
ALGORITHMS FOR BOOLEAN FUNCTION QUERY PROPERTIES

SCOTT AARONSON∗

Abstract. We investigate efficient algorithms for computing Boolean function properties rel-
evant to query complexity. Such properties include, for example, deterministic, randomized, and
quantum query complexities; block sensitivity; certificate complexity; and degree as a real polyno-
mial. The algorithms compute the properties given an n-variable function’s truth table (of size
N = 2n) as input.

Our main results are the following:

- O(N log2 3 log N) algorithms for many common properties.

- An O(N log2 5 log N) algorithm for block sensitivity.

- An O(N) algorithm for testing ‘quasisymmetry.’

- A notion of a ‘tree decomposition’ of a Boolean function, proof that the decomposition is unique,
and an O(N log2 3 log N) algorithm for finding it.

- A subexponential-time approximation algorithm for space-bounded quantum query complexity.
To develop this algorithm, we give a new way to search systematically through unitary matrices
using finite-precision arithmetic.

The algorithms discussed have been implemented in a linkable library.

Key words. algorithm, Boolean function, truth table, query complexity, quantum computation.

AMS subject classifications. 68Q10, 68Q17, 68Q25, 68W01, 81P68.

1. Introduction. The query complexity of Boolean functions, also called black-
box or decision-tree complexity, has been well studied for years [5, 7, 16]. Counting
how many queries are needed to evaluate a function is easier than counting how many
computational steps are needed; thus, nontrivial lower bounds are more readily shown
for the former measure than for the latter. Also, query complexity has proved to be
a powerful tool for studying the capabilities of quantum computers [2, 3, 5, 11].

Numerous Boolean function properties relevant to query complexity have been
defined, such as sensitivity, block sensitivity, randomized and quantum query com-
plexity, and degree as a real polynomial. But many open questions remain concerning
the relationships between the properties. For example, are sensitivity and block sen-
sitivity polynomially related? How small can quantum query complexity be, relative
to randomized query complexity? Lacking answers to these questions, we may wish
to gain insight into them by using computer analysis of small Boolean functions. But
to perform such analysis, we need efficient algorithms to compute the properties in
question. Such algorithms are the subject of the present paper.

Let f : {0, 1}n → {0, 1} be a Boolean function, and let N = 2n be the size
of the truth table of f . We seek algorithms that have modest running time as
a function of N , given the truth table as input. The following table lists some
properties important for query complexity, together with the complexities of the most
efficient algorithms for them of which we know. In the table, ‘LP’ stands for linear
programming reduction.

∗ Computer Science Division, UC Berkeley, Berkeley, CA USA 94720-1776. Email:
aaronson@cs.berkeley.edu. Work done at Bell Laboratories. Supported by a California MICRO
Fellowship; an NSF Graduate Fellowship; and the Defense Advanced Research Projects Agency
(DARPA) and Air Force Laboratory, Air Force Materiel Command, USAF, under agreement num-
ber F30602-01-2-0524.

1

Query Property Complexity Source

Deterministic query complexity D(f) O(N1.585 logN) [10]
Certificate complexity C(f) O(N1.585 logN) [8]
Degree as a real polynomial deg(f) O(N1.585 logN) This paper

Approximate degree d̃eg(f) About O
(
N5

)
(LP) Obvious

Randomized query complexity R0(f) About O
(
N7.925

)
(LP) This paper

Block sensitivity bs(f) O(N2.322 logN) This paper
Quasisymmetry O(N) This paper
Tree decomposition O(N1.585 logN) This paper
Quantum query complexity Q2(f) Exponential Obvious
Q2(f) with O(log n)-qubit restriction O(Npolylog(N)) This paper

There is also a complexity-theoretic rationale for studying algorithmic problems
such as those considered in this paper. Much effort has been devoted to finding
Boolean function properties that do not naturalize in the sense of Razborov and
Rudich [18], and that might therefore be useful for proving circuit lower bounds. In
our view, it would help this effort to have a better general understanding of the com-
plexity of problems on Boolean function truth tables—both upper and lower bounds.
This paper is a step towards such an understanding.

We do not know of a polynomial-time algorithm to find quantum query com-
plexity; we raise this as an open problem. However, even finding quantum query
complexity via exhaustive search is nontrivial, since it involves representing unitary
operators with limited-precision arithmetic. The problem is more difficult than that
of approximating unitary gates with bounded error, which was solved by Bernstein
and Vazirani [6]. In Section 7 we resolve the problem, and give an O(Npolylog(N))
constant-factor approximation algorithm for bounded-error quantum query complex-
ity if the memory of the quantum computer is restricted to O(log n) qubits.

We have implemented most of the algorithms discussed in this paper in a linkable
C library [1], which is available for download.

The paper is organized as follows. Section 2 gives preliminaries, and Section 3
reviews simple algorithms for deterministic query complexity, certificate complexity,
and degree as a real polynomial. Section 4 gives an O(N log2 5 logN) algorithm for
computing block sensitivity, and Section 5 gives an O(N) algorithm for testing ‘qua-
sisymmetry.’ Section 6 defines a notion of ‘tree decomposition’ of a Boolean function,
proves that the decomposition is unique, and gives an O(N log2 3 logN) algorithm for
constructing it. Section 7 presents our results on algorithms for quantum query
complexity, and Section 8 concludes with some open problems.

