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1 IntroductionModels for scheduling tasks on a parallel MIMD architecture have usually included a com-munication cost associated with the sending of data between tasks which are located ondi�erent processors. Early work on this problem used graph theoretic techniques such asnetwork ow and/or enumeration techniques [9, 18, 21]. Later work concentrated on ap-proximation algorithms [1, 13, 16, 20]. Research then evolved to more restricted modelswhich allowed an in�nite number of processors in the system. Polynomial algorithms werefound for the cases where the precedence constraints form a tree under certain constraints[2, 3, 4, 7, 17]. A good review of models and algorithms developed for this problem can befound in [2, 6, 15, 19]. Most of this work was very theoretical in nature, i.e., the modelswere too simplistic for practical application to real machines. More recently, Valiant's BSPModel [22, 23] provided a general framework with which to study more practical algorithmsin an asynchronous distributed memory parallel architecture. The LogP model [8] and theQRQW model [12] attempted to further bridge the theoretical and practical models.This paper uses a practical and realistic model based on Valiant's asynchronous dis-tributed memory architecture while taking into consideration the read/write contention ofthe QRQW model, the latency/overhead time of the LogP model, and the pipe-lined mes-sage sending cost which is proportional to the message size. The model can be used fora loosely-coupled parallel architecture where communication times are small but still sig-ni�cant. It is also general enough to represent a communication network of computers orworkstations each with its own memory and microprocessor. The growth of such networksmandate more study into the e�cient use of their parallel computing power. Unlike theLogP and QRQW models in which speci�c algorithms are designed to match the model, ourmodel is general enough to be used for any algorithm which can be represented as a set oftasks which communicate with each other and whose execution and communication costsare known or can be estimated. An example where such an algorithm would be helpful isa network of computers using PVM parallel software [11]. In today's environment, PVMprogram tasks are either scheduled by the programmer or, more often, they are arbitrarilyallocated to processors(also called processing elements or PE's). The work of this paper isdesigned to allow the compiler and/or operating system to perform such tasks.Previously, on a simpler and more theoretical model where message sending time isthe only cost for communication, it has been shown that scheduling a two-level directedprecedence tree [5] and that scheduling a general directed precedence intree with task lengths[14] are both NP-hard. These important results show that we must either put constraintson the task set or develop approximation algorithms with good performance bounds. Byconstraining our model so that the set of tasks form only a one-level directed precedence treeand by allowing for communication costs for both the sending and receiving of messages,we prove that task allocation on even this more practical model is still NP-hard. We thenproceed to develop an approximation algorithm for this case and to look at an even simplercase which does lend itself to a polynomial solution.The results are summarized in Table 1.The paper is organized as follows. Section 2 de�nes the communication model used anddevelops some basic properties of the model. Section 3 proves NP-hardness results by a series2



Arbitrary task Equal taskexecution times execution timesdirected approx. 3 optimalone-level ratio (NP-hard)task trees w/ running O(n) O(n)n+ 1 tasks time + sortingTable 1: Summary of NP-hardness proofs and algorithms presented in this paper.
(1) (2)Figure 1: In (1), a directed out-tree is illustrated. In (2), a directed in-tree is illustrated.of reductions from the knapsack problem. Section 4 considers algorithms for the case whenthe precedence constraints form a directed one-level tree. We give a 3-OPT approximationalgorithm and an optimal liner-time algorithm for the special case of equal execution timesof all tasks other than the root task in the system. Section 5 shows that the algorithmsperform very close to optimal most of the time under simulated conditions. Conclusionsfollow.2 The Communication ModelLet J = ft0; t1; : : : ; tng be a set of tasks whose precedence constraints form a directed graphPC(J). In a precedence graph for a set of tasks, the weight on a directed edge (u!v) whichpoints from u to v represents the communication time needed for u to send data to v if uand v are allocated on di�erent processors. The weight on each node represents its executiontime. In this model, we consider the case when all processors in the system are identical.Thus a task has the same execution time on any processor(PE) in the system.A directed graph G is a directed out-tree if there is a vertex u in G such that there