
Laplacian Eigenmaps and SpectralTechniques for Embedding and ClusteringMikhail Belkin and Partha NiyogiDepts. of Mathematics and Computer ScienceThe University of ChicagoHyde Park, Chicago, IL 60637.(misha@math.uchicago.edu,niyogi@cs.uchicago.edu)AbstractDrawing on the correspondence between the graph Laplacian, theLaplace-Beltrami operator on a manifold, and the connections tothe heat equation, we propose a geometrically motivated algorithmfor constructing a representation for data sampled from a low di-mensional manifold embedded in a higher dimensional space. Thealgorithm provides a computationally e�cient approach to non-linear dimensionality reduction that has locality preserving prop-erties and a natural connection to clustering. Several applicationsare considered.In many areas of arti�cial intelligence, information retrieval and data mining, oneis often confronted with intrinsically low dimensional data lying in a very high di-mensional space. For example, gray scale n� n images of a �xed object taken witha moving camera yield data points in Rn2. However, the intrinsic dimensionality ofthe space of all images of the same object is the number of degrees of freedom ofthe camera { in fact the space has the natural structure of a manifold embedded inRn2. While there is a large body of work on dimensionality reduction in general,most existing approaches do not explicitly take into account the structure of themanifold on which the data may possibly reside. Recently, there has been someinterest (Tenenbaum et al, 2000; Roweis and Saul, 2000) in the problem of devel-oping low dimensional representations of data in this particular context. In thispaper, we present a new algorithm and an accompanying framework of analysis forgeometrically motivated dimensionality reduction.The core algorithm is very simple, has a few local computations and one sparseeigenvalue problem. The solution re
ects the intrinsic geometric structure of themanifold. The justi�cation comes from the role of the Laplacian operator in pro-viding an optimal embedding. The Laplacian of the graph obtained from the datapoints may be viewed as an approximation to the Laplace-Beltrami operator de�nedon the manifold. The embedding maps for the data come from approximations toa natural map that is de�ned on the entire manifold. The framework of analysis



presented here makes this connection explicit. While this connection is known togeometers and specialists in spectral graph theory (for example, see [1, 2]) to thebest of our knowledge we do not know of any application to data representationyet. The connection of the Laplacian to the heat kernel enables us to choose theweights of the graph in a principled manner.The locality preserving character of the Laplacian Eigenmap algorithmmakes it rel-atively insensitive to outliers and noise. A byproduct of this is that the algorithmimplicitly emphasizes the natural clusters in the data. Connections to spectral clus-tering algorithms developed in learning and computer vision (see Shi and Malik,1997) become very clear. Following the discussion of Roweis and Saul (2000), andTenenbaum et al (2000), we note that the biological perceptual apparatus is con-fronted with high dimensional stimuli from which it must recover low dimensionalstructure. One might argue that if the approach to recovering such low-dimensionalstructure is inherently local, then a natural clustering will emerge and thus mightserve as the basis for the development of categories in biological perception.1 The AlgorithmGiven k points x1; : : : ;xk in Rl, we construct a weighted graph with k nodes, onefor each point, and the set of edges connecting neighboring points to each other.1. Step 1. [Constructing the Graph] We put an edge between nodes i and j ifxi and xj are \close". There are two variations:(a) �-neighborhoods. [parameter � 2 R] Nodes i and j are connected by anedge if jjxi � xj jj2 < �.Advantages: geometrically motivated, the relationship is naturallysymmetric.Disadvantages: often leads to graphs with several connected compo-nents, di�cult to choose �.(b) n nearest neighbors. [parameter n 2 N] Nodes i and j are connected byan edge if i is among n nearest neighbors of j or j is among n nearestneighbors of i.Advantages: simpler to choose, tends to lead to connected graphs.Disadvantages: less geometrically intuitive.2. Step 2. [Choosing the weights] Here as well we have two variations forweighting the edges:(a) Heat kernel. [parameter t 2 R]. If nodes i and j are connected, putWij = e� jjxi�xj jj2tThe justi�cation for this choice of weights will be provided later.(b) Simple-minded. [No parameters]. Wij = 1 if and only if vertices i andj are connected by an edge.A simpli�cation which avoids the necessity of choosing t.3. Step 3. [Eigenmaps] Assume the graph G, constructed above, is connected,otherwise proceed with Step 3 for each connected component.
