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Abstract

Satisfiability Modulo Theories (SMT) solvers are large and compli-
cated pieces of code. As a result, ensuring their correctness is challeng-
ing. In this paper, we discuss a technique for ensuring soundness by
producing and checking proofs. We give details of our implementation
using CVC3 and HOL Light and provide initial results from our effort
to certify the SMT-LIB benchmarks.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers have been successfully applied
in many verification applications. As modern SMT solvers add optimizations
and features, they are becoming more complicated than ever before. At the
same time, SMT solvers are increasingly being used in applications where the
correctness of the solver is essential. With currently available verification
techniques, it would be extremely difficult to verify that a modern SMT
solver is correct. Even if such a proof were done, it would be difficult to
maintain in the face of constant changes to the solver. One alternative is
to have the SMT solver produce a record of its proof search and then use a
small, trusted proof-checker to check the proof.

However, the approach of generating and checking proofs from SMT
solvers faces several challenges. The first challenge is to design a suitable
set of proof rules. Unlike SAT solvers, for which only one proof rule (Boolean
resolution) is sufficient for proof-checking, SMT solvers require a much richer
set of proof rules, which depend on the background theories supported and
the decision procedures employed. There are also trade-offs to be considered
in the selection of proof rules. On the one hand, a small set of simple
rules is better for proof-checking. On the other hand, a larger set of more
complex rules makes things easier for the implementer of the SMT solver.
An additional issue is the maintenance of the proof rules. As functionality is
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added and modified over time, proof rules may change and new proof rules
may be needed. Adding support for these changes to the proof-checking
strategy thus incurs additional maintenance effort.

The next challenge is to implement a proof-checker. Proofs of nontrivial
SMT benchmarks are far too big to be readable by a human. Thus, proofs
must be checked by a trusted proof-checking algorithm. Depending on the
number and complexity of proof rules, the task of a proof-checker may range
from fairly simple to very complex. One representation of a proof is as a tree
in which each node is labeled with a formula. The root of the tree represents
the theorem being proved. Each internal node represents the application of
a proof rule used to derive the formula labeling that node from the formulas
labeling its children. For such a proof tree, the task of a proof-checker is to
check that the deduction represented at each node in the tree is valid. For
simple rules, such as deriving ¬true from false, a simple syntactic check is
sufficient. However, for more complicated rules, (for example, a single proof
rule could be used to encapsulate normalization of linear arithmetic terms),
a sophisticated algorithm requiring many steps may be needed.

There seems to be an unavoidable trade-off between performance and
ease of coding the SMT solver (which leads to many complex proof rules)
and the simplicity of the proof-checker which is desirable in order to minimize
the amount of code that must be trusted (and also to minimize the effort
required in building and maintaining the checker).

There is, however, a solution that has most of the advantages of both.
The idea is to use another existing theorem prover to check proofs from the
SMT solver. This approach enables the use of fairly complicated rules in the
SMT solver as long as the reasoning behind the rules can be reproduced in
the other prover. The additional work that must be done is then to translate
each rule into the language and methodology of the other theorem prover.
A successful check of the proof results in a theorem in the other prover.
Notice that we have reduced the problem of trusting the SMT solver to the
problem of trusting the other prover. However, if the other prover is chosen
carefully, specifically if the choice is made to use a prover that has a small
set of simple core proof rules, then the result is a system in which the SMT
solver can use complex proof rules, while at the same time the set of rules
that must be trusted is small and simple.

In this paper, we describe our experience with this paradigm. The SMT
solver is CVC3 [4], and the proof-checker is HOL Light [5]. To motivate and
test the system, we applied it to benchmarks from the SMT-LIB library [3].
These benchmarks are used as points of comparison in many papers as well
as in the annual SMT-COMP competition. Every benchmark in SMT-LIB
contains a status field indicating whether it is satisfiable, unsatisfiable, or
unknown. While benchmark providers and SMT-LIB maintainers do their
best to ensure that the status fields are correct, occasionally benchmarks
are incorrectly labeled resulting in confusion or controversy.
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Our eventual goal is to certify as many unsatisfiable benchmarks as pos-
sible by producing and checking their proofs. Here, we report on our initial
progress towards this goal. Ultimately, satisfiable benchmarks could (and
should) also be certified by producing and checking models, but that is be-
yond the scope of this effort.

