
Deonstruting CoroutinesDonald E. Knuth and Frank Ruskey(to Ole-Johan Dahl on his 70th birthday)Abstrat. We study an interesting family of ooperating oroutines, whih isable to generate all patterns of bits that satisfy ertain fairly general orderingonstraints, hanging only one bit at a time. (More preisely, the direted graphof onstraints is required to be yle-free when it is regarded as an undiretedgraph.) If the oroutines are implemented arefully, they yield an algorithm thatneeds only a bounded amount of omputation per bit hange, thereby solving anopen problem in the �eld of ombinatorial pattern generation.Muh has been written about the transformation of proedures from reursive to iterativeform, but little is known about the more general problem of transforming oroutines intoequivalent programs that avoid unneessary overhead. The present paper attempts totake a step in that diretion by fousing on a reasonably simple yet nontrivial familyof ooperating oroutines for whih signi�ant improvements in eÆieny are possiblewhen appropriate transformations are applied. The authors hope that this example willinspire other researhers to develop and explore the potentially rih �eld of oroutinetransformation.Coroutines are analogous to subroutines, but they are symmetrial with respet toaller and allee: When oroutine A invokes oroutine B, the ation of A is temporar-ily suspended and the ation of B resumes where B had most reently left o�. (See,for example, Setion 1.4.2 of [3℄.) Programming languages suh as SIMULA I [1℄ and itsobjet-oriented desendants have made it easy for programmers to speify families of pa-rameterized oroutines that ooperate with eah other in natural but nontrivial ways. Inthis paper we will study examples in whih a ompiler an transform suh programs intooptimized ode, just as ompilers an often transform reursive proedures into iterativeroutines that require less spae and/or time.The ideas presented here were motivated by appliations to the exhaustive generationof ombinatorial objets. For example, onsider a oroutine that wants to look at allpermutations of n elements; it an all repeatedly on a permutation-generation oroutineto produe the suessive arrangements. The latter oroutine repeatedly forms a newpermutation and alls on the former oroutine to inspet the result. The permutationoroutine has its own internal state| its own loal variables and its urrent loation inan ongoing omputational proess|so it does not onsider itself to be a \subroutine" ofthe inspetion oroutine. The permutation oroutine might also invoke other oroutines,whih in turn are omputational objets with their own internal states.We shall onsider the problem of generating all n-tuples a1a2 : : : an of 0s and 1s withthe property that aj � ak whenever j ! k is an ar in a given direted graph with nverties. These n-tuples are supposed to form a \Gray path," in the sense that only onebit aj should hange at eah step.The general problem just stated does not always have a solution. For example, if thegiven digraph is 1 2 ;1

then we are asking for a way to generate the tuples 00 and 11 by hanging only one bit ata time, and this is learly impossible. Even if we stipulate that there should be no diretedyles, we might enounter an example like1 23 4 ;for whih the Gray onstraint annot be ahieved, beause the orresponding 4-tuples0000; 0001; 0011; 0101; 0111; 1111inlude four of even weight and two of odd weight; a Gray path must alternate betweeneven and odd. Reasonably eÆient methods for solving the problem without Grayness areknown [10, 11℄, but we want to insist on single-bit hanges.Therefore we shall restrit onsideration to direted graphs that are totally ayli, inthe sense that they ontain no yles even if the diretions of the ars are ignored. Eahomponent of suh a graph is a free tree in whih a diretion has been assigned to eahbranh between two verties. Suh digraphs are alled spiders, beause of their resemblaneto arahnids:
(In this diagram, as in others below, we assume that all ars are direted upwards.) Thegeneral problem of �nding all a1 : : : an suh that aj � ak when j ! k in suh a digraphis formally alled the task of \generating all ideals of an ayli poset"; it also is alled,informally, \spider squishing."Setions 1{3 of this paper disuss simple examples of the problem in preparation forSetion 4, whih presents a onstrutive proof that suitable Gray paths always exist. Theproof of Setion 4 is implemented with oroutines in Setion 5, and Setion 6 disusses thenontrivial task of getting all the oroutines properly launhed.Setion 7 desribes a simple tehnique that is often able to improve the running time.A slight generalization of that tehnique leads in Setion 8 to an eÆient oroutine-freeimplementation. Additional optimizations, whih an be used to onstrut a looplessalgorithm for the spider-squishing problem, are disussed in Setion 9.1. The simplest ase. Let's begin by imagining a long line of friendly trolls. This lineends with T0 and extends in�nitely far to the left, with troll Tk preeded by Tk+1 for allk � 0. Eah troll arries a lamp that is either o� or on; he also an be either awake orasleep. Initially all the trolls are awake, and all their lamps are o�.Changes our to the system when a troll is \poked," aording to the following simplerules: If Tk is poked when he is awake, he hanges the state of his lamp from o� to on or2

vie versa; then he beomes tired and goes to sleep. Later, when the sleeping Tk is pokedagain, he wakes up and pokes Tk+1, without making any hange to his own lamp.At periodi intervals an external driving fore D pokes the rightmost troll T0, initiatinga hain of events that ulminates in one lamp hanging its state. The proess begins asfollows, if we use the digits 0 and 1 to represent lamps that are respetively o� or on, andif we underline the digit of a sleeping troll:: : :0000 Initial state: : :0001� D pokes T0: : :001�1 D pokes T0, who wakes up and pokes T1: : :001�0� D pokes T0: : :01�10 D pokes T0, who pokes T1, who pokes T2: : :01�11� D pokes T0,: : :01�0�1 D pokes T0, who pokes T1The sequene of underlined versus not-underlined digits ats essentially as a binary ounter.And the sequene of digit patterns, in whih exatly one bit hanges at eah step, is a Graybinary ounter, whih follows the well-known Gray binary ode; it also orresponds to theproess of replaing rings in the lassi Chinese ring puzzle [4℄. (This troll-oriented way togenerate Gray binary ode was presented by the �rst author in a leture at the Universityof Oslo in Otober, 1972 [5℄.)Suppose now that only �nitely many trolls are present. In this ase we shall namethem T1, T2, : : : , Tn from left to right, so that the driving fore D pokes Tn, while T1 hasno left-hand neighbor. Now it makes sense for Tk to pass a message bak to his right-handneighbor Tk+1 (or to D, when k = n), telling whether a lamp has hanged state. Suhextended rules an be expressed in an ad ho Algol-like language as follows:Boolean oroutine poke [k℄;while true do beginawake: a[k℄ := 1� a[k℄; return true ;asleep: if k > 1 then return poke [k � 1℄ else return false ;end.Coroutine poke [k℄ desribes the ation of Tk, impliitly retaining its own state of wakeful-ness. Thus, poke [k℄ will resume its program at label `asleep' when it is next ativated afterhaving exeuted the statement `return true'; and it will resume at label `awake' when itis next ativated after `return poke [k � 1℄' or `return false '.The system therefore goes through the following steps when n = 2:00 Initial state01� poke [2℄ = true1�1 poke [2℄ = poke [1℄ = true1�0� poke [2℄ = true10 poke [2℄ = poke [1℄ = false11� poke [2℄ = true0�1 poke [2℄ = poke [1℄ = true0�0� poke [2℄ = true00 poke [2℄ = poke [1℄ = false3

