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Abstract

In the one-round Voronoi game, the first player chooses an n-point set W in a
square ), and then the second player places another n-point set B into (). The payoff
for the second player is the fraction of the area of () occupied by the regions of the
points of B in the Voronoi diagram of WU B. We give a strategy for the second player
that always guarantees him a payoff of at least % + a, for a constant a > 0 and every
large enough n. This contrasts with the one-dimensional situation, with @ = [0, 1],
where the first player can always win more than 1/2.

1 Introduction

Competitive facility location studies the placement of sites by competing market players.
Overviews of different models are the surveys by Friesz et al. [7], Eiselt and Laporte [3], and
Eiselt et al. [4].

The Voronoi game is a simple geometric model for competitive facility location, where
a site s “owns” the part of the playing arena that is closer to s than to any other site.
We consider a two-player version with a square arena (). The two players, White and
Black, place points into (). As in chess, White plays first. The goal of both players is
to capture as much of the area of () as possible, where the region captured by White is
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ROW,B) ={z € Q : dist(z, W) < dist(z, B)} and the region captured by Black is R(B, W).
Here W is the set of points of White, B is the set of points of Black, dist(-, -) is the Euclidean
distance and vol(-) is the Lebesgue measure. In other words, if we construct the Voronoi
diagram of W U B, then each player captures the Voronoi regions (restricted to @) of his
point set and is rewarded proportionate to the measure of his captured set. The payoff for
White is vol(R(W, B)) /vol(Q) and the payoff for Black is vol(R(B, W))/vol(Q). (Of course,
we can re-scale the board @ so that vol(Q) = 1, but in the subsequent considerations a
different scaling seems more intuitive.)

Ahn et al. [1] studied a one-dimensional Voronoi game, where the arena @ is a line
segment, and the game takes n rounds. In each round, White and Black place one point
each. Ahn et al. showed that Black then has a winning strategy that guarantees a payoff of
1/2 + ¢, with € > 0, but that White can force € to be as small as he wishes. On the other
hand, if only a single round is played, where White first places n points, followed by Black
placing n points, then White has a winning strategy. In fact, if @ = [0, 2n| and White plays
on the odd integer points {1,3,5,...,2n — 1}, then Black’s payoff is less than 1/2.

In this paper we show that in the two-dimensional case Black, rather than White, has a
winning strategy: For each set W of n points, there is a set B of n black points such that
Black’s payoff is at least 1/2 + a, for an absolute constant a > 0 and n large enough.

From now on, let @ be the square [0, /n]?, of area n, so that the average area per white
point is 1. To win the game, Black needs to find n points such that their average area is at
least 1/2 + a. We first show that it is very easy to find one such point—in fact, a random
point in @\ W has this property. Since this is the key idea of our proof, we first present it in a
modified setting where the arena @) has the topology of a torus, eliminating boundary effects.
We then proceed to prove this result for the square with its standard topology, showing how
to handle the square boundary, and proceed to prove the result for n black points. Finally,
we show that the result generalizes to higher dimensions as well.

2 The torus case

To present the (simple) main idea of our proofs in a setting free of technical complications
due to effects near the boundary of (), we assume in this section that the square ) has the
topology of a torus. To be precise, we identify the left and right edges of @), as well as the
top and bottom edges, an we alter the Euclidean metric in () accordingly.

Proposition 1 There exist constants 3 > 0 and ng such that for every n-point set YW in the
square arena Q with torus topology, n > ngy, there is a point x € Q \ W with vol(R(z, W)) >
L+ 8. In fact, x can be selected uniformly at random: E[vol(R(z, W))] > $ + 3, where E[]
denotes expectation with respect to uniform random selection of x € Q).

Proof: 1f there is a point p € @ such that dist(p, W) > y/n/4, then the proposition holds:
With a constant probability the point = will grab an (n) area. If n is large enough,! this
is more than, say, 1. In the following we can therefore assume that no such point p exists.

!This is the only restriction on n in this proof, and in fact the lemma remains correct if the assumption
n > ng is replaced by assuming that there is no empty disc of radius /n/4 in Q. When we start to take
boundary effects into account, we will have to assume n to be larger by several orders of magnitude.