2. Preliminaries. A Boolean function f is a total function from {0, 1}n onto
{0, 1}. We use Vf to denote the set of variables of f , and use X , or alternatively
x1, . . . , xn, to denote an input to f . The restriction of f to R is denoted f|R. If
X is an input, |X | denotes the Hamming weight of X ; if S is a set, |S| denotes the
cardinality of S. Particular Boolean functions to which we refer are ANDn, ORn, and
XORn, the AND, OR, and XOR functions respectively on n inputs.

Throughout we assume a RAM model of computation, in which for any input X ,
f (X) can be obtained in O (1) time.

3. Basic Properties. To our knowledge, no algorithms for block sensitivity,
quasisymmetry, tree decomposition, or quantum query complexity have been previ-
ously published. But algorithms for simpler query properties have appeared in the
literature.

2

3.1. Deterministic Query Complexity. A decision tree T is a binary tree in
which each non-leaf vertex is labeled with an index (1 through n) and each leaf vertex
is labeled with an output (0 or 1). Evaluation begins at the root. At a vertex v
labeled with i, if xi = 0 we evaluate the left subtree of v, while if xi = 1 we evaluate
the right subtree. When we reach a leaf vertex we halt and return the appropriate
output. T represents a Boolean function f if, for all settings of x1, . . . , xn, the
output of T equals f (x1, . . . , xn). Then the deterministic query complexity D(f) is
the minimum height of a decision tree for f .

Guijarro et al. [10] give a simpleO(N1.585 logN) dynamic programming algorithm
to compute D(f). We present a similar algorithm for completeness. The idea is that,
at any time, a decision tree for f has reduced f to one of its 3n possible restrictions:
each of the n variables either (1) has been queried and is a 0, (2) has been queried
and is a 1, or (3) has not yet been queried. Thus we can represent a restriction S by
an element of {0, 1, ∗}n, where the asterisk represents ‘not yet queried.’ We can also
impose a lexicographic ordering on restrictions by stipulating that 0 comes before 1
comes before asterisk.

The algorithm consists of two loops, both of which proceed through all states
in lexicographic order. The first loop fills in an array called A, which stores, for
each restriction, whether it is a constant function and if so what its value is. The
second loop uses v to fill in an array called D, which stores the deterministic query
complexity of each restriction. In the algorithm, S(i) represents the ith element of
S, and SS(i)=k represents S with S(i) set to the value k.

Algorithm 1. (computes deterministic query complexity)
loop over all S ∈ {0, 1, ∗}n in lexicographic order {

if (S ∈ {0, 1}n) then set A[S] := f(S) else {
choose an i such that S(i) = ∗;
if (A[SS(i)=0] = A[SS(i)=1]) then set A[S] := A[SS(i)=0];
else set A[S] := NONCONSTANT;

}
}
loop over all S ∈ {0, 1, ∗}n in lexicographic order {

if (A[S] 6= NONCONSTANT) then set D[S] := 0;
else set D [S] := 1 + min

S(i)=∗

[
max

(
D

[
SS(i)=0

]
, D

[
SS(i)=1

])]
;

}
return D[∗n];

That f is given as a truth table is crucial: if f is non-total and only the inputs
for which f is defined are given, then deciding whether D(f) ≤ k for some k is
NP-complete [14].

3.2. Certificate Complexity. Given an input X to f , a certificate for X is a
constant-valued restriction that agrees with X on the fixed variables. The size of
the certificate is the number of fixed variables; note that querying these variables is
sufficient to prove that f(X) = 0 or f(X) = 1, as the case may be. The certificate
complexity CX(f) of X is the minimum size of any certificate for X . The certificate
complexity C(f) of f is the maximum of CX(f) over all inputs X . (Equivalently,
C(f) is the minimum height of a nondeterministic decision tree for f .)

Czort [8] gives an O(N1.585 logN) algorithm to compute C(f). We can obtain
such an algorithm by reusing the same array A that was used for deterministic query

3

complexity in Section 3.1. Consider a directed acyclic graph G in which the vertices
are the 3n possible restrictions of f , and an edge is drawn from S to T if and only if
T is obtained from S by changing one 0 or 1 to an asterisk. The main loop of the
algorithm fills in an array called q, proceeding in reverse lexicographic order. The
array q stores, for each restriction S of f , the maximum length of any path in G from
S to a non-constant function, given that the path must halt once it reaches a non-
constant function. (Therefore, if S itself is non-constant then the length must be 0.)
The certificate complexity is obtained by taking the maximum, over all S ∈ {0, 1}n,
of n− q[S] + 1.

Algorithm 2. (computes certificate complexity)
loop over all S ∈ {0, 1, ∗}n in reverse lexicographic order {

if (A[S] = NONCONSTANT) then set m := −1; else set m := 0;

set q[S] := 1 + max

(
m, max

S(i)∈{0,1}
q
[
SS(i)=∗

])
;

}
return max

S∈{0,1}n
(n− q[S]);

Again, if f is not given as a full truth table, then deciding whether C(f) ≤ k for
some k is NP-complete [12].