The paper is organized as follows. Section 2 gives a brief introduction
to CVC3 and its proof system. Section 3 describes the theorem prover HOL
Light. Section 4 discusses the translation procedure and several obstacles
that had to be overcome in order to make it work. Section 5 discusses
our experience running the system on the SMT-LIB benchmarks. Section 6
discusses related work, and Section 7 concludes.

2 CVC3

CVC3 is the latest in a series of SMT solvers (CVC, CVC Lite, CVC3). It
aims to be both a platform for SMT research as well as a robust tool for use
in verification applications. CVC3 is open-source, is maintained by a number
of contributing developers, and enjoys a large and active user community.
In order to achieve competitive performance on large benchmarks, CVC3
employs a number of optimization strategies which complicate the code.
For instance, CVC3 implements its own memory manager, has reference
counting schemes for expressions and theorems, and uses sophisticated data
structures for backtracking. At the time of this paper, the code base consists
of nearly 100,000 lines of intricate C++ code.

Because applications of theorem provers like CVC3 need to be able to
rely on correct results, it is of the utmost importance that the complexity of
CVC3 not compromise its correctness. In particular, a theorem prover that
is unsound (i.e. reports that a theorem is unsatisfiable when it is actually
satisfiable) could lead to missed bugs in critical applications.

One of the primary goals with the CVC family of systems has been to
have high confidence in their soundness. The first system, CVC, pioneered
the use of proofs within a state-of-the-art SMT solver [9]. The current sys-
tem, CVC3, builds upon a proof infrastructure developed for CVC Lite [2].
Here, we give a brief overview of CVC3’s proof system.

2.1 Proofs

A proof is a tree in which each node is labeled with a formula. The formulas
at the leaves of the tree are called assumptions and the formula at the root
is called the conclusion. Assumptions may be designated as open or closed.

A sequent is a pair Γ ` φ, where Γ is a set of formulas and φ is a formula.
Since we are often interested only in the assumptions and the conclusion,
the sequent Γ ` φ is used to represent any proof whose open assumptions
are Γ and whose conclusion is φ.
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A proof rule or inference rule is a function which takes one or more
proofs (called premises) and returns a new proof (the consequent) whose
root node has each of the input proofs as its children. A proof rule specifies
what formula should label the new root node and may also change the
designation of one or more assumptions from open to closed.

Proof rules depend only on the assumptions and conclusions of their
premises and can thus be described using sequents. We denote a proof rule
as follows:

P1 · · · Pn

C

where the Pi’s are sequents representing the premises and C is a sequent
representing the new proof tree. The proof rule takes any set of proofs which
match the Pi’s and returns a new proof whose root is labeled by the right-
hand side of C. If an assumption appears in some Pi but not in C, then
that assumption is closed in the proof tree constructed by the proof rule. If
there are no premises, the rule is called an axiom.

A sequent Γ ` φ is valid if the conjunction of the assumptions in Γ
implies φ. A proof rule is sound if the validity of all its premises implies the
validity of the conclusion. It is not hard to see that if all the proof rules are
sound, then any sequent representing a proof constructed using those proof
rules is valid.

2.2 Proof Rules

The most basic rule is the assumption axiom. This rule, together with a few
other simple rules, are shown below.

φ ` φ
assume

Γ1 ` φ↔ ψ Γ2 ` ψ ↔ θ

Γ1 ∪ Γ2 ` φ↔ θ
iffTrans

Γ0 ` α0 Γ1 ` α1 . . . Γn ` αn

Γ0 ∪ Γ1, . . . ,Γn ` φ↔ φ′ simplify

Some proof rules (like the middle one above), have results that are com-
pletely determined by the premises. Others (like the other two) require
additional parameters. For instance, assume has no premises and takes φ as
a parameter, producing the sequent φ ` φ. Similarly, simplify takes a set
of premises ∆ = {Γi ` αi | i ∈ {0 . . . n}} and the formula φ to be simplified
as a parameter. It returns a sequent for φ ↔ φ′ where φ′ is obtained by
replacing all instances of the literals in ∆ by true (and their negations by
false) and applying simple Boolean rewrites to the result.

At the time this paper was written, there were 298 proof rules in CVC3.
They include basic first-order rules, rules for propositional logic, and a vari-
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ety of rules for theory-specific reasoning. They range from extremely simple
to very complex.

