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Abstract

Elementary symmetric polynomials Sk
n
are used as a benchmark for the bounded-

depth arithmetic circuit model of computation. In this work we prove that Sk
n
modulo

composite numbers m = p1p2 can be computed with much fewer multiplications than over

any �eld, if the coe�cients of monomials xi1xi2 � � �xik are allowed to be 1 either mod p1
or mod p2 but not necessarily both. More exactly, we prove that for any constant k such

a representation of Skn can be computed modulo p1p2 using only exp(O(
p
logn log logn))

multiplications on the most restricted depth-3 arithmetic circuits, for min(p1; p2) > k!.

Moreover, the number of multiplications remain sublinear while k = O(log logn): In

contrast, the well-known Graham-Pollack bound yields an n � 1 lower bound for the

number of multiplications even for the second elementary symmetric polynomial S2
n
. Our

results generalize for other non-prime power composite moduli as well. The proof uses

perfect hashing functions and the famous BBR-polynomial of Barrington, Beigel and

Rudich.

1 Introduction

Surprising ideas sometimes lead to considerable improvements in algorithms even for the

simplest computational tasks, let us mention here the integer-multiplication algorithm of

Karatsuba and Ofman [15] and the matrix-multiplication algorithm of Strassen [24].

A new �eld with surprising algorithms is quantum computing. The most famous and

celebrated results are Shor's algorithm for integer factorization [21] and Grover's database-

search algorithm [13].

Since realizable quantum computers can handle only very few bits today, there are no

practical applications of these fascinating quantum algorithms.

Computations involving composite, non-prime-power moduli (say, 6), on the other hand,

can actually be performed on any desktop PC, but, unfortunately, we have only little evidence

on the power or applicability of computations modulo composite numbers (see, e.g., the circuit

given by Kahn and Meshulam [14], or the low-degree polynomial of Barrington, Beigel and

Rudich [2]).

One of the problems here is the interpretation of the output of the computation. Several

functions are known to be hard if computed modulo a prime. If we compute the same
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function f with 0-1 values modulo 6, then it will also be computed modulo - say - 3, since

f(x) � 1 (mod 6) =) f(x) � 1 (mod 3) and f(x) � 0 (mod 6) =) f(x) � 0 (mod 3),

consequently, computing f this way cannot be easier mod 6 than mod 3. This di�culty

is circumvened in a certain sense by the de�nition of the weak representation of Boolean

functions by mod 6 polynomials, de�ned in [25] and [2].

We will consider here another interpretation of the output, called a-strong representation

(De�nition 2). This de�nition will be more suitable for computations, where the output is a

polynomial and not just a number.

Our goal is to compute elementary symmetric polynomials

Sk
n =

X
I�f1;2;::: ;ng

jIj=k

Y
i2I

xi (1)

modulo non-prime-power composite numbers with a much smaller number of multiplications

than it is possible over rationals or prime moduli.

Our model of computation is the arithmetic circuit model of depth 3, circuits in this

model are often called ��� circuits [17], [22].

��� circuits perform computations of the following form:

rX
i=1

siY
j=1

(aij1x1 + aij2x2 + � � �+ aijnxn + bij):

If all the bij = 0 and all the si's are the same number, then the circuit is called a

homogeneous circuit, otherwise it is inhomogeneous. The size of the circuit is the number of

gates in it: 1 + r +
Pr

i=1 si.

A special class of homogeneous ��� circuits is called in [17] the graph model: here all

si = 2 and all aij` coe�cients are equal to 1, and, moreover, the clauses of a product cannot

contain the same variable twice. Consequently, such a product corresponds to a complete

bipartite graph on the variables as vertices.

Graham and Pollack [5] asked that how many edge-disjoint bipartite graphs can cover the

edges of an n-vertex complete graph. They proved that n� 1 bipartite graphs are su�cient

and necessary. Later, Tverberg gave a very nice proof for this statement [27]. Having relaxed

the disjointness-property, Babai and Frankl [1] asked that what is the minimum number of

bipartite-graphs, which covers every edge of an n-vertex complete graph by an odd multiplic-

ity. Babai and Frankl proved that (n � 1)=2 bipartite graphs are necessary. The optimum

upper bound for the odd-cover was proved by Radhakrishnan, Sen and Vishwanathan [17].

