
De
onstru
ting CoroutinesDonald E. Knuth and Frank Ruskey(to Ole-Johan Dahl on his 70th birthday)Abstra
t. We study an interesting family of
ooperating
oroutines, whi
h isable to generate all patterns of bits that satisfy
ertain fairly general ordering
onstraints,
hanging only one bit at a time. (More pre
isely, the dire
ted graphof
onstraints is required to be
y
le-free when it is regarded as an undire
tedgraph.) If the
oroutines are implemented
arefully, they yield an algorithm thatneeds only a bounded amount of
omputation per bit
hange, thereby solving anopen problem in the �eld of
ombinatorial pattern generation.Mu
h has been written about the transformation of pro
edures from re
ursive to iterativeform, but little is known about the more general problem of transforming
oroutines intoequivalent programs that avoid unne
essary overhead. The present paper attempts totake a step in that dire
tion by fo
using on a reasonably simple yet nontrivial familyof
ooperating
oroutines for whi
h signi�
ant improvements in eÆ
ien
y are possiblewhen appropriate transformations are applied. The authors hope that this example willinspire other resear
hers to develop and explore the potentially ri
h �eld of
oroutinetransformation.Coroutines are analogous to subroutines, but they are symmetri
al with respe
t to
aller and
allee: When
oroutine A invokes
oroutine B, the a
tion of A is temporar-ily suspended and the a
tion of B resumes where B had most re
ently left o�. (See,for example, Se
tion 1.4.2 of [3℄.) Programming languages su
h as SIMULA I [1℄ and itsobje
t-oriented des
endants have made it easy for programmers to spe
ify families of pa-rameterized
oroutines that
ooperate with ea
h other in natural but nontrivial ways. Inthis paper we will study examples in whi
h a
ompiler
an transform su
h programs intooptimized
ode, just as
ompilers
an often transform re
ursive pro
edures into iterativeroutines that require less spa
e and/or time.The ideas presented here were motivated by appli
ations to the exhaustive generationof
ombinatorial obje
ts. For example,
onsider a
oroutine that wants to look at allpermutations of n elements; it
an
all repeatedly on a permutation-generation
oroutineto produ
e the su

essive arrangements. The latter
oroutine repeatedly forms a newpermutation and
alls on the former
oroutine to inspe
t the result. The permutation
oroutine has its own internal state| its own lo
al variables and its
urrent lo
ation inan ongoing
omputational pro
ess|so it does not
onsider itself to be a \subroutine" ofthe inspe
tion
oroutine. The permutation
oroutine might also invoke other
oroutines,whi
h in turn are
omputational obje
ts with their own internal states.We shall
onsider the problem of generating all n-tuples a1a2 : : : an of 0s and 1s withthe property that aj � ak whenever j ! k is an ar
 in a given dire
ted graph with nverti
es. These n-tuples are supposed to form a \Gray path," in the sense that only onebit aj should
hange at ea
h step.The general problem just stated does not always have a solution. For example, if thegiven digraph is 1 2 ;1

then we are asking for a way to generate the tuples 00 and 11 by
hanging only one bit ata time, and this is
learly impossible. Even if we stipulate that there should be no dire
ted
y
les, we might en
ounter an example like1 23 4 ;for whi
h the Gray
onstraint
annot be a
hieved, be
ause the
orresponding 4-tuples0000; 0001; 0011; 0101; 0111; 1111in
lude four of even weight and two of odd weight; a Gray path must alternate betweeneven and odd. Reasonably eÆ
ient methods for solving the problem without Grayness areknown [10, 11℄, but we want to insist on single-bit
hanges.Therefore we shall restri
t
onsideration to dire
ted graphs that are totally a
y
li
, inthe sense that they
ontain no
y
les even if the dire
tions of the ar
s are ignored. Ea
h
omponent of su
h a graph is a free tree in whi
h a dire
tion has been assigned to ea
hbran
h between two verti
es. Su
h digraphs are
alled spiders, be
ause of their resemblan
eto ara
hnids:
(In this diagram, as in others below, we assume that all ar
s are dire
ted upwards.) Thegeneral problem of �nding all a1 : : : an su
h that aj � ak when j ! k in su
h a digraphis formally
alled the task of \generating all ideals of an a
y
li
 poset"; it also is
alled,informally, \spider squishing."Se
tions 1{3 of this paper dis
uss simple examples of the problem in preparation forSe
tion 4, whi
h presents a
onstru
tive proof that suitable Gray paths always exist. Theproof of Se
tion 4 is implemented with
oroutines in Se
tion 5, and Se
tion 6 dis
usses thenontrivial task of getting all the
oroutines properly laun
hed.Se
tion 7 des
ribes a simple te
hnique that is often able to improve the running time.A slight generalization of that te
hnique leads in Se
tion 8 to an eÆ
ient
oroutine-freeimplementation. Additional optimizations, whi
h
an be used to
onstru
t a looplessalgorithm for the spider-squishing problem, are dis
ussed in Se
tion 9.1. The simplest
ase. Let's begin by imagining a long line of friendly trolls. This lineends with T0 and extends in�nitely far to the left, with troll Tk pre
eded by Tk+1 for allk � 0. Ea
h troll
arries a lamp that is either o� or on; he also
an be either awake orasleep. Initially all the trolls are awake, and all their lamps are o�.Changes o

ur to the system when a troll is \poked," a

ording to the following simplerules: If Tk is poked when he is awake, he
hanges the state of his lamp from o� to on or2