The same yle will repeat inde�nitely, beause everything has returned to its initial state.Notie that in this example, the repeating yle onsists of two distint parts. The�rst half yle, before false is returned, generates all two-bit patterns in Gray binary order(00; 01; 11; 10); the other half generates those patterns again, but in the reverse order(10; 11; 01; 00). This behavior will be harateristi of all the oroutines that we shallonsider for the spider-squishing problem: Their task will be to run through all n-tuplesa1 : : : an suh that aj � ak for ertain pairs (j; k), always returning true until all possiblepatterns have been generated; then they are supposed to run through those n-tuples againin reverse order, and to repeat the proess ad in�nitum.In general, we an see without diÆulty that the oroutines poke [1℄, poke [2℄, : : : ,poke [n℄ solve the problem of generating all n-tuples properly in the speial ase when noonstraints aj � ak are present. Under our onventions, the following driver routine willyle through the answers, printing a line of dashes between eah omplete listing:while true do beginfor k := 1 step 1 until n do write (a[k℄);write (newline);if not poke [n℄ then write ("-----"; newline);end.(In pratie, of ourse, the driver would normally arry out some interesting proess onthe bits a1 : : : an, instead of merely outputting them to a �le.)2. Chains. Now let's go to the opposite extreme and suppose that the digraph of on-straints is an oriented path or hain,1! 2! � � � ! n:In other words, we want now to generate all n-tuples a1a2 : : : an suh that0 � a1 � a2 � � � � � an � 1;proeeding alternately forward and bakward in Gray order. Of ourse this problem istrivial, but we want to do it with oroutines so that we'll be able to takle more diÆultproblems later.Here are some oroutines that do the new job.Boolean oroutine bump [k℄;while true do beginawake0: while k < n ^ bump [k + 1℄ do return true ;a[k℄ := 1; return true ;asleep1: return false ;awake1: a[k℄ := 0; return true ;asleep0: while k < n ^ bump [k + 1℄ do return true ;return false ;end. 4

In this ase, the driver program initiates ation by involving bump [1℄. For example,the proess plays out as follows when n = 3:000 Initial state 123001� bump [1℄ = bump [2℄ = bump [3℄ = true 123�01�1 bump [1℄ = bump [2℄ = true , bump [3℄ = false 12�1�11 bump [1℄ = true , bump [2℄ = false 1�111 bump [1℄ = false 10�11 bump [1℄ = true 1�20�0�1 bump [1℄ = bump [2℄ = true 1�2�30�0�0� bump [1℄ = bump [2℄ = bump [3℄ = true 1�2�3�000 bump [1℄ = bump [2℄ = bump [3℄ = false 123Eah troll's ation now depends on whether his lamp is lit as well as on his state ofwakefulness. A troll with an unlighted lamp always passes eah bump to the right, withouttaking any notie unless a false reply omes bak. In the latter ase, he ats as if his lamphad been lit|namely, he either returns false (if just awakened), or he hanges the lamp,returns true , and nods o�.(Note: The numbers `123', `123�', : : : at the right of this example orrespond to anenoding that will be explained in Setion 8 below. A similar olumn of somewhat in-srutable �gures will be given with other examples we will see later, so that the priniplesof Setion 8 will be easier to understand when we reah that part of the story. There is noneed to deipher suh notations until then; all will be revealed eventually.)The dual situation, in whih all inequalities are reversed so that we generate alla1a2 : : : an with 1 � a1 � a2 � � � � � an � 0;is obtained by interhanging the roles of 0 and 1:Boolean oroutine obump [k℄;while true do beginawake0: a[k℄ := 1; return true ;asleep1: while k < n ^ obump [k + 1℄ do return true ;return false ;awake1: while k < n ^ obump [k + 1℄ do return true ;a[k℄ := 0; return true ;asleep0: return false ;end.A mixed situation in whih the onstraints are0 � an � an�1 � � � � � am+1 � a1 � a2 � � � � � am � 1is also worthy of note. Again the underlying digraph is a hain and the driver repeatedlybumps troll T1, but when 1 < m < n, the oroutines are a mixture of those we've justseen: 5

Boolean oroutine mbump [1℄;while true do beginawake0: while 1 � k � m ^mbump [k + 1℄ do return true ;a[k℄ := 1; return true ;asleep1: while (k = 1 ^mbump [m+1℄) _ (m � k � n ^mbump [k+1℄) do return true ;return false ;awake1: while (k = 1 ^mbump [m+1℄) _ (m � k � n ^mbump [k+1℄) do return true ;a[k℄ := 0; return true ;asleep0: while 1 � k � m ^mbump [k + 1℄ do return true ;return false ;end.When m � 12n, signals need to propagate only half as far as they do when m = 1.Still another simple but signi�ant variant arises when several separate hains arepresent. The digraph might, for example, be
12 3 456 ,in whih ase we want all 6-tuples of bits a1 : : : a6 with a1 � a2 and a4 � a5 � a6. Ingeneral, suppose there is a set of endpoints E = fe1; : : : ; emg suh that1 = e1 < � � � < em � n;and we want ak 2 f0; 1g for 1 � k � n; ak�1 � ak for k =2 E:(The set E is f1; 3; 4g in the example shown.) The following oroutines ebump [k℄, for1 � k � n, generate all suh n-tuples if the driver invokes ebump [em℄:Boolean oroutine ebump [k℄;while true do beginawake0: while k + 1 =2 E [fn+ 1g ^ ebump [k + 1℄ do return true ;a[k℄ := 1; return true ;asleep1: if k 2 E n f1g return ebump [k0℄ else return false ;awake1: a[k℄ := 1; return true ;asleep0: while k + 1 =2 E [fn+ 1g ^ ebump [k + 1℄ do return true ;if k 2 E n f1g return ebump [k0℄ else return false ;end. 6

