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Abstract

A parallel computational model is defined which addresses I/O contention, latency,
and pipe-lined message passing between tasks allocated to different processors. The
model can be used for parallel task-allocation on either a network of workstations
or on a multi-stage inter-connected parallel machine. To study performance bounds
more closely, basic properties are developed for when the precedence constraints form
a directed tree. It is shown that the problem of optimally scheduling a directed one-
level precedence tree on an unlimited number of identical processors in this model is
NP-hard. The problem of scheduling a directed two-level precedence tree is also shown
to be NP-hard even when the system latency is zero.

An approximation algorithm is then presented for scheduling directed one-level
task trees on an unlimited number of processors with an approximation ratio of 3.
Simulation results show that this algorithm is, in fact, much faster than its worst-
case performance bound. Better simulation results are obtained by improving our
approximation algorithm using heusistics. Restricting the problem to the case of equal
task execution times, a linear-time algorithm is presented to find an optimal schedule.
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1 Introduction

Models for scheduling tasks on a parallel MIMD architecture have usually included a com-
munication cost associated with the sending of data between tasks which are located on
different processors. Early work on this problem used graph theoretic techniques such as
network flow and/or enumeration techniques [9, 18, 21]. Later work concentrated on ap-
proximation algorithms [1, 13, 16, 20]. Research then evolved to more restricted models
which allowed an infinite number of processors in the system. Polynomial algorithms were
found for the cases where the precedence constraints form a tree under certain constraints
[2, 3,4, 7, 17]. A good review of models and algorithms developed for this problem can be
found in [2, 6, 15, 19]. Most of this work was very theoretical in nature, i.e., the models
were too simplistic for practical application to real machines. More recently, Valiant’s BSP
Model [22, 23| provided a general framework with which to study more practical algorithms
in an asynchronous distributed memory parallel architecture. The LogP model [8] and the
QRQW model [12] attempted to further bridge the theoretical and practical models.

This paper uses a practical and realistic model based on Valiant’s asynchronous dis-
tributed memory architecture while taking into consideration the read/write contention of
the QRQW model, the latency/overhead time of the LogP model, and the pipe-lined mes-
sage sending cost which is proportional to the message size. The model can be used for
a loosely-coupled parallel architecture where communication times are small but still sig-
nificant. It is also general enough to represent a communication network of computers or
workstations each with its own memory and microprocessor. The growth of such networks
mandate more study into the efficient use of their parallel computing power. Unlike the
LogP and QRQW models in which specific algorithms are designed to match the model, our
model is general enough to be used for any algorithm which can be represented as a set of
tasks which communicate with each other and whose execution and communication costs
are known or can be estimated. An example where such an algorithm would be helpful is
a network of computers using PVM parallel software [11]. In today’s environment, PVM
program tasks are either scheduled by the programmer or, more often, they are arbitrarily
allocated to processors(also called processing elements or PE’s). The work of this paper is
designed to allow the compiler and/or operating system to perform such tasks.

Previously, on a simpler and more theoretical model where message sending time is
the only cost for communication, it has been shown that scheduling a two-level directed
precedence tree [5] and that scheduling a general directed precedence intree with task lengths
[14] are both NP-hard. These important results show that we must either put constraints
on the task set or develop approximation algorithms with good performance bounds. By
constraining our model so that the set of tasks form only a one-level directed precedence tree
and by allowing for communication costs for both the sending and receiving of messages,
we prove that task allocation on even this more practical model is still NP-hard. We then
proceed to develop an approximation algorithm for this case and to look at an even simpler
case which does lend itself to a polynomial solution.

The results are summarized in Table 1.

The paper is organized as follows. Section 2 defines the communication model used and
develops some basic properties of the model. Section 3 proves NP-hardness results by a series



Arbitrary task Equal task
execution times || execution times

directed approx. 3 optimal
one-level ratio (NP-hard)

task trees w/ | running O(n) O(n)

n + 1 tasks time + sorting

Table 1: Summary of NP-hardness proofs and algorithms presented in this paper.
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Figure 1: In (1), a directed out-tree is illustrated. In (2), a directed in-tree is illustrated.

of reductions from the knapsack problem. Section 4 considers algorithms for the case when
the precedence constraints form a directed one-level tree. We give a 3-OPT approximation
algorithm and an optimal liner-time algorithm for the special case of equal execution times
of all tasks other than the root task in the system. Section 5 shows that the algorithms
perform very close to optimal most of the time under simulated conditions. Conclusions
follow.

2 The Communication Model

Let J = {tg,t1,...,t,} be a set of tasks whose precedence constraints form a directed graph
PC(J). In a precedence graph for a set of tasks, the weight on a directed edge (u— v) which
points from u to v represents the communication time needed for u to send data to v if u
and v are allocated on different processors. The weight on each node represents its execution
time. In this model, we consider the case when all processors in the system are identical.
Thus a task has the same execution time on any processor(PE) in the system.

A directed graph G is a directed out-tree if there is a vertex w in GG such that there is
exactly one directed path from u to any other vertex. The vertex u is the root. Each vertex
in G having no outgoing edge is a leaf. A directed out-tree is a k-level tree if the length
of the path from the root to each leaf is k. By reversing the direction of all edges in a
directed out-tree, we obtain a directed in-tree. A directed tree is either a directed out-tree
or a directed in-tree. An example is illustrated in Figure 1.