Let 14 denote the characteristic function of a set A. We have

Blol(R@W)] = i [, [ T () dyde

_ i/@vol({x €Q:yeRxW)})dy

by Fubini’s theorem.
A point y € @ lies in R(z, W) if and only if dist(y, z) < r = dist(y, W), and so

{re@Q:yeRaW)}={recq@: dist(z,y) <r}.

Since r < /n/4, this is a disc of radius r centered at y (possibly wrapping around the edges
of Q).

Our integral thus becomes 7 [, dist(y, W)%dy, a quantity that we denote by Fy(W). We
split it into integrals over WW’s Voronoi cells:

T .
Fow) =730 [ disi(y,w)dy,

n wew

where cellyy(w) is the region of w in the Voronoi diagram of W in Q.

Among all convex bodies C' C R? of area a, the integral [ dist(y, w)? dy is minimized by
the disc Cp of area a centered at w (somewhat informally, moving a piece of C' closer to w
decreases the integral, and such a move is possible for any C' but that disc). Moreover, for
later use we note that if C'is a convex k-gon, then [, dist(y, w)* dy > (14-€x) [g, dist(y, w)* dy
with a suitable small € > 0. (A detailed alternative argument will be given in Section 5.)

The value of that integral over () is

\a/m 2
dist(y, w)* dy = / 2. omrdr = o
Co 0 27

Let us set a,, := vol(cellyy(w)). Then

T
ROV) = T / dist(y, w)? d
0( ) nwew Cellw(w) s <y w) Y
1 1 (Swewan) 1
> > an> o >
2n vy n n 2

by Cauchy-Schwarz.
So we see that for a random point z, the expected region size is at least %, but we want
1+ (. By the remark above, if cellyy(w) has at most k sides, then Jeeliyy (w) dist(y, w)? dy >

(1+eg) - % Let Wy C W consist of the points whose regions in the Voronoi diagram of W
have fewer than 12 sides. Since the average number of sides of a region in a planar Voronoi
diagram is below 6 (using planarity? of the dual graph, the Delaunay triangulation), we have
Wy| > in.

2Strictly speaking, we have embedded it on a torus—the claim remains, however, true.



Figure 1: At least 1/16 of the area of C'is not covered by B(w, 3 D).

So we win the factor 1 + 17 in at least half of the regions and lose nothing in the other
regions. The only problem is that the regions of W; could together occupy only a tiny
fraction of the area of () and then this win would not reach the threshold # > 0 that we
seek. But if they occupy, say, less than i of the total area then the average area of the
remaining regions (of W\ Wy) is at least 2 (at most in regions take up area at least 2n).
Then the Cauchy Schwarz inequality used in the calculation above becomes strict and we

win a constant factor in the regions of W\ W;. O

3 The proof with boundary effects

The torus arena conveniently removed the need to consider the boundary effects. We now
prove the same result for the square with boundary:

Proposition 2 There exist constants 3 > 0 and ng such that for every n-point set YW C Q,

n > ng, we have

Elvol(R(z, W))] > ; L8

Proof: As in the proof of Proposition 1, we can rewrite the expected area as
1
FOW) = n/Qvol({m €Q:ye Rz W) dy

- i/@vol(B(y,dist(y,W))ﬂQ) dy

1
= =% [ vol(B(y, dist(y.w)) N Q) dy.
cellyy (w)

n wew

where B(z,r) is the disc of radius r centered at z. We want to bound F'(W) from below by
3 +6.

Let us choose a large constant D (the requirements on D will become apparent later). We
call a region cellyy(w) long if it has diameter at least D and short otherwise, and we denote
by W, and W, the subsets of W corresponding to the long and short regions, respectively.

First we consider the long regions. We note that for any w,y € @,

vol(B(y, dist(y,w)) N Q) > L - dist(y, w)? (1)

1
2

(the extreme case is w and y in opposite corners of Q).



Now let w € W, and write C' = cellyy(w). We claim that at least 1= of the area of C lies
at distance at least 1D from w; in other words, vol(C'\ B(w, 1 D)) > 7ca,, (the constant can
be improved). Let p, ¢ be a diametrical pair of points of C, and place two copies C,, C, of
C'/4 inside C' so that they share a common tangent to C' at p and g, respectively, where C'/4
is the shape resulting from shrinking C' by a factor of 4. Clearly, the distance between C,
and C is D/2, and consequently, either C, or C, do not intersect B = B(w, iD). Thus, the
area of C' not covered by B is at least vol(C,) = vol(C,) = vol(C)/16. See Fig. 1.