Radhakrishnan, Sen and Vishwanathan also gave matching upper bounds for covers, when

the o�-diagonal elements of matrix M are covered by multiplicity 1 modulo a prime.

By a result of Ben-Or [22], every elementary symmetric polynomial Sk
n (and similarly,

every symmetric function) can be computed over �elds by size-O(n2) inhomogeneous ���

circuits, using one-variable polynomial interpolation. This result shows the power of arith-

metic circuits over Boolean circuits with MOD p gates, since as it was proved by Razborov

[20] and Smolensky [23] that MAJORITY { a symmetric function { needs exponential size

to be computed on any bounded-depth Boolean circuit.

Note, that our construction with homogeneous circuits modulo non-prime-power compos-

ites beats Ben-Or's bound for k's less than c log log n (for some positive c's).

Nisan and Wigderson [16] showed that any homogeneous ��� circuit needs size


((n=2k)k=2) for computing Sk
n. This result shows that the homogeneous circuits are much
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weaker in computing elementary symmetric polynomials than the inhomogeneous ones. Nisan

and Wigderson also examined bilinear and multi-linear circuits in [16]. Note that the circuits

in our constructions for S2

n(x; y) and for Sk
n(x

1; x2; : : : ; xk) are also multi-linear circuits.

We should note, that exponential lower bounds were proved recently for simple functions

for ��� circuits by Grigoriev and Razborov [7] and by Grigoriev and Karpinski [6].

Most recently, Raz and Shpilka got nice lower bound results for constant-depth arithmetic

circuits [19], and Raz [18] proved a 
(n2 logn) lower bound for matrix-multiplication in this

model, solving a long-standing open problem.

1.1 Alternative strong representation of polynomials

Sk
n can be naturally computed by

�n
k

�
product-gates by a homogeneous ��� circuit over any

ring by the circuit of (1). One can save a little bit from the cost of this obvious construction

(e.g., for k = 2 n� 1 multiplications instead of
�n
2

�
is enough), but, as we already mentioned,

by the result of Nisan and Wigderson [16], size 
((n=2k)k=2) is needed to compute Sk
n on

homogeneous ��� circuits.

It is quite plausible to think that if we change the non-zero coe�cients of the monomials

of Sk
n to some other non-zero coe�cients, then the computational complexity of this modi�ed

polynomial will not be changed much: simply because even in the modi�ed polynomial we

should still need to generate the monomials with the non-zero coe�cients somehow.

This intuition is veri�ed by the next lemma (proven in the last section), in the case of

�nite �elds:

Lemma 1 Suppose that a homogeneous ��� circuit computes polynomial

g(x) =
X

I�f1;2;:::;ng

jIj=k

aI
Y
i2I

xi

over the q element �eld Fq with u gates, where aI 6= 0 in Fq. Then Sk
n can be computed by a

��� circuit of size O(uq�1).

From this lemma and from the 
((n=2k)k=2)-lower bound of Nisan and Wigderson [16] it

is obvious that computing g over �nite �elds needs


((n=2k)
k

2(q�1) )

multiplication gates.

Consequently, we cannot save much by computing g instead of Sk
n: if computing Sk

n needs

polynomially many gates in n, then computing g still needs polynomially many gates in n

(for any constant k).

Our main result is, however, that we can save much by computing certain strong rep-

resentations of the elementary symmetric polynomials { say { over the modulo 15 integers,

Z15. More exactly, such representations can be computed by ��� circuits containing sub-

polynomially many multiplication gates; (We call a function h(n) sub-polynomial, if for all

" > 0: h(n) = O(n").)