Let e(t;) = e; and ¢(t;) = ¢; be the execution and communication time of the task ¢;, re-
spectively. For convenience, we define the difference of task t; to be d; = e¢; — ¢;. We schedule
J on uniform processors Py, Py, ..., P. with a system 1/O latency, L. Note that » < n. In
this model, task t; takes e; time to finish its computation and after its completion (might
not be immediately) transmits data to the processor on which task ¢; is allocated if there is
a precedence relation from ¢; to t;. Task ¢; cannot start executing unless it has received all
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Figure 2: Task ¢; is allocated to processor P, and ¢; is allocated to P;. During time z (z+e;),
t; is executed on P;. The sending time from ¢, to ¢; is ¢;. L, the system latency, is the units
of time from when P; starts to send data until P; starts to receive the data from F;, and the
receiving time is c;.

data from #;. We assume that the communication time is zero between two tasks allocated
to the same processor. If #; and ¢; are allocated to different processors, then the sending
time for #; is ¢; and the receiving time for ¢; is also ¢;. All data streams are transmitted in a
pipelined fashion, i.e., after ¢; starts sending, all data arrive at ¢; in ¢; + L units of time. If
a task needs to send or receive two data elements at the same time, the two I/O operations
must take place in sequence. An example of a timing diagram for executing tasks in this
model is shown in Figure 2.

Realization of a Scheduling A scheduling, S, for .J is an assignment of tasks to proces-
sors. A legal realization for S is the assignment of starting times for all tasks allocated to
each processor such that it satisfies the precedence constraints and the 1/0O latency require-
ment. Given a realization, let s(¢;) and f(¢;) be, respectively, the start and finish execution
times for ¢; on the processor to which it is allocated. Let s(¢;) and f(¢;) be the start and
finish times to send data to the processor t¢; is located on. The makespan of a processor
P; for a realization is the time at which the processor P; finishes all tasks allocated to it.
The makespan of a legal realization is the largest makespan among all processors. A legal
realization with the smallest makespan is a best realization. The makespan of a scheduling
S is the makespan of its best realization and is denoted as M (S). An optimal scheduling J
is a scheduling with the smallest possible makespan. For convenience, we assume that % is
allocated to F,. We now state a property which can be easily verified.

Lemma 2.1 Let J = {ty,t1,...,t,} be a set of tasks whose PC(J) forms a directed one-
level tree with the root to. When scheduling J on an unlimited number of identical processors,
there is an optimal scheduling where every processor, except the one on which ty is located,
15 allocated no more than one task. O

We next state a lemma with regard to properties of a best realization.

Lemma 2.2 Let J = {tg,t1,...,t,} be a set of n+ 1 tasks whose PC(J) forms a directed
one-level out-tree with the root ty and whose execution times of tasks other than ty satisfy the
conditione; > e;11, 1 <1 < n. Given a scheduling for J, lettg,t,,,...,1t be tasks allocated

) YUn—w



R
B
P,

Figure 3: The form of a best realization for the precedence graph (shown above) when tasks
to, t1, and t3 are assigned to Py and the rest of the tasks are each assigned to another
processor. Note that e; is the execution time for task ¢;. In this given set of task, L = 4,
co=3,c4=2,c5=2,e,=3,e9=4,e3 =3, e, =4, and e5 = 3. Since e4, > €9 > e5, this is
a best realization for the above task assignment according to Lemma 2.2.

to Py and let t,,, ty,, ..., t,, be tasks not allocated to Py. There exists a best realization for
the given scheduling with the following properties: (1) s(to) = 0; (2) u; < uiyr, 1 < i < w;
(3) s(cu,) = €0+ X0\ Cuy, for all 1 < i < w; (4) s(ty,) = €0+ 0y Cuy + X h—pp v, for all
1<i<n—w;(5)t, is allocated on P; with s(t,,) = s(cy,) + L + ¢y, 1 < i < w.
Proof: 1t is obviously true that any best realization executes ¢ty on Fy as soon as possible.
After finishing the computation of ¢y, executing other tasks allocated on P, before doing
communication for ¢y does not decrease the makespan. Thus we may assume that all optimal
realization makespans could execute ?,, on Py only after ¢, sends all of its data to other
processors. Let f;(R) be the finish time for #; in a realization R. Let R be an optimal
realization with some e,, < e,, ,. Let R’ be the revised realization by swapping the order
of sending data for ¢,, and ¢ The finish times for processors other than P; and P, are
the same in R and R’ and

Uit~

fu,(R) = flew ) +cu + L+ ey;

fuisr (R) = flew ) + cup + Cugy + L+ euy
fu(RY) = f(Cuy) + Cuyy + L+ €y

fui (R = f(Cu ) + Cuy + Cupy + L + ey,

Since e,, < ey,,,, thus fy,, (R) > fu.,(R'). It is always true that f,,  (R) > fu,(R'). Thus
the makespan for R’ is no worse than the makespan for R. By using this lemma, we can find
an optimal realization with the property that e,;, > e,, ,, for all 1 <17 < w. O

An example for a best realization of a scheduling as described in Lemma 2.2 is illustrated
in Figure 3.

The Symmetric Property In the following lemma, let r(G) be the resulting graph ob-
tained from a directed graph G by reversing the direction of each edge in G. The weights
on nodes and edges remain the same. Note that if G is a directed tree, then r(G) is also a
directed tree.

