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tDespite many empiri
al su

esses of spe
tral 
lustering methods|algorithms that 
luster points using eigenve
tors of matri
es de-rived from the data|there are several unresolved issues. First,there are a wide variety of algorithms that use the eigenve
torsin slightly di�erent ways. Se
ond, many of these algorithms haveno proof that they will a
tually 
ompute a reasonable 
lustering.In this paper, we present a simple spe
tral 
lustering algorithmthat 
an be implemented using a few lines of Matlab. Using toolsfrom matrix perturbation theory, we analyze the algorithm, andgive 
onditions under whi
h it 
an be expe
ted to do well. Wealso show surprisingly good experimental results on a number of
hallenging 
lustering problems.1 Introdu
tionThe task of �nding good 
lusters has been the fo
us of 
onsiderable resear
h inma
hine learning and pattern re
ognition. For 
lustering points in Rn|a main ap-pli
ation fo
us of this paper|one standard approa
h is based on generative mod-els, in whi
h algorithms su
h as EM are used to learn a mixture density. Theseapproa
hes su�er from several drawba
ks. First, to use parametri
 density estima-tors, harsh simplifying assumptions usually need to be made (e.g., that the densityof ea
h 
luster is Gaussian). Se
ond, the log likelihood 
an have many lo
al minimaand therefore multiple restarts are required to �nd a good solution using iterativealgorithms. Algorithms su
h as K-means have similar problems.A promising alternative that has re
ently emerged in a number of �elds is to usespe
tral methods for 
lustering. Here, one uses the top eigenve
tors of a matrixderived from the distan
e between points. Su
h algorithms have been su

essfullyused in many appli
ations in
luding 
omputer vision and VLSI design [5, 1℄. Butdespite their empiri
al su

esses, di�erent authors still disagree on exa
tly whi
heigenve
tors to use and how to derive 
lusters from them (see [11℄ for a review).Also, the analysis of these algorithms, whi
h we brie
y review below, has tended tofo
us on simpli�ed algorithms that only use one eigenve
tor at a time.One line of analysis makes the link to spe
tral graph partitioning, in whi
h the se
-



ond eigenve
tor of a graph's Lapla
ian is used to de�ne a semi-optimal 
ut. Here,the eigenve
tor is seen as a solving a relaxation of an NP-hard dis
rete graph parti-tioning problem [3℄, and it 
an be shown that 
uts based on the se
ond eigenve
torgive a guaranteed approximation to the optimal 
ut [9, 3℄. This analysis 
an beextended to 
lustering by building a weighted graph in whi
h nodes 
orrespond todatapoints and edges are related to the distan
e between the points. Sin
e the ma-jority of analyses in spe
tral graph partitioning appear to deal with partitioning thegraph into exa
tly two parts, these methods are then typi
ally applied re
ursivelyto �nd k 
lusters (e.g. [9℄). Experimentally it has been observed that using moreeigenve
tors and dire
tly 
omputing a k way partitioning is better (e.g. [5, 1℄).Here, we build upon the re
ent work of Weiss [11℄ and Meila and Shi [6℄, whoanalyzed algorithms that use k eigenve
tors simultaneously in simple settings. Wepropose a parti
ular manner to use the k eigenve
tors simultaneously, and give
onditions under whi
h the algorithm 
an be expe
ted to do well.2 AlgorithmGiven a set of points S = fs1; : : : ; sng in Rl that we want to 
luster into k subsets:1. Form the aÆnity matrix A 2 Rn�n de�ned by Aij = exp(�jjsi � sj jj2=2�2) ifi 6= j, and Aii = 0.2. De�ne D to be the diagonal matrix whose (i; i)-element is the sum of A's i-throw, and 
onstru
t the matrix L = D�1=2AD�1=2.13. Find x1; x2; : : : ; xk, the k largest eigenve
tors of L (
hosen to be orthogonalto ea
h other in the 
ase of repeated eigenvalues), and form the matrix X =[x1x2 : : : xk℄ 2 Rn�k by sta
king the eigenve
tors in 
olumns.4. Form the matrix Y from X by renormalizing ea
h of X's rows to have unit length(i.e. Yij = Xij=(Pj X2ij)1=2).5. Treating ea
h row of Y as a point in Rk , 
luster them into k 
lusters via K-meansor any other algorithm (that attempts to minimize distortion).6. Finally, assign the original point si to 
luster j if and only if row i of the matrixY was assigned to 
luster j.Here, the s
aling parameter �2 
ontrols how rapidly the aÆnity Aij falls o� withthe distan
e between si and sj , and we will later des
ribe a method for 
hoosingit automati
ally. We also note that this is only one of a large family of possiblealgorithms, and later dis
uss some related methods (e.g., [6℄).At �rst sight, this algorithm seems to make little sense. Sin
e we run K-meansin step 5, why not just apply K-means dire
tly to the data? Figure 1e shows anexample. The natural 
lusters in R2 do not 
orrespond to 
onvex regions, and K-means run dire
tly �nds the unsatisfa
tory 
lustering in Figure 1i. But on
e we mapthe points to Rk (Y 's rows), they form tight 
lusters (Figure 1h) from whi
h ourmethod obtains the good 
lustering shown in Figure 1e. We note that the 
lustersin Figure 1h lie at 90Æ to ea
h other relative to the origin (
f. [8℄).1Readers familiar with spe
tral graph theory [3℄ may be more familiar with the Lapla-
ian I �L. But as repla
ing L with I �L would 
ompli
ate our later dis
ussion, and only
hanges the eigenvalues (from �i to 1� �i) and not the eigenve
tors, we instead use L.