Several authors (e.g., [25], [2]) de�ned the weak and strong representations of Boolean

functions for integer moduli. Here we need the de�nition of a sort of strong representation

of polynomials modulo composite numbers. We call this representation alternative-strong

representation, abbreviated a-strong representation:
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De�nition 2 Let m be a composite number m = pe1
1
pe2
2
� � �pe`` . Let Zm denote the ring of

modulo m integers. Let f be a polynomial of n variables over Zm:

f(x1; x2; : : : ; xn) =
X

I�f1;2;:::;ng

aIxI ;

where aI 2 Zm, xI =
Q

i2I xi. Then we say that

g(x1; x2; : : : ; xn) =
X

I�f1;2;:::;ng

bIxI ;

is an a-strong representation of f modulo m, if

8I � f1; 2; : : : ; ng 9j 2 f1; 2; : : : ; `g : aI � bI (mod p
ej
j );

and if for some i, aI 6� bI (mod peii ); then bI � 0 (mod peii ):

Example 3 Let m = 6, and let f(x1; x2; x3) = x1x2 + x2x3 + x1x3, then g(x1; x2; ; x3) =

3x1x2 + 4x2x3 + x1x3 is an a-strong representation of f modulo 6.

Note, that the requirements in De�nition 2 are stronger than the requirements for f in

Lemma 1. Note also, that the earlier (strong-, weak-) representations of functions contained

constraints for the value of certain functions. Now we are requiring that the form of the

representation satisfy modular constraints.

Our goal in this work is to show that the elementary symmetric polynomials have a-strong

representations modulo composites which can be computed by much smaller homogeneous

��� arithmetic circuits than the original polynomial.

Unfortunately, we cannot hope for such results for all multivariate polynomials, as it is

shown by the next Theorem:

Theorem 4 Let

f(x1; x2; : : : ; xn; y1; y2; : : : ; yn) =
nX
i=1

xiyi

the inner product function. Suppose that a ��� circuit computes an a-strong representation

of f modulo 6. Then the circuit must have at least 
(n) multiplication gates.

Proof: Let g be the a-strong representation of f . Then in g, at least the half of monomials

xiyi has coe�cients equal to 1 modulo either 2 or 3. Without restricting the generality, let

us assume that monomials x1y1; x2y2; : : : ; xdn=2eydn=2e have coe�cients 1 modulo 3. When

we compute g modulo 6 we will learn also the inner product of two vectors modulo 3, each

consisting of the �rst dn=2e variables. It is well known that the communication complexity

of computing the inner product mod 3 is 
(n) (see e.g., [8]).

Since arithmetic ��� circuits modulo 6 with u multiplication-gates of in-degree 2 can be

evaluated by a 2-party communication protocol using only O(u) bits, we get: u = 
(n). 2
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2 Our Constructions

First we construct a-strong representations with a small number of multiplications for the

following polynomial:

S2

n(x; y) =
X

i;j2f1;2;::: ;ng
i6=j

xiyj ; (2)

and for x = y we will get that 2S2
n(x) = S2

n(x; x), and this will imply our result for any

composite, odd, non-prime-power moduli m:

Theorem 5 (i) Let m = p1p2, where p1 6= p2 are primes. Then an a-strong representation

of S2

n(x; y) modulo m can be computed on a homogeneous ��� circuit of size

exp(O(
p
logn log log n)):

(ii) Let the prime decomposition of m = pe1
1
pe2
2
� � �perr . Then an a-strong representation of

S2

n(x; y) modulo m can be computed on a homogeneous ��� circuit of size

exp

�
O

�
r

q
logn(log logn)r�1

��
:

Corollary 6 (i) Let m = p1p2, where p1 6= p2 are odd primes. Then an a-strong represen-

tation of the second elementary symmetric polynomial S2
n(x) modulo m can be computed

on a homogeneous ��� circuit of size

exp(O(
p
logn log log n)):

(ii) Let the prime decomposition of the odd m be m = pe1
1
pe2
2
� � �perr . Then an a-strong

representation of the second elementary symmetric polynomial S2

n(x) modulo m can be

computed on a homogeneous ��� circuit of size

exp

�
O

�
r

q
logn(log logn)r�1

��
:

Since the ��� circuit in our construction correspond to the graph-model [17], we have

the following graph-theoretical corollary, showing a cover with much fewer bipartite graphs

than in the linear lower bound of Graham and Pollack:

Corollary 7 For any m = pe1
1
pe2
2
� � �perr , there exists an explicitly constructible bipartite

cover of the edges of the complete n-vertex-graph, such that for all edges e there exists an

i : 1 � i � r, that the number of the bipartite graphs, covering e is congruent to 1 modulo peii .

Moreover, the total number of the bipartite graphs in the cover is

exp

�
O

�
r

q
logn(log logn)r�1

��
:
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2.1 Our results for larger k's

The following theorem gives our result for general k. Our goal is to compute an a-strong

representation of polynomials Sk
n(x) for n � k � 2. Let us �rst de�ne

Sk
n(x

(1); x(2); : : : ; x(k)) =
X

i1;i2;:::;ik

x
(1)

i1
x
(2)

i2
� � �x

(k)
ik
;

where the summation is done for all k! orders of all k-element-subsets I = fi1; i2; : : : ; ikg of

f1; 2; : : : ; ng, and x(j) = (x
(j)
1
; x

(j)
2
; : : : ; x

(j)
n ), for j = 1; 2; : : : ; k.

Theorem 8 Letm = pe1
1
pe2
2
� � �perr . Then an a-strong representation of Sk

n(x
(1); x(2); : : : ; x(k))

modulo m can be computed on a homogeneous multi-linear ��� circuit of size

exp

�
exp(O(k)) r

p
log n log logn

�
:

Note, that this circuit-size is sub-polynomial in n for any constant k and for large enough n.

Moreover, the sub-polynomiality holds while k < c log logn, for a small enough c > 0.

For moduli m, relative prime to k!, this implies:

Corollary 9 If m is relative prime to k!, then an a-strong representation of Sk
n(x) modulo

m can be computed on a homogeneous ��� circuit of size

exp

�
exp(O(k)) r

p
log n log logn

�
:

2.2 The construction for computing S2

n

Proof of Theorem 5:

We prove the more general case (ii) of the Theorem.

Note, that S2

n(x; y) contains the sum of the monomials xiyj for all i 6= j. Let us arrange

these monomials as follows: Let the x0is and y0js be assigned to the rows and columns of an

n � n matrix M , respectively, and let the position in row i and column j contain monomial

xiyj :

M =

0
BBBB@

y1 y2 � � � yn

x1 x1y1 x1y2 � � � x1yn
x2 x2y1 x2y2 � � � x2yn
...

...
...

. . .
...

xn xny1 xny2 � � � xnyn

1
CCCCA (3)

Then any product of the form

(xi1 + xi2 + � � �+ xiv)(yj1 + yj2 + � � �+ yjw) (4)

naturally corresponds to a v�w submatrix of matrixM . We call these submatrices rectangles.

Clearly, any a-strong representation modulo m of polynomial S2

n(x; y) can be got from a cover

of matrix M by rectangles of the form (4), satisfying the following properties:

Property (a): The number of the rectangles covering any elements of the diagonal is a

multiple of m = pe1
1
pe2
2
� � �perr ;

Property (b): Any non-diagonal element xiyj of M is covered by dij rectangles, where
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� there exists a k 2 f1; 2; : : : ; rg: dij � 1 (mod pk) and either it is 0 or 1 mod p2,

� for all k 2 f1; 2; : : : ; rg: dij � 0 (mod pk) or dij � 1 (mod pk).

Clearly, a (bilinear) ��� circuit compute an a-strong representation of polynomial

S2

n(x; y) if and only if the corresponding rectangle-cover satis�es Properties (a) and (b).

The construction of such a low-cardinality rectangle cover is implicit in papers [9] and [10].

We present here a short direct proof which is easily generalizable for proving the results in

the next section for higher dimensional matrices.