3.3. Degree as a Polynomial. Let deg(f) be the minimum degree of an n-
variate real multilinear polynomial p such that, for all X ∈ {0, 1}n, p(X) = f(X).
Degree was introduced to query complexity by Nisan and Szegedy [17], who observed
the relationship deg(f) ≤ D(f). Later Beals et al. [5] related degree to quantum
query complexity by showing that deg(f) ≤ 2QE(f).

The following lemma, adapted from Lemma 4 of [7], is easily seen to yield an
O(n3n) = O(N1.585 logN) dynamic programming algorithm for deg(f). Say that
a function obeys the parity property if the number of inputs X with odd parity for
which f(X) = 1 equals the number of inputs X with even parity for which f(X) = 1.

Lemma 3.1 (Shi and Yao). deg(f) equals the size of the largest restriction of f
for which the parity property fails.

Proof. Let cS be the coefficient of the monomial
∏

vk∈S

vk. By the Möbius formula,

cS =
∑

X⊆S

(−1)
|X|+|S|

f(X).

f has degree less than d if and only if, for all S with |S| ≥ d, cS = 0. But for each
fixed value of |S|, |S| (in the formula above) can affect the sign of cS but not whether
cS = 0. Therefore for all δ, cS = 0 for all S with |S| = δ is equivalent to the parity
property holding for all restrictions of size δ.

Lemma 3.1 leads to an O(N log2 3 logN) dynamic programming algorithm for com-
puting deg(f), as follows:

Algorithm 3. (computes degree as a real polynomial)
loop over all S ∈ {0, 1, ∗}n in lexicographic order {

if (S ∈ {0, 1}n) then set d [S] := f(S);
else set d [S] := d

[
SS(i)=0

]
− d

[
SS(i)=1

]
for some i such that S(i) = ∗;

4

}
return max

d[S] 6=0
(number of ∗ ’s in S);

3.4. Randomized Query Complexity. A randomized decision tree TR is sim-
ply a collection T1, . . . , Tk of ordinary decision trees, each Ti associated with a proba-
bility pi satisfying p1 + · · ·+ pk = 1. TR represents f if each tree Ti in the collection
represents f . Let h(T,X) be the number of queries tree T makes on input X . Then
we define

h(TR) = max
X∈{0,1}n

[p1h(T1, X) + · · ·+ pkh(Tk, X)] .

Then the zero-error randomized query complexity R0(f) is the minimum height of a
randomized decision tree that represents f . One can also discuss the bounded-error
randomized query complexity R2(f), which is the minimum height of a randomized
decision tree that represents f with a probability of error at most 1/3. Nisan showed
that R0(f)2 ≥ D(f) and R2(f)3 = Θ (D(f)) [16]. On the other hand, the best
known separation between deterministic and randomized query complexity is R0(f) =
R2(f) = D(f)0.753... [19, 20], for f an AND/OR tree with two children per node.

Whether better separations are possible is a long-standing open question, and
one that might be fruitfully investigated with computer analysis1. Unfortunately,
though, we do not know how to compute R0(f) or R2(f) in polynomial time without
reliance on linear programming. Here we sketch the reduction to LP.

As before, at any time the query algorithm has reduced f to one of its 3n restric-
tions. Also, for each restriction, the algorithm has up to n + 2 possible moves: it
can query any variable not yet queried, halt and return 0, or halt and return 1. So
consider a directed acyclic graph in which the vertices are the restrictions S1, . . . , S3n

(together with halting states S(0) and S(1)) and the edges (Si1 , Sj1), . . . , (Sim
, Sjm

)
are the possible moves of the algorithm. With each edge e we associate a probability
weight p(e); these weights are the variables of the LP. Let C(X) be the subset of N
restrictions that are compatible with input X . There are four classes of constraints:

1. Well-formedness: The sum of the probability weights leaving the initial state
must be 1. Formally

∑
i p(S0, Si) = 1, where S0 is the initial state (no

variables yet queried).
2. Conservation of probability: The sum of the probability weights entering each

state must equal the sum of the probability weights leaving it. For all j 6= 0,∑
i p(Si, Sj) =

∑
k p(Sj , Sk).

3. Probability of correctness: For each input, the probability of returning the
correct answer must be at least 1 − ǫ, where ǫ = 0 for R0(f) and ǫ = 1/3
for R2(f). For all X with f(X) = 1,

∑
Si∈C(X) p(Si, S(1)) ≥ 1 − ǫ. For

f(X) = 0, substitute p(Si, S(0)).
4. Minimum running time: For each input, the expected running time must be

at most T . For all X ,
∑

Si∈C(X)Q(Si)
[
p(Si, S(0)) + p(Si, S(1))

]
≤ T , where

Q(Si) is the number of queries that have been made in state Si.
The objective is to minimize T .