isexactly one directed path from u to any other vertex. The vertex u is the root . Each vertexin G having no outgoing edge is a leaf . A directed out-tree is a k-level tree if the lengthof the path from the root to each leaf is k. By reversing the direction of all edges in adirected out-tree, we obtain a directed in-tree. A directed tree is either a directed out-treeor a directed in-tree. An example is illustrated in Figure 1.Let e(ti) = ei and c(ti) = ci be the execution and communication time of the task ti, re-spectively. For convenience, we de�ne the di�erence of task ti to be di = ei�ci. We scheduleJ on uniform processors P0; P1; : : : ; Pr with a system I/O latency, L. Note that r � n. Inthis model, task ti takes ei time to �nish its computation and after its completion (mightnot be immediately) transmits data to the processor on which task tj is allocated if there isa precedence relation from ti to tj. Task tj cannot start executing unless it has received all3
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Figure 2: Task ti is allocated to processor Pi and tj is allocated to Pj. During time x{(x+ei),ti is executed on Pi. The sending time from ti to tj is ci. L, the system latency, is the unitsof time from when Pi starts to send data until Pj starts to receive the data from Pi, and thereceiving time is ci.data from ti. We assume that the communication time is zero between two tasks allocatedto the same processor. If ti and tj are allocated to di�erent processors, then the sendingtime for ti is ci and the receiving time for tj is also ci. All data streams are transmitted in apipelined fashion, i.e., after ti starts sending, all data arrive at tj in ci + L units of time. Ifa task needs to send or receive two data elements at the same time, the two I/O operationsmust take place in sequence. An example of a timing diagram for executing tasks in thismodel is shown in Figure 2.Realization of a Scheduling A scheduling, S, for J is an assignment of tasks to proces-sors. A legal realization for S is the assignment of starting times for all tasks allocated toeach processor such that it satis�es the precedence constraints and the I/O latency require-ment. Given a realization, let s(ti) and f(ti) be, respectively, the start and �nish executiontimes for ti on the processor to which it is allocated. Let s(ci) and f(ci) be the start and�nish times to send data to the processor ti is located on. The makespan of a processorPi for a realization is the time at which the processor Pi �nishes all tasks allocated to it.The makespan of a legal realization is the largest makespan among all processors. A legalrealization with the smallest makespan is a best realization. The makespan of a schedulingS is the makespan of its best realization and is denoted as M(S). An optimal scheduling Jis a scheduling with the smallest possible makespan. For convenience, we assume that t0 isallocated to P0. We now state a property which can be easily veri�ed.Lemma 2.1 Let J = ft0; t1; : : : ; tng be a set of tasks whose PC(J) forms a directed one-level tree with the root t0. When scheduling J on an unlimited number of identical processors,there is an optimal scheduling where every processor, except the one on which t0 is located,is allocated no more than one task.We next state a lemma with regard to properties of a best realization.Lemma 2.2 Let J = ft0; t1; : : : ; tng be a set of n + 1 tasks whose PC(J) forms a directedone-level out-tree with the root t0 and whose execution times of tasks other than t0 satisfy thecondition ei � ei+1, 1 � i < n. Given a scheduling for J, let t0; tv1 ; : : : ; tvn�w be tasks allocated4
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e5Figure 3: The form of a best realization for the precedence graph (shown above) when taskst0, t1, and t3 are assigned to P0 and the rest of the tasks are each assigned to anotherprocessor. Note that ei is the execution time for task ti. In this given set of task, L = 4,c2 = 3, c4 = 2, c5 = 2, e1 = 3, e2 = 4, e3 = 3, e4 = 4, and e5 = 3. Since e4 � e2 � e5, this isa best realization for the above task assignment according to Lemma 2.2.to P0 and let tu1 ; tu2; : : : ; tuw be tasks not allocated to P0. There exists a best realization forthe given scheduling with the following properties: (1) s(t0) = 0; (2) ui < ui+1, 1 � i < w;(3) s(cui) = e0 +Pi�1j=1 cuj , for all 1 � i � w; (4) s(tvi) = e0 +Pwj=1 cuj +Pi�1j=w+1 evj , for all1 � i � n� w; (5) tui is allocated on Pi with s(tui) = s(cui) + L + cui, 1 � i � w.Proof: It is obviously true that any best realization executes t0 on P0 as soon as possible.After �nishing the computation of t0, executing other tasks allocated on P0 before doingcommunication for t0 does not decrease the makespan. Thus we may assume that all optimalrealization makespans could execute tvi on P0 only after t0 sends all of its data to otherprocessors. Let fi(R) be the �nish time for ti in a realization R. Let R be an optimalrealization with some eui < eui+1. Let R0 be the revised realization by swapping the orderof sending data for tui and tui+1 . The �nish times for processors other than Pi and Pi+1 arethe same in R and R0 andfui(R) = f(cui�1) + cui + L + eui;fui+1(R) = f(cui�1) + cui + cui+1 + L+ eui+1 ;fui(R0) = f(cui�1) + cui+1 + L + eui+1;fui+1(R0) = f(cui�1) + cui + cui+1 + L+ eui :Since eui < eui+1, thus fui+1(R) > fui+1(R0). It is always true that fui+1(R) � fui(R0). Thusthe makespan for R0 is no worse than the makespan for R. By using this lemma, we can �ndan optimal realization with the property that eui � eui+1 , for all 1 � i < w.An example for a best realization of a scheduling as described in Lemma 2.2 is illustratedin Figure 3.The Symmetric Property In the following lemma, let r(G) be the resulting graph ob-tained from a directed graph G by reversing the direction of each edge in G. The weightson nodes and edges remain the same. Note that if G is a directed tree, then r(G) is also adirected tree.Lemma 2.3 Let J be a set of tasks whose PC(J) is a directed tree. Let J 0 be the same setof tasks except that PC(J 0) = r(PC(J)). If there is a scheduling for J whose makespan isM , then there exists a scheduling for J 0 whose makespan is also M .5



Proof: Let S be a scheduling for J with a realization whose makespan is M . Since J and J 0have the same set of tasks, S is also a scheduling for J 0. Let R be a realization for S on Jwith the makespan M . We construct the realization R0 for S on J 0 whose makespan is alsoM . Let fR(ti) be the �nish time for task ti in R and let aR(ti) be the �nish time for taskti to receive its needed data in R if the task sending that data is allocated to a processorthat is di�erent from the processor that ti is on. Then sR0(ti) = M � fR(ti) is the startingexecution time for task ti in R0 and sR0(ci) = M � aR(ti) is the starting time for task ti totransmit data in R0. The makespan of R0 is also M . Intuitively, in the proof ofLemma 2.3, we \reverse" the time arrow in R to derive R0.The Positive Di�erence Property Let J = ft0; t1; : : : ; tng be a set of tasks whose PC(J)is a directed tree rooted at t0. We will show that a task whose di�erence (i.e., the executiontime minus the communication time) is non-positive can be allocated on a processor withits parent to have an optimal scheduling.Lemma 2.4 Let S be a scheduling for a set of tasks whose PC(J) is a directed one-leveltree. By re-allocating all tasks with non-positive di�erences to P0, the resulting schedulinghas equal or better makespan than that of S.Proof: By Lemma 2.3, we may assume that PC(J) is a one-level directed out-tree. Once weprove this case, the case when PC(J) is a directed in-tree follows.Let tw be a task with a non-positive di�erence which is allocated to a processor otherthan P0 in an optimal scheduling. The parent of tw is t0 and t0 is allocated on P0. Byre-allocating tw on P0, the makespan for P0 is increased by dw. Since dw � 0, the makespanon P0 does not increase. On the other hand, the makespan for Pi, i > 0, is also not increased.Thus the new scheduling is also optimal. We can continue this process until all tasks withnon-positive di�erences satisfy the property speci�ed in the lemma.3 NP-Hardness ResultsA communication model where the sending time and I/O latency are both zero is a simpli�edmodel . A model that does not assume this is a regular model . In this section, we prove thatthe optimal scheduling problem for a set of tasks J is NP-hard in the regular model evenwhen PC(J) is a directed one-level tree. The proof of the NP-hardness result is done byreducing the well-known knapsack problem to it. The proof is rather involved. We will alsoshow that the proof holds when extended to the simpli�ed model where PC(J) is a two-leveldirected tree.3.1 Problem FormulationDe�nition 3.1 Let J = ft0; t1; : : : ; tng be a set of tasks whose PC(J) is a directed one-levelout-tree rooted at t0.(i) The decision problem OPTS(J; e; c; L;M) is as follows: Given a positive integer M , isthere a scheduling for J whose makespan is less than or equal to M in a communicationmodel with I/O latency L?(ii) The decision problem K-OPTS(k; J; e; c; L;M) is as follows: Given positive integers k6



andM , is there a scheduling for J whose makespan is less than or equal toM using exactly kprocessors with exactly one task allocated on each of the k�1 processors in a communicationmodel with I/O latency L?Lemma 3.2 The OPTS(J; e; c; L;M) problem is equivalent to the following problem: Doesthere exist an integer i that is at most n such that K-OPTS(i; J; e; c; L;M) has a \yes"answer?Lemma 3.3 The K-OPTS(k; J; e; c; L;M) problem can also be formulated as follows: Isthere an assignment of values to the set of binary variables fx1; : : : ; xng such that the fol-lowing are satis�ed? nXi=1 xi � di � nXi=1 ei + e0 �M; and (1)Xj�i xj � cj + (L+ ei) � xi � M � e0; for all 1 � i � n (2)nXi=1 xi = k � 1 (3)Proof: If ti is allocated on P0, then xi = 0. Otherwise, xi = 1. The overall �nish time on P0is e0+Pni=1(1� xi) � ei+Pni=1 xi � ci. This value must be less than or equal to M . This givesthe �rst equation. The overall �nish time on Pi, 0 < i � w is e0 +Pj�i xj � cj + (L+ ei) � xi.This value must be less than or equal to M . This gives the second equation. The thirdequation is trivial.3.2 OPTS(J; e; c; L;M) is NP-hardWe will prove that OPTS(J; e; c; L;M) is NP-hard even when PC(J) is a directed one-levelout-tree by a reduction from the knapsack problem.We �rst prove that a particular instance of the knapsack problem is NP-hard.De�nition 3.4(i) The decision version of the knapsack problem KNP(m; s; v; B; V ) is as follows: Let Mbe a list of m elements where the ith element has positive size si and positive value vi, andsi + vi � si+1 + vi+1, 1 � i < m. Given two positive integers, B and V , is there a subset ofelements S �M such that Pi2S si � B and Pi2S vi � V ?