3 Analysis of algorithm3.1 Informal dis
ussion: The \ideal" 
aseTo understand the algorithm, it is instru
tive to 
onsider its behavior in the \ideal"
ase in whi
h all points in di�erent 
lusters are in�nitely far apart. For the sake ofdis
ussion, suppose that k = 3, and that the three 
lusters of sizes n1, n2 and n3are S1, S2, and S3 (S = S1[S2[S3, n = n1+n2+n3). To simplify our exposition,also assume that the points in S = fs1; : : : ; sng are ordered a

ording to whi
h
luster they are in, so that the �rst n1 points are in 
luster S1, the next n2 in S2,et
. We will also use \j 2 Si" as a shorthand for sj 2 Si. Moving the 
lusters\in�nitely" far apart 
orresponds to zeroing all the elements Aij 
orresponding topoints si and sj in di�erent 
lusters. More pre
isely, de�ne Âij = 0 if xi and xj arein di�erent 
lusters, and Âij = Aij otherwise. Also let L̂, D̂, X̂ and Ŷ be de�nedas in the previous algorithm, but starting with Â instead of A. Note that Â and L̂are therefore blo
k-diagonal:Â = 24 A(11) 0 00 A(22) 00 0 A(33) 35 ; L̂ = 24 L̂(11) 0 00 L̂(22) 00 0 L̂(33) 35 (1)where we have adopted the 
onvention of using parenthesized supers
ripts to indexinto subblo
ks of ve
tors/matri
es, and L̂(ii) = (D̂(ii))�1=2A(ii)(D̂(ii))�1=2. Here,Â(ii) = A(ii) 2 Rni�ni is the matrix of \intra-
luster" aÆnities for 
luster i. For fu-ture use, also de�ne d̂(i) 2 Rni to be the ve
tor 
ontaining D̂(ii)'s diagonal elements,and d̂ 2 Rn to 
ontain D̂'s diagonal elements.To 
onstru
t X̂, we �nd L̂'s �rst k = 3 eigenve
tors. Sin
e L̂ is blo
k diagonal, itseigenvalues and eigenve
tors are the union of the eigenvalues and eigenve
tors of itsblo
ks (the latter padded appropriately with zeros). It is straightforward to showthat L̂(ii) has a stri
tly positive prin
ipal eigenve
tor x(i)1 2 Rni with eigenvalue1. Also, sin
e A(ii)jk > 0 (j 6= k), the next eigenvalue is stri
tly less than 1. (See,e.g., [3℄). Thus, sta
king L̂'s eigenve
tors in 
olumns to obtain X̂, we have:X̂ = 264 x(1)1 ~0 ~0~0 x(2)1 ~0~0 ~0 x(3)1 375 2 Rn�3 : (2)A
tually, a subtlety needs to be addressed here. Sin
e 1 is a repeated eigenvaluein L̂, we 
ould just as easily have pi
ked any other 3 orthogonal ve
tors spanningthe same subspa
e as X̂'s 
olumns, and de�ned them to be our �rst 3 eigenve
tors.That is, X̂ 
ould have been repla
ed by X̂R for any orthogonal matrix R 2 R3�3(RTR = RRT = I). Note that this immediately suggests that one use 
onsiderable
aution in attempting to interpret the individual eigenve
tors of L, as the 
hoi
eof X̂ 's 
olumns is arbitrary up to a rotation, and 
an easily 
hange due to smallperturbations to A or even di�eren
es in the implementation of the eigensolvers.Instead, what we 
an reasonably hope to guarantee about the algorithm will bearrived at not by 
onsidering the (unstable) individual 
olumns of X̂, but insteadthe subspa
e spanned by the 
olumns of X̂ , whi
h 
an be 
onsiderably more stable.Next, when we renormalize ea
h of X̂ 's rows to have unit length, we obtain:Ŷ = 24 Ŷ (1)Ŷ (2)Ŷ (3) 35 = 24 ~1 ~0 ~0~0 ~1 ~0~0 ~0 ~1 35R (3)where we have used Ŷ (i) 2 Rni�k to denote the i-th subblo
k of Ŷ . Letting ŷ(i)j



