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Abstract

The goal of the Tsimmis Project is to develop tools that
facilitate the rapid integration of heterogeneous information
sources that may include both structured and unstructured
data. This paper gives an overview of the project, describ-
ing components that extract properties from unstructured
objects, that translate information into a common object
model, that combine information from several sources, that
allow browsing of information, and that manage constraints
across heterogeneous sites. Tsimmis is a joint project be-
tween Stanford and the IBM Almaden Research Center.

1 Overview

A common problem facing many organizations today
is that of multiple, disparate information sources and
repositories, including databases, object stores, knowl-
edge bases, file systems, digital libraries, information
retrieval systems, and electronic mail systems. Decision
makers often need information from multiple sources,
but are unable to get and fuse the required information
in a timely fashion due to the difficulties of accessing the
different systems, and due to the fact that the informa-
tion obtained can be inconsistent and contradictory.
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The goal of the TSIMMIS! project is to provide
tools for accessing, in an integrated fashion, multiple
information sources, and to ensure that the information
obtained is consistent. Numerous other recent projects
have similar goals, of course. Before describing the
differences between Tsimmis and other data integration
projects, let us give an overview of the Tsimmis
architecture, describing the functions of the various
components and the philosophy of our approach. Refer
to Figure 1.

1.1 Translators and Common Model

Figure 1 shows a collection of (disk-shaped) heteroge-
neous information sources. Above each source is a trans-
lator (or wrapper) that logically converts the underlying
data objects to a common information model. To do
this logical translation, the translator converts queries
over information in the common model into requests
that the source can execute, and it converts the data
returned by the source into the common model.

For the Tsimmis project we have adopted a simple
self-describing (or tagged) object model. Similar models
have been in use for years; we call our version the Object
Ezchange Model, or OEM. OEM allows simple nesting of
objects, and a complete specification is given in Section
2. The fundamental idea is that all objects, and their
subobjects, have labels that describe their meaning. For
example, the following object represents a Fahrenheit
temperature of 80 degrees:

(temp-in-Fahrenheit, int, 80)

where the string “temp-in-Fahrenheit” is a human-
readable label, “int” indicates an integer value, and “80”
is the value itself. If we wish to represent a complex
object, then each component of the object has its own
label. For example, an object representing a set of two
temperatures may look like:

1As an acronym, TSIMMIS stands for “The Stanford-IBM
Manager of Multiple Information Sources.” In addition, Tsimmis
is a Yiddish word for a stew with “heterogeneous” fruits and
vegetables integrated into a surprisingly tasty whole.
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Figure 1: Tsimmis Architecture

(set-of-temps, set, {emp1, cmpa})
cmpy: (temp-in-Fahrenheit, int, 80)
cmpy: (temp-in-Celsius, int, 20)

OEM is very simple, while providing the expressive
power and flexibility needed for integrating information
from disparate sources. We also have developed a
query language, OEM-QL, for requesting OEM objects.
OEM-QL is an SQL-like language extended to deal with
labels and object nesting; see Section 2.

1.2 Mediators

Above the translators in Figure 1 lie the mediators. A
mediator is a system that refines in some way informa-
tion from one or more sources [31]. A mediator em-
beds the knowledge that is necessary for processing a
specific type of information. For example, a mediator
for “current events” might know that relevant informa-
tion sources are the AP Newswire and the New York
Times database. When the mediator receives a query,
say for articles on “Bosnia,” it will know to forward the
query to those sources. The mediator may also pro-
cess answers before forwarding them to the user, say
by converting dates to a common format, or by elim-
inating articles that duplicate information. While the
task of converting dates is probably straightforward, the
task of eliminating duplicate information could be very

complex,—figuring out that two articles written by dif-
ferent authors say “the same thing” requires real intelli-
gence. In Tsimmis we are focusing on relatively simple
mediators based on patterns or rules. Still, even simple
mediators can perform very useful information process-
ing and merging tasks.

Implementing a mediator can be complicated and
time-consuming, but we believe that much of the cod-
ing involved in mediators can be automated. Hence,
one important goal of the Tsimmis project is to au-
tomatically or semi-automatically generate mediators
from high level descriptions of the information process-
ing they need to do. This is illustrated by the mediator
generator box on the right side of Figure 1. Similarly, we
provide a translator generator that can generate OEM
translators based on a description of the conversions
that need to take place for queries received and results
returned. This component, also illustrated in Figure 1,
significantly facilitates the task of implementing a new
translator.