(ii) The decision version of the knapsack problem with the cardinality constraintK-KNP(k;m; s; v; B; V ) is as follows: Let M be a list of m elements where the ith ele-ment has positive size si and positive value vi, and si + vi � si+1 + vi+1, 1 � i < m. Giventhree positive integers k, B and V , is there a subset of exactly k elements S �M such thatPi2S si � B and Pi2S vi � V ?It is well-known that KNP(m; s; v; B; V ) is NP-hard [10]. This problem is easily solvable inpolynomial time if the values vi are all the same or the sizes si are all the same. We now givea lemma, which leads to a corollary stating that the knapsack problem with the cardinalityconstraint is also NP-hard. 7



Lemma 3.5 Given positive values s1; : : : ; sn, v1; : : : ; vn, B, V , and an integer k, let V =maxfV;Pmi=1 vig+ 1, s0i = si + q, v0i = vi + V, B0 = B + k � q, and V 0 = V + k � V. Let m bean integer such that m > k + 2. Then there exists a positive value q such that(i) v0i + s0i � v0i+1 + s0i+1, 1 � i < m,(ii) 2 � (v0m + s0m) � Pmi=1 v0i � V 0 + 1 + (v01 + s01) and(iii) Pm�1i=1 (s0i + v0i) � B0 + V 0 + 1.Proof: Let q = maxfB + V + 1; v01 + s1� 2 � sm� v0m + hg, where h = Pm�1i=1 v0i� V 0 + 1. It iseasy to see that q > 0.(i) Thus v0i + s0i = vi + V + si + q � vi+1 + V + si+1 + q = v0i+1 + s0i+1.(ii) Note that q � v01 + s1 � 2 � sm � v0m + h.2 � (v0m + s0m)� (h+ v01 + s01) = 2 � v0m + 2 � (sm + q)� h� v01 � s1 � q= 2 � v0m + 2 � sm + q � h� v01 � s1� v0m + 2 � sm + (v01 + s1 � 2 � sm � v0m + h)� h� v01 � s1= 0Thus 2 � (v0m + s0m) � h+ v01 + s01 = Pmi=1 v0i � V 0 + 1 + (v01 + s01).(iii) Because k < m� 2, Pm�1i=1 s0i > Pm�1i=1 si + (k + 1) � q. Note that B0 = B + k � q. HencePm�1i=1 s0i�B0 � Pm�1i=1 si+ (k+1)q� (B + k � q) � q�B. Since by de�nition q � B +V +1,Pm�1i=1 s0i � B0 + V + 1. This implies Pm�1i=1 (s0i + v0i) � B0 + V 0 + 1.Corollary 3.6 The knapsack problem with the cardinality constraint is NP-hard.Proof: We transform the knapsack problem KNP(m; s; v; B; V ) into the following problem:Given� V = maxfV;Pmi=1 vig+ 1;� V 0 = V + k � V;� q = maxfB + V + 1; v01 + s1 � 2 � sm � v0m +Pm�1i=1 v0i � V 0 + 1g,� B0 = B + k � q;� s0i = si + q, 1 � i � m;� v0i = vi + V, 1 � i � m,does there exist an integer i that is at most m and K-KNP(i;m; s0; v0; B0; V 0) has a \yes"answer? Lemma 3.5 shows that K-KNP(i;m; s0; v0; B0; V 0) is a valid instance for the knap-sack problem with the cardinality constraint. It is easy to see that these two problems areequivalent. Thus the knapsack problem with the cardinality constraint is also NP-hard.Given an instance of the knapsack problem KNP(m; s; v; B; V ), we know that we can ob-tain an instance of the knapsack problem with the cardinality constraintK-KNP(i;m; s0; v0; B0; V 0), i � m, as speci�ed in the proof of Corollary 3.6.Given an instance of K-KNP(k;m; s0; v0; B0; V 0) as speci�ed in the proof of Corollary 3.6,we then construct the following instance of the optimal scheduling problem K-OPTS(k +2; J; e; c; L;M) with tasks t0; t1; : : : ; tn and whose PC(J) forms a directed one-level out-treerooted at t0. Let Ei = Pij=1 ej, let Ci = Pij=1 cj, and let Di = Pij=1 dj.8



� n = m + 1;� L = En�2 � B0 � V 0;� di = v0i = vi + V, 1 � i � n� 1;� ci = s0i = si + q, 1 � i � n� 1;� cn = Cn�1 � 1� L� B0;� dn = Dn�1 + 1� V 0;� en = En�1 � L� B0 � V 0;� M = Cn + dn + e0 � 1;Lemma 3.7 K-OPTS(k + 2; J; e; c; L;M) is a valid instance of the scheduling problem.Proof: We need to verify that dn > 0, en � 0, and L � 0.(i) Note that vi � 0, 1 � i � n� 1, n � k + 2 and V � V .dn = Dn�1 + 1� V 0= (n�1Xi=1 vi) + (n� 1) � V + 1� V + k � V> 0(ii) Note that ei = s0i + v0i. Thus e1 � e2 � � � � � en�1. Sinceen = En�1 � L�B0 � V 0= En�1 � (En�2 � B0 � V 0)�B0 � V 0= en�1;en � en�1. By Lemma 3.5, 2 � en�1 � Dn�1� V 0 + 1+ e1. Starting from this assumption, weverify that cn = Cn�1 � 1� L� B0 � e1 � en.2 � en�1 � Dn�1 � V 0 + 1 + e1, Cn�1 + En�1 � 2 � En�1 � V 0 � 2 � en�1 + 1 + e1, Cn�1 + En�1 � 2 � En�2 � V 0 + 1 + e1, Cn�1 � 1� 2 �B0 � V 0 + En�1 � 2 � En�2 � 2 �B0 � 2 � V 0 � 1 + 1 + e1, Cn�1 � 1� 2 �B0 � V 0 + En�1 � 2 � L + e1, Cn�1 � 1� L�B0 � e1 � (En�1 � L�B0 � V 0), cn � e1 � enThus cn � e1 � en�1 � 0.(iii) By Lemma 3.5, En�2 � B0 + V 0 + 1. This implies L � 0.The following two lemmas shows that these two problems are equivalent.9