vi
e versa; then he be
omes tired and goes to sleep. Later, when the sleeping Tk is pokedagain, he wakes up and pokes Tk+1, without making any
hange to his own lamp.At periodi
 intervals an external driving for
e D pokes the rightmost troll T0, initiatinga
hain of events that
ulminates in one lamp
hanging its state. The pro
ess begins asfollows, if we use the digits 0 and 1 to represent lamps that are respe
tively o� or on, andif we underline the digit of a sleeping troll:: : :0000 Initial state: : :0001� D pokes T0: : :001�1 D pokes T0, who wakes up and pokes T1: : :001�0� D pokes T0: : :01�10 D pokes T0, who pokes T1, who pokes T2: : :01�11� D pokes T0,: : :01�0�1 D pokes T0, who pokes T1The sequen
e of underlined versus not-underlined digits a
ts essentially as a binary
ounter.And the sequen
e of digit patterns, in whi
h exa
tly one bit
hanges at ea
h step, is a Graybinary
ounter, whi
h follows the well-known Gray binary
ode; it also
orresponds to thepro
ess of repla
ing rings in the
lassi
 Chinese ring puzzle [4℄. (This troll-oriented way togenerate Gray binary
ode was presented by the �rst author in a le
ture at the Universityof Oslo in O
tober, 1972 [5℄.)Suppose now that only �nitely many trolls are present. In this
ase we shall namethem T1, T2, : : : , Tn from left to right, so that the driving for
e D pokes Tn, while T1 hasno left-hand neighbor. Now it makes sense for Tk to pass a message ba
k to his right-handneighbor Tk+1 (or to D, when k = n), telling whether a lamp has
hanged state. Su
hextended rules
an be expressed in an ad ho
 Algol-like language as follows:Boolean
oroutine poke [k℄;while true do beginawake: a[k℄ := 1� a[k℄; return true ;asleep: if k > 1 then return poke [k � 1℄ else return false ;end.Coroutine poke [k℄ des
ribes the a
tion of Tk, impli
itly retaining its own state of wakeful-ness. Thus, poke [k℄ will resume its program at label `asleep' when it is next a
tivated afterhaving exe
uted the statement `return true'; and it will resume at label `awake' when itis next a
tivated after `return poke [k � 1℄' or `return false '.The system therefore goes through the following steps when n = 2:00 Initial state01� poke [2℄ = true1�1 poke [2℄ = poke [1℄ = true1�0� poke [2℄ = true10 poke [2℄ = poke [1℄ = false11� poke [2℄ = true0�1 poke [2℄ = poke [1℄ = true0�0� poke [2℄ = true00 poke [2℄ = poke [1℄ = false3

The same
y
le will repeat inde�nitely, be
ause everything has returned to its initial state.Noti
e that in this example, the repeating
y
le
onsists of two distin
t parts. The�rst half
y
le, before false is returned, generates all two-bit patterns in Gray binary order(00; 01; 11; 10); the other half generates those patterns again, but in the reverse order(10; 11; 01; 00). This behavior will be
hara
teristi
 of all the
oroutines that we shall
onsider for the spider-squishing problem: Their task will be to run through all n-tuplesa1 : : : an su
h that aj � ak for
ertain pairs (j; k), always returning true until all possiblepatterns have been generated; then they are supposed to run through those n-tuples againin reverse order, and to repeat the pro
ess ad in�nitum.In general, we
an see without diÆ
ulty that the
oroutines poke [1℄, poke [2℄, : : : ,poke [n℄ solve the problem of generating all n-tuples properly in the spe
ial
ase when no
onstraints aj � ak are present. Under our
onventions, the following driver routine will
y
le through the answers, printing a line of dashes between ea
h
omplete listing:while true do beginfor k := 1 step 1 until n do write (a[k℄);write (newline);if not poke [n℄ then write ("-----"; newline);end.(In pra
ti
e, of
ourse, the driver would normally
arry out some interesting pro
ess onthe bits a1 : : : an, instead of merely outputting them to a �le.)2. Chains. Now let's go to the opposite extreme and suppose that the digraph of
on-straints is an oriented path or
hain,1! 2! � � � ! n:In other words, we want now to generate all n-tuples a1a2 : : : an su
h that0 � a1 � a2 � � � � � an � 1;pro
eeding alternately forward and ba
kward in Gray order. Of
ourse this problem istrivial, but we want to do it with
oroutines so that we'll be able to ta
kle more diÆ
ultproblems later.Here are some
oroutines that do the new job.Boolean
oroutine bump [k℄;while true do beginawake0: while k < n ^ bump [k + 1℄ do return true ;a[k℄ := 1; return true ;asleep1: return false ;awake1: a[k℄ := 0; return true ;asleep0: while k < n ^ bump [k + 1℄ do return true ;return false ;end. 4

In this
ase, the driver program initiates a
tion by involving bump [1℄. For example,the pro
ess plays out as follows when n = 3:000 Initial state 123001� bump [1℄ = bump [2℄ = bump [3℄ = true 123�01�1 bump [1℄ = bump [2℄ = true , bump [3℄ = false 12�1�11 bump [1℄ = true , bump [2℄ = false 1�111 bump [1℄ = false 10�11 bump [1℄ = true 1�20�0�1 bump [1℄ = bump [2℄ = true 1�2�30�0�0� bump [1℄ = bump [2℄ = bump [3℄ = true 1�2�3�000 bump [1℄ = bump [2℄ = bump [3℄ = false 123Ea
h troll's a
tion now depends on whether his lamp is lit as well as on his state ofwakefulness. A troll with an unlighted lamp always passes ea
h bump to the right, withouttaking any noti
e unless a false reply
omes ba
k. In the latter
ase, he a
ts as if his lamphad been lit|namely, he either returns false (if just awakened), or he
hanges the lamp,returns true , and nods o�.(Note: The numbers `123', `123�', : : : at the right of this example
orrespond to anen
oding that will be explained in Se
tion 8 below. A similar
olumn of somewhat in-s
rutable �gures will be given with other examples we will see later, so that the prin
iplesof Se
tion 8 will be easier to understand when we rea
h that part of the story. There is noneed to de
ipher su
h notations until then; all will be revealed eventually.)The dual situation, in whi
h all inequalities are reversed so that we generate alla1a2 : : : an with 1 � a1 � a2 � � � � � an � 0;is obtained by inter
hanging the roles of 0 and 1:Boolean
oroutine
obump [k℄;while true do beginawake0: a[k℄ := 1; return true ;asleep1: while k < n ^
obump [k + 1℄ do return true ;return false ;awake1: while k < n ^
obump [k + 1℄ do return true ;a[k℄ := 0; return true ;asleep0: return false ;end.A mixed situation in whi
h the
onstraints are0 � an � an�1 � � � � � am+1 � a1 � a2 � � � � � am � 1is also worthy of note. Again the underlying digraph is a
hain and the driver repeatedlybumps troll T1, but when 1 < m < n, the
oroutines are a mixture of those we've justseen: 5

Boolean
oroutine mbump [1℄;while true do beginawake0: while 1 � k � m ^mbump [k + 1℄ do return true ;a[k℄ := 1; return true ;asleep1: while (k = 1 ^mbump [m+1℄) _ (m � k � n ^mbump [k+1℄) do return true ;return false ;awake1: while (k = 1 ^mbump [m+1℄) _ (m � k � n ^mbump [k+1℄) do return true ;a[k℄ := 0; return true ;asleep0: while 1 � k � m ^mbump [k + 1℄ do return true ;return false ;end.When m � 12n, signals need to propagate only half as far as they do when m = 1.Still another simple but signi�
ant variant arises when several separate
hains arepresent. The digraph might, for example, be
12 3 456 ,in whi
h
ase we want all 6-tuples of bits a1 : : : a6 with a1 � a2 and a4 � a5 � a6. Ingeneral, suppose there is a set of endpoints E = fe1; : : : ; emg su
h that1 = e1 < � � � < em � n;and we want ak 2 f0; 1g for 1 � k � n; ak�1 � ak for k =2 E:(The set E is f1; 3; 4g in the example shown.) The following
oroutines ebump [k℄, for1 � k � n, generate all su
h n-tuples if the driver invokes ebump [em℄:Boolean
oroutine ebump [k℄;while true do beginawake0: while k + 1 =2 E [fn+ 1g ^ ebump [k + 1℄ do return true ;a[k℄ := 1; return true ;asleep1: if k 2 E n f1g return ebump [k0℄ else return false ;awake1: a[k℄ := 1; return true ;asleep0: while k + 1 =2 E [fn+ 1g ^ ebump [k + 1℄ do return true ;if k 2 E n f1g return ebump [k0℄ else return false ;end. 6