2.3 Implementation

In CVC3, one of the basic classes is the Theorem class. Each instance of
this class represents a proof and contains the sequent, i.e. the assump-
tions and conclusion for this proof. These Theorem objects exist even in
the high-performance non-proof-producing version of the code. In fact, the
assumption lists are critical for producing conflict clauses (see [2]). If proof-
production is enabled, then each Theorem object in addition contains the
actual proof tree represented as a directed acyclic graph (i.e. identical sub-
trees are shared). Each proof rule is implemented as a function which takes 0
or more Theorem objects (the premises) as well as any necessary parameters
as input and produces a new Theorem (the consequent) as output. These
functions exist in specially designated trusted code modules. A compile-time
check ensures that only trusted modules can create new Theorem objects.
In addition, each proof rule function checks that its premises are of the right
form. These features help ensure that soundness bugs can only be the result
of problems in the trusted code modules.

Implementing proof production has been valuable in helping shape and
understand the design of the system. More importantly, it has caught and
prevented bugs in CVC3. Recently, some changes to the arithmetic module
uncovered a soundness bug (a previously known satisfiable benchmark was
reported unsatisfiable). We ran our translator and found one step of the
proof that could not be validated. A careful examination of the proof rule
in question showed that the proof rule itself was not sound. This bug had
persisted in CVC3 for years and would have been extremely difficult to find
without the proof system.

3 HOL Light

HOL Light is a general purpose interactive theorem prover based on higher
order logic. Like other HOL-like systems, HOL Light is capable of formal-
izing most of useful mathematics. In particular, it is capable of formalizing
the theories and reasoning used in SMT solvers.

HOL Light is built on top of a very small trusted logical core. The logical
core implements a proof system consisting of ten inference rules, mostly
about equality, three axioms, and two principles of conservative definitional
extension. It is implemented using only 430 lines of Ocaml code. Except
for equality, all other logical symbols are defined, even the propositional
connectors like “∧” and “∨”. HOL Light’s definitional extension mechanism
guarantees that each definition is sound and that any theorems proved are
valid as long as the logical core is valid. In addition to being small, the
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majority of the trusted core of HOL Light has itself been verified formally [6].
As John Harrison, the author of HOL Light, has stated, “it sets a very
exacting standard of correctness”[1].

HOL Light is programmable and can easily be extended. Derived proof
rules and decision procedures can be implemented as Ocaml functions. Many
such derived functions exist as part of HOL Light already. For example,
the function REAL ARITH is a decision procedure for proving basic facts
about arithmetic. HOL Light also includes decision procedures for proposi-
tional and first-order reasoning. These tools can be leveraged for our proof-
checking purposes.

4 Proof Translation

When CVC3 is presented with a verification task in SMT-LIB format, it
may respond with “satisfiable”, “unsatisfiable”, or “unknown” (or it may
timeout or run out of memory). When the result is “unsatisfiable”, CVC3
can produce a proof using its proof system. This proof is used as input to a
translation program written on top of HOL Light. The goal of the translator
is to read the CVC3 proof and reproduce the same reasoning steps in HOL
Light. In order to do this, the translator must be able to translate both the
formulas and the proof rules. In this section we discuss how this is done
with emphasis on specific challenges that had to be overcome.

4.1 Translation of formulas

CVC3 uses the language of many-sorted first-order logic, while HOL Light
is based on higher order logic. Because the theories used in CVC3 can be
defined (or are already defined) in HOL Light, it is fairly straightforward to
translate formulas of CVC3 into formulas of HOL Light. There are, however,
a few idiosyncrasies of the SMT-LIB format that are a bit challenging for
HOL Light.

For example, SMT-LIB supports a built-in predicate of variable arity
called distinct. distinct(x1, x2, ..., xn) means ∀ i j : [1 . . . n]. (i 6= j →
xi 6= xj). Because predicates in HOL Light must have a fixed arity, we
model this predicate by defining a set of parametrized predicates distinctn,
where n is the arity. These predicates are defined only when needed by the
translator.