Lemma 3.8 If xn = 0 in the solution vector for K-OPTS(k+2; J; e; c; L;M) as formulatedin Lemma 3.3, then we cannot answer \yes" to the above decision problem whose PC(J) isa directed one-level out-tree.Proof: Assume that that xn = 0. Then Pni=1 di � xi = Pn�1i=1 di � xi � Dn�1. Equation 1in Lemma 3.3 gives Pni=1 di � xi � En + e0 �M . Note that M = Cn + dn + e0 � 1. ThusPni=1 di � xi � Dn�1 + 1. Hence it is impossible to have xn = 0 if we want to have an \yes"answer. Lemma 3.8 states that in order for K-OPTS(k + 2; J; e; c; L;M) to have a \yes"answer, tn must not be allocated on P0.A solution for aK-KNP(k;m; s0; v0; B0; V 0) problem can be formulated as �nding a vector< x1; : : : ; xm >, such that xi = 1 if the ith item is selected in the knapsack.Lemma 3.9 A solution vector < �x1; : : : ; �xm > for K-KNP(k;m; s0; v0; B0; V 0) is equivalentto a solution vector < �x1; : : : ; �xn�1; 1 > as formulated in Lemma 3.3 for K-OPTS(k +2; J; e; c; L;M) whose PC(J) is a directed one-level out-tree. if k < m� 2.Proof: Note that m = n�1. By Lemma 3.7, K-OPTS(k+2; J; e; c; L;M) is a valid instancefor a scheduling problem.We divide our proof into two parts.Part (i): We �rst verify a solution vector < �x1; : : : ; �xn > for the scheduling problemK-OPTS(k + 2; J; e; c; L;M) gives a solution vector < �x1; : : : ; �xm > forK-KNP(k;m; s0; v0; B0; V 0). That is, given < �x1; : : : ; �xn > as formulated in Lemma 3.3,we need to verify that Pmi=1 v0i � �xi � V 0 and Pmi=1 s0i � �xi � B0.By Equation 1 in Lemma 3.3 and the fact that �xn = 1 (Lemma 3.8), we know thatmXi=1 v0i � �xi = n�1Xi=1 di � �xi� e0 + En �M � dn= e0 + En � (Cn + dn + e0 � 1)� dn= Dn � 2 � dn + 1= Dn�1 � dn + 1= Dn�1 + V 0 � V 0 � dn + 1= V 0 + (Dn�1 + 1� V 0)� dn= V 0From Equation 2 in Lemma 3.3 (by setting i = n) and the fact that �xn = 1 (Lemma 3.8),mXi=1 s0i � �xi = n�1Xi=1 ci � �xi� M � e0 � L� en � cn= (Cn + (en � cn) + e0 � 1)� e0 � L� en � cn= Cn�1 � 1� L� cn= Cn�1 � 1� L� (Cn�1 � 1� L� B0)= B0 10



Part (ii): We now verify that a solution vector < �x1; : : : ; �xm > forK-KNP(k;m; s0; v0; B0; V 0) gives a solution vector < �x1; : : : ; �xn > for the scheduling prob-lem K-OPTS(k + 2; J; e; c; L;M). That is, given the fact that Pmi=1 v0i � �xi � V 0 andPmi=1 s0i � �xi � B0, we must derive the three equations in Lemma 3.3.nXi=1 di � �xi = mXi=1 v0i � �xi + dn� V 0 + dn= V 0 +Dn�1 + 1� V 0= Dn�1 + 1= Dn + 1� dn= En + e0 + 1� dn � Cn � e0= En + e0 � (Cn + dn + e0 � 1)= En + e0 �MnXi=1 ci � �xi + (L+ en) � �xn = mXi=1 s0i � �xi + cn + L+ en� B0 + cn + L + en= B0 + Cn�1 � 1� L� B0 + L+ en= Cn�1 + en � 1 + cn � cn= Cn + dn � 1 + e0 � e0= M � e0In the following equations, i is any integer less than n. Recall that e1 � ei and cn =Cn�1 � 1� L� B0 � e1 � en. Thus cn + en � e1.Xj�i cj � �xj + (L + ei) � �xi � n�1Xj=1 cj � �xj + cn + (L + en)= nXj=1 cj � �xj + (L+ en) � �xn� M � e0Since �xn = 1 and Pmi=1 �xi = k, thus Pni=1 = k + 1.Theorem 3.10 The decision version of the OPTS(J; e; c; L;M) problem is NP-hard evenwhen PC(J) is a directed one-level out-tree.Proof: By Corollary 3.6 and Lemma 3.9.Corollary 3.11 The decision version of the OPTS(J; e; c; L;M) problem is NP-hard evenwhen PC(J) is a directed one-level in-tree.Proof: This corollary follows from Lemma 2.3 and Theorem 3.10.11
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1Figure 4: A directed two-level out-tree (called a HARPOON graph in [5] ).3.3 Other NP-Hard InstancesDe�nition 3.12A directed graph G = (V;E) is a HARPOON graph of size n if the set of vertices V =fw;A1; : : : ; An;B1; : : : ; Bng and the set of edges E = f(w!Ai) j 1 � i � ng [ f(Ai!Bi) j 1 � i � ng,where (u! v) denotes a directed edge pointed from vertex u to vertex v. The vertex w isthe root of G. Vertices in fA1; : : : ; Ang are leading vertices and vertices in fB1; : : : ; Bng aretailing vertices.Note that G is a directed two-level out-tree in the above de�nition. An example for a directedtwo-level out-tree in illustrated in in Figure 4.For discussion here, let J 0 = fw;A1; : : : ; An; B1; : : : ; Bng be a set of tasks whose PC(J 0)is a HARPOON graph with the root w, leading vertices fA1; : : : ; Ang, and tailing verticesfB1; : : : ; Bng. The root task is w. The communication time from w to any leading taskis large enough such that for any optimal scheduling all leading tasks are allocated on theprocessor where the root task w is allocated.We use the following notation for tasks in J 0:� g1(w) is the execution time of task w;� g1(Ai) is the execution time of task Ai;� g1(Bi) is the execution time of task Bi;� g2(Ai) is the communication time needed to send data from task w to task Ai if w andAi are allocated on di�erent processors;� g2(Bi) is the communication time needed to send data from task Ai to task Bi if Aiand Bi are allocated on di�erent processors.Lemma 3.13 The decision version of the optimal scheduling problemOPTS(J 0; g1; g2; 0;M)is NP-hard in the simpli�ed model with PC(J 0) being a two-level directed out-tree, where g1is the function to map a task to its execution time and g2 is the function to map a task tothe amount of communication time needed to receive its data.