denote the j-th row of Ŷ (i), we therefore see that ŷ(i)j is the i-th row of the orthogonalmatrix R. This gives us the following proposition.Proposition 1 Let Â's o�-diagonal blo
ks Â(ij), i 6= j, be zero. Also assumethat ea
h 
luster Si is 
onne
ted.2 Then there exist k orthogonal ve
tors r1; : : : ; rk(rTi rj = 1 if i = j, 0 otherwise) so that Ŷ 's rows satisfyŷ(i)j = ri (4)for all i = 1; : : : ; k; j = 1; : : : ; ni.In other words, there are k mutually orthogonal points on the surfa
e of the unitk-sphere around whi
h Ŷ 's rows will 
luster. Moreover, these 
lusters 
orrespondexa
tly to the true 
lustering of the original data.3.2 The general 
aseIn the general 
ase, A's o�-diagonal blo
ks are non-zero, but we still hope to re
overguarantees similar to Proposition 1. Viewing E = A � Â as a perturbation to the\ideal" Â that results in A = Â+E, we ask: When 
an we expe
t the resulting rowsof Y to 
luster similarly to the rows of Ŷ ? Spe
i�
ally, when will the eigenve
torsof L, whi
h we now view as a perturbed version of L̂, be \
lose" to those of L̂?Matrix perturbation theory [10℄ indi
ates that the stability of the eigenve
tors of amatrix is determined by the eigengap. More pre
isely, the subspa
e spanned by L̂'s�rst 3 eigenve
tors will be stable to small 
hanges to L̂ if and only if the eigengapÆ = j�3 � �4j, the di�eren
e between the 3rd and 4th eigenvalues of L̂, is large. Asdis
ussed previously, the eigenvalues of L̂ is the union of the eigenvalues of L̂(11),L̂(22), and L̂(33), and �3 = 1. Letting �(i)j be the j-th largest eigenvalue of L̂(ii), wetherefore see that �4 = maxi �(i)2 . Hen
e, the assumption that j�3 � �4j be large isexa
tly the assumption that maxi �(i)2 be bounded away from 1.Assumption A1. There exists Æ > 0 so that, for all i = 1; : : : ; k, �(i)2 � 1� Æ.Note that �(i)2 depends only on L̂(ii), whi
h in turn depends only on A(ii) = Â(ii),the matrix of intra-
luster similarities for 
luster Si. The assumption on �(i)2 has avery natural interpretation in the 
ontext of 
lustering. Informally, it 
aptures theidea that if we want an algorithm to �nd the 
lusters S1; S2 and S3, then we requirethat ea
h of these sets Si really look like a \tight" 
luster. Consider an examplein whi
h S1 = S1:1 [ S1:2, where S1:1 and S1:2 are themselves two well separated
lusters. Then S = S1:1 [ S1:2 [ S2 [ S3 looks like (at least) four 
lusters, and itwould be unreasonable to expe
t an algorithm to 
orre
tly guess what partition ofthe four 
lusters into three subsets we had in mind.This 
onne
tion between the eigengap and the 
ohesiveness of the individual 
lusters
an be formalized in a number of ways.Assumption A1.1. De�ne the Cheeger 
onstant [3℄ of the 
luster Si to beh(Si) = minI Pj2I;k 62I A(ii)jkminfPj2I d̂(i)j ;Pk 62I d̂(i)k g : (5)where the outer minimum is over all index subsets I � f1; : : : ; nig. Assume thatthere exists Æ > 0 so that (h(Si))2=2 � Æ for all i.2This 
ondition is satis�ed by Â(ii)jk > 0 (j 6= k), whi
h is true in our 
ase.