1We have done such analysis for all 4-variable Boolean functions dependent on all 4 inputs. The
two functions exhibiting the largest deterministic/randomized complexity gap (D(f) = 4, R0(f) = 3)
are both AND/OR trees, namely A AND(B OR C OR D) and (A OR B) AND(C OR D). Ran-
domization yields at least some speedup for 60 out of the 208 Boolean functions that are distinct up
to negating inputs and outputs and permuting inputs.

5

4. Block Sensitivity. Block sensitivity, introduced by Nisan [16], is a Boolean
function property that is used to establish lower bounds. There are several open
problems that an efficient algorithm for block sensitivity might help to investigate
[16, 5, 7].

Let X be an input to Boolean function f , and let B (a block) be a nonempty
subset of Vf . Let X(B) be the input obtained from X by flipping the bits of B.

Definition 4.1. A block B is sensitive on X if f(X) 6= f(X(B)), and minimal
on X if B is sensitive and no proper sub-block S of B is sensitive. Then the block
sensitivity bsX(f) of X is the maximum number of disjoint minimal (or equivalently,
sensitive) blocks on X. Finally bs(f) is the maximum of bsX(f) over all X.

The obvious algorithm to compute bs(f) (compute bsX(f) for each X using dy-
namic programming, then take the maximum) uses Θ(N2.585 logN) time. Here we
show how to reduce the complexity to O(N2.322 logN) by exploiting the structure of
minimal blocks. Our algorithm has two main stages: one to identify minimal blocks
and store them for fast lookup, another to compute bsX(f) for each X using only
minimal blocks. The analysis proceeds by showing that no Boolean function has
too many minimal blocks, and therefore that if the algorithm is slow for some inputs
(because of an abundance of minimal blocks), then it must be faster for other inputs.

Algorithm 4. (computes bs(f)) For each input X:
1. Construct an array M of all minimal blocks of X. To do this, loop over all

blocks B in lexicographic order ({x1} , {x2} , {x1, x2} , {x3} , . . .), and mark
(i) whether B is a minimal block, and (ii) whether B contains a minimal
block. B is minimal if B is sensitive and, for all xi ∈ B, B − xi does not
contain a minimal block. B contains a minimal block if B is minimal or
B − xi contains a minimal block for some xi ∈ B.

2. Create 2n−1 lists, one list LS for each nonempty subset S of variables. Then,
for each minimal block B in M , insert a copy of B into each list LS such
that B ⊆ S. The result is that, for each S, LS = 2S ∩M , where 2S is the
power set of S.

3. Let a state be a partition (P,Q) of Vf . The set P represents a union of
disjoint minimal blocks that have already been selected; the set Q represents
the set of variables not yet selected. Then bsX(f) = θ (∅, Vf), where θ (P,Q)

is defined via the recursion θ (P,Q)
△
= 1 + maxB∈LQ

θ (P ∪B,Q−B) . Here
the maximum evaluates to 0 if LQ is empty. Compute θ (P,Q) using depth-
first recursion, caching the values of θ (P,Q) so that each needs to be computed
only once.

The block sensitivity is then the maximum of bsX(f) over all X .
Let m(X, k) be the number of minimal blocks of X of size k. The analysis of

Algorithm 4’s running time depends on the following lemma, which shows that large
minimal blocks are rare in any Boolean function.

Lemma 4.2.
∑

Xm(X, k) ≤ 2n−k
(
n
k

)
for k ≥ 2.

Proof. The number of positions that can be occupied by a minimal block of size
k is

(
n
k

)
for each input, or 2n

(
n
k

)
for all inputs. Consider an input X with a minimal

block B = {b1, . . . , bk} of size k. Block B has 2k − 1 nonempty subsets; label them
S1, . . . , S2k−1. By the minimality of B, for each Si the input X(Si) has {b1} , . . . , {bk}
as minimal blocks if Si = B, and B − Si as a minimal block if Si 6= B. Therefore,
since k ≥ 2, X(Si) cannot have B as a minimal block. So of the 2n

(
n
k

)
positions,

only one out of 2k can be occupied by a minimal block of size k.

6

Theorem 4.3. Algorithm 4 takes O(N2.322 logN) time.
Proof. Step 1 takes time O(N2 logN), totaled over all inputs. Let us analyze

step 2, which creates the 2n− 1 lists LS. Since each minimal block B is contained in
2n−|B| sets of variables, the total number of insertions is at most

∑

X

n∑

k=0

m(X, k)2n−k =

n∑

k=0

[
2n−k

∑

X

m(X, k)

]
≤

n∑

k=0

22n−2k

(
n

k

)
= N log2 5.

Since each insertion takes O (logN) time, the total time is O
(
N2.322 logN

)
.

We next analyze step 3, which computes block sensitivity using the minimal
blocks. Each θ (P,Q) evaluation is performed at most once, and involves looping
through a list of minimal blocks contained in Q, with each iteration taking O(log n)
time. For each block B, the number of distinct (P,Q) pairs such that B ⊆ Q is at
most 2n−|B|. Therefore, by the previous calculation, the time for each input X is at
most (logN)

∑n
k=0m(X, k)2n−k and a bound of O

(
N2.322 logN

)
follows.