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Proof: Let J = ft0; t1; : : : ; tng be a set of tasks to be scheduled in the regular model andwhose PC(J) is a directed one-level out-tree. We will prove that if OPTS(J 0; g1; g2; 0;M) issolvable in polynomial time in the simpli�ed model, then OPTS(J; e; c; L;M) is also solvablein polynomial time.Given OPTS(J; e; c; L;M) in the regular model, we construct OPTS(J 0; g1; g2; 0;M) inthe simpli�ed model with the properties that g1(w) = e0, g1(Ai) = ci, g1(Bi) = ei � ci,g2(Ai) = ci, and g2(Bi) = ci + L. A scheduling for OPTS(J 0; g1; g2; 0;M) in the simpli�edmodel naturally corresponds to a scheduling for OPTS(J; e; c; L;M) in the regular model.By Theorem 3.10, OPTS(J; e; c; L;M) is NP-hard in the regular model. HenceOPTS(J 0; g1; g2; 0;M) is also NP-hard in the simpli�ed model.Note that a result that is similar to the one stated in Lemma 3.13 on a model withoutlatency and I/O contention is �rst described in [5] by a transformation from the knapsackproblem that is as complex as the one stated in this paper. By using our result in Section 3.2,we can easily derive Lemma 3.13 on a model without latency, but enforcing I/O contentionrules.Corollary 3.14 The decision version of the optimal scheduling problemOPTS(J 0; g1; g2; 0;M) is NP-hard in the simpli�ed model with PC(J 0) being a two-leveldirected in-tree.Proof: This is a corollary of Lemmas 2.3 and 3.13.4 Algorithms for Scheduling Directed One-Level TaskTreesGiven an NP-hard problem, two approaches present themselves: 1) try to approximatethe solution with a fast polynomial algorithm or 2) try to restrict the problem such thatan optimal polynomial solution can be found. In this section, we take both approaches.Section 4.1 gives an approximation algorithm and Section 4.2 gives an optimal algorithm fora restricted case.Consider the case of scheduling a directed one-level task tree using an unlimited numberof processors. By Lemma 2.3, we need only consider task graphs that are directed one-levelout-trees. Let J = ft0; t1; : : : ; tng be a set of tasks whose PC(J) is a directed one-levelout-tree rooted at t0. Let ei and ci be the execution and communication time of task ti,respectively. Let L be the system I/O latency. We schedule J on h identical processorswhich are denoted as P0; P1; : : : ; Ph�1.4.1 Scheduling with Arbitrary Task Execution TimesWe describe below an approximation algorithm for scheduling directed one-level task out-trees on an unlimited number of processors. This is an NP-hard scheduling problem byTheorem 3.10We use the following notation: E 0 = Pti3ei�ci ei, and C 00 = Pti3ei>ci ci. Without loss ofgenerality, assume that t0 is allocated on processor P0. We �rst give a lemma to help bound13



from below the value of OPT(J), the optimal makespan for J on an unlimited number ofidentical processors.Lemma 4.1 (i) An optimal scheduling for J is to schedule all tasks on P0 if and only if forall tasks ti with i > 0 and ei > ci, Pni=1 ei � ci + L + ei. (ii) If scheduling all tasks on P0is not an optimal scheduling, then OPT(J) > e0 + L. (iii) OPT(J) � e0 + E 0 + C 00. (iv)OPT(J) � ei, 0 � i � n.Proof: (i) The \only if" part of the proof is trivial since putting a task on another processorin this case only increases the makespan. We now prove the \if" part.Let S be an optimal scheduling with all tasks allocated to P0. Thus the makespan of S ise0 +Pni=1 ei. Assume that there is a scheduling S 0 with at least one task tw with 1 � w � nand ew > cw such thatPni=1 ei > cw+L+ew. We know that e0+Pni=1 ei�ew+cw < e0+Pni=1 eisince ew > cw and that e0+ cw+L+ ew < e0+Pni=1 ei by our assumption. This implies thatM(S 0) < M(S) which is a contradiction since S was an optimal scheduling. The conclusionfollows.(ii) If scheduling all tasks on P0 is not an optimal scheduling, then we must at least scheduleone task ti, i > 0, on processor Pi. The makespan of Pi is at least e0+ ci+L+ ei. Thus thispart of the lemma holds.(iii) By Lemma 2.4, we know that scheduling tasks with ei > ci on a processor other than P0does not improve the makespan. Thus all such tasks can be scheduled on P0. The minimummakespan on P0 for any scheduling is at least equal to e0 + E 0 + C 00.(iv) This part is trivial.Using Lemma 4.1, our simple 3-OPT approximation algorithm to �nd a scheduling worksas follows.Algorithm A =� a scheduling on at most n + 1 processors. �=1. Check whether scheduling all tasks on P0 is an optimal schedul-ing(Lemma 4.1).2. Otherwise, allocate a task ti, i 6= 0, with ei � ci to Pi by itself, and the restof the tasks to P0;Lemma 4.2 (i) Algorithm A runs in O(n) time. (ii) The makespan of the scheduling pro-duced by Algorithm A is less than three times the optimal makespan.Proof: Part (i) is trivial. We prove part (ii). Note that if the condition in Step 1 holds, thenAlgorithm A �nds an optimal scheduling by part (i) in Lemma 4.1. Thus we look at thecase where the condition in Step 1 fails. Let S be the scheduling produced in Step 2. Themakespan of P0 in S is e0 + E 0 + C 00 which is at most OPT(J) by part (iii) in Lemma 4.1.The makespan of Pi, i > 0 and ei > ci, is less than or equal to e0 + C 00 + L+ ei. Therefore,we note that e0 + C 00 is no more than OPT(J) by part (iii) in Lemma 4.1, L is less thanOPT(J) by part (ii) in Lemma 4.1, and ei is also no more than OPT(J) by part (iv) inLemma 4.1. Thus the makespan of any processor is less than 3 �OPT(J).