Lemma 2.3 Let J be a set of tasks whose PC(J) is a directed tree. Let J' be the same set
of tasks except that PC(J') = r(PC(J)). If there is a scheduling for J whose makespan is
M, then there exists a scheduling for J' whose makespan is also M.



Proof: Let S be a scheduling for .J with a realization whose makespan is M. Since .J and .J'
have the same set of tasks, S is also a scheduling for .J'. Let R be a realization for S on .J
with the makespan M. We construct the realization R' for S on J' whose makespan is also
M. Let fr(t;) be the finish time for task ¢; in R and let ag(t;) be the finish time for task
t; to receive its needed data in R if the task sending that data is allocated to a processor
that is different from the processor that t; is on. Then sp (t;) = M — fgr(t;) is the starting
execution time for task ¢; in R’ and sp/(¢;) = M — ag(t;) is the starting time for task ¢; to
transmit data in R'. The makespan of R’ is also M. 0 Intuitively, in the proof of
Lemma 2.3, we “reverse” the time arrow in R to derive R’

The Positive Difference Property Let J = {t,t,...,%,} be aset of tasks whose PC(.J)
is a directed tree rooted at ty. We will show that a task whose difference (i.e., the execution
time minus the communication time) is non-positive can be allocated on a processor with
its parent to have an optimal scheduling.

Lemma 2.4 Let S be a scheduling for a set of tasks whose PC(J) is a directed one-level
tree. By re-allocating all tasks with non-positive differences to Py, the resulting scheduling
has equal or better makespan than that of S.

Proof: By Lemma 2.3, we may assume that PC(.J) is a one-level directed out-tree. Once we
prove this case, the case when PC(.J) is a directed in-tree follows.

Let ¢, be a task with a non-positive difference which is allocated to a processor other
than F, in an optimal scheduling. The parent of ¢, is t, and %, is allocated on F,. By
re-allocating t,, on Py, the makespan for F is increased by d,,. Since d,, < 0, the makespan
on Py does not increase. On the other hand, the makespan for P;, 7 > 0, is also not increased.
Thus the new scheduling is also optimal. We can continue this process until all tasks with
non-positive differences satisfy the property specified in the lemma. O

3 NP-Hardness Results

A communication model where the sending time and 1/O latency are both zero is a simplified
model. A model that does not assume this is a reqular model. In this section, we prove that
the optimal scheduling problem for a set of tasks J is NP-hard in the regular model even
when PC(J) is a directed one-level tree. The proof of the NP-hardness result is done by
reducing the well-known knapsack problem to it. The proof is rather involved. We will also
show that the proof holds when extended to the simplified model where PC(.J) is a two-level
directed tree.

3.1 Problem Formulation

Definition 3.1 Let J = {to,t1,...,t,} be a set of tasks whose PC(.J) is a directed one-level
out-tree rooted at ;.

(1) The decision problem OPTS(J, e, ¢, L, M) is as follows: Given a positive integer M, is
there a scheduling for J whose makespan is less than or equal to M in a communication
model with I/O latency L?

(77) The decision problem K-OPTS(k, J, e, ¢, L, M) is as follows: Given positive integers k
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and M, is there a scheduling for J whose makespan is less than or equal to M using exactly &

processors with exactly one task allocated on each of the k —1 processors in a communication
model with I/O latency L?

Lemma 3.2 The OPTS(J, e, ¢, L, M) problem is equivalent to the following problem: Does
there exist an integer i that is at most n such that K-OPTS(i, J,e,c, L, M) has a “yes”
answer?

Lemma 3.3 The K-OPTS(k, J,e,c, L, M) problem can also be formulated as follows: Is
there an assignment of values to the set of binary variables {x1,...,x,} such that the fol-
lowing are satisfied?

in-dl > Zeﬂ—eg—M, and (1)
i—1 i—1
ij ¢i+(L+e) x; < M—ey, foralll<i<n (2)

Zrl = k-1 (3)

Proof: If t; is allocated on F,, then z; = 0. Otherwise, x; = 1. The overall finish time on F,
iseg+ >0 (1 — ;) e+ X" x;-¢;. This value must be less than or equal to M. This gives
the first equation. The overall finish time on P;, 0 < < wis eg + Y ;<; 25 - ¢; + (L + ¢;) - ;.
This value must be less than or equal to M. This gives the second equation. The third
equation is trivial. 0

3.2 OPTS(J,e,c, L, M) is NP-hard

We will prove that OPTS(J, e, ¢, L, M) is NP-hard even when PC(J) is a directed one-level
out-tree by a reduction from the knapsack problem.
We first prove that a particular instance of the knapsack problem is NP-hard.

Definition 3.4

(1) The decision version of the knapsack problem KNP (m,s,v, B,V) is as follows: Let M
be a list of m elements where the ith element has positive size s; and positive value v;, and
S;i +v; > Sip1 + iy, 1 <@ < m. Given two positive integers, B and V, is there a subset of
elements S C M such that > ;cgs; < B and > ;cqv; > V7

(1) The decision version of the knapsack problem with the cardinality constraint
K-KNP(k,m,s,v,B,V) is as follows: Let M be a list of m elements where the ith ele-
ment has positive size s; and positive value v;, and s; + v; > ;11 + v;11, 1 <1 < m. Given
three positive integers k, B and V, is there a subset of exactly k£ elements S C M such that
Yies si < Band Yicgv; > V7

It is well-known that KNP (m, s, v, B, V') is NP-hard [10]. This problem is easily solvable in
polynomial time if the values v; are all the same or the sizes s; are all the same. We now give
a lemma, which leads to a corollary stating that the knapsack problem with the cardinality
constraint is also NP-hard.