5. Quasisymmetry. A Boolean function f(X) is symmetric if its output de-
pends only on |X |. Query complexity is well understood for symmetric functions:
for all non-constant symmetric f , D(f) = n, R0(f) = Θ (n), and QE(f) = Θ (n) [5].
Thus, a program for analyzing Boolean functions might first check whether a function
is symmetric, and if it is, dispense with many expensive tests. We call f quasisym-
metric if some subset of input bits can be negated to make f symmetric. There is an
obvious O(N2) algorithm to test quasisymmetry; here we give a linear-time algorithm.

For an integer p, call a restriction of f a p-left-restriction if each variable vi is
fixed if and only if i ≤ p. The basic idea of the algorithm is to loop through all
2n+1 − 1 such restrictions, with p decreasing from n to 0. Given a p-left-restriction
S, let S0 and S1 be the two (p+ 1)-left-restrictions that agree with S. If either
f|S0

or f|S1
is not quasisymmetric, then f|S (and hence f) cannot be quasisymmetric.

If, on the other hand, f|S0
and f|S1

are both quasisymmetric, then the algorithm
tries to fit them together in such a way that f|S itself is seen to be quasisymmetric.
If the fitting-together process succeeds, then the algorithm returns a structure g [S],
containing both the output of f|S (encoded in compact form, as a symmetric function)
and the direction, meaning the set of input bits that must be flipped to make f|S
symmetric. Note that g [S] occupies only O (n− p) bits of space. Most of the
algorithm deals with the special cases that f|S is a XOR function or a constant
function; in both cases f|S is symmetric no matter which set of input bits is flipped.
In the pseudocode, these cases are handled using the tags XOR (for a XOR function),
CONSTANT (for a constant function), and NORMAL (for any other quasisymmetric
function). Whenever the algorithm fails (meaning that f has been found not to be
quasisymmetric), the whole algorithm terminates; whenever g [S] is assigned a value,
the current iteration terminates. To avoid ambiguity about whether f|S is a XOR,
CONSTANT, or NORMAL function, we start p at n− 2 rather than n.

Algorithm 5. (tests quasisymmetry)
For all p-left-restrictions S for p ≤ n− 2, with p decreasing from n− 2 to 0:
1. If p = n − 2, then let g [S] be the appropriate NORMAL, CONSTANT, or

XOR function for the 2-input Boolean function f|S. If f|S is not quasisym-
metric, then fail (meaning f is not quasisymmetric).

2. If g [S0] and g [S1] are NORMAL functions but have different directions, then
fail.

7

3. Let 0k be a string of k zeroes. If g [S0] and g [S1] are CONSTANT functions,
then
• If f|S0

(
0n−p−1

)
= f|S1

(
0n−p−1

)
, then let g [S] be a CONSTANT func-

tion with output f|S0

(
0n−p−1

)
; otherwise fail.

4. If g [S0] and g [S1] are XOR functions, then
• If f|S0

(
0n−p−1

)
6= f|S1

(
0n−p−1

)
, let g [S] be a XOR function with

f|S (0n−p) = f|S0

(
0n−p−1

)
; otherwise fail.

5. For i ∈ {0, 1}, if g [Si] is a CONSTANT function and g [S1−i] is a XOR
function, then halt and return failure.

6. For i ∈ {0, 1}, if g [Si] is a CONSTANT or XOR function, then make g [Si]
a NORMAL function with the same direction as g [S1−i].

7. For i ∈ {0, 1} and j ∈ {0, . . . , n− p− 1}, let a
(i)
j = f|Si

(X) for all X ∈
{0, 1}n−p−1

of Hamming distance j from the direction string.
• If the strings a(0) and a(1) overlap each other on n− p− 2 bits, so that

for either i = 0 or i = 1,

a
(i)
1 = a

(1−i)
2 , . . . , a

(i)
n−p−2 = a

(1−i)
n−p−1,

then let g [S] be a NORMAL function with outputs described by the
(n− p)-bit overlap string, and appropriate direction. Otherwise fail.

Since the time used by each invocation is linear in n− p, the total time used is

n∑

p=0

2p(n− p) = O(N).

The following lemma shows that the algorithm deals with all of the ways in which a
function can be quasisymmetric, which is key to the algorithm’s correctness.

Lemma 5.1. Let f be a Boolean function on n inputs. If two distinct (and
non-complementary) sets of input bits A and B can be flipped to make f symmetric,
then f is either XORn, 1−XORn, or a constant function.

Proof. Assume without loss of generality that B is empty. Then A has cardinality
less than n. We know that f(X) depends only on |X |, and also that it depends only

on /X/
△
=

∑n
i=1κ(xi) where κ(x) = 1− x if xi ∈ A and κ(x) = x otherwise. Choose

any Hamming weight 0 ≤ w ≤ n− 2, and consider an input Y with |Y | = w and with
two variables vi and vj such that vi ∈ A, vj /∈ A, and Y (i) = Y (j) = 0. Let Z be Y
with Y (i) = Y (j) = 1. We have |Z| = |Y | + 2, but on the other hand /Z/ = /Y /,
so f(Y) = f(Z) by symmetry. Again applying symmetry, f(P) = f(Q) whenever
|P | = w and |Q| = w + 2. Therefore f is either XORn, 1 − XORn, or a constant
function.