1.3 System and User Interfaces

Mediators export an interface to their clients that is
identical to that of translators. Both translators and
mediators take as input OEM-QL queries and return
OEM objects. Hence, end users and mediators can



obtain their information either from translators and/or
other mediators. This approach allows new sources to
become useful as soon as a translator is supplied, it
allows mediators to access new sources transparently,
and it allows mediators to be “stacked,” performing
more and more processing and refinement of the relevant
information.

End users (top of Figure 1) can access information ei-
ther by writing applications that request OEM objects,
or by using one of the generic browsing tools we have
developed. Our most recent browsing tool provides ac-
cess through Mosaic or other World- Wide- Web viewers
[4,29]. The user writes a query on an interactive world-
wide-web page, or selects a query from a menu. The
answer is received as a hypertext document. The root
of this document shows one or more levels of the answer
object, with hypertext links available to take the user
to portions of the answer that did not appear on the
root document. This tool provides a mechanism for ex-
ploring heterogeneous information sources that is easy
to interact with and that is based on a commonly used
interface. The browser is described in more detail in
Section 3.

1.4 Labels and Mediator Processing

It is important to note that there is no global database
schema, and that mediators can work independently.
For instance, to build a mediator it is only necessary
to understand the sources that the mediator will use.
In fact, it is not even necessary to fully understand the
sources used. For example, returning to our “current
events” mediator, suppose one source exports objects
with subobjects labeled by title, date, author, and
country. The mediator might always pass the author
and country subobjects to its client with no additional
processing. Now suppose a second source provides topic
and date subobjects. The mediator might convert the
dates from both sources into a common format, and it
will know how to convert a mediator query about the
subject of an article into the appropriate topic or title
queries to be sent to the sources.

When a mediator simply passes subobjects to its
clients (as in author and country above), it might
append the source name to the labels so that the client
can interpret the objects correctly. For example, a
mediator subobject might have label NYTimes.author,
indicating that this author is from the New York Times
source and follows its conventions for authors. Another
object might have the label AP.author. (Of course, the
mediator could also make the formats consistent and
export subobjects with label author, but here we are
lllustrating a simple mediator that does not do such
processing.)

The key points are that a mediator does not need to

understand all of the data it handles, and no person or
software component needs to have a global view of all
the information handled by the system.

1.5 Constraint Management

Another important component in the Tsimmis archi-
tecture is constraint management, illustrated in Fig-
ure 1 by a Constreint Manager and two Local Con-
straint Managers. Integrity constraints specify seman-
tic conmsistency requirements over stored information;
such constraints arise even when the information resides
in loosely coupled, heterogeneous systems. For exam-
ple, a construction company keeps data about a build-
ing under construction. This data must be consistent
with the architect’s design (e.g., walls must be in the
same places), which may be stored in an entirely differ-
ent system. Constraint management in the distributed,
heterogeneous environments addressed by Tsimmis is
a much more difficult and complex problem than con-
straint management in centralized systems: Transac-
tions across multiple information sources usually are not
provided, and each information source may support dif-
ferent capabilities for accessing and monitoring the data
involved in a constraint.

In current environments, constraints across heteroge-
neous information sources usually are monitored or en-
forced by humans, in an ad-hoc fashion (or, frequently,
not checked at all). For example, an architect may freeze
the building design and send the latest specifications to
the construction company so that consistency is “guar-
anteed.” Of course, it is clear that these ad-hoc mech-
anisms do not work well in general; in our example, it
is likely that the building may eventually not meet its
specifications.

Since in a loosely coupled environment it is generally
not possible to guarantee that every user or applica-
tion sees consistent data every time it interacts with
the system, the Tsimmis constraint manager enforces
constraints with weaker guarantees than what a cen-
tralized system may provide. Tsimmis makes “relaxed”
guarantees, e.g., a constraint is true from 8am to 5pm
every day, or a constraint is true if some “Flag” is set.
Ensuring relaxed consistency is especially challenging
because one now has to deal with the timing of actions
and of guarantees. However, the advantages of being
able to handle relaxed guarantees in heterogeneous sys-
tems are significant; knowing precisely what holds and
what does not hold, and when, will clearly lead to more
trustworthy systems.