The translation of variables and constants of real and integer types is a
bit tricky. CVC3 allows integers to be used as arguments to real operators.
This is not allowed in HOL Light. Thus, during translation, if integers and
reals appear in the same formula, the integers are lifted into reals.
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4.2 Translation of proof rules

For each proof rule in CVC3, we write an Ocaml function whose purpose
is to get HOL Light to prove the conclusion given HOL Light theorems for
the premises. A naive approach is just to call built-in HOL Light functions
and hope they will succeed. For instance, we could call the built-in HOL
Light function REAL ARITH to do reasoning about arithmetic. This approach
sometimes works for simple rules and formulas, but is too slow to use in
general.

A much better method is to prove generalized versions of each proof
rule in HOL Light ahead of time and then just instantiate these theorems.
For example, consider the following CVC3 proof rule (where x and y are
parameters that must be integers):

` x < y ↔ x ≤ y − 1
lessThanEqRhs

The corresponding theorem in HOL Light is !x y. x:int < y <=>
x <= y + (-- &1). When translating the proof rule lessThanEqRhs, we
first translate the terms that are used as parameters and then use them to
instantiate this theorem. Instantiation of existing theorems is highly efficient
in HOL Light and can be used whenever a proof rule corresponds directly
with a HOL Light theorem.

Sometimes a proof rule cannot be represented by a single theorem. For
example, CVC3’s or distributivity rule generates a theorem (A ∧B1) ∨
(A∧B2)∨ ...∨ (A∧Bn) ↔ A∧ (B1∨B1∨ ...∨Bn). For such proof rules, We
can create a customized theorem on the fly and then instantiate it. In this
case, we prove a HOL Light theorem in which A and each Bi are replaced
by universal propositional variables. Even for such cases, instantiation of a
general theorem is typically faster than proving the particular instance of
the proof rule directly because the formulas appearing in the instance (i.e.
those used to instantiate A and the B’s) could be arbitrarily complex.

One special rule in CVC3 is the skolemization rule:

` ∃x.P (x) ↔ P (c)
skolem

In this rule, c is a particular constant that is always used as the witness
for P (x). In classical first-order logic, this rule is actually unsound. However,
we can use HOL Light’s choice operator to translate this rule soundly. We
simply translate the special constant c as εx.P . Here, εx.P means some x
that makes P true if there is one.

Sometimes CVC3 and HOL Light have similar proof rules. For example,
subst op in CVC3 and SUB CONV in HOL Light are both rules for substi-
tutions. However, the subst op has a variant in which only some of the
children are substituted. For this rule, a modification of the existing code
for SUB CONV can be used to do the translation.
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Finally, some proof rules are too complicated for any of these approaches
and custom translation functions must be written for them. An example is
the rewrite and rule. This rule flattens nested conjunctions, removes con-
junctions containing true, and performs several other rewrites on conjunc-
tions. We wrote a custom translation function that makes use of a proof
rule in HOL Light for rewriting conjunctions.

4.3 Translation of propositional reasoning

Most modern SMT solvers use a separate SAT solver to do propositional
reasoning and CVC3 is no exception. In previous versions of CVC, proofs
could only be obtained by using a slower, custom-built, proof-producing
SAT solver [2]. However, modern SAT solvers like zChaff and Minisat can
dump a resolution proof for unsatisfiable formulas. We followed a similar
approach to that taken by others (e.g. [11]) to produce a complete proof,
given the resolution proof.

The rule for propositional resolution can be described as follows.

Γ1 ` A ∨B Γ2 ` ¬A ∨ C
Γ1 ∪ Γ2 ` B ∨ C

bool resolution

We experimented with several methods of implementing the resolution rule
in HOL Light. One possibility, if A is to be resolved, is to first reorder the
disjunctions and move A and ¬A to the front of their respective clauses, re-
moving any duplicate occurrences at the same time. We can then instantiate
the following theorem: (A∨B)∧ (¬A∨C) ↔ (B∨C). Unfortunately, trans-
lating a large resolution proof using this method turns out to be quite slow.
Fortunately, there is a better way. As described in [10], the representation
of CNF clauses can be changed into so-called Sequent Representation. The
key idea is to represent the literals of a clause as assumptions. For instance,
Γ ` A ∨ B is represented as Γ,¬A,¬B ` False. HOL Light uses a set to
store the assumptions, so no reordering is needed, and when two assumption
lists are merged, the duplicated literals are removed automatically. In the
latest version of HOL Light, the assumption lists are ordered, which further
speeds up propositional resolution.

