than, say, the investigation process, the latter will be in danger of irrelevance
or, worse, of destroying evidence or cover. Purely computational theories have no natural place for timing
(van Gelder and Port 1995) and these crucial features of real embodied intelligent processes tend to be
suppressed.

[11] Science is a self-directing process that is more powerful again, being able to anticipatively change its
general methods, including experimental procedure and theory construction, and its high-order goals by
enriching its primary epistemic norm, truth, with supporting surrogate norms (consistency, controllability,
intelligibility, informativeness, etc.). The equivalent of Sleuth’s general profile construction is explicit in
proto-theories (e.g. of space-time, measurement, and statistical inference) and supported by the rich
generalised construction tools of logic and mathematics. One of the chief uses of the scientist’s detailed,
powerful, theoretically structured anticipative model for an experimental procedure, combined with the rich
spectrum of epistemic performance norms on experiments (such as reliable reproducibility), is precisely to
specify the loci and nature of potential errors in order to anticipatively check for, and correct for, them.
Another is the complementary capacity for increasingly refined evaluation of which experimental
procedures can be reasonably entrenched in standard laboratory practice and effectively propagated
throughout the relevant discipline(s). See further Christensen and Hooker 1999b, Hooker 1995.

[12] Or at least, the input data, which is as much of the environment as appears in Quartz and Sejnowski’s
information processing model of learning. As we will discuss below, and should be clear from the
previous discussion, this is an inadequate way to model the influence of the environment on learning.
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[13] This general picture of neural development shows interesting resemblances to that proposed by
Cunningham 1972, whose pioneering ideas seem to have been largely ignored. Cunningham proposed a
model of simple Hebb-like growth mechanisms for neural connections and argued that one could extract a
resulting temporal sequence to neural organisation whose functional capacities mirrored Piaget’s
developmental stages. For some discussion of Cunningham’s model and its contrast to conventional
control models see Hooker 1996, pp.192-4. The question posed there: ‘How can a system be (self-
)organizing so as to improve control capacity?’ is here answered functionally with SDAL and
neurologically with the Cunningham/Quartz-Sejnowski neural capacity for parametric self-modification
which makes neural organization sensitive to collective variables. This constructive approach in fact stands
in a tradition that goes back at least to Pask 1960, 1981; see also Cariani 1992, 1993 for discussion,
sympathetic to, and complementary to, that provided here.

[14] Insofar as ‘represents’ is used loosely to mean simply ‘organised in relation to’, there is some sense to the
way in which Quartz and Sejnowski use the term and the matter could be left there were it not for the fact
that it has a particular connotation within the standard CIP paradigm that makes its use here highly
misleading. In that paradigm what an internal condition represents is the external condition that stimulates
it (and was the chief cause of its formation), what, in the standard language-like reading, the representing
symbol array refers to. This is upstream or reverse causality representationalism. It is notoriously
inaccessible to real creatures because they have no natural dynamical access to what sends them their
environmental stimuli, only to what they do with stimuli once received. Of course they can respond by
attempting to further interact with the sender/sending condition, but this is itself a directed, causally
downstream response to the stimulus, not a reaching upstream. Their downstream response is also the
only thing they can subsequently modulate in relation to the further cycle of stimulation that results, not
the signal origin per se. Thus we are led instead to downstream representationalism, where the significance
of a signal is what the system does in response to it and any internal representation of its origin must be a
sophisticated construction that emerges from this activity, not that defines its significance. This provides
system-accessible forms of natural significance and representation, ones directly connectible to system
norms and anticipative models through self-directing processes in the manner discussed in note 15. The
difference is not trivial. Upstream representationalism concentrates attention on the encoding of correct
information as the most critical aspect of cognition; the learning problem and the learning process are
viewed as quite distinct things, and learning can be idealised as passive pattern conformation. In contrast,
a downstream modulation model of cognitive activity concentrates attention on output, where the most
important measure of success is appropriateness of behaviour in the circumstances. (See also Bickhard
1993, Bickhard and Terveen 1995 for further discussion.) If downstream process modulation is substituted
for representation as the ‘general currency of the brain’ (cf. Quartz and Sejnowski 1997 p.538), then the
insight that learning involves organisational change which reflects environmental regularities is preserved,
without prejudging the nature of the adaptive relation. Furthermore, attention is directed towards a more
dynamic account of learning.