The Tsimmis constraint manager supports the defi-
nition of the interfaces that a source supports for the
information involved in a constraint (e.g., can a trig-
ger be set on a data item?), specification of the desired
constraint (e.g., two items should have the same value),



and specification of the strategy that is to be followed
for enforcing the constraint or for detecting violations.
The Local Constraint Managers in Figure 1 are respon-
sible for describing and supporting interfaces, while the
Constraint Manager processes constraints and executes
strategies. Note that the Constraint Manager actually is
not centralized as illustrated in Figure 1, but rather is a
set of distributed components that jointly manage con-
straints. Constraint management is described in more
detail in Section 4.

1.6 Classification and Extraction

The final component of the Tsimmis architecture con-
sists of the Classifier/Eztractors shown at the bottom
of Figure 1. Many important information sources are
completely unstructured, consisting of plain files or in-
coming bit strings (e.g., from a newswire). Often it
is possible to automatically classify the objects in such
sources (e.g., is the file an email message, a text file,
or a gif image?), and to extract key properties (e.g.,
creation date, author). The Classifier/Extractor per-
forms this task, based on identifying simple patterns in
the objects. The information collected by the Classi-
fier/Extractor can then be exported (via a translator, if
necessary) to the rest of the Tsimmis system, together
with the raw data. The Classifier/Extractor component
is based on the Rufus system developed at the IBM Al-
maden Research Center [25] and is not discussed further
in this paper.

1.7 Related Work

There are a number of differences between integration
of information sources in the Tsimmis project and other
database integration efforts (e.g. [2,13,18,28] and many
others):

e Tsimmis focuses on providing integrated access to
very diverse and dynamic information. The infor-
mation may be unstructured or semi-structured, of-
ten having no regular schema to describe it. The
components of objects may vary in unpredictable
ways (e.g., some pictures may be color, others black
and white, others missing, some with captions and
some without). Furthermore, the available sources,
their contents, and the meaning of their contents
may change frequently.

e Tsimmis assumes that information access and in-
tegration are intertwined. In a traditional integra-
tion scenario, there are two phases: an integration
phase where data models and schemas (or parts
thereof) are merged, and an access phase where data
is fetched. In our environment, it may not be clear
how information is merged until samples are viewed,

and the integration strategy may change if certain
unexpected data is encountered.

e Integration in our environment requires more human
participation. In the extreme case, integration is
performed manually by the end user. For example,
a stock broker may read a report saying that IBM
has named a new CEO, then retrieve recent IBM
stock prices from a database to deduce that stock
prices will rise. In other cases, integration may
be automated by a mediator, but only after a
human studies samples of the data, determines the
procedure to follow, and develops an appropriate
specification for the mediator generator.

In summary, the Tsimmis goal is not to perform
fully automated information integration that hides
all diversity from the user, but rather to provide a
framework and tools to assist humans (end users and/or
humans programming integration software) in their
information processing and integration activities.
Regarding the constraint management aspects, there
has been substantial prior work on database constraints,
focusing on centralized databases (e.g., [14]), tightly-
coupled homogeneous distributed databases (e.g., [12,
26]), or loosely-coupled heterogeneous databases with
special constraint enforcement capabilities (e.g., [8,24]).
The multidatabase transaction approach weakens the
traditional notion of correctness of schedules (e.g., [5,
10]), but this approach cannot handle a situation in
which different databases support different capabilities.
In its modeling of time, our work has some similarity
to work in temporal databases [27] and temporal logic
programming [1], although our approach is closer to the
event-based specification language in RAPIDE [19].

1.8 Remainder of Paper

In the rest of this paper we provide additional details
on some of the Tsimmis components. In Section 2 we
describe the OEM object model and its query language.
In Section 3 we present the Tsimmis/Mosaic object
browser. In Section 4 we outline the main components
of the constraint management toolkit. In Section 5 we
conclude, describe the status of the Tsimmis prototype,
and discuss future directions of our work.

2 Object Exchange

As described in Section 1.1, our Object Exchange
Model (OEM) is used as the unifying object model for
information processed by Tsimmis components. Note
that information need not actually be stored using
OEM, rather OEM is used for the processing of logical
queries, and for providing results to the user.