Here k0 stands for ej�1 when k = ej and j > 1. These routines redu
e to poke whenE = f1; 2; : : : ; ng and to bump when E = f1g. If E = f1; 3; 4g, they will generate all 24bit patterns su
h that a1 � a2 and a4 � a5 � a6 in the order000000, 000001�, 00001�1, 0001�11, 001�111, 001�0�11, 001�0�0�1, 001�0�0�0�,01�1000, 01�1001�, 01�101�1, 01�11�11, 01�0�111, 01�0�0�11, 01�0�0�0�1, 01�0�0�0�0�,1�10000, 1�10001�, 1�1001�1, 1�101�11, 1�11�111, 1�11�0�11, 1�11�0�0�1, 1�11�0�0�0�;then the sequen
e will reverse itself:111000, 111001�, 11101�1, 1111�11, 110�111, 110�0�11, 110�0�0�1, 110�0�0�0�,0�10000, 0�10001�, 0�1001�1, 0�101�11, 0�11�111, 0�11�0�11, 0�11�0�0�1 0�11�0�0�0�,0�0�1000, 0�0�1001�, 0�0�101�1, 0�0�11�11, 0�0�0�111, 0�0�0�0�11, 0�0�0�0�0�1, 0�0�0�0�0�0�.In our examples so far we have dis
ussed several families of
ooperating
oroutines and
laimed that they generate
ertain n-tuples, but we haven't proved anything rigorously. Aformal theory of
oroutine semanti
s is beyond the s
ope of this paper, but we should atleast try to
onstru
t a semi-formal demonstration that ebump is
orre
t.The proof is by indu
tion on jEj, the number of
hains. If jEj = 1, ebump [k℄ redu
es tobump [k℄, and we
an argue by indu
tion on n. The result is obvious when n = 1. If n > 1,suppose repeated
alls on bump [2℄
ause a2 : : : an to run through the (n�1)-tuples �0, �1,�2, : : : , where bump [2℄ is false when it produ
es �t = �t�1. Su
h a repetition will o

ur ifand only if t is a multiple of n, the number of distin
t (n�1)-tuples with a2 � � � � � an. Weknow by indu
tion that the sequen
e has re
e
tive symmetry: �j = �2n�1�j for 0 � j � n.Furthermore, �j+2n = �j for all j � 0. To
omplete the proof we observe that repeated
alls on bump [1℄ will produ
e the n-tuples0�0; 0�1; : : : ; 0�n�1; 1��n;1�n; 0��n; 0��n+1; : : : ; 0��2n�1;0�2n; 0�2n+1; : : : ; 0�3n�1; 1��3n;and so on, returning false every (n+ 1)st step as desired.If jEj > 1, let E = fe1; : : : ; emg, so that e0m = em�1, and suppose that repeated
allson ebump [em�1℄ produ
e the (em � 1)-tuples �0; �1; �2; : : :. Also suppose that
alls onebump [em℄ would set the remaining bits aem : : : an to the (n+ 1 � em)-tuples �0, �1, �2,: : : , if E were empty instead of fe1; : : : ; emg; this sequen
e �0, �1, �2, : : : is like the outputof bump . The � and � sequen
es are periodi
, with respe
tive periods of length 2M and2N for someM and N ; they also have re
e
tive symmetry �j = �2M�1�j, �k = �2N�1�k.It follows that ebump [em℄ is
orre
t, be
ause it produ
es the sequen
e
0;
1;
2; : : : = �0�0; �0�1; : : : ; �0�N�1;�1�N ; �1�N+1; : : : ; �1�2N�1;...�M�1�(M�1)N ; �M�1�(M�1)N+1; : : : ; �M�1�MN�1;�M�MN ; �M�MN+1; : : : ; �M�(M+1)N�1;...�2M�1�(2M�1)N ; �2M�1�(2M�1)N+1; : : : ; �2M�1�2MN�1; : : :7

whi
h has period length 2MN and satis�es
Nj+k = �j�Nj+k = �2M�1�j�2MN�1�Nj�k =
2MN�1�Nj�kfor 0 � j < M and 0 � k < N .The patterns output by ebump are therefore easily seen to be essentially the same asthe so-
alled re
e
ted Gray paths for radi
es e2 + 1� e1, : : : , em + 1� em�1, n+ 2� em(see [4℄); the total number of outputs is(e2 + 1� e1) : : : (em + 1� em�1)(n+ 2� em):3. Ups and downs. Now let's
onsider a \fen
e" digraph1 2 3 4 : : : ;whi
h leads to n-tuples that satisfya1 � a2 � a3 � a4 � � � � :A reasonably simple set of
oroutines
an be shown to handle this
ase:Boolean
oroutine nudge [k℄;while true do beginawake0: while k0 � n ^ nudge [k0℄ do return true ;a[k℄ := 1; return true ;asleep1: while k00 � n ^ nudge [k00℄ do return true ;return false ;awake1: while k00 � n ^ nudge [k00℄ do return true ;a[k℄ := 0; return true ;asleep0: while k0 � n ^ nudge [k0℄ do return true ;return false ;end.Here (k0; k00) = (k+1; k+2) when k is odd, (k+2; k+1) when k is even. But these
oroutinesdo not work when they all begin at `awake0' with a1a2 : : : an = 00 : : :0; they need to beinitialized
arefully. For example, when n = 6 it turns out that exa
tly 11 patterns ofodd weight need to be generated, and exa
tly 10 patterns of even weight, so a Gray path
annot begin or end with 000000 or 111111. In the proper starting
on�guration, a1 : : : anwill be set to the �rst n bits of 000111000111 : : : , and
oroutine nudge [k℄ will begin at`awake0' if ak = 0, at `awake1' if ak = 1. For example, the sequen
e of results when n = 48