14
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c3Figure 5: An optimal scheduling by allocating tasks t0, t5, and t6 to processor P0. In thisgiven set of tasks, c1 = 1, c2 = 2, c3 = c4 = c5 = c6 = 3, ei = e = 4, 1 � i � 6, and L = 4.Note that ci � ci+1, 1 � i < 6.4.2 Scheduling with Equal Task Execution TimesIn this section, we consider the problem of �nding an optimal scheduling for directed one-level task out-trees when the execution times of non-root tasks are restricted to be equal. Weshow an algorithm for �nding an optimal scheduling using an unlimited number of processors.Assume that all execution times are the same, i.e., ei = ej = e; 1 � i; j � n. In thissection, we assume without loss of generality that ci � ci+1, 1 � i < n. Note that thedi�erence di equals ei � ci. We also assume for now that di > 0, 1 � i � n.Lemma 4.3 There is an integer p such that allocating t0, tp+1; : : : ; tn to processor P0 andallocating tasks ti, 1 � i � p, to processors other than P0 is an optimal scheduling for J.Proof: Let S be an optimal scheduling for J . By Lemma 2.2, a subset of tasks are allocatedto P0, while each of the remaining tasks is allocated to a processor by itself. Without lossof generality, assume that task ti is allocated to Pi, if ti is not allocated to P0,If S is not formed by allocating tasks t0, tk+1; : : : ; tn on processor P0 and allocating tasksti, 1 � i � k, to processors other than P0, then there is a task ti allocated on P0 and anothertask tj, j > i, which is not allocated on P0. Let x be the smallest integer such that task tx isallocated on P0. Let y be the smallest integer that is greater than x and ty is allocated on Pay ,where ay 6= 0. We construct another scheduling S 0 by taking S and applying the followingtask re-allocations: task tx is re-allocated on processor Pay and task ty is re-allocated onprocessor P0. Let S 0 be this resulting scheduling. By Lemma 2.2, Processor P0 �rst executest0. Since the execution times of all non-root tasks are equal, P0 can send out data to tasks notallocating on P0 in arbitrary order. Thus we may assume that our algorithm uses increasingorder of task number for best realizations of S and S 0. The makespan on P0 in S 0 is notlarger than the makespan on P0 for S since dx > 0 and dy � dx. The makespan of Pay in S 0is less than the makespan of Pay in S, since cx + L + ex � cy + L + ey. Thus the makespanof S 0 is no greater than the makespan of S. We can continue to apply this process until theresulting schedule is of the form desired.Note that a similar proof for a simpler and more theoretical model where message send-ing time is the only cost for communication was given in [5]. An example for an optimalscheduling speci�ed in Lemma 4.3 is illustrated in Figure 5.15



Algorithm E =� Scheduling on n+ 1 processors with e1 = � � � = en = e. �=1. if there is an r such that r > 0 and L+ e = (n� r) � e,then k = r; =� The makespan of Pr = Makespan of P0. �=2. else(a) if L + e > (n� 1) � e,then r = 0; =� Schedule all tasks on P0. �=(b) else �nd an integer r such that L+e < (n�r)�e and L+e > (n�r�1)�e;endif; =� Note that (n� r � 1) = (n� (r + 1) �==� e0+Pri=1 ci+(n�r)�e is the schedule makespan of allocating tr+1; : : : ; tnon P0, which derives LHS of the inequality in 2c. �==� e0 +Pr+1i=1 ci + L + e is the schedule makespan of allocating tr+2; : : : ; tnon P0, which derives RHS of the inequality in 2c. �=(c) if (n� r) � e � cr+1 + L+ e,then k = r;(d) else k = r + 1;endif;endif;3. Allocate tasks t0, tk+1; : : : ; tn on P0; Allocate task ti, 1 � i � k, on Pi;Theorem 4.4 The optimal solution to the directed one-level precedence tree scheduling prob-lem can be found in linear time when the execution times of all non-root tasks are equal andtasks are sorted according to their communication costs.Proof: The algorithm is shown in Algorithm E. Let Sk be the scheduling formed by allocatingtasks t0, tk+1; : : : ; tn on P0 and allocating ti on Pi, 1 � i � k. Let Ti be the makespan ofprocessor P0 for Si. Then Ti is a monotonically decreasing sequence, since di > 0, 1 � i � n.Note that T0 > 0.By Lemma 2.2 and the fact that ei = ej for all i and j, the makespan of processor Piis greater than or equal to the makespan of Pj in an optimal scheduling if both i and j arenot allocated on P0 and i > j. Let Wi be the makespan among processors P1; : : : ; Pn in thescheduling Si. Then Wi is a monotonically increasing sequence. Note that W0 = 0.Mi = maxfTi;Wig. Let M� = minni=1Mi. Thus either M� = Mk where k is an integerand Tk = Wk or, if Ti 6= Wi for all i, then either M� = Mr or M� = Mr�1 where r is aninteger with Tr�1 > Wr�1 and Tr < Wr.If the input tasks are not previously sorted according to their communication times, thenan optimal algorithm takes O(n � logn) time.5 Simulation ResultsWe have provided a practical and realistic model with algorithms and worst-case perfor-mance bounds. We now attempt to provide some answers to questions such as: But how dothese algorithms perform on the average? How often do they actually reach that worst-casescenario? Are they worthy of consideration for usage with existing computing resources?Our experiments used randomly generated data for the communication (ci) and execution(ei) costs as well as the latency time, L. We speci�ed the bounds of ci and ei to be uniformly16