Lemma 3.5 Given positive values si,...,S,, U1,...,0,, B, V, and an integer k, let V =
max{V, > v} +1, s, =s;+q,vi=v;+V, B =B+k-q, and V' =V +k-V. Let m be
an integer such that m > k + 2. Then there exists a positive value q such that

(i) vl + s} 2v§+1+82+1, 1 <i<m

(i1) 2 - (v +s ) > " =V + 1+ (v] + ) and

(iii) 7N (sh+0l) > B + V! + 1.

Proof: Let ¢ = max{B+V + 1,0} +8 — 28, — v, +h}, where h = X" 10! — V' +1. It is
easy to see that ¢ > 0.

(i) Thus v} + si =v; + V+ 5, +q¢ > vipn +V+sip1 g =0, + 55,4

(i1) Note that ¢ > v] +s1 — 2+ s, — v, + h.

2- (U + ) = (h+vi+81) = 20, +2-(sm+q) —h—v1—s1—¢
= 20, +28,+q—h—uv — s

> v +2- 5,4+ (v +8s1 =28, —v,+h)—h—0v]—s
= 0

Thus2-(v;n+s’m)2h+v'1+sl "ol ) —V'+ 1+ (v +5).

(iii) Because k <m — 2, > st > Y™ Vs, + (k+1) - ¢. Note that B’ = B + k - g. Hence
szlls’ B'>ym s+ (k—i—l)q—(B-I—k q) > q— B. Since by definition ¢ > B+V + 1,
. 1s’>B'—|—V—|—1 This implies 27 (s} + ) > B' + V' + 1. 0

Corollary 3.6 The knapsack problem with the cardinality constraint is NP-hard.
Proof: We transform the knapsack problem KNP (m, s, v, B, V) into the following problem:
Given

e V=max{V,X" v} +1;

o V=V +Ek-V;

e g=max{B+V+ 1,0+ —2 55, —v +>" v -V +1},
e BB=B+k-q;

o si=5+¢, 1<i<m;

e vi=v;+V,1<i<m,

does there exist an integer i that is at most m and K-KNP (i, m, s',v', B', V') has a “yes”
answer? Lemma 3.5 shows that K-KNP (i, m, s',v', B', V') is a valid instance for the knap-
sack problem with the cardinality constraint. It is easy to see that these two problems are
equivalent. Thus the knapsack problem with the cardinality constraint is also NP-hard. 0O

Given an instance of the knapsack problem KNP (m, s, v, B, V), we know that we can ob-
tain an instance of the knapsack problem with the cardinality constraint
K-KNP(i,m, s',v', B', V'), i < m, as specified in the proof of Corollary 3.6.

Given an instance of K-KNP (k, m, s',v", B', V') as specified in the proof of Corollary 3.6,
we then construct the following instance of the optimal scheduling problem K-OPTS(k +
2,J,e,¢, L, M) with tasks to,t1,- - -, tn and whose PC(J) forms a directed one-level out-tree
rooted at #5. Let & = >7%_, e;, let C = Z 1 ¢4, and let D; = Z
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n=m+1;

e =&, ,— B -V

e di=v,=v,+V,1<i<n-—1,
e c=s=s5+q1<i<n-—1
e ¢, =C,_.1—1—L— B

e d,=D,_1+1-V"

ee, =&, .—L-—B -V

e M =C,+d,+e — 1;

Lemma 3.7 K-OPTS(k +2,J,e,¢, L, M) is a valid instance of the scheduling problem.

Proof: We need to verify that d,, > 0, e,, > 0, and L > 0.
(1) Note that v; >0, 1 <i<n-—-1,n>k+2and V > V.

dn = Dn,1+]_*vl
n—1

= O v)+(n-1)-V+1-V+£k-V
=1
> 0

(77) Note that e; = st + v. Thus e; > ey > -+ > e, 1. Since

€, = gnflfL*B’*V’
- gn,1 - (571,2 - B, - V’) - B’ - V’

= €p-1,

én < é,_1. By Lemma 3.5, 2-¢,_1 > D,_; — V'+ 1+ e;. Starting from this assumption, we
verify that ¢, =C,,_; — 1 — L — B' > ¢, —e¢,.

2-€,1>Dp 1 =V +1+¢
Cor+E1>2-E 40—V =2, 1 +1+4e
Co1+E1>2-E 00—V +14¢

Cot—1-2-B —V'4+& 1>2:E 5-2-B -2V —1+1+e
Co1—1-2-B" - V'+&, 1>2-L+e

Cot—1-L-—B>e¢ —(Exr—L—B — V"

anelien

te e

Thus ¢, > e, —e,_1 > 0.
(17i) By Lemma 3.5, £, o > B'+ V' + 1. This implies L > 0. 0
The following two lemmas shows that these two problems are equivalent.