Rectangles, covering M , will be denoted

R(I; J) = (
X
i2I

xi)(
X
j2J

yj):

We de�ne now an initial cover of the non-diagonal elements of M by rectangles.

Let N = dlog ne, and for 1 � i; j � n, let i = (i1; i2; : : : ; ig) and j = (j1; j2; : : : ; jg) denote

their N -ary forms (i.e., 0 � it; jt � N � 1, for t = 1; 2; : : : ; g, where g = dlogN (n+ 1)e.)

Then let us de�ne for t = 1; 2; : : : ; g and ` = 0; 1; : : : ; N � 1:

I`t = fi : it = `g; J`t = fj : jt 6= `g:

Now consider the cover given by the following rectangles:

R(I`t ; J
`
t ) : t = 1; 2; : : : ; g; ` = 0; 1; : : : ; N � 1:

Now, in this cover, any element xiyj of M will be covered by HN (i; j)-times, where

HN(i; j) stands for the Hamming-distance of the N-ary forms of i and j, that is, at most

g-times. Note, that the diagonal elements are not covered at all, so Property (a) is satis�ed,

while Poperty (b) is typically not.

The total number of covering rectangles is h = gN = O((N logn)= logN).

Now, our goal is to turn this cover to another one, which already satis�es not only Property

(a), but also Property (b). For this transformation we need to apply a multivariate polynomial

f to our rectangle-cover in a very similar way as we applied polynomials to set-systems in

[11] and to codes in [12]:

De�nition 10 Let R1; R2; : : : ; Rh be a rectangle-cover of a matrix M = fxiyjg, and let f be

a h-variable multi-linear polynomial written in the following form:

f(z1; z2; : : : ; zh) =
X

K�f1;2;:::;hg

aKzK ;

where 0 � aK � m � 1 are integers, and zK =
Q

k2K zk. Then the f -transformation of the

rectangle-cover R1R2; : : : ; Rh contains
P

K�f1;2;:::;hg aK rectangles, each corresponding to a

monomial of f . zK =
Q

k2K zk is corresponded to the (possibly empty) rectangle of
T
k2K Rk.

Note, that another way of interpreting this de�nition is as follows: the variables zk cor-

respond to the rectangles of the cover, and if we imagine the rectangles �lled with 1's, then

the product of the variables, i.e., the monomials, correspond to the Hadamard-product (see

e.g., [11]) of the corresponding all-1 rectangles, resulting an all-1 rectangle, which, in turn,

equals to their intersection.

Note also, that polynomial f is, in fact, considered over the ring Zm, along with a �xed

(small) representation of its coe�cients from the set of non-negative integers.
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Lemma 11 Let uij 2 f0; 1gh characterize the rectangle-cover of the entry xiyj of matrix M

as follows:

Rs covers xiyj () uijs = 1:

Then entry xiyj is covered by exactly f(uij) rectangles from the f -transformation of the

rectangle-cover R1; R2; : : : ; Rh

Proof: In f(z), exactly those monomials zK contributes 1 to the value of f(uij) whose

variables are all-1 in vector uij . This happens exactly when u
ij
k = 1 for all k 2 K, that is,

xiyj is covered by the intersection of rectangles
T
k2K Rk. 2

The proof of the following lemma is obvious:

Lemma 12 The intersection of �nitely many rectangles is a (possibly empty) rectangle. Any

rectangle, covering a part of matrix M of (3) corresponds to a single (bilinear) multiplication.

2

It remains to prove that there exists an f , with a small number of monomials, and with

properties which leads to a cover, satisfying Properties (a) and (b). We will use the famous

BBR polynomial of Barrington, Beigel and Rudich [2]:

Theorem 13 (Barrington, Beigel, Rudich) Letm = pe1
1
pe2
2
� � �perr . For any integers d; `,

1 � d � ` there exists an fd;` explicitly constructible, `-variable, degree-O(d1=r) multilinear

polynomial with coe�cients from Zm, such that

(i) for any z 2 f0; 1g`, which contains at most d 1's:

fd;`(z) � 0 (mod m) () z = 0;

(ii) If fd;`(z) 6� 0 (mod m), then there exists i 2 f1; 2; : : : ; rg: fd;`(z) � 1 (mod peii ),

and if fd;`(z) 6� 1 (mod p
ej
j ), then fd;`(z) � 0 (mod p

ej
j ).