is 0001 Initial
on�guration 1240000� nudge [1℄ = nudge [2℄ = nudge [4℄ = true 124�01�00 nudge [1℄ = nudge [2℄ = true , nudge [4℄ = false 12�3401�01� nudge [1℄ = nudge [2℄ = nudge [3℄ = nudge [4℄ = true 12�34�01�1�1 nudge [1℄ = nudge [2℄ = nudge [3℄ = true , nudge [4℄ = false 12�3�1�111 nudge [1℄ = true , nudge [2℄ = nudge [3℄ = false 1�31�10�1 nudge [1℄ = nudge [3℄ = true 1�3�41�10�0� nudge [1℄ = nudge [3℄ = nudge [4℄ = true 1�3�4�1100 nudge [1℄ = nudge [3℄ = nudge [4℄ = false 1341101� nudge [1℄ = nudge [3℄ = nudge [4℄ = true 134�111�1 nudge [1℄ = nudge [3℄ = true , nudge[4℄ = false 13�0�111 nudge [1℄ = true , nudge[3℄ = false 1�230�10�1 nudge [1℄ = nudge [2℄ = nudge [3℄ = true 1�23�40�10�0� nudge [1℄ = nudge [2℄ = nudge [3℄ = nudge [4℄ = true 1�23�4�0�0�00 nudge [1℄ = nudge [2℄ = true , nudge [3℄ = nudge [4℄ = false 1�2�40�0�01� nudge [1℄ = nudge [2℄ = nudge [4℄ = true 1�2�4�0001 nudge [1℄ = nudge [2℄ = nudge [4℄ = false 124Again the
y
le repeats with re
e
tive symmetry; and again, some
rypti
 notations appearthat will be explained in Se
tion 8. The
orre
tness of nudge will follow from results weshall prove later.4. The general
ase. Now let's turn to the general
ase, where an arbitrary totallya
y
li
 digraph is given. The spider
1234 5 6 789

illustrates most of the
ompli
ations that might fa
e us, so we shall use it as a runningexample. In general we shall assume that the verti
es have been numbered in preorder,when the digraph is
onsidered to be a forest (ignoring the ar
 dire
tions). This means (see[4, Se
tion 2.3.2℄ that the smallest vertex in ea
h
omponent is the root of that
omponent,and that all vertex numbers of a
omponent are
onse
utive. Furthermore, the
hildren ofea
h node are immediately followed in the ordering by their des
endants. The des
endantsof ea
h node k form a subspider
onsisting of nodes k through s
ope(k), in
lusive; we shall
all this \spider k." For example, spider 2
onsists of nodes f2; 3; 4; 5g, and s
ope(2) = 5.Our sample spider has been numbered in preorder be
ause it
an be drawn as a properly9

numbered tree with dire
ted bran
hes: 1234 5 67 89Many other vertex numberings are possible, be
ause any vertex of the digraph
ould havebeen
hosen to be the root, and be
ause the resulting trees
an often be embedded severalways into the plane by permuting the
hildren of ea
h family.Assume for the moment that the digraph is
onne
ted; thus it is a tree with root 1.A nonroot vertex x is
alled positive if the path from 1 to x ends with an ar
 dire
tedtowards x, negative if that path ends with an ar
 dire
ted away from x. Thus the examplespider has positive verti
es f2; 3; 5; 6; 9g and negative verti
es f4; 7; 8g.Let us write x!� y if there is a dire
ted path from x to y in the digraph. Removing allverti
es x su
h that x!� 1 dis
onne
ts the graph into a number of pie
es having positiveroots; in our example, the removal of f1; 8g leaves three
omponents rooted at f2; 6; 9g.We
all these roots the positive verti
es near 1, and we denote that set by U1. Similarly,the negative verti
es near 1 are obtained when we remove all verti
es y su
h that 1!� y;the set of resulting roots, denoted by V1, is f4; 7; 8g in our example, be
ause we removef1; 2; 3; 5; 6g.The relevant bit patterns a1 : : : an for whi
h a1 = 0 are pre
isely those that we obtainif we set aj = 0 whenever j !� 1 and then we supply bit patterns for ea
h subspiderrooted at a vertex of U1. Similarly, the bit patterns for whi
h a1 = 1 are pre
isely thosewe obtain by setting ak = 1 whenever 1 !� k and supplying patterns for ea
h subspiderrooted at a vertex of V1. Thus if nk denotes the number of bit patterns for spider k, thetotal number of suitable patterns a1 : : : an is Qu2U1 nu +Qv2V1 nv.The sets Uk and Vk of positive and negative verti
es near k are de�ned in the sameway for ea
h spider k.Every positive
hild of k appears in Uk, and every negative
hild appears in Vk. Theseare
alled the prin
ipal elements of Uk and Vk. Every nonprin
ipal member of Uk is amember of Uv for some unique prin
ipal vertex v of Vk. Similarly, every nonprin
ipalmember of Vk is a member of Vu for some unique prin
ipal vertex u of Uk. For example,the prin
ipal members of U1 are 2 and 6; the other member, 9, belongs to U8, where 8 isa prin
ipal member of V1.We will prove that the bit patterns a1 : : : an
an always be arranged in a Gray pathsu
h that bit a1 begins at 0 and ends at 1,
hanging exa
tly on
e. By indu
tion, su
hpaths exist for the nu patterns in ea
h spider u for u 2 U1. And we
an
ombine su
hpaths into a single path that passes through all of the Qu2U1 nu ways to
ombine thosepatterns, using a re
e
ted Gray
ode analogous to the output of ebump in Se
tion 3 above.Thus, if we set ak = 0 for all k su
h that k !� 1, we get a Gray path P1 for all suitablepatterns with a1 = 0. Similarly we
an
onstru
t a Gray path Q1 for theQv2V1 nv suitablepatterns with a1 = 1. All we need to do is prove that it is possible to
onstru
t P1 and Q110