Lemma 3.8 Ifx, = 0 in the solution vector for K-OPTS(k+2,J,e,c, L, M) as formulated
in Lemma 3.3, then we cannot answer “yes” to the above decision problem whose PC(.J) is
a directed one-level out-tree.
Proof: Assume that that z, = 0. Then > ,d; - z; = Z?;ll d; - xr; < D,_;. Equation 1
in Lemma 3.3 gives >.0' ,d; - z; > &, + ey — M. Note that M = C,, +d, + e, — 1. Thus
©,d;-x; > D, 1+ 1. Hence it is impossible to have z, = 0 if we want to have an “yes”
answer. 0 Lemma 3.8 states that in order for K-OPTS(k + 2, J, e, ¢, L, M) to have a “yes”
answer, t, must not be allocated on F,.
A solution for a K-KNP (k, m, s',v", B', V') problem can be formulated as finding a vector

< x1,...,%, >, such that z; = 1 if the ith item is selected in the knapsack.
Lemma 3.9 A solution vector < Ty,..., Ty, > for K-KNP(k,m,s' v, B', V') is equivalent
to a solution vector < Ty,...,T, 1,1 > as formulated in Lemma 3.3 for K-OPTS(k +

2,J,e,c, L, M) whose PC(J) is a directed one-level out-tree. if k < m — 2.

Proof: Note that m = n — 1. By Lemma 3.7, K-OPTS(k+2, J, e, ¢, L, M) is a valid instance
for a scheduling problem.

We divide our proof into two parts.
Part (i): We first verify a solution vector < Zj,...,Z, > for the scheduling problem
K-OPTS(k + 2,J,e,c,L,M) gives a solution vector <  Iy,...,%, > for
K-KNP(k,m,s' v, B',V'). That is, given < z;,...,%, > as formulated in Lemma 3.3,
we need to verify that > vl -2z; > V' and X", st -z, < B'.

=1 "1 i=1 7%

By Equation 1 in Lemma 3.3 and the fact that z,, = 1 (Lemma 3.8), we know that

vz = Ti:ldlq?z
3 i=1
> e+&,— M —d,
eo+E— (Cpnt+dy+ey—1)—d,
= D,—2-d,+1
= D,1—d,+1
= D, +V' -V'—d,+1
= V' +Dp1+1-V')—d,
-V

From Equation 2 in Lemma 3.3 (by setting i = n) and the fact that z,, = 1 (Lemma 3.8),

n—1
i i=1
M—-—e—L—e,—cp
(Ch+(en—cp)+e—1)—e—L—e, ¢,
== Cnfl—l—L—Cn
= C ,1—-1-L—-(C,1—1—-L—-B"
= B
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Part (ii):  We now verify that a solution vector < Zy,...,%, > for
K-KNP(k,m,s',v', B', V') gives a solution vector < Zi,...,Z, > for the scheduling prob-
lem K-OPTS(k + 2,J,e,¢,L, M). That is, given the fact that >, v - z; > V' and

mysk-x; < B', we must derive the three equations in Lemma 3.3.

n m
_ 12 _
i=1 i=1

V'+d,

>

= V'+D,1+1-V

= Dp1+1

= D,+1-4d,

= &, +e+1—-d,—C, —eg

= E.+te—(Cp+d,+e—1)

= & te— M
ici-fii—l-(L—l-en)-ﬁcn = is;-ﬁci+cn+L+en
=1 i=1

B'+c¢,+L+e,

= B'"+C,.1—-1-L—-B +L+e,
= Chiten—1+4+c,—cy

= Cp+d,—14ey— e

= M — ¢

In the following equations, ¢ is any integer less than n. Recall that e; > ¢; and ¢, =
Cn,l—l—L—B'Zel—en. Thus Cn+€n261.

n—1
ZCj'i‘j—i-(L—Fei)'i'i S ZCj'jj—FCn—i‘(L—Fen)
J<i Jj=1

n
= > ¢ zj+ (L+e,) Iy
j=1

< M*@O

Since T, =1 and »7", &; = k, thus > , =k + 1. 0

Theorem 3.10 The decision version of the OPTS(J, e, ¢, L, M) problem is NP-hard even
when PC(J) is a directed one-level out-tree.

Proof: By Corollary 3.6 and Lemma 3.9. 0

Corollary 3.11 The decision version of the OPTS(J, e, ¢, L, M) problem is NP-hard even
when PC(.J) is a directed one-level in-tree.

Proof: This corollary follows from Lemma 2.3 and Theorem 3.10. O
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Figure 4: A directed two-level out-tree (called a HARPOON graph in [5] ).

3.3 Other NP-Hard Instances

Definition 3.12

A directed graph G = (V, E) is a HARPOON graph of size n if the set of vertices V =
{U),Al, C. ;An;

By, ...,B,} and the set of edges F = {(w—4;) |1 <i<n}U{(A;—=B;) |1 <i<n},
where (u— v) denotes a directed edge pointed from vertex u to vertex v. The vertex w is
the root of G. Vertices in {A;,..., A,} are leading vertices and vertices in {By, ..., B,} are
tailing vertices.

Note that G is a directed two-level out-tree in the above definition. An example for a directed
two-level out-tree in illustrated in in Figure 4.

For discussion here, let J' = {w, Ay,..., A, By,..., B,} be a set of tasks whose PC(.J")
is a HARPOON graph with the root w, leading vertices {A;,..., A,}, and tailing vertices
{By,...,B,}. The root task is w. The communication time from w to any leading task
is large enough such that for any optimal scheduling all leading tasks are allocated on the
processor where the root task w is allocated.