Each object in OEM has the following structure:



| Label | Type | Value | Object-I1D |

where the four fields are:

e Label: A variable-length character string describing
what the object represents. For each label a
translator or mediator exports, it should provide a
“help” page that describes (to a human) the meaning
and use of the label. These help pages can be very
useful during exploration of information sources, and
for deciding how to integrate information.

e Type: The data type of the object’s value. Each
type is either an atom (or basic) type (such as
integer, string, real number, etc.), or the type set or
list. The possible atom types are not fixed and may
vary from information source to information source.

e Value: A variable-length value for the object.

e Object-ID: A unique? variable-length identifier for
the object or A (for null). The use of this field is
described below.

In denoting an object on paper, we often drop the
Object-ID field, i.e. we write (label,type,value), as in
the examples in Section 1.1.

Suppose an object representing an employee has
label employee and a set value. The set consists of
three subobjects, a name, an office, and a photo. All
four objects are exported by an information source 1.5
through a translator, and they are being examined by
a client C. The only way C can retrieve the employee
object is by posing a query that returns the object as
an answer.

Assume for the moment that the employee object is
fetched into C’s memory along with its three subobjects.
The value field of the employee object will be a set of
object references, say {o1,03,03}. Reference o; will be
the memory location for the name subobject, o2 for the
office, and o3 for the photo. Thus, on the client side,
the retrieved object will look like:

(employee, set, {o1, 02, 03})
o1: location of (name, str, “some name”)
o02: location of (office, str, “some office”)
o3: location of (photo, bitmap, “some bits”)

On the information source side, the employee object
may map to a real object of the same structure, or
it may be an “llusion” created by the translator from

2We assume that identifiers are unique for each information
source. Uniqueness across information sources can be achieved
by, e.g., prepending each object identifier with a unique ID for
the information source.

other information. If IS is an object database, and the
employee object is stored as four objects with object
identifiers idy (employee), id; (name), ¢d; (office), and
tds (photo), then the retrieved object on the client side
would have idgp in the Object-ID field for the employee
object, id; in the Object-ID field for the name object,
and so on. The non-null Object-ID fields tell client C
that the objects it has correspond to identifiable objects
at 1.S. Suppose instead that IS is a relational database,
and that the employee “object” is actually a tuple.
Then, the name, office, and photo objects (attributes
of the tuple) will not have object identifiers, and their
Object-ID fields at the client side will be A (null).

So far we have assumed that the client retrieves the
employee object and all of its subobjects. However, for
performance reasons, the translator may prefer not to
copy all subobjects. For example, if the photo subobject
is a large bitmap with a unique identifier, it may be
preferable to retrieve the name and office subobjects
in their entirety, but retrieve only a “placeholder” for
the photo object. In this case, the value field for the
employee object at the client will contain {o;, 02, ¢d3}.
This indicates that the name and office subobjects can
be found at memory locations o; and oz, but the photo
subobject must be explicitly retrieved using ids.

Note that, regardless of the representation used in set
and list values, the translator always gives the client the
illusion of an object repository. Thus, we can think of
our employee object as:

(employee, set, {cmp1, cmpz, emps})
cmpy: (name, str, “some name”)
cmpy: (office, str, “some office”)
cmps: (photo, bits, “some bits”)

where each cmp; is some mnemonic identifier for the
subobject. We use this generic notation for examples
throughout the remainder of this section.

As mentioned in Section 1, self-describing models
have been used in many systems, including file systems
[30], Lotus Notes [20], by Teknekron Software Systems
[21], and for electronic mail. In many of these systems,
nesting of objects is not allowed, so OEM can be viewed
as a generalization of these models. OEM is simpler
than conventional object models, but it does support
the two key features required by object models [6]:
object nesting and object identity.

Our primary reason for choosing a very simple model
is to facilitate integration. As pointed out in [3],
simple data models have an advantage over complex
models when used for integration, since the operations
to transform and merge data will be correspondingly
simpler. Meanwhile, a simple model can still be very
powerful: advanced features can be “emulated” when
they are necessary. For example, if we wish to model



an employee class with subclasses active and retired, we
can add a subobject to each employee object with label
subclass and value “active” or “retired.” Of course this
is not identical to having classes and subclasses, since
OEM does not force objects to conform to the rules for
a class. While some may view this as a weakness of
OEM, we view it as an advantage, since it lets us cope
with the heterogeneity we expect to find in real-world
information sources.?