[15] Connectionism relaxes the extreme modularism of AI by allowing distributed processing architectures that
yield markedly less dynamical modularity because of the resulting global character of the relevant
connectionist net states. More significantly, connectionist nets introduce a degree of plasticity (in the node
weights). The resulting interaction between a connectionist network’s dynamical characteristics and its
inputs (including, for supervised learning, any error-correcting inputs) breaks down the sharp distinction
between processing architecture and input content, allowing the functionality of a connectionist net to
emerge from this interaction rather than be predetermined by a fixed representational space, as is the case
with AI. An interesting consequence is that the cognitive process boundaries become ‘smeared’, inasmuch
as a functional connectionist net cannot be characterised independently of its environment in the same way
a Turing machine can. Despite this interactivist clue, which really undermines I-T-O modularity,
connectionist methodology and rhetoric unquestioningly retains the general internalist assumption that
cognition is basically a form of problem solving input-output processing that can be given a largely
intrinsic characterisation.
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[16] See Cummins 1984, and Hooker 1989, Section IV.2.3 for an overview of Cummins’ difficult but valuable
analyses in a dynamical systems setting.

[17] It is often remarked that biological organisation is ‘messy’ and ad hoc, littered with ‘Rube Goldberg
mechanisms’ which result from the inherent vagaries of the evolutionary process. There is an element of
truth to this, but it also reflects a human prejudice for top-down engineering which does grave injustice to
the power and subtle elegance that can also be found in biological systems. Current human engineering is
hopelessly crude and simplistic by comparison. When Lockheed-Martin can design stealth bombers with
the fault tolerance, self-maintenance and ‘smart’ capacities of a barn owl, and manufacture and fuel them
using resources as cheap and readily available as mice, it will be really on to something.

[18] See, e.g., examples in the articles on complexity in Science, April 1999, and Collier and Hooker 1999 for
an account of some relevant aspects of organisation in biological adaptive systems. Cf. Karmiloff-Smith
1992.

[19] That is, where the bee must choose between a strategy which yields a small but reliable reward and a
strategy which yields a larger but less reliable reward, given that the net outcomes for either strategy are
equal. Real 1991, who posed the problem, is very clear about the formal computational, decision theoretic
problem formulation to be used to model living agents.

[20] At least to the extent that the process is in large part implicit, which every real process that can support
learning deeply is. There is, clearly, no well defined global optimisation problem posed by living; and if
there were, no creature could have access to it (since it concerns both knowledge of self and of future no
creature has in advance). However it is true that once anticipative models have been constructed for kinds
of goal-achieving processes, e.g. for gazelle hunting, these processes can thereafter be improved against
their explicit norms. Although they must remain context-sensitive in application (the hunt must be for this
gazelle in this situation), it might be thought that the improvement process can best be modelled by some
higher-order optimising process. Perhaps on occasion it can; e.g. humans certainly find it useful to use
optimising models in situations that are sufficiently well understood theoretically. But even here it often
proves gravely misleading whenever the real world situation outruns the modular modelling constraints (as
it notoriously does, e.g., in economic and social action contexts). For the reasons set out in (1) and (2) we
see neither the necessity for, nor much support for, taking this approach as basic and leave its reasonable
application to further study.

[21] It is reasonable to expect that essentially the same constructive processes will account for both early
development and later learning, though the latter will occur in a more richly elaborated constraint
framework. In this century the pioneer and doyen of constructivism has been Piaget, who expressed the
position succinctly in his own framework:

.... knowledge arises neither from a self-conscious subject, nor from objects already constituted (from
the point of view of the subject) .... it arises from interactions that take place mid-way between the two
.... but, by reason of their complete undifferentiation, .... if there is at the start neither a subject in the
epistemological sense of the word, nor objects conceived as such, nor invariant intermediaries, the
initial problem of knowledge will therefore be the construction of such intermediaries .... (Piaget 1972,
pp. 19-20).