Here k0 stands for ej�1 when k = ej and j > 1. These routines redue to poke whenE = f1; 2; : : : ; ng and to bump when E = f1g. If E = f1; 3; 4g, they will generate all 24bit patterns suh that a1 � a2 and a4 � a5 � a6 in the order000000, 000001�, 00001�1, 0001�11, 001�111, 001�0�11, 001�0�0�1, 001�0�0�0�,01�1000, 01�1001�, 01�101�1, 01�11�11, 01�0�111, 01�0�0�11, 01�0�0�0�1, 01�0�0�0�0�,1�10000, 1�10001�, 1�1001�1, 1�101�11, 1�11�111, 1�11�0�11, 1�11�0�0�1, 1�11�0�0�0�;then the sequene will reverse itself:111000, 111001�, 11101�1, 1111�11, 110�111, 110�0�11, 110�0�0�1, 110�0�0�0�,0�10000, 0�10001�, 0�1001�1, 0�101�11, 0�11�111, 0�11�0�11, 0�11�0�0�1 0�11�0�0�0�,0�0�1000, 0�0�1001�, 0�0�101�1, 0�0�11�11, 0�0�0�111, 0�0�0�0�11, 0�0�0�0�0�1, 0�0�0�0�0�0�.In our examples so far we have disussed several families of ooperating oroutines andlaimed that they generate ertain n-tuples, but we haven't proved anything rigorously. Aformal theory of oroutine semantis is beyond the sope of this paper, but we should atleast try to onstrut a semi-formal demonstration that ebump is orret.The proof is by indution on jEj, the number of hains. If jEj = 1, ebump [k℄ redues tobump [k℄, and we an argue by indution on n. The result is obvious when n = 1. If n > 1,suppose repeated alls on bump [2℄ ause a2 : : : an to run through the (n�1)-tuples �0, �1,�2, : : : , where bump [2℄ is false when it produes �t = �t�1. Suh a repetition will our ifand only if t is a multiple of n, the number of distint (n�1)-tuples with a2 � � � � � an. Weknow by indution that the sequene has reetive symmetry: �j = �2n�1�j for 0 � j � n.Furthermore, �j+2n = �j for all j � 0. To omplete the proof we observe that repeatedalls on bump [1℄ will produe the n-tuples0�0; 0�1; : : : ; 0�n�1; 1��n;1�n; 0��n; 0��n+1; : : : ; 0��2n�1;0�2n; 0�2n+1; : : : ; 0�3n�1; 1��3n;and so on, returning false every (n+ 1)st step as desired.If jEj > 1, let E = fe1; : : : ; emg, so that e0m = em�1, and suppose that repeated allson ebump [em�1℄ produe the (em � 1)-tuples �0; �1; �2; : : :. Also suppose that alls onebump [em℄ would set the remaining bits aem : : : an to the (n+ 1 � em)-tuples �0, �1, �2,: : : , if E were empty instead of fe1; : : : ; emg; this sequene �0, �1, �2, : : : is like the outputof bump . The � and � sequenes are periodi, with respetive periods of length 2M and2N for someM and N ; they also have reetive symmetry �j = �2M�1�j, �k = �2N�1�k.It follows that ebump [em℄ is orret, beause it produes the sequene0; 1; 2; : : : = �0�0; �0�1; : : : ; �0�N�1;�1�N ; �1�N+1; : : : ; �1�2N�1;...�M�1�(M�1)N ; �M�1�(M�1)N+1; : : : ; �M�1�MN�1;�M�MN ; �M�MN+1; : : : ; �M�(M+1)N�1;...�2M�1�(2M�1)N ; �2M�1�(2M�1)N+1; : : : ; �2M�1�2MN�1; : : :7

whih has period length 2MN and satis�esNj+k = �j�Nj+k = �2M�1�j�2MN�1�Nj�k = 2MN�1�Nj�kfor 0 � j < M and 0 � k < N .The patterns output by ebump are therefore easily seen to be essentially the same asthe so-alled reeted Gray paths for radies e2 + 1� e1, : : : , em + 1� em�1, n+ 2� em(see [4℄); the total number of outputs is(e2 + 1� e1) : : : (em + 1� em�1)(n+ 2� em):3. Ups and downs. Now let's onsider a \fene" digraph1 2 3 4 : : : ;whih leads to n-tuples that satisfya1 � a2 � a3 � a4 � � � � :A reasonably simple set of oroutines an be shown to handle this ase:Boolean oroutine nudge [k℄;while true do beginawake0: while k0 � n ^ nudge [k0℄ do return true ;a[k℄ := 1; return true ;asleep1: while k00 � n ^ nudge [k00℄ do return true ;return false ;awake1: while k00 � n ^ nudge [k00℄ do return true ;a[k℄ := 0; return true ;asleep0: while k0 � n ^ nudge [k0℄ do return true ;return false ;end.Here (k0; k00) = (k+1; k+2) when k is odd, (k+2; k+1) when k is even. But these oroutinesdo not work when they all begin at `awake0' with a1a2 : : : an = 00 : : :0; they need to beinitialized arefully. For example, when n = 6 it turns out that exatly 11 patterns ofodd weight need to be generated, and exatly 10 patterns of even weight, so a Gray pathannot begin or end with 000000 or 111111. In the proper starting on�guration, a1 : : : anwill be set to the �rst n bits of 000111000111 : : : , and oroutine nudge [k℄ will begin at`awake0' if ak = 0, at `awake1' if ak = 1. For example, the sequene of results when n = 48