2.1 Query Language and Examples

To request OEM objects from an information source, a
client issues queries in a language we refer to as OFM-
QL. OEM-QL adapts existing SQL-like languages for
object-oriented models (e.g., [15, 16,17, 23]) to OEM.
Here we will give two examples to illustrate the “flavor”
of OEM-QL; additional details and examples can be
found in [22].

For the examples, suppose that we are accessing a
bibliographic information source called Biblio with the
object structure shown in Figure 2. (Note that we are
using mnemonic object references.) Although much of
this object structure is regular—components have the
same labels and types—there are some irregularities.
For example, the call number format is different for each
document shown, and the n*® document uses a different
structure for author information.

Example 2.1 Our first example retrieves the topic of
each document for which “Ullman” is one of the authors:

SELECT bib.doc.topic
FROM Biblio
WHERE bib.doc.authors.author-1n = "Ullman"

Intuitively, the query’s WHERE clause finds all paths
through the subobject structure with the sequence of
labels [bib, doc, authors, author-1n] such that the
object at the end of the path has value “Ullman.” For
each such path, the SELECT clause specifies that one
component of the answer object is the object obtained
by traversing the same path, except ending with label
topic instead of labels [authors, author-1n]. Hence,
for the portion of the object structure shown in Figure
2 the query returns:

{(answer, set, {o1, 02})
o1: {topic, str, “Databases”)
oz: {topic, str, “Algorithms”) O

3Note that some proposed interchange standards, e.g.
CORBA’s Object Request Broker [11], tend to be significantly
more complex than OEM. We expect that if such standards are
adopted, OEM could be used to provide a simpler, more “client-
friendly” front end. Other proposed standards, such as ODMG’s
Object Database Standard [7], are directed towards interoperabil-
ity and portability of object-oriented database systems, rather
than towards facilitating object exchange in highly heterogeneous
environments.

(bib, set, {doc1, docs, ..., docy})
doci: {doc, set, {aui, top1, cni})
au;: (authors, set, {aui})
au;: (author-In, str, “Ullman”)
topy: {topic, str, “Databases”)
cny: (local-call#, integer, 25)
docy: {doc, set, {auz, topz, cnz})
auz: (authors, set, {au}, au,aul})
auy: {author-In, str, “Aho”)
au}: (author-In, str, “Hopcroft”)
au}: (author-In, str, “Ullman”)
topz: (topic, str, “Algorithms”)
cng: {dewey-decimal, str, “BR273")

docy: {doc, set, {aun, topn, cng})
auy: {one-author, str, “Michael Crichton”)
topn: (topic, str, “Dinosaurs”)
cng: {fiction-call#, int, 95)

Figure 2: Object structure for example queries

Example 2.2 Our next example illustrates how vari-
ables are used to specify different paths with the same
label sequence. This query retrieves each document for
which both “Aho” and “Hopcroft” are authors:

SELECT bib.doc
FROM Biblio
WHERE bib.doc.authors.author-1n(al) = "Aho"
AND bib.doc.authors.author-1n(a2) = "Hopcroft"

Here, the query’s WHERE clause finds all paths through
the subobject structure with the sequence of labels [bib,
doc, authors], and with two distinct path completions
with label author-1n and with values “Aho” and
“Hopcroft” respectively. The answer object contains
one doc component for each such path. Hence, for the
portion of the object structure shown in Figure 2 the
query returns:

{(answer, set, {o})
o: {doc, set, {auz, tops, cnz})

auz: (authors, set, {auy, au,aul})
auy: {author-In, str, “Aho”)
au}: (author-In, str, “Hopcroft”)
au}: (author-In, str, “Ullman”)

topz: (topic, str, “Algorithms”)

cng: {dewey-decimal, str, “BR273") O

2.2 Implementation

We have argued that OEM and its query language are
designed to facilitate integrated access to heterogeneous
data sources. To support this claim we have used the
OEM model and language to integrate a variety of bibli-
ographic information sources, including a conventional



library retrieval system, a relational database holding
structured bibliographic records, and a file system with
unstructured bibliographic entries. Using our OEM-
based system, these sources are accessible through the
Tsimmis browser (Section 3), allowing evaluation of
queries and object exploration.