We use the following notation for tasks in J':

e ¢1(w) is the execution time of task w;
e g1(A4;) is the execution time of task Aj;

A
e g1(B;) is the execution time of task B;;
A

e g5(A;) is the communication time needed to send data from task w to task A; if w and
A; are allocated on different processors;

e ¢o(B;) is the communication time needed to send data from task A; to task B; if A;
and B; are allocated on different processors.

Lemma 3.13 The decision version of the optimal scheduling problem OPTS(J', ¢1, 92,0, M)
is NP-hard in the simplified model with PC(J') being a two-level directed out-tree, where g
18 the function to map a task to its execution time and go is the function to map a task to
the amount of communication time needed to receive its data.

12



Proof: Let J = {tg,t1,...,t,} be a set of tasks to be scheduled in the regular model and
whose PC(.J) is a directed one-level out-tree. We will prove that if OPTS(.J', g1, g2, 0, M) is
solvable in polynomial time in the simplified model, then OPTS(.J, ¢, ¢, L, M) is also solvable
in polynomial time.

Given OPTS(J, e, ¢, L, M) in the regular model, we construct OPTS(.J’, g1, 92,0, M) in
the simplified model with the properties that g;(w) = eg, g1(4;) = ¢, ¢1(B;) = e; — ¢,
g2(A;) = ¢;, and ¢2(B;) = ¢; + L. A scheduling for OPTS(.J', g1, 92,0, M) in the simplified
model naturally corresponds to a scheduling for OPTS(.J, e, ¢, L, M) in the regular model.

By Theorem 3.10, OPTS(J,e,c, L, M) is NP-hard in the regular model. Hence
OPTS(J', ¢1,92,0, M) is also NP-hard in the simplified model. 0

Note that a result that is similar to the one stated in Lemma 3.13 on a model without
latency and 1/O contention is first described in [5] by a transformation from the knapsack
problem that is as complex as the one stated in this paper. By using our result in Section 3.2,
we can easily derive Lemma 3.13 on a model without latency, but enforcing I/O contention
rules.

Corollary 3.14 The  decision  wversion  of the  optimal  scheduling  problem
OPTS(J', ¢1,92,0, M) is NP-hard in the simplified model with PC(J') being a two-level
directed in-tree.

Proof: This is a corollary of Lemmas 2.3 and 3.13. O

4 Algorithms for Scheduling Directed One-Level Task
Trees

Given an NP-hard problem, two approaches present themselves: 1) try to approximate
the solution with a fast polynomial algorithm or 2) try to restrict the problem such that
an optimal polynomial solution can be found. In this section, we take both approaches.
Section 4.1 gives an approximation algorithm and Section 4.2 gives an optimal algorithm for
a restricted case.

Consider the case of scheduling a directed one-level task tree using an unlimited number
of processors. By Lemma 2.3, we need only consider task graphs that are directed one-level
out-trees. Let J = {tg,t1,...,t,} be a set of tasks whose PC(.J) is a directed one-level
out-tree rooted at ty. Let e; and ¢; be the execution and communication time of task t;,
respectively. Let L be the system I/O latency. We schedule .J on h identical processors
which are denoted as Py, Pi, ..., Py_1.

4.1 Scheduling with Arbitrary Task Execution Times

We describe below an approximation algorithm for scheduling directed one-level task out-
trees on an unlimited number of processors. This is an NP-hard scheduling problem by
Theorem 3.10

We use the following notation: E' =37, o, <. ¢;, and C" = 33, o, ... ¢;. Without loss of
generality, assume that ¢, is allocated on processor P,. We first give a lemma to help bound
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from below the value of OPT(J), the optimal makespan for J on an unlimited number of
identical processors.

Lemma 4.1 (i) An optimal scheduling for J is to schedule all tasks on Py if and only if for
all tasks t; with © > 0 and e; > ¢;, Yr 1 e; < ¢; + L+ e;. (it) If scheduling all tasks on Py
is not an optimal scheduling, then OPT(J) > eq + L. (iii) OPT(J) > eq + E' + C". (iv)
OPT(J) > e;, 0<i<n.

Proof: (i) The “only if” part of the proof is trivial since putting a task on another processor
in this case only increases the makespan. We now prove the “if” part.

Let S be an optimal scheduling with all tasks allocated to F,. Thus the makespan of S is
eo + 2., €;. Assume that there is a scheduling S’ with at least one task ¢, with 1 <w <n
and e, > ¢, such that 31" , e; > ¢,,+L+e,. We know that eg+>1" | e;—€,+¢y < g+, €
since e,, > ¢, and that e +c, + L +e, < ey + > ;- €; by our assumption. This implies that
M(S") < M(S) which is a contradiction since S was an optimal scheduling. The conclusion
follows.

(12) If scheduling all tasks on Py is not an optimal scheduling, then we must at least schedule
one task t;, 7 > 0, on processor P;. The makespan of P; is at least eg + ¢; + L + ¢;. Thus this
part of the lemma holds.

(731) By Lemma 2.4, we know that scheduling tasks with e; > ¢; on a processor other than P
does not improve the makespan. Thus all such tasks can be scheduled on Fy. The minimum
makespan on Py for any scheduling is at least equal to eg + E' + C".