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Figure 1: The left panel shows a horizontal and a vertical bar. The middle panelis a two dimensional representation of the set of all images using the Laplacianeigenmaps. The right panel shows the result of a principal components analysisusing the �rst two principal directions to represent the data. Dots correspond tovertical bars and '+' signs correspond to horizontal bars.Compute eigenvalues and eigenvectors for the generalized eigenvector prob-lem: Ly = �Dy (1)where D is diagonal weight matrix, its entries are column (or row, sinceW is symmetric) sums of W , Dii =PjWji. L = D �W is the Laplacianmatrix. Laplacian is a symmetric, positive semide�nite matrix which canbe thought of as an operator on functions de�ned on vertices of G.Let y0; : : : ;yk�1 be the solutions of equation 1, ordered according to theireigenvalues with y0 having the smallest eigenvalue (in fact 0). The imageof xi under the embedding into the lower dimensional space Rm is given by(y1(i); : : : ;ym(i)).2 Justi�cationRecall that given a data set we construct a weighted graph G = (V;E) with edgesconnecting nearby points to each other. Consider the problem of mapping theweighted connected graph G to a line so that connected points stay as close togetheras possible. We wish to choose yi 2 R to minimizeXi;j (yi � yj)2Wijunder appropriate constraints. Let y = (y1; y2; : : : ; yn)T be the map from the graphto the real line. First, note that for any y, we have12Xi;j (yi � yj)2Wij = yTLy (2)where as before, L = D � W . To see this, notice that Wij is symmetric andDii =Pj Wij. Thus Pi;j(yi � yj)2Wij can be written asXi;j (y2i + y2j � 2yiyj)Wij =Xi y2iDii +Xj y2jDjj � 2Xi;j yiyjWij = 2yTLy
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2 Figure 2: 300 most frequent words of the Browncorpus represented in the spectral domain.
The constraint yTDy = 1removes an arbitrary scalingfactor in the embedding. Ma-trix D provides a naturalmeasure on the vertices of thegraph. From eq. 2, we seethat L is a positive semidef-inite matrix and the vectory that minimizes the objec-tive function is given by theminimum eigenvalue solutionto the generalized eigenvalueproblem Ly = �Dy.Let 1 be the constant func-tion taking value 1 at eachvertex. It is easy to see that 1 is an eigenvector with eigenvalue 0. If the graphis connected, 1 is the only eigenvector for � = 0. To eliminate this trivial solu-tion which collapses all vertices of G onto the real number 1, we put an additionalconstraint of orthogonality to obtainyopt = argmin yTDy=1yTD1=0 yTLyThus, the solution yopt is now given by the eigenvector with the smallest non-zeroeigenvalue. More generally, the embedding of the graph into Rm (m > 1) is givenby the n�m matrix Y = [y1y2 : : :ym] where the ith row, denoted by Y Ti , providesthe embedding coordinates of the ith vertex. Thus we need to minimizeXi;j jjYi � Yjjj2Wij = tr(Y TLY )This reduces now to Yopt = argminY TDY=I tr(Y TLY )



For the one-dimensional embedding problem, the constraint prevents collapse ontoa point. For the m-dimensional embedding problem, the constraint presented aboveprevents collapse onto a subspace of dimension less than m.2.1 The Laplace-Beltrami OperatorThe Laplacian of a graph is analogous to the Laplace-Beltrami operator on mani-folds.
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1 Figure 4: 685 speech datapoints plotted in the twodimensional Laplacian spectral representation.