It follows that

1 D?* 1 D?
1(B(y, dist(y, NQ)dy > = — - —ay > =——ay
/Ceuw(w> vol(Bly, dist(y, w)) N Q) dy = 5+ 7& - 750w > 5555¢
for every w € Wy, and so the contribution of the long regions to F'(W) is at least %Ag,

where Ay = 3 ,cp, Qu-

Next, we consider the short regions (of diameter at most D), and among those only the
inner ones, whose distance to the boundary of @) is at least D. Let W; be the corresponding
subset of W. We have Ay = 3" ,c,, w > n —8D+/n — A, For the short inner regions, the
disc B(y, dist(y,w)) lies completely inside @ and so their contribution to £ (W) behaves as
in the proof of Proposition 1; it equals

m
— dist(y, w)? dy.
Z /cellw(w) (y ) Y

n wWEWs;
As we saw above, this quantity is bounded below by

1 ) 1 A%
— E Uy = —

wEWs;

Now we distinguish several cases depending on the orders of magnitude of A, and |[Wg.

First suppose that A, > 75; then the contribution of A, alone suffices: F'(W) > %Ag >

ﬁ > %—l—ﬁ for D large enough. Next, let A, < 35, which for large n implies Ay; > (1— %)n

Now two cases are distinguished according to [Wy;|. For [W;| < (1 — 5)n, we obtain

1 A2 (1-1iy
F > st D
M=o Wal ~ 21— 5)

1

> _
- D

1
5 +
which is the desired bound.

Finally it remains to deal with the case A;; > (1 — L)n and [Wy| > (1 — $)n. If D
is very large, we are essentially in the situation analyzed in the proof of Proposition 1 and
practically the same argument shows that F(W) > % + [ in this case as well (using the fact
that % is much smaller than eq7). O

4 The main result

A key ingredient in the proof of our main theorem is the following lemma, showing that if
Black throws in dn points at random, instead of one as in Proposition 2, then his expected
area gain still exceeds %57@ at least by a fixed fraction, provided that ¢ > 0 is sufficiently
small.



Figure 2: Two points of Black can take over almost a complete cell of White.

Lemma 3 For every sufficiently large constant D, there exist constants 31 > 0, 6 > 0, and
ng such that for every n-point set W C Q, n > ng, if B C Q) is obtained by dn independent
random draws from the uniform distribution on Q, then E[vol(R(B,W))] > (5+0:1)on. If the
total area Ay of the long regions (of diameter at least D) exceeds 55, then E[vol(R(B,W))] >
26m.

Proof: This is very similar to the proof of Proposition 2. Intuitively, for small §, the on
independent random points are likely to interact very little and their expected area gain is
likely to be nearly (§ — O(6?))n times the expected area gain of a single point.

This time we have

mmwmmwnzlémmwemawn@.

Here P(y) = Prob [y € R(B,WV)] is the probability with respect to the random choice of the
set, B. Namely,

P(y) = Prob[BnN B(y,dist(y,W)) # ]
= 1— (Probz & B(y. dist(y, W))])™"

= 1- (1 — . vol(B(y, dist(y, W)) N Q))én.

Let us write p(y) = + - vol(B(y, dist(y, W)) N Q). If y lies in a short region of the Voronoi
diagram of W, then p(y) < C;TD with Cp depending only on D, and 6Cp can be made as
small as desired by choosing ¢ sufficiently small. Then we obtain P(y) =1 — (1 — p(y))°" >
dnp(y) + O((dnp(y))?) > dnp(y) - (1 — ) with v a small constant. Thus, the contribution
of a short Voronoi region to E[vol(R(B,W))] is at least (1 —7)dn times the contribution of
that region to the expected area gained by a single random point as in Proposition 2. All
the calculations involving short regions can be done in exactly the same way. It remains to
show that if the total area A, of the long regions is at least 57, then these regions contribute
at least 20n to E[vol(R(B,W))].