is 0001 Initial on�guration 1240000� nudge [1℄ = nudge [2℄ = nudge [4℄ = true 124�01�00 nudge [1℄ = nudge [2℄ = true , nudge [4℄ = false 12�3401�01� nudge [1℄ = nudge [2℄ = nudge [3℄ = nudge [4℄ = true 12�34�01�1�1 nudge [1℄ = nudge [2℄ = nudge [3℄ = true , nudge [4℄ = false 12�3�1�111 nudge [1℄ = true , nudge [2℄ = nudge [3℄ = false 1�31�10�1 nudge [1℄ = nudge [3℄ = true 1�3�41�10�0� nudge [1℄ = nudge [3℄ = nudge [4℄ = true 1�3�4�1100 nudge [1℄ = nudge [3℄ = nudge [4℄ = false 1341101� nudge [1℄ = nudge [3℄ = nudge [4℄ = true 134�111�1 nudge [1℄ = nudge [3℄ = true , nudge[4℄ = false 13�0�111 nudge [1℄ = true , nudge[3℄ = false 1�230�10�1 nudge [1℄ = nudge [2℄ = nudge [3℄ = true 1�23�40�10�0� nudge [1℄ = nudge [2℄ = nudge [3℄ = nudge [4℄ = true 1�23�4�0�0�00 nudge [1℄ = nudge [2℄ = true , nudge [3℄ = nudge [4℄ = false 1�2�40�0�01� nudge [1℄ = nudge [2℄ = nudge [4℄ = true 1�2�4�0001 nudge [1℄ = nudge [2℄ = nudge [4℄ = false 124Again the yle repeats with reetive symmetry; and again, some rypti notations appearthat will be explained in Setion 8. The orretness of nudge will follow from results weshall prove later.4. The general ase. Now let's turn to the general ase, where an arbitrary totallyayli digraph is given. The spider
1234 5 6 789

illustrates most of the ompliations that might fae us, so we shall use it as a runningexample. In general we shall assume that the verties have been numbered in preorder,when the digraph is onsidered to be a forest (ignoring the ar diretions). This means (see[4, Setion 2.3.2℄ that the smallest vertex in eah omponent is the root of that omponent,and that all vertex numbers of a omponent are onseutive. Furthermore, the hildren ofeah node are immediately followed in the ordering by their desendants. The desendantsof eah node k form a subspider onsisting of nodes k through sope(k), inlusive; we shallall this \spider k." For example, spider 2 onsists of nodes f2; 3; 4; 5g, and sope(2) = 5.Our sample spider has been numbered in preorder beause it an be drawn as a properly9

numbered tree with direted branhes: 1234 5 67 89Many other vertex numberings are possible, beause any vertex of the digraph ould havebeen hosen to be the root, and beause the resulting trees an often be embedded severalways into the plane by permuting the hildren of eah family.Assume for the moment that the digraph is onneted; thus it is a tree with root 1.A nonroot vertex x is alled positive if the path from 1 to x ends with an ar diretedtowards x, negative if that path ends with an ar direted away from x. Thus the examplespider has positive verties f2; 3; 5; 6; 9g and negative verties f4; 7; 8g.Let us write x!� y if there is a direted path from x to y in the digraph. Removing allverties x suh that x!� 1 disonnets the graph into a number of piees having positiveroots; in our example, the removal of f1; 8g leaves three omponents rooted at f2; 6; 9g.We all these roots the positive verties near 1, and we denote that set by U1. Similarly,the negative verties near 1 are obtained when we remove all verties y suh that 1!� y;the set of resulting roots, denoted by V1, is f4; 7; 8g in our example, beause we removef1; 2; 3; 5; 6g.The relevant bit patterns a1 : : : an for whih a1 = 0 are preisely those that we obtainif we set aj = 0 whenever j !� 1 and then we supply bit patterns for eah subspiderrooted at a vertex of U1. Similarly, the bit patterns for whih a1 = 1 are preisely thosewe obtain by setting ak = 1 whenever 1 !� k and supplying patterns for eah subspiderrooted at a vertex of V1. Thus if nk denotes the number of bit patterns for spider k, thetotal number of suitable patterns a1 : : : an is Qu2U1 nu +Qv2V1 nv.The sets Uk and Vk of positive and negative verties near k are de�ned in the sameway for eah spider k.Every positive hild of k appears in Uk, and every negative hild appears in Vk. Theseare alled the prinipal elements of Uk and Vk. Every nonprinipal member of Uk is amember of Uv for some unique prinipal vertex v of Vk. Similarly, every nonprinipalmember of Vk is a member of Vu for some unique prinipal vertex u of Uk. For example,the prinipal members of U1 are 2 and 6; the other member, 9, belongs to U8, where 8 isa prinipal member of V1.We will prove that the bit patterns a1 : : : an an always be arranged in a Gray pathsuh that bit a1 begins at 0 and ends at 1, hanging exatly one. By indution, suhpaths exist for the nu patterns in eah spider u for u 2 U1. And we an ombine suhpaths into a single path that passes through all of the Qu2U1 nu ways to ombine thosepatterns, using a reeted Gray ode analogous to the output of ebump in Setion 3 above.Thus, if we set ak = 0 for all k suh that k !� 1, we get a Gray path P1 for all suitablepatterns with a1 = 0. Similarly we an onstrut a Gray path Q1 for theQv2V1 nv suitablepatterns with a1 = 1. All we need to do is prove that it is possible to onstrut P1 and Q110