6. Tree Decomposition. Many of the Boolean functions of most interest to
query complexity are naturally thought of as trees of smaller Boolean functions: for
example, AND-OR trees and majority trees. Thus, given a function f , one of the most
basic questions we might ask is whether it has a tree decomposition and if so what
it is. In this section we define a sense in which every Boolean function has a unique
tree decomposition, and we prove its uniqueness. We also sketch an O(N1.585 logN)
algorithm for finding the decomposition.

Definition 6.1. A distinct variable tree is a tree in which

8

(i) Every leaf vertex is labeled with a distinct variable (which may or may not be
negated).

(ii) Every non-leaf vertex v is labeled with a Boolean function having one variable
for each child of v, and depending on all of its variables.

(iii) Every non-leaf vertex has at least two children.

Such a tree represents a Boolean function in the obvious way. We call the tree trivial
if it contains exactly one vertex. For instance, the majority function on 3 inputs can
only be represented by a trivial tree.

A tree decomposition of f is a separation of f into the smallest possible compo-
nents, with the exception of (q)ANDk, (q)ORk, and (q)XORk components (where
(q) denotes possible negation), which are left intact. The choice of AND, OR, and
XOR components is not arbitrary; these are precisely the three components that “as-
sociate,” so that, for example, AND (x1,AND (x2, x3)) = AND (AND(x1, x2) , x3).
Formally:

Definition 6.2. A tree decomposition of f is a distinct variable tree representing
f such that:

(i) No vertex is labeled with a function f that can be represented by a nontrivial
tree, unless f is (q)ANDk, (q)ORk, or (q)XORk for some k.

(ii) No vertex labeled with (q)ANDk has a child labeled with ANDl.
(iii) No vertex labeled with (q)ORk has a child labeled with ORl.
(iv) No vertex labeled with (q)XORk has a child labeled with (q)XORl.
(v) Any vertex labeled with a function that is constant on all but one input is

labeled with (q)ANDk or (q)ORk.

Let double-negation be the operation of negating the output of a function at some
non-root vertex v, then negating the corresponding input of the function at v’s parent.
Double-negation is a trivial way to obtain distinct decompositions. This caveat aside,
we can assert uniqueness:

Theorem 6.3. Every Boolean function has a unique tree decomposition, up to
double-negation.

We will build up to this uniqueness theorem via a sequence of preliminary results.
Given a vertex v of a distinct variable tree, let L(v) be the set of variables in the
subtree of which v is the root. Assume that f is represented by two distinct tree
decompositions, S and T , such that S has a vertex vS and T has a vertex vT with
L(vS) and L(vT) incomparable (i.e. they intersect, but neither contains the other).
We partition Vf into four sets of variables as follows: A = L(vS) − L(vT), B =
L(vT) − L(vS), I = L(vS) ∩ L(vT), and U = Vf − L(vS) − L(vT). Our strategy will
be to derive increasingly strong constraints on how S and T can combine information
from A, B, I, and U . We do this by repeatedly restricting variables—considering f
as, say, a function of I only—and then exploiting the fact that S and T must produce
the same output, even though information travels along different routes in the two
trees. Ultimately (in Lemma 6.5) we show that f is a function of s (A), r (I), and
t (B) for some Boolean functions s, r, and t. The problem thereby reduces to which
Boolean functions of three variables have non-unique decompositions—and we can
check that the only possibilities, AND, OR, and XOR, are ruled out by the definition
of a tree decomposition.

Call a set of variables unifiable if there exists a vertex v, in any decomposition
of f , such that L (v) = V . The preceding results imply that no pair of unifiable sets
VS , VT is incomparable (Lemma 6.6): either VS ∩ VT = φ, VS ⊆ VT , or VT ⊆ VS .
From there, it is readily shown that any decomposition must contain a vertex v with

9

L (v) = V for every unifiable V , from which the uniqueness theorem follows.
A remark on notation: we use subscripts to name Boolean functions (i.e. s0, s1,

etc.) in order of their appearance, and superscripts to list which of A, B, I, and U
are currently being restricted.

Lemma 6.4. There exist Boolean functions r, t00, and t10 such that f is a function

of A, r (I), t
r(I)
0 (B), and U .

Proof. For any restriction u of U , we can write the output of S as Su [s1 (A, I) , B],
where Su and s1 are Boolean functions. Similarly we can write the output of T as
T u [A, t1 (I, B)]. We have that, for all settings of U ,

Su [s1 (A, I) , B] = T u [A, t1 (I, B)] .

Consider a restriction b of B. This yields

Su,b [s1 (A, I)] = T u
[
A, tb2 (I)

]
.

for some Boolean function tb2. Therefore, for each b, s1 depends on only a single bit
obtained from I, namely tb2 (I). So we can write s1 (A, I) as s3

(
A, tb2 (I)

)
for some

Boolean function s3—or even more strongly as s3 (A, s4 (I)), since we know that s1
does not depend on B. By analogous reasoning we can write t1 (I, B) as t3 (t4 (I) , B)
for some functions t3 and t4. So we have

Su [s3 (A, s4 (I)) , B] = T u [A, t3 (t4 (I) , B)] .