In the proof of Proposition 2, Eq. (1), we have shown p(y) > 5 - dist(y,w)? for y €
celly(w). We also know that dist(y,w) > 1D for y in at least 1 of the area of each long
region. For these y, we have P(y) > 1 —e™#W% > | — ¢=P%/200 > D (aqquming § < D).
The whole integral over all the long regions is then at least %Ag > 355 times this quantity
and therefore larger than 20n with ample room to spare. O

We can now prove our main theorem.



Theorem 4 There exist constants a > 0 and ny such that for every n > ng, Black can
always win at least % + a in the Voronoi game. That is, for every n-point set YW C Q) there

exists an n-point set B C Q \ W with vol(R(B,W)) > (3 + a)vol(Q).

Proof: Let w € W. A takeover of w’s region means that Black places two of his points
very close to w with w as the center of symmetry. See Fig. 2. In this way, he captures almost
all of cellyy(w). This suggests the following strategy for Black: A takeover of the %n largest
White regions guarantees Black a payoff arbitrarily close to %n This does not prove the
theorem, in general, but it fails to do so only if almost all of White’s regions have almost the
same area. Thus, if more than en White regions have area below 1 — ¢, for some constant
e > 0, then the takeover strategy implies the theorem. It therefore suffices to describe a
strategy® for Black when all but en of White’s regions have area at least 1 — .

First Black chooses a set By of dn points as in Lemma 3; that is, with vol(R(By, W)) >
(14 B1)dn and even with vol(R(By, W)) > 20n if Ay > 5.

If Ay > 55, then White now has n regions of total area Ay, < (1 —2d)n and Black still
has (1 — 6)n points to play. He takes over the (1 — &)n largest among the current regions
of White. In this way, Black has captured at least area arbitrarily close to

Aw

n— Ay +3(1—8)n -

=n—1(1+06)Ay > 3(1 +)n.

Next, we suppose that A, < 55. Let us consider a point w € W defining a short region
and call w contaminated if Black has captured some point of cellyy(w) by the set By. A short
region can be contaminated only by a point b € By if dist(b, w) < 2D. Therefore, the total
area of contaminated short regions is O(D?%dn) < %, say, and so regions of total area at least
5 remain uncontaminated. Now we use the assumption that all but en of White’s regions
have area at least 1 — . Black can now take over the %(1 — 0)n largest uncontaminated
regions. This implies that the number of uncontaminated regions of size > 1 — ¢ is at least
n/2 —en. Thus, Black can now occupy at least min(n/2 —en, (1 —48)n/2) > 3 (1 — §)n—en

cells, to gain total area at least
(34 B)on+ (31 =0)n—en)(1-c¢)
(34 B)on+3(1 =0 —2¢)(1 —e)n.

If € is very small compared to 0 and 1, then this is at least (% + a)n with a close to ;9.
This concludes the proof of the theorem. O

5 The higher-dimensional case

The proof of Proposition 1 (and therefore of Lemma 3) exploited the fact that the Voronoi
diagram is a planar graph, and therefore at least half of all Voronoi cells have at most
11 edges. In higher dimensions, though, the average number of facets of a Voronoi cell
cannot be bounded by any constant, and so we must argue differently in order to show that
the Voronoi cells cannot be all arbitrarily similar to a ball.

3A similar trick would also simplify the proof of Proposition 2 if we didn’t want to prove the claim about
a random point but only the existence of a point capturing at least % + .
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Figure 3: (a) If Voronoi cell C, is (1 + p)-spherical with center p, then the neighboring
sites must be in a spherical shell around p. (b) The sites of N(p) are densely spread in this
spherical shell, as there must be a site inside the intersection A between the spherical shell
and any cone of angular radius 4,/p.

Definition 5 A convex body C is (1 + p)-spherical with center p, for p > 0, if there exists
a radius r > 0 such that B(p,r) C C C B(p,r(1 + p)).

Lemma 6 If a convez body C' in R? is not (1+ p)-spherical with center p, for some p € R?
and p > 0, then

/Ccd -dist(y, p)*dy > (1 + B)L,
with

1 2
L= /Acd - dist(y, p)? dy = Yo (20) :

Here A is a ball of the same volume as C' centered at p, 8 > 0 is a constant that depends
only on g and d, and cg is the volume of the unit ball in R®.