Quoted also at Hooker 1995, p.229, for which see for further discussion. This constructivist tradition was
developed in potentially fruitful ways by Piaget’s contemporary Vygotsky (1986) (even while Piaget was
being seduced into an internalist formalist psychology of ‘stages’), by Rummelhart and McClelland
(1986) and Bickhard (e.g. Bickhard 1993, Bickhard and Terveen 1995, Bickhard and Campbell 1996).
Quartz and Sejnowski provide a welcome neurophysiological contribution to this tradition, following
Cunningham (1972), see note 14.

[22] Though we add the qualifications that mathematical science exhibits many non-computable functions and
many non-linear n-body processes that are in principle not tractably modelable.

[23] See Braitenberg 1984. His photo-taxic vehicle consists just of a rectangular frame supported by a wheel at
each corner laterally aligned in pairs in the usual way, and equipped with two
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photoelectric sensors attached to the ‘front’ corners and two independent electric drive motors on the ‘rear’
wheels, with sensors connected to motors contralaterally. Then the inverse-square difference in light
intensity at the receptors from a localised distant light source drives the rear motors differentially so that
the vehicle automatically turns towards the light, the contralateral sensori-motor connection ensuring that
the ‘far’ motor is driven harder by the ‘near’ photoreceptor. Thus photo-taxis is effected by just
contralateral wiring connecting a-directional sensor output with a-directional motor response; overall
direction is only created because they are held in suitable (here rigid) mutual spatial relations by the
vehicle body.

[24] Of course, as systems further interact with their environment on this basis they will come to associate and
differentiate environmental feedback signals and respond to them as clusters and in this way construct an
interactive representation of a causing environmental situation as a norm-evaluated flow of actions and
feedbacks (i.e. of what possibilities for interaction and rewarding feedback there are) in something like the
manner Piaget describes (note 22). But this is a sophisticated construction, not a founding semantic
condition. (The human infant takes more than a year to achieve a rich object constancy, and the
peculiarities of quantum interactions quickly rob even experienced adults of it.) Similarly, as both norm
matrices and anticipative models become increasingly elaborated and integrated, there will emerge a
semantics of internal modulatory states which, at least in part, is increasingly classical in structure; but
again this will be a sophisticated construction, not a founding semantic condition, and much, likely most,
of a human’s effective interactive organisation will not be included in this specialised domain. See further
note 26 and Bickhard 1993, Bickhard and Terveen 1995, Christensen and Hooker 1998a, b, Hooker 1992.
We are indebted to Bickhard for valuable instruction on this matter.

[25] Possibly, e.g., for linguistic activity, but we retain an open mind about this until the process organisation
underlying linguistic competence is unraveled (rather than just ‘just so’ modelled) - cf. note 25.
Conversely, we do not claim that there are no norms, anticipative models or semantics to be found simply
because what emerges from dynamical modelling is dynamically characterised (as Beer, commentary on
van Gelder 1998, suggests). Rather, these are to be discovered by careful empirical organisational analysis.
Whence we do not preclude discovering the need to attribute symbolic processing to some activities.

[26] This orientation is well illustrated in Smith and Thelen 1993, Smithers 1995 and van Gelder  1995, 1998,
exemplified by van Gelder’s holistic dynamical d.e. model of the Watt-steam-governor-and-steam-engine
as paradigm for intelligent control (van Gelder 1995), the studies in Smith and Thelen of the emergence of
crawling in infants as dynamical bifurcation, and the attempt by Smithers to characterise autonomy in
terms of the differential morphology of interaction fields. For further general discussion see van Gelder
and Port 1995, van Gelder 1998 and Christensen 1999, chapter 1.

[27] It is always possible to capture the internal organisation of the system by modelling it as a system of
coupled component subsystems. However there is then no principled basis for: (a) specifying when such
organisation should be explicitly modeled, or (b) individuating the system in a principled way. In
consequence this modeling procedure is by itself too weak to capture the distinctions crucial to delineating
the cognitively relevant differences among systems, at least of the sort the I-C approach regards as central.
For another aspect of this issue see note 26.

[28] Note, however, that the issue is not distinctive to humans (or humanoid robots), but of fundamental
importance to all forms of intelligence, which is why we chose to illustrate it with the cheetah example.
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