in suh a way that the last pattern in P1 di�ers from the �rst pattern of Q1 only in bit a1.Then G1 = (P1; Q1) will be a suitable Gray path that solves our problem.For example, onsider the subspiders for U1 = f2; 6; 9g in the example spider. Anindutive onstrution shows that they have respetively (n2; n6; n9) = (8; 3; 2) patterns,with orresponding Gray pathsG2 = 0000; 0001; 0101; 0100; 0110; 0111; 1111; 1101;G6 = 00; 10; 11;G9 = 0; 1:We obtain 48 patterns P1 by setting a1 = a8 = 0 and using G2 for a2a3a4a5, G6 fora6a7, and G9 for a9, taking are to end with a2 = a6 = 1. Similarly, the subspiders forV1 = f4; 7; 8g have (n4; n7; n8) = (2; 2; 3) patterns, and pathsG4 = 0; 1;G7 = 0; 1;G8 = 00; 01; 11:We obtain 12 patterns Q1 by setting a1 = a2 = a3 = a5 = a6 = 1 and using G4 for a4, G7for a7, and G8 for a8a9, taking are to begin with a8 = 0. Combining these observations,we see that P1 should end with 011011100, and Q1 should begin with 111011100.In general, the last element of Pk and the �rst element of Qk an be determined asfollows: For all hildren j of k, set aj : : : asope(j) to the last element of the previouslyomputed Gray path Gj if j is positive, or to the �rst element of Gj if j is negative. Thenset ak = 0 in Pk, ak = 1 in Qk. It is easy to verify that these rules make aj = 0 wheneverj !� k, for all j suh that k < j � sope(k). A reeted Gray ode based on the paths Gufor u 2 Uk an be used to onstrut Pk ending at the transition values, having ak = 0,and Qk an be onstruted from those starting values based on the paths Gv for v 2 Vk,having ak = 1. Thus we obtain a Gray path Gk = (Pk; Qk).We have therefore onstruted a Gray path for spider 1, proving that the spider-squishing problem has a solution when the underlying digraph is onneted. To ompletethe onstrution for the general ase, we an arti�ially ensure that the graph is onnetedby introduing a new vertex 0, with ars from 0 to the roots of the omponents. ThenP0 will be the desired Gray path, if we suppress bit a0 (whih is zero throughout P0).5. Implementation via oroutines. By onstruting families of sets Uk and Vk andidentifying prinipal verties in those sets, we have shown the existene of a Gray path forany given spider-squishing problem. Now let's make the proof expliit by onstruting afamily of oroutines that will dynamially generate the suessive patterns a1 : : : an, as inthe examples worked out in Setions 1{3 above.First let's review some basi fats about oroutines of the type we need. Consider thefollowing oroutines X and Y : 11

Boolean oroutine X();while true do beginwhile A() do return true ;return false ;while B() do return truereturn false ;while C() do return true ;return false ;end;Boolean oroutine Y ();while true do beginwhile X() do return true ;return Z();end.Here X invokes three oroutines A, B, C; Y invokes X and an arbitrary oroutine Z 6=X;Y . Clearly Y arries out essentially the same ations as the slightly faster oroutine XZwe get from X by substituting Z() wherever X returns false :Boolean oroutine XZ ();while true do beginwhile A() do return true ;return Z();while B() do return true ;return Z();while C() do return true ;return Z();end.This substitution priniple an be used whenever all return statements ofX are either`return true ' or `return false '. And we ould ast XZ into this same mold, if desired,by writing `if Z() then return true else return false ' in plae of `return Z()'.Next, onsider oroutines whose ations produe in�nite sequenes �1; �2; : : : of pe-riod length 2M , where (�M ; : : : ; �2M�1) is the reverse of (�0; : : : ; �M�1), and where theoroutine returns false after produing �t if and only if t is a multiple of M . We provedat the end of Setion 2 that a onstrution likeBoolean oroutine AtimesB ();while true do beginwhile B() do return true ;return A();endyields a oroutine that produes suh sequenes of period length 2MN from oroutines A()and B() of period lengths 2M and 2N . 12

The following somewhat analogous oroutine produes suh sequenes of period length2(M +N):Boolean oroutine AplusB ();while true do beginwhile A() do return true ;a[1℄ := 1; return true ;while B() do return true ;return false ;while B() do return true ;a[1℄ := 0; return true ;while A() do return true ;return false ;end.This onstrution assumes that A() and B() generate reetive periodi sequenes� and � on bits a2 : : : an where �M = �0. The �rst half of AplusB produes0�0; : : : ; 0�M�1; 1�0; : : : ; 1�N�1;and returns false after forming 1�N (whih equals 1�N�1). The seond half produes then-tuples 1�N ; : : : ; 1�2N�1; 0�M ; : : : ; 0�2M�1;whih are the �rst M + N outputs in reverse; then it returns false , after forming 0�2M(whih equals 0�0).The oroutines that we need to implement spider squishing an be built up fromvariants of the primitive onstrutions for produt and sum just mentioned. Considerthe following oroutines gen[1℄; : : : ; gen[n℄, eah of whih reeives an integer parameter lwhenever being invoked:Boolean oroutine gen [k℄(l); integer l;while true do beginawake0: while Uk 6= ; ^ gen [maxUk℄(k) do return true ;a[k℄ := 1; return true ;asleep1: while Vk 6= ; ^ gen [maxVk℄(k) do return true ;if prev(k) > l then return gen [prev(k)℄(l) else return false ;awake1: while Vk 6= ; ^ gen [maxVk℄(k) do return true ;a[k℄ := 0; return true ;asleep0: while Uk 6= ; ^ gen [maxVk℄(k) do return true ;if prev(k) > l then return gen [prev(k)℄(l) else return false ;end.Here maxUk denotes the largest element of Uk, and prev(k) is a funtion that we shallde�ne momentarily. This funtion, like the sets Uk and Vk, is statially determined from thegiven totally ayli digraph. Sine Uk and Vk are often empty and sine prev(k) is often13