in su
h a way that the last pattern in P1 di�ers from the �rst pattern of Q1 only in bit a1.Then G1 = (P1; Q1) will be a suitable Gray path that solves our problem.For example,
onsider the subspiders for U1 = f2; 6; 9g in the example spider. Anindu
tive
onstru
tion shows that they have respe
tively (n2; n6; n9) = (8; 3; 2) patterns,with
orresponding Gray pathsG2 = 0000; 0001; 0101; 0100; 0110; 0111; 1111; 1101;G6 = 00; 10; 11;G9 = 0; 1:We obtain 48 patterns P1 by setting a1 = a8 = 0 and using G2 for a2a3a4a5, G6 fora6a7, and G9 for a9, taking
are to end with a2 = a6 = 1. Similarly, the subspiders forV1 = f4; 7; 8g have (n4; n7; n8) = (2; 2; 3) patterns, and pathsG4 = 0; 1;G7 = 0; 1;G8 = 00; 01; 11:We obtain 12 patterns Q1 by setting a1 = a2 = a3 = a5 = a6 = 1 and using G4 for a4, G7for a7, and G8 for a8a9, taking
are to begin with a8 = 0. Combining these observations,we see that P1 should end with 011011100, and Q1 should begin with 111011100.In general, the last element of Pk and the �rst element of Qk
an be determined asfollows: For all
hildren j of k, set aj : : : as
ope(j) to the last element of the previously
omputed Gray path Gj if j is positive, or to the �rst element of Gj if j is negative. Thenset ak = 0 in Pk, ak = 1 in Qk. It is easy to verify that these rules make aj = 0 wheneverj !� k, for all j su
h that k < j � s
ope(k). A re
e
ted Gray
ode based on the paths Gufor u 2 Uk
an be used to
onstru
t Pk ending at the transition values, having ak = 0,and Qk
an be
onstru
ted from those starting values based on the paths Gv for v 2 Vk,having ak = 1. Thus we obtain a Gray path Gk = (Pk; Qk).We have therefore
onstru
ted a Gray path for spider 1, proving that the spider-squishing problem has a solution when the underlying digraph is
onne
ted. To
ompletethe
onstru
tion for the general
ase, we
an arti�
ially ensure that the graph is
onne
tedby introdu
ing a new vertex 0, with ar
s from 0 to the roots of the
omponents. ThenP0 will be the desired Gray path, if we suppress bit a0 (whi
h is zero throughout P0).5. Implementation via
oroutines. By
onstru
ting families of sets Uk and Vk andidentifying prin
ipal verti
es in those sets, we have shown the existen
e of a Gray path forany given spider-squishing problem. Now let's make the proof expli
it by
onstru
ting afamily of
oroutines that will dynami
ally generate the su

essive patterns a1 : : : an, as inthe examples worked out in Se
tions 1{3 above.First let's review some basi
 fa
ts about
oroutines of the type we need. Consider thefollowing
oroutines X and Y : 11

Boolean
oroutine X();while true do beginwhile A() do return true ;return false ;while B() do return truereturn false ;while C() do return true ;return false ;end;Boolean
oroutine Y ();while true do beginwhile X() do return true ;return Z();end.Here X invokes three
oroutines A, B, C; Y invokes X and an arbitrary
oroutine Z 6=X;Y . Clearly Y
arries out essentially the same a
tions as the slightly faster
oroutine XZwe get from X by substituting Z() wherever X returns false :Boolean
oroutine XZ ();while true do beginwhile A() do return true ;return Z();while B() do return true ;return Z();while C() do return true ;return Z();end.This substitution prin
iple
an be used whenever all return statements ofX are either`return true ' or `return false '. And we
ould
ast XZ into this same mold, if desired,by writing `if Z() then return true else return false ' in pla
e of `return Z()'.Next,
onsider
oroutines whose a
tions produ
e in�nite sequen
es �1; �2; : : : of pe-riod length 2M , where (�M ; : : : ; �2M�1) is the reverse of (�0; : : : ; �M�1), and where the
oroutine returns false after produ
ing �t if and only if t is a multiple of M . We provedat the end of Se
tion 2 that a
onstru
tion likeBoolean
oroutine AtimesB ();while true do beginwhile B() do return true ;return A();endyields a
oroutine that produ
es su
h sequen
es of period length 2MN from
oroutines A()and B() of period lengths 2M and 2N . 12

The following somewhat analogous
oroutine produ
es su
h sequen
es of period length2(M +N):Boolean
oroutine AplusB ();while true do beginwhile A() do return true ;a[1℄ := 1; return true ;while B() do return true ;return false ;while B() do return true ;a[1℄ := 0; return true ;while A() do return true ;return false ;end.This
onstru
tion assumes that A() and B() generate re
e
tive periodi
 sequen
es� and � on bits a2 : : : an where �M = �0. The �rst half of AplusB produ
es0�0; : : : ; 0�M�1; 1�0; : : : ; 1�N�1;and returns false after forming 1�N (whi
h equals 1�N�1). The se
ond half produ
es then-tuples 1�N ; : : : ; 1�2N�1; 0�M ; : : : ; 0�2M�1;whi
h are the �rst M + N outputs in reverse; then it returns false , after forming 0�2M(whi
h equals 0�0).The
oroutines that we need to implement spider squishing
an be built up fromvariants of the primitive
onstru
tions for produ
t and sum just mentioned. Considerthe following
oroutines gen[1℄; : : : ; gen[n℄, ea
h of whi
h re
eives an integer parameter lwhenever being invoked:Boolean
oroutine gen [k℄(l); integer l;while true do beginawake0: while Uk 6= ; ^ gen [maxUk℄(k) do return true ;a[k℄ := 1; return true ;asleep1: while Vk 6= ; ^ gen [maxVk℄(k) do return true ;if prev(k) > l then return gen [prev(k)℄(l) else return false ;awake1: while Vk 6= ; ^ gen [maxVk℄(k) do return true ;a[k℄ := 0; return true ;asleep0: while Uk 6= ; ^ gen [maxVk℄(k) do return true ;if prev(k) > l then return gen [prev(k)℄(l) else return false ;end.Here maxUk denotes the largest element of Uk, and prev(k) is a fun
tion that we shallde�ne momentarily. This fun
tion, like the sets Uk and Vk, is stati
ally determined from thegiven totally a
y
li
 digraph. Sin
e Uk and Vk are often empty and sin
e prev(k) is often13