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Figure 6: Worst case found for 5000 random simulations for each number of tasks in Algo-rithm A.distributed between 0.1 and 10.0 and the latency to be uniformly distributed between 0.2and 8.0. We also tried widely varying latency bounds to simulate processors which weregreat distances from one another.We �rst computed the optimal algorithm for a set of random data by using a brute forcealgorithm. Because of time constraints produced by computing the optimal algorithm, weonly worked with sets of tasks less than twenty. After computing the optimal algorithm,we simulated our algorithm on the set of tasks and then compared the results. For eachsize of task set, we computed the optimal and approximation result for 5000 sets of randomdata. We then compared our algorithm result against the optimal result. We found thatfor greater than ten tasks, Algorithm A always performed at less than 1.2 times the optimal(see Figure 6).Recall that our worst-case performance bound was three times the optimal for the caseof using an unlimited number of processors. In practice, Algorithm A only found one set oftasks where the worst case was greater than 2.0 in the 17 sets of 5,000 random simulationseach for numbers of tasks between three and nineteen. In fact, 90% of the approximationschedules were identical to the optimal schedule when using ten or more tasks in a set (seeFigure 7).By varying the L parameter widely, we came up with only slightly larger bounds forsmall sets of tasks but they all followed the same pattern as did our speci�ed parameterrange results. 17
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Figure 7: Percentage of Algorithm A and Algorithm A0 schedules identical to the optimal.The average case using Algorithm A was even more gratifying, ranging between 1.0 and1.08 times the optimal (see Figure 8).During our experiments for Algorithm A, we found that small task sets can provideuneven results. Placing only one task on the 'wrong' processor to give a non-optimal solutioncan make a large di�erence in the makespan when we are considering only a few tasks. Forexample, in Figures 8 and 7, the performance curve for when the number of tasks is less than�ve does not seem to conform to the general trend of data that we obtained. In examiningour schedules produced by Algorithm A, we discovered that it was often the case that onlyone task was out of place to produce a non-optimal schedule. Using this knowledge, wemodi�ed Algorithm A as follows.Algorithm A0 =� Modi�cation of Algorithm A. �=Add the following after step 2 of Algorithm A:3. Let the scheduling we have so far be R;4. For each task ti, 1 � i � n, placed on Pi in R do:Modify R by placing ti on P0;Let the makespan of the resulting scheduling be Mi;5. Compare makespans Mi, 1 � i � n, with the makespan of R and usethe schedule with the smallest makespan.Algorithm A0 always gives a better solution than Algorithm A (see Figure 6). AlgorithmA0 also gives 'almost optimal' results even for small task sets. (See Figure 8). Note thatadding this improvement to the algorithm does not change its linear time complexity. Thepercentage of identical schedules is, of course, also much better when using Algorithm A0(see Figure 7).In summation, the average case simulation results are extremely close to optimal andeven looking at worst cases and varying parameters, we obtain excellent results.18
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Figure 8: Average case for each 5000 trials for Algorithm A and Algorithm A0.6 Concluding RemarksA practical and realistic model is presented for allocating tasks in a parallel distributedmemory architecture. The model is designed to handle any algorithm for which task ex-ecution and communication costs can be known or estimated in advance. Our proof ofNP-hardness when the precedence constraints form a directed one-level tree and the funda-mental properties developed for this model together open the door for the design of goodapproximation algorithms both for scheduling an unbounded number of available processorsand for scheduling a lesser �xed number of available processors in the system. We havedemonstrated the design of an approximation algorithm and a polynomial time algorithmfor one-level precedence trees. We have also demonstrated that the approximation algorithmperforms very close to optimal under simulated conditions. This is a starting point for �ndingmore tractable algorithms under less stringent conditions. Such work can eventually be usedby a compiler to allocate the tasks of a general algorithm to execute in parallel e�ciently.
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