Proof: The proof of part (i) is given in [2] (see also [10]).

The proof of part (ii):

We consider m = pe1
1
pe2
2
� � �perr to be a constant. Let us de�ne qi = m=peii , and let

q�1i qi � 1 (mod peii ), for i = 1; 2; : : : ; r.

Let w denote the polynomial satisfying the requirements of (i).

Suppose �rst that ek = 1 for k = 1; 2; : : : ; r. Then

fd;` =
rX

i=1

qiq
�1

i wpi�1

clearly satis�es the requirements of (ii). Indeed, if w(z) 6� 0 (mod pi), then fd;`(z) � 1

(mod pi), and if w(z) � 0 (mod pi), then fd;`(z) � 0 (mod pi). Moreover, the degrees of

fd;` and w di�er only in a constant multiplier.

In general, let us �rst consider the polynomial w which satis�es (i) for modulus m0 =

p1p2 � � �pr. From the results of Toda [26], Yao [28] and Beigel and Tarui [3], for every k there

exist polynomials Pk of degree O(k), satisfying

Pk(x) � 0 (mod xk)
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Pk(x+ 1) � 1 (mod xk)

Now, let us de�ne

fd;` =
rX

i=1

qiq
�1

i Pei(w
pi�1):

It is easy to verify that (ii) is satis�ed for this polynomial, and the degree is still O(d1=r).

2

Now we can prove Theorem 5; let us consider the more general statement of (ii). Let

` = h = gN , d = g. Then fg;gN has  
h

O(g1=r)

!
(5)

monomials. Consequently, if we transform our cardinality-h rectangle cover by De�nition

10 with polynomial fg;gN , then the resulting cover satis�es Properties (a) and (b) and has

cardinality (5). This implies an exp(O( r
p
logn(log logn)r�1)) cover. By Lemma 12, a ���

circuit is immediate with exp(O( r
p
logn(log log n)r�1)) multiplication-gates.2

2.3 The construction in general

In this section we prove Theorem 8.

We describe a construction similarly as in the case k = 2.

Note, that in this section, instead of the more correct notation for vectors x with upper

index u: x(u), we will write simply xu.

First, let M 0 = fmi1;i2;:::;ikg be a k-dimensional analogon of M of equation (3), that is,

an

kz }| {
n � n� n� � � � � n matrix, where mi1;i2;:::;ik = x1i1x

2

i2
� � �xkik .

Now we should again construct a cover of M 0, this time with k-dimensional boxes, corre-

sponding to k-linear products:

R(I1; I2; : : : ; Ik) =
kY

i=1

X
j2Ii

xij ;

satisfying that only those entries will be covered, which have no two equal (lower) indices,

and the covering multiplicity of these entries should be non-zero modulo m.

First we need to de�ne an initial box-cover of those entries of the k-dimensional matrix

M 0, which have no two identical indices.

For our proof it is very important, that this initial cover has low multiplicity: every

covered element of M 0 should be covered only by O(logn) k-dimensional boxes for constant

k0s. The construction of such initial cover in the k = 2 case was quite easy, now we must use

some more intricate approach.

Let us consider a family of perfect hash functions (see e.g., [4]), and let us list their

respective values in the column of a matrix. This way, for integers n; k; b: 2 � k � b = O(k),

k � n, we can obtain a matrix H(n; k; b) = fhijg with u = exp(O(k)) logn rows and n

columns, with entries from the set f0; 1; : : : ; b� 1g, such that for any k-element subset J of

the n columns, there exists a row i : 1 � i � u:

hij : j 2 J
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are pairwise di�erent elements of the set f0; 1; : : : ; b� 1g.