Next we apply the restrictions A = a and B = b, obtaining

Su,b [sa
3 (s4 (I))] = T u,a

[
tb3 (t4 (I))

]
,

which implies that, for some functions s5 and t5,

s5 (s4 (I)) = t5 (t4 (I))

for all I. This shows that s4 (I) and t4 (I) are equivalent up to negation of output,
since S and T must depend on I for some restriction of A and B. So we have

Su
[
s

r(I)
0 (A) , B

]
= T u

[
A, t

r(I)
0 (B)

]
. (*)

for some Boolean functions r(I), si
5, and ti5 (r ∈ {0, 1}).

We will henceforth think of r (I) as a single Boolean variable.
Lemma 6.5. There exist Boolean functions s and t such that f is a function of

s (A), r (I), t (B), and U .
Proof. Starting from equation (*), we next apply the restrictions A = a and

r (I) = i:

Su,a,i [B] = T u,a
[
ti0 (B)

]
.

Thus, for all restrictions of A and r (I), S depends on only a single bit obtained from
B, namely ti0 (B). Note that ti0 does not depend on A. Analogously, for both possible
restrictions i of r (I), T depends on only a single bit obtained from A, namely si

0 (A).
So we can write

su
6

[
si
0 (A) , ti0 (B)

]
= tu6

[
si
0 (A) , ti0 (B)

]

10

where su
6 and tu6 are two-input Boolean functions. We claim that s00 = s10 and t00 = t10.

There must exist a restriction u of U such that su
6 depends on both si

0 and ti0.
Suppose there exists a restriction b of B such that t00 (b) 6= t10 (b). Now, si

0 must be a
nonconstant function, so find a constant c such that su

6

[
c, ti0 (b)

]
depends on ti0, and

choose restrictions A = a and r (I) = i such that si
0 (a) = c. (If su

6 is a XOR function,
then either c = 0 or c = 1 will work, whereas if su

6 is an AND or OR function, then
only one value of c will work.) For su

6 to be well-defined, we need that whenever
si
0 (a) = c, the value of i is determined—since

su
6

[
si
0 (A) , ti0 (B)

]
= Su

[
si
0 (A) , B

]

and so the only access that su
6 has to i is through si

0. This implies that si
0 has

the form s (A) ∧ i or s (A)∧qi for some function s. Therefore su
6 can be written as

su
7

[
s (A) , i, ti0 (B)

]
for some function su

7 . Now repeat the argument for tu6 . We obtain

that tu6 can be written as tu7
[
si
0 (A) , i, t (B)

]
for some functions tu7 .and t. Therefore

su
7

[
s (A) , i, ti0 (B)

]
= tu7

[
si
0 (A) , i, t (B)

]
.

So we can take ti0 (B) = t (B) and si
0 (A) = s (A), and write su

7 (as well as tu7) as
su
7 [s (A) , r (I) , t (B)] .

Recall that a set V ⊆ Vf is unifiable if there exists a vertex v, in some decompo-
sition of f , such that L (v) = V .

Lemma 6.6. If VS and VT are unifiable, then either VS ∩ VT = φ, VS ⊆ VT , or
VT ⊆ VS .

Proof. Let VS = L (vS) in decomposition S and VT = L (vT) in decomposition
T , and suppose VS and VT are incomparable. Let gS be the function at vS and gT

the function at vT . Defining A, I, B, and U as before, from Lemma 6.5 there exist
Boolean functions s (A), r (I), and t (B) such that

gS = hS (s (A) , r (I)) ,

gT = hT (r (I) , t (B))

for some two-variable Boolean hS and hT . Also, there exists a restriction U = u for
which f depends on all three of s (A), r (I), and t (B). So the question reduces to
which Boolean η (a, i, b) dependent on all three inputs are associative, in the sense
that there exist Boolean η1, η2 and hS , hT for which

η (a, i, b) = η1 (hS (a, i) , b) = η2 (a, hT (i, b)) .

It is easily checked that the only possibilities are

(q)XOR (a, i, b) or (q)AND ((q) a, (q) i, (q) b) ,

where (q) denotes possible negation. Furthermore, η is determined up to negation
given hS and hT , so η cannot depend on u. In both the XOR and the AND (or
equivalently OR) cases, vS and vT would have been collapsed to a single vertex in
both S and T , by properties (ii)-(v) of a tree decomposition. Contradiction.

Now that we have ruled out the possibility of incomparable subtrees, we can
establish uniqueness.

Proof. [of Theorem 6.3] It remains only to show that any decomposition must
contain a vertex v with L (v) = V for each unifiable V . Suppose that V is not

11

represented in some decomposition F . Certainly V 6= Vf , so let VP be the parent set
of V in F : that is, the unique minimal set such that V ⊂ VP and there exists a vertex
vP in F with L (vP) = VP . Then the function at vP is represented by a nontrivial
tree, containing a vertex v with L (v) = V . For were it not so represented, then for
any Boolean function g on V , there would exist a setting W of VP − V such that W ,
together with g (V), would not suffice to determine the function h at vP . Since f
depends on h for some setting of Vf−VP , it follows that v could not be a vertex in any
decomposition. Furthermore, the function at vP cannot be (q)ANDk, (q)ORk, or
(q)XORk. If it were, then again v could not be a vertex in any decomposition, since
it would need to be labeled correspondingly with (q)ANDk, (q)ORk, or (q)XORk.
Having determined the unique set of vertices that comprise any decomposition, the
vertices’ labels are also determined up to double-negation.