A standard result in spe
tral graph theory shows that Assumption A1.1 impliesAssumption A1. Re
all that d̂(i)j = Pk A(ii)jk 
hara
terizes how \well 
onne
ted"or how \similar" point j is to the other points in the same 
luster. The term inthe minIf�g 
hara
terizes how well (I; I) partitions Si into two subsets, and theminimum over I pi
ks out the best su
h partition. Spe
i�
ally, if there is a partitionof Si's points so that the weight of the edges a
ross the partition is small, and sothat ea
h of the partitions has moderately large \volume" (sum of d̂(i)j 's), then theCheeger 
onstant will be small. Thus, the assumption that the Cheeger 
onstantsh(Si) be large is exa
tly that the 
lusters Si be hard to split into two subsets.We 
an also relate the eigengap to the mixing time of a random walk (as in [6℄)de�ned on the points of a 
luster, in whi
h the 
han
e of transitioning from point ito j is proportional to Aij , so that we tend to jump to nearby-points. AssumptionA1 is equivalent to assuming that, for su
h a walk de�ned on the points of anyone of the 
lusters Si, the 
orresponding transition matrix has se
ond eigenvalue atmost 1�Æ. The mixing time of a random walk is governed by the se
ond eigenvalue;thus, this assumption is exa
tly that the walks mix rapidly. Intuitively, this will betrue for tight (or at least fairly \well 
onne
ted") 
lusters, and untrue if a 
luster
onsists of two well-separated sets of points so that the random walk takes a longtime to transition from one half of the 
luster to the other. Assumption A1 
an alsobe related to the existen
e of multiple paths between any two points in the same
luster.Assumption A2. There is some �xed �1 > 0, so that for every i1; i2 2 f1; : : : ; kg,i1 6= i2, we have that Pj2Si1 Pk2Si2 A2jkd̂j d̂k � �1: (6)To gain intuition about this, 
onsider the 
ase of two \dense" 
lusters i1 and i2 ofsize 
(n) ea
h. Sin
e d̂j measures how \
onne
ted" point j is to other points inthe same 
luster, it will be d̂j = 
(n) in this 
ase, so the sum, whi
h is over O(n2)terms, is in turn divided by d̂j d̂k = 
(n2). Thus, as long as the individual Ajk 'sare small, the sum will also be small, and the assumption will hold with small �1.Whereas d̂j measures how 
onne
ted sj 2 Si is to the rest of Si, Pk:k 62Si Ajkmeasures how 
onne
ted sj is to points in other 
lusters. The next assumption isthat all points must be more 
onne
ted to points in the same 
luster than to pointsin other 
lusters; spe
i�
ally, that the ratio between these two quantities be small.Assumption A3. For some �xed �2 > 0, for every i = 1; : : : ; k, j 2 Si, we have:Pk:k 62Si Ajkd̂j � �2 �Pk;l2Si A2kld̂kd̂l��1=2 (7)For intuition about this assumption, again 
onsider the 
ase of densely 
onne
ted
lusters (as we did previously). Here, the quantity in parentheses on the right handside is O(1), so this be
omes equivalent to demanding that the following ratio besmall: (Pk:k 62Si Ajk)=d̂j = (Pk:k 62Si Ajk)=(Pk:k2Si Ajk) = O(�2).Assumption A4. There is some 
onstant C > 0 so that for every i = 1; : : : ; k,j = 1; : : : ; ni, we have d̂(i)j � (Pnik=1 d̂(i)k )=(Cni).This last assumption is a fairly benign one that no points in a 
luster be \too mu
hless" 
onne
ted than other points in the same 
luster.Theorem 2 Let assumptions A1, A2, A3 and A4 hold. Set � =pk(k � 1)�1 + k�22.