zero, many of the individual
oroutines gen [k℄
an be simpli�ed by removing statementslike `while false do return true '.The idea of `prev' is that all elements of Ul
an be listed as u, prev(u), prev�prev(u)�,: : : , until rea
hing an element � l, if we start with u = maxUl. Similarly, all elementsof Vl
an be listed as v, prev(v), prev�prev(v)�, : : : , while those elements ex
eed l, startingwith v = maxVl. The basi
 meaning of gen [k℄ with parameter l is to run through all bitpatterns for the spiders u � k in Ul, if k is positive, or for the spiders v � k in Vl, if k isnegative.The example spider of Se
tion 4 will help
larify the situation. The following tableshows the sets Uk, Vk, and a suitable fun
tion prev(k), together with some auxiliaryfun
tions by whi
h prev(k)
an be determined in general:k s
ope(k) UK VK prev(k) ppro(k) npro(k)1 9 f2; 6; 9g f4; 7; 8g 0 1 02 5 f3; 5g f4g 0 2 03 4 ; f4g 0 3 04 4 ; ; 0 3 45 5 ; ; 3 5 06 7 ; f7g 2 6 07 7 ; ; 4 6 78 9 f9g ; 7 1 89 9 ; ; 6 9 8If u is a positive vertex, not a root, let v1 be the parent of u. Then if v1 is negative,let v2 be the parent of v1, and
ontinue in this manner until rea
hing a positive vertex vt,the least positive an
estor of v1. We
all vt the positive progenitor of v1, denoted ppro(v1).The main point of this
onstru
tion is that u 2 Uk if and only if k is one of the verti
esfv1; v2; : : : ; vtg. ConsequentlyUk = Ul \ fk; k + 1; : : : ; s
ope(k)gif l is the positive progenitor of k. Furthermore Uk and Uk0 are disjoint whenever k and k0are distin
t positive verti
es. Therefore we
an de�ne prev(u) for all positive nonroots uas the largest element less than u in the set Uk [f0g, where k is the positive progenitor ofu's parent.Every element also has a negative progenitor, if we regard the dummy vertex 0 as anegative vertex that is parent to all the roots of the digraph. Thus we de�ne prev(v) forall negative v as the largest element less than v in the set Vk [f0g, where k is the negativeprogenitor of v's parent.Noti
e that 9 is an element of both U1 and U8 in the example spider, so both gen [9℄(1)and gen [9℄(8) will be invoked at various times. The former will invoke gen [6℄(1), whi
h willinvoke gen [2℄(1); the latter, however, will merely
ip bit a9 on and o�, be
ause prev(9) isless than 8. There is only
oroutine gen [9℄; its parameter l is reassigned ea
h time gen [9℄ isinvoked. (The two usages do not
on
i
t, be
ause gen [9℄(1) is invoked only when a1 = 0,in whi
h
ase a8 = 0 and gen [8℄
annot be a
tive.) Similarly, gen [4℄
an be invoked withl = 1; 2, or 3; but in this
ase there is no di�eren
e in behavior be
ause prev(4) = 0.14

In order to see why gen [k℄ works, let's
onsider �rst what would happen if its pa-rameter l were 1, so that the test `prev(k) > l' would always be false. In su
h a
ase gen [k℄ is simply the AplusB
onstru
tion applied to A() = gen [maxUk℄(k) andB() = gen [maxVk℄(k). On the other hand when l is set to a number su
h that k 2 Ul ork 2 Vl, the
oroutine gen [k℄ is essentially the AtimesB
onstru
tion substituted into thisAplusB , having the e�e
t of multiplying with gen [prev(k)℄(l). Thus we see that `whileUk 6= ; ^ gen [maxUk℄(k) do return true ' generates the sequen
e Pk des
ribed in Se
-tion 4, and `while Vk 6= ; ^ gen [maxVk℄(k) do return true ' generates Qk. It follows thatgen [k℄(1) generates the Gray path Gk. And we get the overall solution to our problem,path P0, by invoking gen [maxU0℄(0).Well, there is one hit
h: Every time the AplusB
onstru
tion is used, we must be surethat
oroutines A() and B() have been set up so that the last pattern of A() equals the�rst pattern of B(). We shall deal with that problem in Se
tion 6.In the simplest
ase, where the given digraph has no ar
s whatsoever, we have U0 =f1; : : : ; ng and all other U 's and V 's are empty. Thus prev(k) = k � 1 for 1 � k � n, andgen [k℄(0) redu
es to the
oroutine poke [k℄ of Se
tion 1.If the given digraph is the
hain 1 ! 2 ! � � � ! n, the nonempty U 's and V 's areUk = fk + 1g for 0 � k < n. Thus prev(k) = 0 for all k, and gen [k℄(l) redu
es to the
oroutine bump [k℄ of Se
tion 2.If the given digraph is the fen
e 1 ! 2 3 ! 4 � � � ; we have Uk = fk0g andVk = fk00g for 1 � k < n, where (k0; k00) = (k + 1; k + 2) if k is odd, (k + 2; k + 1) if k iseven, ex
ept that Un�1 = ; if n is odd, Vn�1 = ; if n is even. Also U0 = f1g. Thereforeprev(k) = 0 for all k, and gen [k℄(l) redu
es to the
oroutine nudge [k℄ of Se
tion 3.6. Laun
hing. Ever sin
e 1968, Se
tion 1.4.2 of The Art of Computer Programming[3℄ has
ontained the following remark: \Initialization of
oroutines tends to be a littletri
ky, although not really diÆ
ult." Perhaps that statement needs to be amended, fromthe standpoint of the
oroutines
onsidered here. We need to de
ide at whi
h label ea
h
oroutine gen [k℄ should begin exe
ution when it is �rst invoked: awake0, asleep1, awake1,or asleep0. And our dis
ussion in Se
tions 3 and 4 shows that we also need to
hoose theinitial setting of a1 : : : an very
arefully.Let's
onsider the initialization of a1 : : : an �rst. The re
e
ted Gray path me
hanismthat we use to
onstru
t the paths Pk and Qk, as explained in Se
tion 4,
omplementssome of the bits. If, for example, Uk = fu1; u2; : : : ; umg, where u1 < u2 < � � � < um, pathPk will
ontain nu1nu2 : : : num bit patterns, and the value of bit aui at the end of Pk willequal the value it had at the beginning if and only if nu1nu2 : : : nui�1 is even. The reasonis that subpath Gui is traversed nu1nu2 : : : nui�1 times, alternately forward and ba
kward.In general, letÆjk = Yu<ju2Uk nu; if j 2 Uk; Æjk = Yv<jv2Vk nv; if j 2 Vk:Let �jk and !jk be the initial and �nal values of bit aj in the Gray path Gk for spider k,and let �jk be the value of aj at the transition point (the end of Pk and the beginning15