(iv) This part is trivial. 0

Using Lemma 4.1, our simple 3-OP'T approximation algorithm to find a scheduling works
as follows.

Algorithm A /+ a scheduling on at most n + 1 processors. */
1. Check whether scheduling all tasks on F; is an optimal schedul-

ing(Lemma 4.1).
2. Otherwise, allocate a task ¢;, i # 0, with e; > ¢; to P; by itself, and the rest
of the tasks to Py;

Lemma 4.2 (i) Algorithm A runs in O(n) time. (ii) The makespan of the scheduling pro-
duced by Algorithm A is less than three times the optimal makespan.

Proof: Part (i) is trivial. We prove part (i7). Note that if the condition in Step 1 holds, then
Algorithm A finds an optimal scheduling by part (i) in Lemma 4.1. Thus we look at the
case where the condition in Step 1 fails. Let S be the scheduling produced in Step 2. The
makespan of Py in S is ¢y + E' + C" which is at most OPT(.J) by part (iii) in Lemma 4.1.
The makespan of P;, i > 0 and e; > ¢;, is less than or equal to ey + C" + L + ¢;. Therefore,
we note that ey + C" is no more than OPT(.J) by part (7i¢) in Lemma 4.1, L is less than
OPT(J) by part (i) in Lemma 4.1, and ¢; is also no more than OPT(.J) by part (iv) in
Lemma 4.1. Thus the makespan of any processor is less than 3 - OPT(J). a
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Figure 5: An optimal scheduling by allocating tasks t,, t5, and tg to processor F,. In this
given set of tasks, ¢y =1, s =2, 3 =cy, =c5=cs=3,¢;, =e=4,1 <1 <6, and L = 4.
Note that ¢; < ¢4, 1 <1 <6.

4.2 Scheduling with Equal Task Execution Times

In this section, we consider the problem of finding an optimal scheduling for directed one-
level task out-trees when the execution times of non-root tasks are restricted to be equal. We
show an algorithm for finding an optimal scheduling using an unlimited number of processors.

Assume that all execution times are the same, ie., ¢; =e; =€, 1 < 1,5 < n. In this
section, we assume without loss of generality that ¢; < ¢;51, 1 < ¢ < n. Note that the
difference d; equals e; — ¢;. We also assume for now that d; > 0, 1 < i < n.

Lemma 4.3 There is an integer p such that allocating ty, ty41,...,t, to processor Py and
allocating tasks t;, 1 <1 < p, to processors other than Py is an optimal scheduling for .J.

Proof: Let S be an optimal scheduling for J. By Lemma 2.2, a subset of tasks are allocated
to Py, while each of the remaining tasks is allocated to a processor by itself. Without loss
of generality, assume that task t; is allocated to P;, if ¢; is not allocated to Py,

If S is not formed by allocating tasks tg, 511, ...,%, on processor Py and allocating tasks
t;, 1 <1 <k, to processors other than Py, then there is a task ¢; allocated on P, and another
task ¢;, 7 > 4, which is not allocated on Fy. Let = be the smallest integer such that task ¢, is
allocated on F%. Let y be the smallest integer that is greater than x and #, is allocated on P, ,
where a, # 0. We construct another scheduling S’ by taking S and applying the following
task re-allocations: task 7, is re-allocated on processor P, and task #, is re-allocated on
processor Py. Let S’ be this resulting scheduling. By Lemma 2.2, Processor P first executes
to. Since the execution times of all non-root tasks are equal, P, can send out data to tasks not
allocating on Fy in arbitrary order. Thus we may assume that our algorithm uses increasing
order of task number for best realizations of S and S’. The makespan on P, in S’ is not
larger than the makespan on I for S since d, > 0 and d, < d,. The makespan of P, in S’
is less than the makespan of P, in S, since ¢, + L + e, < ¢, + L + e,. Thus the makespan
of S’ is no greater than the makespan of S. We can continue to apply this process until the
resulting schedule is of the form desired. 0

Note that a similar proof for a simpler and more theoretical model where message send-
ing time is the only cost for communication was given in [5]. An example for an optimal
scheduling specified in Lemma 4.3 is illustrated in Figure 5.
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Algorithm E /% Scheduling on n + 1 processors with e = --- =¢e, = e. */
1. if there is an r such that r > 0 and L+e = (n—r) - e,
then k = r; /x The makespan of P, = Makespan of P,. */

2. else

(@)if L+e>(n—1)-e,
then r = 0; /* Schedule all tasks on Py. x/

(b) else find an integer r such that L+e < (n—r)-e and L4+e > (n—r—1)-¢;
endif; /x Note that (n —r —1)=(n— (r +1) %/

/% eo+>1_; ¢;+(n—r)-eis the schedule makespan of allocating 1, ..., 1,

on P,, which derives LHS of the inequality in 2c. %/

/* ey + Zfill ¢i + L + e is the schedule makespan of allocating ..o, ... %,

on P,, which derives RHS of the inequality in 2c. */
(c)if(n—7r)-e<cy1+L+e,

then k£ = r;
(d) else k =r +1;
endif;
endif;

3. Allocate tasks tg, tgy1,...,t, on Py; Allocate task ¢;, 1 <14 <k, on Pj;

Theorem 4.4 The optimal solution to the directed one-level precedence tree scheduling prob-
lem can be found in linear time when the execution times of all non-root tasks are equal and
tasks are sorted according to their communication costs.