As an example, consider one of our operational trans-
lators that accesses the Stanford University Folio Sys-
tem. Folio provides access to over 40 repositories, in-
cluding a catalog of the holdings of Stanford’s libraries,
and several commercial sources such as INSPEC that
contain entries for Computer Science and other pub-
lished articles. Folio is the most difficult of our infor-
mation sources, partly because the translator must em-
ulate an interactive terminal. The translator initially
must establish a connection with Folio, giving the nec-
essary account and access information. When the trans-
lator receives an OEM-QL query to evaluate, it converts
the query into Folio’s Boolean retrieval language. Then
it extracts the relevant information from the incoming
screens and exports the information as an OEM answer
object. The Folio translator is written in C and runs
as a server process on Unix BSD4.3 systems. Trans-
lators for the other bibliographic sources have involved
substantially less coding because the underlying sources
(e.g., a relational database) are much easier to use.

We also have implemented mediators that fuse in-
formation from multiple bibliographic sources. For ex-
ample, one mediator provides a simple “union” of the
sources, making the information appear as if it all comes
from one source. Another mediator performs a “join”
of two sources, combining entries that refer to the same
document into a single entry that contains all informa-
tion on the document available from either source.

Finally, we also have implemented OEM Support Li-
braries to facilitate the creation of future translators,
mediators, and end-user interfaces. These libraries con-
tain procedures that implement the exchange of OEM
objects between a server (either a translator or a medi-
ator) and a client (either a mediator, an application, or
an interactive end-user). The Support Libraries handle
all TCP/IP communications, transmission of large ob-
jects, timeouts, and many other practical issues. A Unix
BSD4.3 and a Windows version of the package have been
implemented and demonstrated. The Support Libraries
are described in [22].

3 Object Browsing

The goal of the object browsing component of Tsimmis
is to provide a platform-independent tool for displaying
and exploring the OEM objects that are returned as a
result of OEM-QL queries. Due to the nested structure
of OEM objects, it is necessary to provide mechanisms
that let end users navigate easily through the answer

space, much like they would navigate through a tree
structure. We have implemented MOBIE (MOsaic
Based Information Explorer), a graphical browsing
tool based on Mosaic and the World-Wide-Web [4,
29] for submitting Tsimmis queries and exploring the
results. MOBIE lets end users connect to mediators
or translators and specify queries using OEM-QL. An
important advantage of using Mosaic as the basis for
our user interface is its widespread use and popularity.
(Mosaic currently operates on Unix workstations, on
Macintosh computers, and on many PC’s.) Hence,
ultimately anyone on the internet should be able to use
Tsimmis and MOBIE to explore any information source
on the net, provided there is an appropriate translator
or mediator available for it.

We illustrate MOBIE’s operation by walking through
a particular interaction. The first step in accessing
information through MOBIE is to select a translator or
mediator (henceforth referred to as TM) and connect to
it. Figure 3 shows of MOBIE’s home page* with a list
of currently available TMs. The user may select any of
the TMs on the list, enter its name in the provided box,
and click on the Connect button. (Information shown
below the CONNECT button is used to “fine-tune” the
communication between the source and the client, and
can generally be left in its default configuration.)

After the connection is established, a Query Request
page (not shown) is displayed and the system is ready
to accept an OEM-QL query. In the current version of
MOBIE, queries must be entered by hand, meaning that
the user must fill in the boxes provided on the screen
(one box for the SELECT clause, one for the FROM
clause, and one for the WHERE clause). However,
future extensions will include the ability to select
parameterized “frequently asked queries” by clicking on
menus.

If a submitted query is valid and successfully executed
by the TM, the answer object is returned to MOBIE
and displayed on a Query Result page. Except for
very small objects, to see the complete result the
user will move through the structure of the answer
object using MOBIE’s navigational capabilities. This
is best understood by thinking of the answer object
as a tree (or a graph, in the most general case),
where the atom objects are the leaves, and the set
objects are the internal nodes. Initially, only the root
of the answer object and its immediate subobjects
are displayed on the Query Result page (not shown).
For our bibliographic data, the root is typically a set
containing a set of documents (labelled doc). The
user can move from the current level in the object
structure to a lower level by clicking on the FETCH

4 Mosaic displays information through a series of text screens
or pages, the first of which is always called the home page.
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Figure 3: MOBIE’s home page

[®] NC=EA Mosaic: Dlocument
] e TIPS Mavigale Arrrrofate el

IDocument Title:l l Fetch Resuwlt I

IDocument URL:I
% |

Fetch Result

htte: A fweww—db . stanford . eduscgi—-binstsimmissdemo s sirc

doc is a SET (# of slements=11)