of Qk). Then �kk = 0, !kk = 1, and the
onstru
tion in Se
tion 4 de�nes the values of�ik; �ik; and !ik for k < i � s
ope(k) as follows: Suppose i belongs to spider j, where j isa
hild of k.� If j is positive, so that j is a prin
ipal element of Uk, we have �ik = !ij , sin
e Pk endswith aj = 1. Also �ik = !ij if Æjk is even, �ik = �ij if Æjk is odd. If k !� i we have!ik = 1; otherwise i belongs to spider j0, where j0 is a nonprin
ipal element of Vk. Inthe latter
ase !ik = �ij0 if !j0j + Æj0k is even, otherwise !ik = !ij0 . (This followsbe
ause !j0j = �j0k and !j0k = (�j0k + Æj0k) mod 2.)� If j is negative, so that j is a prin
ipal element of Vk, we have �ik = �ij , sin
e Qkbegins with aj = 0. Also !ik = �ij if Æjk is even, !ik = !ij if Æjk is odd. If i!� k wehave �ik = 0; otherwise i belongs to spider j0, where j0 is a nonprin
ipal element ofUk. In the latter
ase �ik = �ij0 if �j0j + Æj0k is even, otherwise aik = !ij0 .For example, when the digraph is the spider of Se
tion 4, these formulas yieldk nk Initial bits �jk Transition bits �jk Final bits !jk9 2 a9 = 0 � 18 3 a8a9 = 00 �1 117 2 a7 = 0 � 16 3 a6a7 = 00 �0 115 2 a5 = 0 � 14 2 a4 = 0 � 13 3 a3a4 = 00 �0 112 8 a2a3a4a5 = 0000 �111 11011 60 a1a2 : : : a9 = 000001100 �11011100 111111100Suppose j is a negative
hild of k. If nu is odd for all elements of Uk that are lessthan j, then Æij+Æik is even for all i 2 Uj , and it follows that aik = �ij for j < i � s
ope(j).On the other hand, if nu is even for some u 2 Uk with u < j, then Æik is even for all i 2 Uj ,and we have �ik = �ij for j < i � s
ope(j). This observation makes it possible to
omputethe initial bits a1 : : : an in O(n) steps (see [9℄).The spe
ial nature of vertex 0 suggests that we de�ne Æj0 = 1, be
ause we use path P0but not Q0. This
onvention makes ea
h
omponent of the digraph essentially independent.(Otherwise, for example, the initial setting of a1 : : : an would be 01 : : :1 in the trivial \poke"
ase when the digraph has no ar
s.)On
e we know the initial bits, we start gen [k℄ at label awake0 if ak = 0, at labelawake1 if ak = 1.7. Optimization. The
oroutines gen [1℄, : : : , gen [n℄ solve the general spider-squishingproblem, but they might not run very fast. For example, the bump routine in Se
tion 2takes an average of about n=2 steps to de
ide whi
h bit should be
hanged. We wouldmu
h prefer to use only a bounded amount of time per bit
hange, on the average, andthis goal turns out to be a
hievable if we optimize the
oroutine implementation.16

Consider a simple
oroutine of the formBoolean
oroutine f ;while true do beginf1: while � do return true ;return fa ;f2: while fg do return true ;return fb ;end.The \obvious" way to implement f , using ordinary Algol pro
edures, is to introdu
e aglobal variable fpos and to use an Algol swit
h (or an equivalent feature found in amodern des
endant of that language):integer fpos ;
omment initialized to 1 or 2;Boolean pro
edure f ;begin swit
h fswit
h := f1, f2; go to fswit
h [fpos ℄;f1: if � then return true ;fpos := 2; return fa ;f2: if fg then return true ;fpos := 1; return fb ;end.But let us suppose that
oroutine f is always invoked in the
ontext `while f do p', andthat
oroutines � and fg often return a true result. Then we
ould short-
ir
uit f -relateda
tivities by invoking � and fg dire
tly and taking spe
ial a
tion only if they return false .For example, we
ould maintain a sta
k of position indi
es and swit
h dire
tly to the itemat the top of the sta
k. Instead of `while f do p' we
ould say sta
k [1℄ := (1 or 2); s := 1;while
all do p', where
all is implemented as follows:Boolean pro
edure
all ;begin while s > 0 do beginif inner
all then return true ;s := s� 1;end;return false ;
omment this shouldn't happen;end;integer s; integer array sta
k [1 : 100℄;Boolean pro
edure inner
all ;begin swit
h
swit
h := f1, f2, f1x, f2x, ff1, fg1;go to
swit
h�sta
k [s ℄�;f1: sta
k [s ℄ := 3; s := s+ 1; sta
k [s ℄ := 5; go to ff1;f1x: sta
k [s ℄ := 2; return fa ;f2: sta
k [s ℄ := 4; s := s+ 1; sta
k [s ℄ := 6; go to fg1;f2x: sta
k [s ℄ := 1; return fb ; 17

ff1: hThe body of pro
edure � i;fg1: hThe body of pro
edure fg i;end.Then if � in turn is a
oroutine that begins with `while fff do return true ', we
ouldput new labels ff1x and fff1 into
swit
h and use the same idea to implement � .8. The a
tive list. The gen
oroutines of Se
tion 5 perform O(n) operations per bit
hange, as they pass signals ba
k and forth, be
ause ea
h
oroutine
arries out at mosttwo lines of its program. This upper bound on the running time
annot be substantiallyimproved, in general. For example, the bump
oroutines of Se
tion 2 typi
ally need tointerrogate about 12n trolls per step; and it
an be shown that the nudge
oroutines ofSe
tion 3 typi
ally involve a
tion by about
n trolls per step, where
 = (5 + p5)=10 �0:724. (See [3, exer
ise 1.2.8{12℄.)Using te
hniques like those of Se
tion 7, however, the gen
oroutines
an always betransformed into a pro
edure that performs only O(1) operations per bit
hange, amortizedover all the
hanges. A formal derivation of su
h a transformation is beyond the s
ope ofthe present paper, but we will be able to envision it by
onsidering an informal des
riptionof the algorithm that results.The key idea is the
on
ept of an a
tive list, whi
h en
apsulates a given stage of the
omputation. The a
tive list is a sequen
e of nodes that are either awake or asleep. If jis a positive
hild of k, node j is in the a
tive list if and only if k = 0 or ak = 0; if j is anegative
hild of k, it is in the a
tive list if and only if ak = 1.Examples of the a
tive list in spe
ial
ases have appeared in the tables illustratingbump in Se
tion 2 and nudge in Se
tion 3. Readers who wish to review those exampleswill �nd that the numbers listed there do indeed satisfy these
riteria. Furthermore, anode number has been underlined when that node is asleep; bit aj has been underlined ifand only if j is asleep and in the a
tive list.Initially a1 : : : an is set to its starting pattern as de�ned in Se
tion 6, and all elementsof the
orresponding a
tive list are awake. To get to the next bit pattern, we perform thefollowing a
tions:1) Let k be the largest nonsleeping node on the a
tive list, and wake up all nodes thatare larger. (If all elements of the a
tive list are asleep, they all wake up and no bit
hange is made; this
ase
orresponds to gen [maxU0℄(0) returning false .)2) If ak = 0, set ak to 1, delete k's positive
hildren from the a
tive list, and insert k'snegative
hildren. Otherwise set ak to 0, insert the positive
hildren, and delete thenegative ones. (Newly inserted nodes are awake.)3) Put node k to sleep.Again the reader will �nd that the bump and nudge examples adhere to this dis
ipline.If we maintain the a
tive list in order of its nodes, the amortized
ost of these threeoperations is O(1), be
ause we
an
harge the
ost of inserting, deleting, and awakeningnode k to the time when bit ak
hanges. Steps (1) and (2) might o

asionally need to doa lot of work, but this argument proves that su
h diÆ
ult transitions must be rare.18