Proof: The algorithm is shown in Algorithm E. Let S;, be the scheduling formed by allocating
tasks tg, tgi1,---,tn on Py and allocating ¢; on P;; 1 <1 < k. Let T; be the makespan of
processor Py for S;. Then T; is a monotonically decreasing sequence, since d; > 0, 1 <1 < n.
Note that Ty > 0.

By Lemma 2.2 and the fact that e; = e; for all 7 and j, the makespan of processor F;
is greater than or equal to the makespan of P; in an optimal scheduling if both ¢ and j are
not allocated on Py and 7 > j. Let W; be the makespan among processors Py, ..., P, in the
scheduling S;. Then W; is a monotonically increasing sequence. Note that Wy = 0.

M; = max{T;, W;}. Let M* = min]_, M;. Thus either M* = M, where k is an integer
and T, = Wy or, if T; # W; for all i, then either M* = M, or M* = M,_; where r is an
integer with 7,y > W, ; and T,, < W,. d

If the input tasks are not previously sorted according to their communication times, then
an optimal algorithm takes O(n -logn) time.

5 Simulation Results

We have provided a practical and realistic model with algorithms and worst-case perfor-
mance bounds. We now attempt to provide some answers to questions such as: But how do
these algorithms perform on the average? How often do they actually reach that worst-case
scenario? Are they worthy of consideration for usage with existing computing resources?
Our experiments used randomly generated data for the communication (¢;) and execution
(e;) costs as well as the latency time, L. We specified the bounds of ¢; and e; to be uniformly
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Figure 6: Worst case found for 5000 random simulations for each number of tasks in Algo-
rithm A.

distributed between 0.1 and 10.0 and the latency to be uniformly distributed between 0.2
and 8.0. We also tried widely varying latency bounds to simulate processors which were
great distances from one another.

We first computed the optimal algorithm for a set of random data by using a brute force
algorithm. Because of time constraints produced by computing the optimal algorithm, we
only worked with sets of tasks less than twenty. After computing the optimal algorithm,
we simulated our algorithm on the set of tasks and then compared the results. For each
size of task set, we computed the optimal and approximation result for 5000 sets of random
data. We then compared our algorithm result against the optimal result. We found that
for greater than ten tasks, Algorithm A always performed at less than 1.2 times the optimal
(see Figure 6).

Recall that our worst-case performance bound was three times the optimal for the case
of using an unlimited number of processors. In practice, Algorithm A only found one set of
tasks where the worst case was greater than 2.0 in the 17 sets of 5,000 random simulations
each for numbers of tasks between three and nineteen. In fact, 90% of the approximation
schedules were identical to the optimal schedule when using ten or more tasks in a set (see
Figure 7).

By varying the L parameter widely, we came up with only slightly larger bounds for
small sets of tasks but they all followed the same pattern as did our specified parameter
range results.
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Figure 7: Percentage of Algorithm A and Algorithm A’ schedules identical to the optimal.

The average case using Algorithm A was even more gratifying, ranging between 1.0 and
1.08 times the optimal (see Figure 8).

During our experiments for Algorithm A, we found that small task sets can provide
uneven results. Placing only one task on the 'wrong’ processor to give a non-optimal solution
can make a large difference in the makespan when we are considering only a few tasks. For
example, in Figures 8 and 7, the performance curve for when the number of tasks is less than
five does not seem to conform to the general trend of data that we obtained. In examining
our schedules produced by Algorithm A, we discovered that it was often the case that only
one task was out of place to produce a non-optimal schedule. Using this knowledge, we
modified Algorithm A as follows.

Algorithm A’ /x Modification of Algorithm A. x/
Add the following after step 2 of Algorithm A:
3. Let the scheduling we have so far be R;
4. For each task t;, 1 < i < n, placed on P; in R do:
Modify R by placing ¢; on Py;
Let the makespan of the resulting scheduling be M;;
5. Compare makespans M;, 1 < ¢ < n, with the makespan of R and use

the schedule with the smallest makespan.

Algorithm A’ always gives a better solution than Algorithm A (see Figure 6). Algorithm
A" also gives "almost optimal’ results even for small task sets. (See Figure 8). Note that
adding this improvement to the algorithm does not change its linear time complexity. The
percentage of identical schedules is, of course, also much better when using Algorithm A’
(see Figure 7).

In summation, the average case simulation results are extremely close to optimal and
even looking at worst cases and varying parameters, we obtain excellent results.
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6 Concluding Remarks

A practical and realistic model is presented for allocating tasks in a parallel distributed
memory architecture. The model is designed to handle any algorithm for which task ex-
ecution and communication costs can be known or estimated in advance. Our proof of
NP-hardness when the precedence constraints form a directed one-level tree and the funda-
mental properties developed for this model together open the door for the design of good
approximation algorithms both for scheduling an unbounded number of available processors
and for scheduling a lesser fixed number of available processors in the system. We have
demonstrated the design of an approximation algorithm and a polynomial time algorithm
for one-level precedence trees. We have also demonstrated that the approximation algorithm
performs very close to optimal under simulated conditions. This is a starting point for finding
more tractable algorithms under less stringent conditions. Such work can eventually be used
by a compiler to allocate the tasks of a general algorithm to execute in parallel efficiently.
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