Content{s):

Fetch JTITLE ("Selected database research at Stanford. ")

Fetch [AUTHOR ("Keller. & ; Rathmarn, P.; Ullman., J.;: Wiederhold. .. ."J
Fetch [PUBLICATION ("SIGMOD Record (Dec. 1990) wol.19. no.<4. p. 119-22. .. ")
Fetch [rocarIon ("sStanford for Asscciation for Computing Machinersy. ... ")

Fetch [DOCUMENT TYBE ("Journzsl article®)

Fetch [LAMGUABE ("English")

Fetch [JABSTRACT (“Describes sewen projects at the Gompubter Science D. .. "3

Fetch [|THESAURUS ("Daotzbaose Monogehent Systems')

Fetch [JOTHER SUBJECTS ("Database Research: Ksys Project: Precise Informati. . . "}

Fetch [JCLASS CODES ("CE5160 (Database management sysbems (DBMS) I ")

Fetch [JNOTES ("Trestment: General /rewview abstract no.: COLO01T2I. .. ")

I So Up To Parent I

Eack Home Feload Clone Mews WWindows Close “Window

Figure 4: Fetch Result page displaying a selected document
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Figure 5: Fetch Result page showing the title of a document

buttons preceding each subobject. The result of clicking
FETCH for one document in the intial query page is
shown in Figure 4. The subobjects of this document
are labelled Title, Author, etc., and their values can
again be fetched by clicking on the FETCH buttons. For
example, the result after clicking the TITLE button is
shown in Figure 5. At this point we have a reached a
leaf (or atom) in the answer space and cannot descend
any further. The user can either backtrack to one of
the parent objects by clicking on the Go Up To Parent
button, or enter a new query by selecting New Query.
At any point in the session, the user can ask for help
by selecting the Help Result button, which displays
text on the meaning of a particular result object. As
discussed in Section 2, each TM provides capabilities
for describing (in English) the meaning of a label, and
how to interpret the value of objects with that label.
As an example, the help entry for the euthor label as
returned by the translator would explain that author
objects consist of a last name followed by a first name
or initials. A MOBIE session is ended by selecting the
Close Session button on the Query Request page.

4 Constraint Management

The Tsimmis Constraint Manager is based on a general
formal framework we have developed for constraints

in heterogeneous systems. Each information source
(recall Figure 1) chooses an interface it can offer to
the local constraint manager (LCM) for each of its
data items involved in a multi-source constraint. The
interface specifies how the data item may be read,
written, and/or monitored by the LCM. Applications
inform the constraint manager (CM) of constraints
that need to be monitored or enforced. Based on
the constraint and the interfaces available for the
items involved in the constraint, the CM decides on
the constraint management strategy it executes. This
strategy monitors or enforces the constraint as well as
possible using the interfaces offered by the information
sources. The degree to which each constraint is
monitored or enforced is formally specified by the
guarantee. We briefly describe interfaces, strategies, and
guarantees next. Complete formal specifications of each

can be found in [9].

Interfaces are specified using a notation based on
events and rules. As an example, we illustrate a
simple “write interface” for a data item X. With this
interface, the information source promises to write any
requested value to X within five seconds. The interface
is expressed as the rule:

WR(X,b) — W(X,b); B <5.



Here, WR(X,b) represents a write-request event re-
questing operation X := b. The rule says that when-
ever such a write-request event occurs, a write event,
W(X,b), occurs within 5 time units. We assume that
the interfaces for the data items involved in constraints
are specified by a “constraint administrator”®
site, based on the level of access and performance that
can be provided to the CM for the data item. Cur-
rently, we rely on the users of our framework to verify
that the interfaces specified do faithfully represent the
actual systems.

The strategy for a constraint describes the algorithm
used by the CM to monitor or enforce the constraint.
Like interfaces, strategies are specified using a notation
based on events and rules. In addition to performing
operations on the data items involved in a constraint,
strategies may evaluate predicates over the values of
data items (obtained through read operations) and
over private data maintained by the CM. As a simple
example, consider the strategy description below, which
issues a write request to Y within 7 seconds whenever
a notify event is received from X. (A notify event
represents the source notifying the CM of a write
to a data item. Thus, e.g., N(X,5) represents the
notification that a write X := 5 occurred.) This
strategy might be used to maintain the constraint X =

Y.

at each

N(X,b) » WR(Y,b); B<T.