Proof: Let A = B(p, R), where R = (vol(C)/cz)/¢. Then

R
L = /Acd - dist(y, p)? dy :/ (cgr®) - (cqdr®™t) dr
0
2 2
Ca poa _ VOI(C)
5 R* = 5

As for the other claim, let 7/, R’ be the largest (resp. smallest) radius so that B(p,r’) C
C' C B(p,R'). Since C is not (1 4+ p)-spherical with center p, it follows that there exists a
positive constant §; such that (14 ;)R < R'. In particular, this implies that there exists a
constant (s, such that vol(K) > Byvol(C'), where K = C'\ B(p, R(1 + 1/4)). Namely,

/Ccd ~dist(y,p)?dy > /A cqdist(y, p)? dy + /K Cq ((R (1+ 61/4))‘1 — Rd) dy
> (140) [ e dist(y.p)'dy = (1+ B)L.
where # > 0 is an appropriate constant that depends only on d and pu. O
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Lemma 7 Let Q be a hypercube in R?, and let P be a set of points in Q. Let V(P) denote
the decomposition of () into convex cells by the Voronoi diagram of P restricted to (). Then
there exists a constant p > 0, which depends only on d, such that the total volume of the cells
that are (1 4 p)-spherical with respect to their defining site in P is bounded by vol(Q)/2.

Proof: Consider a cell C}, of V(P) that is (1 + p)-spherical with center p. Let B(p,r) be
the largest ball with center p that is contained inside C,. Let N(p) be the set of points of P
whose Voronoi cells have a common boundary with C,,.

Observe that the distance of any point of N(p) to p is at least 2r and at most 2r(1 + pu).
Furthermore, any angular cone of angular angle 4,/i emanating from p must include a point
of N(p). Indeed, consider such a cone Z with a ray p as its rotational axis and angular
radius 4,/u1, where p emanates from p. Let s denote the intersection of p with the spherical
shell B(p, (14 p)r) \ B(p,r). Since one endpoint of s is outside C,, and the other is inside
C), it follows that there must be a point ¢ € P, so that the bisector of p and ¢ intersects s.
It is now straightforward to verify that ¢ is inside Z. See Figure 3.

This implies that N(p) is dense. Indeed, consider a point ¢ € N(p). Its nearest point in
N(p) is at distance at most 2r(1 + ) - 2 - 4,/p = O(r/iz). On the other hand, the Voronoi
cell C; of ¢ has a point on its boundary of distance > r from ¢ (as it shares a boundary
point u with C,, dist(u,p) > r, and dist(u, ¢) = dist(u, p)). (This also implies that C), is not
adjacent to the boundary of @.)

That is, Cy is not a 7-spherical, where v = Q(r/r\/n — 1) = Q(1/\/p). By making p
small enough, we can ensure that C, is not a (1 + u)-spherical with center g.

We have shown that every (1 + p)-spherical cell in V(P) is surrounded by cells that are
not (1 + p)-spherical. We will charge the volume of such a p-spherical cell to its surrounding
cells as follows. For a point p € P whose Voronoi cell is a (1 4 p)-spherical with center p, let
rp be the radius of the largest ball contained inside C), centered at p, and let U, = B(p, 1.87,)
be the region of influence of p. Clearly, U,N P = {p} and vol(U,) > (1.8/(1+ u))*vol(C,) >
2vol(C,), for p sufficiently small. By picking p small enough, we can also guarantee that the
regions of influence of the (1+ p)-spherical cells of V' (P) are disjoint. We charge the volume
of a (1 4 p)-spherical cell to its region of influence, establishing the claim. O

Plugging Lemmas 6 and 7 into the proof of Theorem 4 gives us the following result. The
straightforward details are omitted.

Theorem 8 There exist constants a > 0 and ny depending only on the dimension d, such
that for every n > ng, Black can always win at least % + a in the Voronoi game played on
arena @, the d-dimensional hypercube. That is, for every n-point set YW C @ there exists an
n-point set B C Q \ W with vol(R(B,W)) > (5 + a)vol(Q).