If Æ > (2+p2)�, then there exist k orthogonal ve
tors r1; : : : ; rk (rTi rj = 1 if i = j,0 otherwise) so that Y 's rows satisfy1n kXi=1 niXj=1 jjy(i)j � rijj22 � 4C �4 + 2pk�2 �2(Æ �p2�)2 : (8)Thus, the rows of Y will form tight 
lusters around k well-separated points (at 90Æfrom ea
h other) on the surfa
e of the k-sphere a

ording to their \true" 
luster Si.4 ExperimentsTo test our algorithm, we applied it to seven 
lustering problems. Note that whereas�2 was previously des
ribed as a human-spe
i�ed parameter, the analysis also sug-gests a parti
ularly simple way of 
hoosing it automati
ally: For the right �2,Theorem 2 predi
ts that the rows of Y will form k \tight" 
lusters on the surfa
eof the k-sphere. Thus, we simply sear
h over �2, and pi
k the value that, after
lustering Y 's rows, gives the tightest (smallest distortion) 
lusters. K-means inStep 5 of the algorithm was also inexpensively initialized using the prior knowledgethat the 
lusters are about 90Æ apart.3 The results of our algorithm are shown inFigure 1a-g. Giving the algorithm only the 
oordinates of the points and k, thedi�erent 
lusters found are shown in the Figure via the di�erent symbols (and 
ol-ors, where available). The results are surprisingly good: Even for 
lusters that donot form 
onvex regions or that are not 
leanly separated (su
h as in Figure 1g),the algorithm reliably �nds 
lusterings 
onsistent with what a human would have
hosen.We note that there are other, related algorithms that 
an give good results on asubset of these problems, but we are aware of no equally simple algorithm that
an give results 
omparable to these. For example, we noted earlier how K-meanseasily fails when 
lusters do not 
orrespond to 
onvex regions (Figure 1i). Anotheralternative may be a simple \
onne
ted 
omponents" algorithm that, for a threshold� , draws an edge between points si and sj whenever jjsi � sj jj2 � � , and takes theresulting 
onne
ted 
omponents to be the 
lusters. Here, � is a parameter that 
an(say) be optimized to obtain the desired number of 
lusters k. The result of thisalgorithm on the three
ir
les-joined dataset with k = 3 is shown in Figure 1j.One of the \
lusters" it found 
onsists of a singleton point at (1:5; 2). It is 
learthat this method is very non-robust.We also 
ompare our method to the algorithm of Meila and Shi [6℄ (see Figure 1k).Their method is similar to ours, ex
ept for the seemingly 
osmeti
 di�eren
e thatthey normalize A's rows to sum to 1 and use its eigenve
tors instead of L's, and donot renormalize the rows of X to unit length. A re�nement of our analysis suggeststhat this method might be sus
eptible to bad 
lusterings when the degree to whi
hdi�erent 
lusters are 
onne
ted (Pj d̂(i)j ) varies substantially a
ross 
lusters.3Brie
y, we let the �rst 
luster 
entroid be a randomly 
hosen row of Y , and thenrepeatedly 
hoose as the next 
entroid the row of Y that is 
losest to being 90Æ fromall the 
entroids (formally, from the worst-
ase 
entroid) already pi
ked. The resultingK-means was run only on
e (no restarts) to give the results presented. K-means with themore 
onventional random initialization and a small number of restarts also gave identi
alresults. In 
ontrast, our implementation of Meila and Shi's algorithm used 2000 restarts.
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(j) (k) (l)Figure 1: Clustering examples, with 
lusters indi
ated by di�erent symbols (and 
olors,where available). (a-g) Results from our algorithm, where the only parameter varied a
rossruns was k. (h) Rows of Y (jittered, subsampled) for two
ir
les dataset. (i) K-means.(j) A \
onne
ted 
omponents" algorithm. (k) Meila and Shi algorithm. (l) Kannan et al.Spe
tral Algorithm I. (See text.)



5 Dis
ussionThere are some intriguing similarities between spe
tral 
lustering methods and Ker-nel PCA, whi
h has been empiri
ally observed to perform 
lustering [7, 2℄. The maindi�eren
e between the �rst steps of our algorithm and Kernel PCA with a Gaussiankernel is the normalization of A (to form L) and X . These normalizations do im-prove the performan
e of the algorithm, but it is also straightforward to extend ouranalysis to prove 
onditions under whi
h Kernel PCA will indeed give 
lustering.While di�erent in detail, Kannan et al. [4℄ give an analysis of spe
tral 
lusteringthat also makes use of matrix perturbation theory, for the 
ase of an aÆnity matrixwith row sums equal to one. They also present a 
lustering algorithm based onk singular ve
tors, one that di�ers from ours in that it identi�es 
lusters withindividual singular ve
tors. In our experiments, that algorithm very frequentlygave poor results (e.g., Figure 1l).A
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