Consider a smoothm-dimensionalmanifold M embedded inRk. The Riemannian struc-ture (metric tensor) on themanifold is induced by thestandard Riemannian struc-ture on Rk. Suppose we havea map f :M! R. The gra-dient rf(x) (which in localcoordinates can be written asrf(x) = Pni=1 @f@xi@xi) is avector �eld on the manifold,such that for small �x (in alocal coordinate chart)jf(x+ �x)� f(x)j � jhrf(x); �xij � jjrf jj jj�xjjThus we see that if jjrf jj is small, points near x will be mapped to points nearf(x). We therefore look for a map that best preserves locality on average by tryingto �nd argminjjfjjL2(M)=1 ZM jjrf(x)jj2Minimizing RM jjrf(x)jj2 corresponds directly to minimizing Lf = 12Pi;j(fi �fj)2Wij on a graph. Minimizing the squared gradient reduces to �nding eigen-functions of the Laplace-Beltrami operator L. Recall that L def= divr(f) , wherediv is the divergence. It follows from the Stokes theorem that �div and rare formally adjoint operators, i.e. if f is a function and X is a vector �eldRMhX;rfi = RM div(X)f . ThusZM jjrf jj2 = ZM L(f)fWe see that L is positive semide�nite and the f that minimizes RM jjrf jj2 has tobe an eigenfunction of L.2.2 Heat Kernels and the Choice of Weight MatrixThe Laplace-Beltrami operator on di�erentiable functions on a manifoldM is in-timately related to the heat 
ow. Let f : M ! R be the initial heat distri-bution, u(x; t) be the heat distribution at time t (u(x; 0) = f(x)). The heat



equation is the partial di�erential equation @u@t = Lu. The solution is given byu(x; t) = RMHt(x; y)f(y) where Ht is the heat kernel { the Green's function forthis PDE. Therefore,Lf(x) = Lu(x; 0) = � @@t [ZMHt(x; y)f(y) ]�t=0Locally, the heat kernel is approximately equal to the Gaussian, Ht(x; y) �(4�t)�n2 e� jjx�yjj24t where jjx � yjj (x and y are in local coordinates) and t areboth su�ciently small and n = dimM. Notice that as t tends to 0, the heatkernel Ht(x; y) becomes increasingly localized and tends to Dirac's �-function, i.e.,limt!0 RMHt(x; y)f(y) = f(x). Therefore, for small t from the de�nition of the deriva-tive we have Lf(xi) � �1t �f(x) � (4�t)�n2 ZM e� jjx�yjj24t f(y)dy�If x1; : : : ;xk are data points onM, the last expression can be approximated byLf(xi) = �1t 264f(xi)� 1k (4�t)�n2 Xxj0<jjxj�xijj<� e� jjxi�xjjj24t f(xj)375The coe�cient 1t is global and will not a�ect the eigenvectors of the discreteLaplacian. Since the inherent dimensionality of M may be unknown, we put� = 1k (4�t)n2 . Noticing that the Laplacian of the constant function is zero, weimmediately have 1� = Pxj0<jjxj�xijj<� e� jjxi�xj jj24t . Notice, however, that we do nothave to worry about �, since the graph Laplacian L will choose the correct multi-plier for us. Finally we see how to choose the edge weights for the adjacency matrixW : Wij = ( e� jjxi�xj jj24t if jjxi � xj jj < �0 otherwise3 ExamplesExample 1 { A Toy Vision Example: Consider binary images of vertical andhorizontal bars located at arbitrary points in the 40 � 40 visual �eld. We choose1000 images, each containing either a vertical or a horizontal bar (500 containingvertical bars and 500 horizontal bars) at random. Fig. 1 shows the result of applyingthe Laplacian Eigenmaps compared to PCA.Example 2 { Words in the Brown Corpus: Fig. 2 shows the results of anexperiment conducted with the 300 most frequent words in the Brown corpus { acollection of texts containing about a million words available in electronic format.Each word is represented as a vector in a 600 dimensional space using informationabout the frequency of its left and right neighbors (computed from the bigramstatistics of the corpus).Example 3 { Speech: In Fig. 4 we consider the low dimensional representationsarising from applying the Laplacian Eigenmap algorithm to a sentence of speech
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