zero, many of the individual oroutines gen [k℄ an be simpli�ed by removing statementslike `while false do return true '.The idea of `prev' is that all elements of Ul an be listed as u, prev(u), prev�prev(u)�,: : : , until reahing an element � l, if we start with u = maxUl. Similarly, all elementsof Vl an be listed as v, prev(v), prev�prev(v)�, : : : , while those elements exeed l, startingwith v = maxVl. The basi meaning of gen [k℄ with parameter l is to run through all bitpatterns for the spiders u � k in Ul, if k is positive, or for the spiders v � k in Vl, if k isnegative.The example spider of Setion 4 will help larify the situation. The following tableshows the sets Uk, Vk, and a suitable funtion prev(k), together with some auxiliaryfuntions by whih prev(k) an be determined in general:k sope(k) UK VK prev(k) ppro(k) npro(k)1 9 f2; 6; 9g f4; 7; 8g 0 1 02 5 f3; 5g f4g 0 2 03 4 ; f4g 0 3 04 4 ; ; 0 3 45 5 ; ; 3 5 06 7 ; f7g 2 6 07 7 ; ; 4 6 78 9 f9g ; 7 1 89 9 ; ; 6 9 8If u is a positive vertex, not a root, let v1 be the parent of u. Then if v1 is negative,let v2 be the parent of v1, and ontinue in this manner until reahing a positive vertex vt,the least positive anestor of v1. We all vt the positive progenitor of v1, denoted ppro(v1).The main point of this onstrution is that u 2 Uk if and only if k is one of the vertiesfv1; v2; : : : ; vtg. ConsequentlyUk = Ul \ fk; k + 1; : : : ; sope(k)gif l is the positive progenitor of k. Furthermore Uk and Uk0 are disjoint whenever k and k0are distint positive verties. Therefore we an de�ne prev(u) for all positive nonroots uas the largest element less than u in the set Uk [f0g, where k is the positive progenitor ofu's parent.Every element also has a negative progenitor, if we regard the dummy vertex 0 as anegative vertex that is parent to all the roots of the digraph. Thus we de�ne prev(v) forall negative v as the largest element less than v in the set Vk [f0g, where k is the negativeprogenitor of v's parent.Notie that 9 is an element of both U1 and U8 in the example spider, so both gen [9℄(1)and gen [9℄(8) will be invoked at various times. The former will invoke gen [6℄(1), whih willinvoke gen [2℄(1); the latter, however, will merely ip bit a9 on and o�, beause prev(9) isless than 8. There is only oroutine gen [9℄; its parameter l is reassigned eah time gen [9℄ isinvoked. (The two usages do not onit, beause gen [9℄(1) is invoked only when a1 = 0,in whih ase a8 = 0 and gen [8℄ annot be ative.) Similarly, gen [4℄ an be invoked withl = 1; 2, or 3; but in this ase there is no di�erene in behavior beause prev(4) = 0.14

In order to see why gen [k℄ works, let's onsider �rst what would happen if its pa-rameter l were 1, so that the test `prev(k) > l' would always be false. In suh aase gen [k℄ is simply the AplusB onstrution applied to A() = gen [maxUk℄(k) andB() = gen [maxVk℄(k). On the other hand when l is set to a number suh that k 2 Ul ork 2 Vl, the oroutine gen [k℄ is essentially the AtimesB onstrution substituted into thisAplusB , having the e�et of multiplying with gen [prev(k)℄(l). Thus we see that `whileUk 6= ; ^ gen [maxUk℄(k) do return true ' generates the sequene Pk desribed in Se-tion 4, and `while Vk 6= ; ^ gen [maxVk℄(k) do return true ' generates Qk. It follows thatgen [k℄(1) generates the Gray path Gk. And we get the overall solution to our problem,path P0, by invoking gen [maxU0℄(0).Well, there is one hith: Every time the AplusB onstrution is used, we must be surethat oroutines A() and B() have been set up so that the last pattern of A() equals the�rst pattern of B(). We shall deal with that problem in Setion 6.In the simplest ase, where the given digraph has no ars whatsoever, we have U0 =f1; : : : ; ng and all other U 's and V 's are empty. Thus prev(k) = k � 1 for 1 � k � n, andgen [k℄(0) redues to the oroutine poke [k℄ of Setion 1.If the given digraph is the hain 1 ! 2 ! � � � ! n, the nonempty U 's and V 's areUk = fk + 1g for 0 � k < n. Thus prev(k) = 0 for all k, and gen [k℄(l) redues to theoroutine bump [k℄ of Setion 2.If the given digraph is the fene 1 ! 2 3 ! 4 � � � ; we have Uk = fk0g andVk = fk00g for 1 � k < n, where (k0; k00) = (k + 1; k + 2) if k is odd, (k + 2; k + 1) if k iseven, exept that Un�1 = ; if n is odd, Vn�1 = ; if n is even. Also U0 = f1g. Thereforeprev(k) = 0 for all k, and gen [k℄(l) redues to the oroutine nudge [k℄ of Setion 3.6. Launhing. Ever sine 1968, Setion 1.4.2 of The Art of Computer Programming[3℄ has ontained the following remark: \Initialization of oroutines tends to be a littletriky, although not really diÆult." Perhaps that statement needs to be amended, fromthe standpoint of the oroutines onsidered here. We need to deide at whih label eahoroutine gen [k℄ should begin exeution when it is �rst invoked: awake0, asleep1, awake1,or asleep0. And our disussion in Setions 3 and 4 shows that we also need to hoose theinitial setting of a1 : : : an very arefully.Let's onsider the initialization of a1 : : : an �rst. The reeted Gray path mehanismthat we use to onstrut the paths Pk and Qk, as explained in Setion 4, omplementssome of the bits. If, for example, Uk = fu1; u2; : : : ; umg, where u1 < u2 < � � � < um, pathPk will ontain nu1nu2 : : : num bit patterns, and the value of bit aui at the end of Pk willequal the value it had at the beginning if and only if nu1nu2 : : : nui�1 is even. The reasonis that subpath Gui is traversed nu1nu2 : : : nui�1 times, alternately forward and bakward.In general, letÆjk = Yu<ju2Uk nu; if j 2 Uk; Æjk = Yv<jv2Vk nv; if j 2 Vk:Let �jk and !jk be the initial and �nal values of bit aj in the Gray path Gk for spider k,and let �jk be the value of aj at the transition point (the end of Pk and the beginning15