Rule-based strategy specifications are implemented us-
ing the host language of the CM. The translation from
rules to host language is usually straightforward, and it
may be achieved using a rule processing engine.

The guarantee for a constraint specifies the level
of global consistency that can be ensured by the
CM when a certain strategy for that constraint is
implemented. Typically a guarantee is conditional, e.g.,
a guarantee might state that if no updates have been
performed recently then the constraint holds, or if the
value of a CM data item is true then the constraint
holds. Guarantees are specified using predicates over
values of data items and occurrences of certain events.
For example, consider the following guarantee for a
constraint X =Y

(Flag = true)@t = (X = Y)QQ[t — o, t — I].

This guarantee states that if the Boolean data item Flag
(maintained by the CM) is true at time ¢, then X =Y
holds at all times during the interval [t — «,t — G].
Note that this guarantee is weaker than a guarantee
that X = Y always holds, which is a very difficult

5The constraint administrator is an individual who is familiar
with the structure and behavior of a given information source,
much like a database administrator.

guarantee to make in the heterogeneous, autonomous
environments we are considering.

4.1 A Constraint Management Toolkit

As part of the Tsimmis prototype, we have built
a toolkit that permits constraint management across
heterogeneous and autonomous information systems.
This toolkit allows us to enforce, for example, a copy
constraint spanning data stored in a Sybase relational
database and a file system, or an inequality constraint
between a whois-like database and an object-oriented
database.

Figure 6 depicts the architecture of our constraint
management toolkit, which is based on the formal
framework described above and interfaces with the
Tsimmis architecture depicted in Figure 1. The Raw
Information Sources (RIS) are what exist already at
each site (for example, a relational database, a file
system, or a news feed). The RISI is the source-
specific interface offered by each RIS to its users and
applications. For example, for a Sybase database,
the RISI is based on a particular dialect of SQL, and
includes details on how to connect to the server.

The CM-Translator is the module that implements
the interfaces for each of its data items. The CM-
Translator is specified by a configuration file called
a CM-RID (for Raw Interface Description), which
includes: (1) which interfaces (selected from a menu of
interface types) are supported by the CM-Translator,
and (2) how these interfaces are implemented using the
underlying RISI.® The CM-Shells cooperate to execute
the constraint management strategies. The CM-Shells
are distributed rule engines that are configured by a
Strategy Specification file.

We now describe how constraint administrators would
use our toolkit to set up constraint management across
multiple sources. The administrators at each site
first decide on the CM-Interfaces they are willing to
offer, selected from menu of predetermined interfaces
provided by the toolkit. For example, if the underlying
RIS provides triggers, then a notify interface may be
offered; if not, perhaps a read/write interface can be
offered. The choice also depends on the actions the
administrator wants to allow. For instance, even if the
RIS allows updates to the source, the administrator
may disallow a write interface that lets the CM make
changes to the local data. Each CM-RID file records
the interfaces supported, as well as the specification of
the RIS objects to which the interface applies.

8Note that the CM-Translator is responsible for translating be-
tween rule-based interface specifications (as described earlier) and
source-specific operations. For translation of data and queries, a
Tsimmis translator can be used. Hence, the CM-Translator to-
gether with the CM-RID comprise the Local Constraint Manager
illustrated in Figure 1.
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Figure 6: Constraint Management Toolkit Architecture

Next, the administrator uses a Strategy Design Tool
(not shown in Figure 6) to develop the CM strategy.
This tool takes as input the multi-source constraints;
based on the available interfaces, it suggests strategies
from its available repertoire.  For each suggested
strategy, the design tool can give the guarantee that
would be offered. The result of this process is a Strategy
Specification file, which is then used by the CM-Shells
at run time. Note that knowledgeable administrators
might choose to write their Strategy Specifications
directly, bypassing the Design Tool.

5 Conclusion

In summary, the Tsimmis project is exploring technol-
ogy for integrating heterogeneous information sources.
Current efforts are focusing on translator and mediator
generators, which should significantly reduce the effort
required to access new sources and integrate informa-
tion in different ways. We believe that the OEM model
described here provides the right flexibility for handling
unexpected heterogeneity.
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