Let's
onsider the spider of Se
tion 4 one last time. The 60 bit patterns that satisfyits
onstraints are generated by starting with a1 : : : a9 = 000001100, as we observed inSe
tion 6, and the Gray path G1 begins as follows a

ording to the a
tive list proto
ol:000001100 1235679000001101� 1235679�0000010�01 123567�90000010�00� 123567�9�000000�000 12356�9000000�001� 12356�9�00001�0001 1235�6900001�0000� 1235�69�00001�1�000 1235�6�79(Noti
e how node 7 be
omes temporarily ina
tive when a6 be
omes 0.) The most dramati

hange will o

ur after the �rst n2n6n9 = 48 patterns, when bit a1
hanges as we pro
eedfrom path P1 to path Q1: 01�10�11�1�00� 12�4�6�7�9�1�11011100 1�4789Finally, after all 60 patterns have been generated, the a
tive list will be 1�4�7�8�9� and a1 : : : a9will be 1�111�111�0�0�. All a
tive nodes will be napping, but when we wake them up they willbe ready to regenerate the 60 patterns in reverse order.It should be
lear from these examples, and from an examination of the gen
oroutines,that steps (1), (2), and (3) faithfully implement those
oroutines in an eÆ
ient iterativemanner.9. Additional optimizations. The algorithm of Se
tion 8
an often be streamlinedfurther. For example, if j and j0 are
onse
utive positive
hildren of k and if Vj is empty,then j and j0 will be adja
ent in the a
tive list whenever they are inserted or deleted.We
an therefore insert or delete an entire family en masse, in the spe
ial
ase that allnodes are positive, if the a
tive list is doubly linked. This important spe
ial
ase was �rst
onsidered by Koda and Ruskey [6℄; see also [4, Algorithm 7.2.1.1K℄.Further tri
ks
an in fa
t be employed to make the a
tive list algorithm entirelyloopless, in the sense that O(1) operations are performed between su

essive bit
hangesin all
ases (not only in an average, amortized sense). One idea, used by Koda andRuskey in the spe
ial
ase just mentioned, is to use \fo
us pointers" to identify the largestnonsleeping node (see [2℄ and [4, Algorithm 7.2.1.1L℄). Another idea, whi
h appears tobe ne
essary when both positive and negative nodes appear in a
omplex family, is toperform lazy updates to the a
tive list,
hanging links only gradually but before they area
tually needed. Su
h a loopless implementation, whi
h moreover needs only O(n) stepsto initialize all the data stru
tures, is des
ribed fully in [9℄. It does not ne
essarily runfaster than a more straightforward amortized O(1) algorithm, from the standpoint of totaltime on a sequential (not parallel)
omputer; but it does prove that a strong performan
eguarantee is a
hievable, given any totally a
y
li
 digraph.19

10. Con
lusions and a
knowledgements. We have seen that a systemati
 use of
o-operating
oroutines leads to a generalized Gray
ode for generating all bit patterns thatsatisfy the ordering
onstraints of any totally a
y
li
 digraph. Furthermore these
orou-tines
an be implemented eÆ
iently, yielding an algorithm that is faster than previouslyknown methods for that problem. Indeed, the algorithm is optimum, in the sense that itsrunning time is linear in the number of outputs.Further work is
learly suggested in the heretofore negle
ted area of
oroutine trans-formation. For example, we have not dis
ussed the implementation of
oroutines su
h asBoolean
oroutine
opoke [k℄;while true do beginwhile k < n ^
opoke [k + 1℄ do return true ;a[k℄ := 1� a[k℄; return true ;while k < n ^
opoke [k + 1℄ do return true ;return false ;end.These
oroutines, whi
h are to be driven by repeatedly
alling
opoke [1℄, look super�
iallysimilar to gen , but they are not a
tually a spe
ial
ase of that
onstru
tion. A rather largefamily of
oroutine optimizations seems to be waiting to be dis
overed and to be treatedformally.Another important open problem is to dis
over a method that generates the bit pat-terns
orresponding to an arbitrary a
y
li
 digraph, with an amortized
ost of only O(1)per pattern. The best
urrently known bound is O(logn), due to M. B. Squire [10℄; seealso [8, Se
tion 4.11.2℄. There is always a listing of the relevant bit patterns in whi
h atmost two bits
hange from one pattern to the next [7, Corollary 1℄.The �rst author thanks Ole-Johan Dahl for fruitful
ollaboration at the Universityof Oslo during 1972{1973 and at Stanford University during 1977{1978; also for sharingprofound insights into the s
ien
e of programming and for
ountless hours of delightfulfour-hands piano musi
. The se
ond author thanks Mal
olm Smith and Gang (Kenny) Lifor their help in devising early versions of algorithms for spider-squishing during 1991 and1995, respe
tively.

20

Referen
es[1℄ Ole-Johan Dahl and Kristen Nygaard, \SIMULA|an ALGOL-based simulation lan-guage," Communi
ations of the ACM 9 (1966), 671{678.[2℄ Gideon Ehrli
h, \Loopless algorithms for generating permutations,
ombinations andother
ombinatorial
on�gurations," Journal of the Asso
iation for Computing Ma
hinery20 (1973), 500{513.[3℄ Donald E. Knuth, Fundamental Algorithms, Volume 1 of the Art of Computer Pro-gramming (Reading, Massa
husetts: Addison{Wesley, 1968). Third edition, 1997.[4℄ Donald E. Knuth, \Generating all n-tuples," Se
tion 7.2.1.1 of The Art of ComputerProgramming, Volume 4 (Addison{Wesley), in preparation. Preliminary ex
erpts of thismaterial are available at http://www-
s-fa
ulty.stanford.edu/~knuth/news01.html.[5℄ Donald E. Knuth, \Sele
ted Topi
s in Computer S
ien
e, Part II, Le
ture Note Series,Number 2 (Blindern, Norway: University of Oslo, Institute of Mathemati
s, August 1973).See page 3 of the notes entitled \Generation of
ombinatorial patterns: Gray
odes."[6℄ Yasunori Koda and Frank Ruskey, \A Gray
ode for the ideals of a forest poset,"Journal of Algorithms 15 (1993), 324{340.[7℄ Gara Pruesse and Frank Ruskey, \Gray
odes from antimatroids," Order 10 (1993),239{252.[8℄ Frank Ruskey, Combinatorial Generation [preliminary working draft℄. Department ofComputer S
ien
e, University of Vi
toria, Vi
toria B.C., Canada (1996).[9℄ Donald E. Knuth, SPIDERS, a program downloadable from the websitehttp://www-
s-fa
ulty.stanford.edu/~knuth/programs.html.[10℄ Matthew Blaze Squire, Gray Codes and EÆ
ient Generation of Combinatorial Stru
-tures. Ph.D. dissertation, North Carolina State University (1995), x + 145 pages.[11℄ George Steiner, \An algorithm to generate the ideals of a partial order," OperationsResear
h Letters 5 (1986), 317{320.
21