of Qk). Then �kk = 0, !kk = 1, and the onstrution in Setion 4 de�nes the values of�ik; �ik; and !ik for k < i � sope(k) as follows: Suppose i belongs to spider j, where j isa hild of k.� If j is positive, so that j is a prinipal element of Uk, we have �ik = !ij , sine Pk endswith aj = 1. Also �ik = !ij if Æjk is even, �ik = �ij if Æjk is odd. If k !� i we have!ik = 1; otherwise i belongs to spider j0, where j0 is a nonprinipal element of Vk. Inthe latter ase !ik = �ij0 if !j0j + Æj0k is even, otherwise !ik = !ij0 . (This followsbeause !j0j = �j0k and !j0k = (�j0k + Æj0k) mod 2.)� If j is negative, so that j is a prinipal element of Vk, we have �ik = �ij , sine Qkbegins with aj = 0. Also !ik = �ij if Æjk is even, !ik = !ij if Æjk is odd. If i!� k wehave �ik = 0; otherwise i belongs to spider j0, where j0 is a nonprinipal element ofUk. In the latter ase �ik = �ij0 if �j0j + Æj0k is even, otherwise aik = !ij0 .For example, when the digraph is the spider of Setion 4, these formulas yieldk nk Initial bits �jk Transition bits �jk Final bits !jk9 2 a9 = 0 � 18 3 a8a9 = 00 �1 117 2 a7 = 0 � 16 3 a6a7 = 00 �0 115 2 a5 = 0 � 14 2 a4 = 0 � 13 3 a3a4 = 00 �0 112 8 a2a3a4a5 = 0000 �111 11011 60 a1a2 : : : a9 = 000001100 �11011100 111111100Suppose j is a negative hild of k. If nu is odd for all elements of Uk that are lessthan j, then Æij+Æik is even for all i 2 Uj , and it follows that aik = �ij for j < i � sope(j).On the other hand, if nu is even for some u 2 Uk with u < j, then Æik is even for all i 2 Uj ,and we have �ik = �ij for j < i � sope(j). This observation makes it possible to omputethe initial bits a1 : : : an in O(n) steps (see [9℄).The speial nature of vertex 0 suggests that we de�ne Æj0 = 1, beause we use path P0but not Q0. This onvention makes eah omponent of the digraph essentially independent.(Otherwise, for example, the initial setting of a1 : : : an would be 01 : : :1 in the trivial \poke"ase when the digraph has no ars.)One we know the initial bits, we start gen [k℄ at label awake0 if ak = 0, at labelawake1 if ak = 1.7. Optimization. The oroutines gen [1℄, : : : , gen [n℄ solve the general spider-squishingproblem, but they might not run very fast. For example, the bump routine in Setion 2takes an average of about n=2 steps to deide whih bit should be hanged. We wouldmuh prefer to use only a bounded amount of time per bit hange, on the average, andthis goal turns out to be ahievable if we optimize the oroutine implementation.16

Consider a simple oroutine of the formBoolean oroutine f ;while true do beginf1: while � do return true ;return fa ;f2: while fg do return true ;return fb ;end.The \obvious" way to implement f , using ordinary Algol proedures, is to introdue aglobal variable fpos and to use an Algol swith (or an equivalent feature found in amodern desendant of that language):integer fpos ; omment initialized to 1 or 2;Boolean proedure f ;begin swith fswith := f1, f2; go to fswith [fpos ℄;f1: if � then return true ;fpos := 2; return fa ;f2: if fg then return true ;fpos := 1; return fb ;end.But let us suppose that oroutine f is always invoked in the ontext `while f do p', andthat oroutines � and fg often return a true result. Then we ould short-iruit f -relatedativities by invoking � and fg diretly and taking speial ation only if they return false .For example, we ould maintain a stak of position indies and swith diretly to the itemat the top of the stak. Instead of `while f do p' we ould say stak [1℄ := (1 or 2); s := 1;while all do p', where all is implemented as follows:Boolean proedure all ;begin while s > 0 do beginif innerall then return true ;s := s� 1;end;return false ; omment this shouldn't happen;end;integer s; integer array stak [1 : 100℄;Boolean proedure innerall ;begin swith swith := f1, f2, f1x, f2x, ff1, fg1;go to swith�stak [s ℄�;f1: stak [s ℄ := 3; s := s+ 1; stak [s ℄ := 5; go to ff1;f1x: stak [s ℄ := 2; return fa ;f2: stak [s ℄ := 4; s := s+ 1; stak [s ℄ := 6; go to fg1;f2x: stak [s ℄ := 1; return fb ; 17

ff1: hThe body of proedure � i;fg1: hThe body of proedure fg i;end.Then if � in turn is a oroutine that begins with `while fff do return true ', we ouldput new labels ff1x and fff1 into swith and use the same idea to implement � .8. The ative list. The gen oroutines of Setion 5 perform O(n) operations per bithange, as they pass signals bak and forth, beause eah oroutine arries out at mosttwo lines of its program. This upper bound on the running time annot be substantiallyimproved, in general. For example, the bump oroutines of Setion 2 typially need tointerrogate about 12n trolls per step; and it an be shown that the nudge oroutines ofSetion 3 typially involve ation by about n trolls per step, where = (5 + p5)=10 �0:724. (See [3, exerise 1.2.8{12℄.)Using tehniques like those of Setion 7, however, the gen oroutines an always betransformed into a proedure that performs only O(1) operations per bit hange, amortizedover all the hanges. A formal derivation of suh a transformation is beyond the sope ofthe present paper, but we will be able to envision it by onsidering an informal desriptionof the algorithm that results.The key idea is the onept of an ative list, whih enapsulates a given stage of theomputation. The ative list is a sequene of nodes that are either awake or asleep. If jis a positive hild of k, node j is in the ative list if and only if k = 0 or ak = 0; if j is anegative hild of k, it is in the ative list if and only if ak = 1.Examples of the ative list in speial ases have appeared in the tables illustratingbump in Setion 2 and nudge in Setion 3. Readers who wish to review those exampleswill �nd that the numbers listed there do indeed satisfy these riteria. Furthermore, anode number has been underlined when that node is asleep; bit aj has been underlined ifand only if j is asleep and in the ative list.Initially a1 : : : an is set to its starting pattern as de�ned in Setion 6, and all elementsof the orresponding ative list are awake. To get to the next bit pattern, we perform thefollowing ations:1) Let k be the largest nonsleeping node on the ative list, and wake up all nodes thatare larger. (If all elements of the ative list are asleep, they all wake up and no bithange is made; this ase orresponds to gen [maxU0℄(0) returning false .)2) If ak = 0, set ak to 1, delete k's positive hildren from the ative list, and insert k'snegative hildren. Otherwise set ak to 0, insert the positive hildren, and delete thenegative ones. (Newly inserted nodes are awake.)3) Put node k to sleep.Again the reader will �nd that the bump and nudge examples adhere to this disipline.If we maintain the ative list in order of its nodes, the amortized ost of these threeoperations is O(1), beause we an harge the ost of inserting, deleting, and awakeningnode k to the time when bit ak hanges. Steps (1) and (2) might oasionally need to doa lot of work, but this argument proves that suh diÆult transitions must be rare.18