This matrix H(n; k; b) will be used for the de�nition of our initial cover as follows:

For any i : 1 � i � u, and any � : f1; 2; : : : ; kg ! f0; 1; : : : ; b� 1g injective function we

de�ne the k-dimensional box:

R(i; �) = fmj1;j2;:::;jk : hij1 = �(1); hij2 = �(2); : : : ; hijk = �(k)g:

There are u possible i's and kO(k) possible �'s, so there are kO(k) logn boxes in this cover.

Box R(i; �) covers only mj1;j2;:::;jk 's with pairwise di�erent indices.

Any mj1;j2;:::;jk with pairwise di�erent indices is covered by exactly that many k-

dimensional boxes from this cover, as the number of rows with pairwise di�erent elements of

the sub-matrix, containing column j1, column j2, ..., column jk of matrix H(n; k; b). This

number is at least 1 (from the perfect-hashing property) and at most u (that is, the number

of rows of H(n; k; b)).

Now, exactly as in the proof of the S2
n case, we would like to apply apply the polynomial

fd;` of Theorem 13 with d = u, ` = kO(k) logn, to this box-cover.

However, �rst we need to give the higher-dimension analogues of De�nition 10 and Lemma

11:

De�nition 14 Let R1; R2; : : : ; Rh be a box-cover of a matrix M 0, and let f be a h-variable

multi-linear polynomial written in the following form:

f(z1; z2; : : : ; zh) =
X

K�f1;2;:::;hg

aKzK ;

where 0 � aK � m � 1 are integers, and zK =
Q

k2K zk. Then the f -transformation of the

box-cover R1R2; : : : ; Rh contains
P

K�f1;2;:::;hg aK boxes, each corresponding to a monomial

of f . zK =
Q

k2K zk is corresponded to the (possibly empty) box of
T
k2K Rk.

Lemma 15 Let ui1;i2;:::;ik 2 f0; 1gh characterize the box-cover of the entry mi1;i2;:::;ik of ma-

trix M 0 as follows:

Rs covers mi1 ;i2;:::;ik () ui1;i2;:::;iks = 1:

Then entry mi1;i2;:::;ik = x1i1x
2

i2
� � �xkik is covered by exactly f(ui1;i2;:::;ik) boxes from the f -

transformation of the box-cover R1; R2; : : : ; Rh

Proof: In f(z), exactly those monomials zK contributes 1 to the value of f(ui1;i2;:::;ik)

whose variables are all-1 in vector ui1;i2;:::;ik . This happens exactly when ui1;i2;:::;iks = 1 for all

s 2 K, that is, mi1;i2;:::;ik = x1i1x
2

i2
� � �xkik is covered by the intersection of boxes

T
k2K Rk. 2

The proof of the following lemma is obvious:

Lemma 16 The intersection of �nitely many boxes is a (possibly empty) box. Any box,

covering a part of matrix M 0 corresponds to a single (multi-linear) product.

2

The result of applying fd;` with d = u, ` = kO(k) logn, to our initial box-cover of cardi-

nality ` is a box-cover of cardinality

exp(exp(O(k))(logn)1=r log logn);

proving Theorem 8.2
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2.4 The proof of Lemma 1

Let R1; R2; : : : ; Rh be the covering boxes, de�ned by the homogeneous ��� circuit. Let us

remark that every degree-k monomial
Q

i2I xi with pairwise di�erent indices are covered by

aI 6= 0 boxes in this cover. In Fq, for any non-zero element s, sq�1 = 1. Now, let us apply

polynomial

f(z1; z2; : : : ; zh) = (z1 + z2 + � � �+ zh)
q�1

to the box-cover R1; R2; : : : ; Rh, according to De�nition 14. Then, by Lemma 15, the covering

multiplicity of the degree-k monomials
Q

i2I xi with pairwise di�erent indices will be 1 in Fq,

that is, the corresponding ��� circuit computes Sk
n over Fq .2
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