6 Conclusions and open problems

We considered the Voronoi game on a square or hypercube board @, played in a single round:
White starts by placing n points WV in @), then Black places another n points B disjoint from
W, and finally the winner is determined.

Our considerations appear to generalize without much change to sufficiently “fat” convex
arenas in the plane. On the other hand, when the arena degenerates to a line segment, we



have reached the one-dimensional case where White, not Black, has a winning strategy [1].
It would be interesting to understand the behavior of the game with a rectangular arena as
a function of the aspect ratio of the rectangle.

What happens when the number of points played by White and Black are not identical?
Specifically, let A be a real number between 0 and 2. Consider the game where White plays
n points and Black plays An points. Let f(A,n) be the payoff to Black in this Voronoi
game. It is not hard to show that f(0,n) = 0 and that lim, . f(2,n) = 1. We know
that f(A,n) > (3 + ¢)A for some positive ¢ and n large enough, as long as A is bounded
away from 0 and 2. It would be interesting to get a better idea of the behavior of f. Does
lim,, o, f(A, n) exist for all A?

We have shown that for any set of n white points, there is a black point that grabs a
“large” Voronoi cell. It would be interesting to find configurations of the white points for
which no black point can do too well. Obvious candidates are grid arrangements of the white
points, such as the square grid or hexagonal grid.

In fact, if we ask for a configuration of the white points that minimizes the payoff of a
random black point, it is known that the hexagonal grid is optimal if n is large enough. This
follows from a result on the two-dimensional quantizer problem. In the quantizer problem,
we want to quantize two-dimensional input values from a continuous domain (a ball B C R?,
say) using logn bits. This is done by choosing a discrete quantizer set P of n points in B, and
replacing the input value z € B by the closest point from P. Assuming uniform distribution
of the input values, the mean squared error of a quantizer P is

1
dist(z, p)* de,
vol(B) ED /Cell(p) (z.p)

where cell(p) is the Voronoi cell of p in the Voronoi diagram of P (see Conway and Sloane [2]).
Fejes Téth [5] (see also [6]) showed that if n is sufficiently large, then the error is minimized
by choosing P to be the hexagonal grid.
In the proof of Proposition 1, we showed that the expected payoff of a random black
point is .
T > / dist(z, w)? da,
cell(w)

n pEW
with the slight twist that here we assume torus topology. Assuming n is so large that we
can ignore the difference in topology, this is proportional to the quantization error of W,
and so Fejes T6th’s result implies that the optimal choice of W is the hexagonal grid. An
interesting open question is whether the hexagonal grid is also optimal if we consider the
maximum possible area that a black point can grab.

The original version of the Voronoi game [1] is played in more than one round: White
and Black alternate placing points on the board ). The value of this game and the optimal
strategies are still unknown for dimension higher than one. If the arena @ is symmetric, but
the symmetry has no fixed point in (), then Black can respond to each move of White with
a point placed in the symmetric location. This guarantees a payoff of 1/2. Many obvious
questions remain open: Can Black actually win the game for large n? What happens with
asymmetric boards?

Finally, it seems that using a sliding grid argument one can derandomize the strategy of
the Black player in the one-round Voronoi game investigated in this paper.

10



References

1]

H. Ahn, S. Cheng, O. Cheong, M. Golin, and R. van Oostrum. Competitive facility
location along a highway. In 7th Annual International Computing and Combinatorics
Conference, volume 2108 of LNCS, pages 237-246, 2001.

J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Springer-
Verlag, New York, NY, 2nd edition, 1993.

H. Eiselt and G. Laporte. Competitive spatial models. Furopean Journal of Operational
Research, 39:231 242, 1989.

H. Eiselt, G. Laporte, and J.-F. Thisse. Competitive location models: A framework and
bibliography. Transportation Science, 27:44 54, 1993.

G. Fejes Téth. Sur la représentation d'une population infinie par une nombre fini
d’elements. Acta Math. Acad. Sci. Hungaricae, 10:299-304, 1959.

L. Fejes Toth. Lagerungen in der Ebene, auf der Kugel und im Raum. Springer-Verlag,
Berlin, West Germany, 2nd edition, 1972.

R. Tobin, T. Friesz, and T. Miller. Existence theory for spatially competitive network
facility location models. Annals of Operations Research, 18:267-276, 1989.

11