Let's onsider the spider of Setion 4 one last time. The 60 bit patterns that satisfyits onstraints are generated by starting with a1 : : : a9 = 000001100, as we observed inSetion 6, and the Gray path G1 begins as follows aording to the ative list protool:000001100 1235679000001101� 1235679�0000010�01 123567�90000010�00� 123567�9�000000�000 12356�9000000�001� 12356�9�00001�0001 1235�6900001�0000� 1235�69�00001�1�000 1235�6�79(Notie how node 7 beomes temporarily inative when a6 beomes 0.) The most dramatihange will our after the �rst n2n6n9 = 48 patterns, when bit a1 hanges as we proeedfrom path P1 to path Q1: 01�10�11�1�00� 12�4�6�7�9�1�11011100 1�4789Finally, after all 60 patterns have been generated, the ative list will be 1�4�7�8�9� and a1 : : : a9will be 1�111�111�0�0�. All ative nodes will be napping, but when we wake them up they willbe ready to regenerate the 60 patterns in reverse order.It should be lear from these examples, and from an examination of the gen oroutines,that steps (1), (2), and (3) faithfully implement those oroutines in an eÆient iterativemanner.9. Additional optimizations. The algorithm of Setion 8 an often be streamlinedfurther. For example, if j and j0 are onseutive positive hildren of k and if Vj is empty,then j and j0 will be adjaent in the ative list whenever they are inserted or deleted.We an therefore insert or delete an entire family en masse, in the speial ase that allnodes are positive, if the ative list is doubly linked. This important speial ase was �rstonsidered by Koda and Ruskey [6℄; see also [4, Algorithm 7.2.1.1K℄.Further triks an in fat be employed to make the ative list algorithm entirelyloopless, in the sense that O(1) operations are performed between suessive bit hangesin all ases (not only in an average, amortized sense). One idea, used by Koda andRuskey in the speial ase just mentioned, is to use \fous pointers" to identify the largestnonsleeping node (see [2℄ and [4, Algorithm 7.2.1.1L℄). Another idea, whih appears tobe neessary when both positive and negative nodes appear in a omplex family, is toperform lazy updates to the ative list, hanging links only gradually but before they areatually needed. Suh a loopless implementation, whih moreover needs only O(n) stepsto initialize all the data strutures, is desribed fully in [9℄. It does not neessarily runfaster than a more straightforward amortized O(1) algorithm, from the standpoint of totaltime on a sequential (not parallel) omputer; but it does prove that a strong performaneguarantee is ahievable, given any totally ayli digraph.19

10. Conlusions and aknowledgements. We have seen that a systemati use of o-operating oroutines leads to a generalized Gray ode for generating all bit patterns thatsatisfy the ordering onstraints of any totally ayli digraph. Furthermore these orou-tines an be implemented eÆiently, yielding an algorithm that is faster than previouslyknown methods for that problem. Indeed, the algorithm is optimum, in the sense that itsrunning time is linear in the number of outputs.Further work is learly suggested in the heretofore negleted area of oroutine trans-formation. For example, we have not disussed the implementation of oroutines suh asBoolean oroutine opoke [k℄;while true do beginwhile k < n ^ opoke [k + 1℄ do return true ;a[k℄ := 1� a[k℄; return true ;while k < n ^ opoke [k + 1℄ do return true ;return false ;end.These oroutines, whih are to be driven by repeatedly alling opoke [1℄, look super�iallysimilar to gen , but they are not atually a speial ase of that onstrution. A rather largefamily of oroutine optimizations seems to be waiting to be disovered and to be treatedformally.Another important open problem is to disover a method that generates the bit pat-terns orresponding to an arbitrary ayli digraph, with an amortized ost of only O(1)per pattern. The best urrently known bound is O(logn), due to M. B. Squire [10℄; seealso [8, Setion 4.11.2℄. There is always a listing of the relevant bit patterns in whih atmost two bits hange from one pattern to the next [7, Corollary 1℄.The �rst author thanks Ole-Johan Dahl for fruitful ollaboration at the Universityof Oslo during 1972{1973 and at Stanford University during 1977{1978; also for sharingprofound insights into the siene of programming and for ountless hours of delightfulfour-hands piano musi. The seond author thanks Malolm Smith and Gang (Kenny) Lifor their help in devising early versions of algorithms for spider-squishing during 1991 and1995, respetively.

20

Referenes[1℄ Ole-Johan Dahl and Kristen Nygaard, \SIMULA|an ALGOL-based simulation lan-guage," Communiations of the ACM 9 (1966), 671{678.[2℄ Gideon Ehrlih, \Loopless algorithms for generating permutations, ombinations andother ombinatorial on�gurations," Journal of the Assoiation for Computing Mahinery20 (1973), 500{513.[3℄ Donald E. Knuth, Fundamental Algorithms, Volume 1 of the Art of Computer Pro-gramming (Reading, Massahusetts: Addison{Wesley, 1968). Third edition, 1997.[4℄ Donald E. Knuth, \Generating all n-tuples," Setion 7.2.1.1 of The Art of ComputerProgramming, Volume 4 (Addison{Wesley), in preparation. Preliminary exerpts of thismaterial are available at http://www-s-faulty.stanford.edu/~knuth/news01.html.[5℄ Donald E. Knuth, \Seleted Topis in Computer Siene, Part II, Leture Note Series,Number 2 (Blindern, Norway: University of Oslo, Institute of Mathematis, August 1973).See page 3 of the notes entitled \Generation of ombinatorial patterns: Gray odes."[6℄ Yasunori Koda and Frank Ruskey, \A Gray ode for the ideals of a forest poset,"Journal of Algorithms 15 (1993), 324{340.[7℄ Gara Pruesse and Frank Ruskey, \Gray odes from antimatroids," Order 10 (1993),239{252.[8℄ Frank Ruskey, Combinatorial Generation [preliminary working draft℄. Department ofComputer Siene, University of Vitoria, Vitoria B.C., Canada (1996).[9℄ Donald E. Knuth, SPIDERS, a program downloadable from the websitehttp://www-s-faulty.stanford.edu/~knuth/programs.html.[10℄ Matthew Blaze Squire, Gray Codes and EÆient Generation of Combinatorial Stru-tures. Ph.D. dissertation, North Carolina State University (1995), x + 145 pages.[11℄ George Steiner, \An algorithm to generate the ideals of a partial order," OperationsResearh Letters 5 (1986), 317{320.
21