A final point about translating the propositional reasoning has to do
with the initial conversion to CNF before running the SAT solver. CVC3
uses a standard Tseitin-style conversion algorithm which introduces addi-
tional variables. Each of these new variables is a placeholder for some other
formula. However, proving the equisatisfiability of the CNF formula with all
of these new variables is an unnecessary complication. Instead, as we replay
the resolution proof, we substitute the original formulas for the placeholder
variables at each step. Care must be taken to distinguish for instance, the
clause A∨B∨C from the clause p∨C where p is a placeholder for A∨B, but
with this caveat, there is no difficulty checking the resolution proof. Notice
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that, in particular, the clauses introduced by converting some internal node
in the formula to CNF are all tautologies, and can thus be proved easily by
HOL Light.

4.4 Final check

If the proof translation in HOL Light succeeds, the result is a theorem
of HOL Light. However, it may be difficult to determine, especially for
large problems, whether the theorem proved by HOL Light is in fact the
same as the original problem posed to CVC3. A bug in the proof or the
proof translation could result in HOL Light successfully proving the wrong
theorem. To eliminate the need to trust the proof or the proof translation,
we added one final check to make sure that theorem proved in HOL Light
is indeed the theorem we want to prove. This is done by translating the
original problem into HOL Light’s language directly and comparing the
result to the theorem that was proved. This reduces the code that must be
trusted (besides HOL Light) to CVC3’s parser and the formula translator,
which are trivial compared to the rest of the system.

5 Experimental results

We tested the system on a subset of the AUFLIA benchmarks from SMT-
LIB. All tests were run on AMD Opteron-based (64 bit) systems with 2GB
of RAM running Linux. CVC3 was given a time limit of one minute. The
translator was given a time limit of 10 minutes.

Table 1 summarizes the results. Each row shows, from left to right,
the total number of unsatisfiable cases in this family, the number of cases
that CVC3 successfully proved to be unsatisfiable, the total and average
time spent by CVC3 for the family, the number of cases for which the proof
translation succeeded, and the total and average time for the translation.
As seen from the table, the amount of time spent for the proof translation in
HOL Light varies significantly, from less than 10 times the amount of time
spent in CVC3 to nearly 100 times the amount of time spent in CVC3. There
are several cases in the simplify2 family for which the proof translation
fails. Some of these time out, and others contain proof rules not yet fully
supported by the translator.

The table does not list results for the “boogie” family of benchmarks
because complete results are not yet available. However, we did find some-
thing very interesting. CVC3 reported unsatisfiable for two cases in labeled
as satisfiable. We were able to translate these proofs successfully, meaning
that these two benchmarks were incorrectly labeled.
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category CVC3 HOL Translation
Cases Proved Total Ave Proved Total Ave

simplify 833 833 814.30 0.98 833 16249.33 19.51
simplify2 2329 2306 2408.95 1.11 2164 19153.34 8.85
Burns 14 14 0.30 0.02 14 19.37 1.38
Ricart 14 13 0.89 0.07 13 228.80 17.60
piVC 41 41 4.92 0.12 41 59.40 1.45

Table 1: Results on a selection of AUFLIA benchmarks

6 Related work

Moskal [8] proposed a rewriting system for proof checking of SMT solvers.
His implementation emphasizes speed and compactness. Our system, while
slower, emphasize trustworthiness. Our system ultimately provides a very
strong guarantee of correctness, and essentially none of the code of the SMT
solver or the proof translator need be trusted.

Our own previous work in this direction [7] described our initial efforts to
combine CVC Lite and HOL Light. That work emphasized using CVC Lite
as an external decision procedure for HOL Light. Here, we emphasize HOL
Light’s value as a proof-checker for CVC3. We also give a more detailed
description of the system and give results on the SMT-LIB benchmarks.

7 Conclusion

CVC3 is an SMT solver with many diverse proof rules. The proof rules
were designed to enable high-performance and to be convenient for CVC3
developers. This is at odds with the goal of having a small and simple trusted
core. The problem can be alleviated by translating proofs into another
prover that does have a small trusted core, in this case HOL Light. We
plan to continue our efforts to certify as much of the SMT-LIB library as
possible. We also plan to continue improving and tuning the translator.
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