We now consider algorithms for finding the tree decomposition. First, given a
subset G of Vf , there is a linear-time algorithm to decide whether a Boolean function
tree representing f could have a vertex u with L(u) = G. Consider the set F of
2n−|G| restrictions on G induced by setting all the variables in Vf − G to constant
values. A vertex could have L(u) = G if and only if all restrictions in F are identical
up to negation, omitting constant functions. This can be checked in O (N) time,
which leads to an O

(
N2

)
algorithm for finding all vertices in the tree decomposition.

(As a postprocessing step, the algorithm prunes superfluous ANDk, ORk, and XORk

vertices.)
However, we can reduce the running time to O(N log2 3 logN) by being more care-

ful about how we check whether all restrictions in F are identical. The idea is to
represent each restriction by a concise code number, which takes up only O (n) bits
rather than 2|G| bits. We create the code numbers recursively, starting with the small-
est restrictions and working up to larger ones. The code numbers need to satisfy the
following conditions:

1. Two restrictions S and T over the same set of variables get mapped to iden-
tical code numbers if and only if S = T .

2. If S is constant or S is the negation of T , then these facts are easy to tell
given the code numbers of S and T .

We can satisfy these conditions by building up a binary tree of restrictions at each
recursive call, then assigning each restriction a code number based on its position in
the tree: 1 if it’s the leftmost leaf, 2 if it’s the second-to-leftmost, and so on. There are
two exceptions: the constant 0 and 1 restrictions are assigned special code numbers
Φ0 and Φ1 respectively; and if the negation of S was already assigned code number J ,
then S is assigned code number −J . For all G 6= φ, each object inserted into the tree
is two code numbers of size |G| − 1 restrictions concatenated together. Because this
pair of code numbers is then ‘hashed down’ to a single number based on its position in
the tree, the numbers always remain of size O (n). In the pseudocode, B is the binary
tree, J [S] is the codeword of restriction S, and the operation⊙ denotes concatenation.
The set VERTICES stores the final result: namely all sets H ⊆ Vf such that there
is a vertex u in the decomposition of f having L (u) = H . After the main loop of
the algorithm, a postprocessing step deletes redundant ANDk, ORk, and (q)XORk

vertices. This step looks for vertices u and v with L (u) and L (v) incomparable,
which by Theorem 6.3 can only have arisen by ANDk, ORk, or (q)XORk.

Algorithm 6. (decomposes a Boolean function)
For all G ⊆ Vf (in lexicographic order, starting with G = φ):
1. Initialize an empty self-balancing binary tree B.

12

2. Let Z be the set of all restrictions S ∈ {0, 1, ∗}n that fix exactly those variables
not in G. Also, if G 6= φ, then let k be the minimum i such that vi ∈ G.

3. For all S ∈ Z,
• If G = φ then insert Φf(S) into B. Otherwise, let S0 and S1 be further

restrictions of S that fix vk to 0 and 1 respectively, and insert J [S0] ⊙
J [S1] into B.

4. For all S ∈ Z, assign S a code number J [S] as follows.
• For i ∈ {0, 1}, if J [S0] = J [S1] = Φi, then J [S] = Φi also.
• Otherwise, if (−J [S0])⊙ (−J [S1]) (corresponding to the negation qS of
S) is to the left of J [S0]⊙ J [S1] in B, then J [S] = −J [qS].
• Otherwise, if J [S0]⊙J [S1] is the tth leaf of B in left-to-right order, then
J [S] = t.

5. If |G| ≥ 2 and for all S ∈ Z, |J [S]| is identical (omitting those S for which
J [S] = Φ0 or J [S] = Φ1), then add G to VERTICES; otherwise do not.

For each i ∈ {1, . . . , n}, find all G ∈ VERTICES such that vi ∈ G. Attempt
to sort them into an ascending sequence G1 ⊂ G2 ⊂ · · · . If a Gi to be inserted is
incomparable with some Gj in the sequence, then leave Gj in the sequence, do not
insert Gi, and flag both Gi and Gj for removal.

Both the main loop and the second loop effectively perform an O (logN)-time
operation for all subsets of subsets of Vf . Therefore the total running time is
O(N log2 3 logN).

7. Quantum Query Complexity. The quantum query complexity of a Bool-
ean function f is the minimum number of oracle queries needed by a quantum com-
puter to evaluate f . Here we are concerned only with the bounded-error query
complexity Q2 (f) (defined in [5]), since approximating unitary matrices with finite
precision introduces bounded error into any quantum algorithm. A quantum query
algorithm Γ proceeds by an alternating sequence of T +1 unitary transformations and
T query transformations: U0 → Q1 → U1 → · · · → QT → UT+1. Then Q2(f) is the
minimum of T over all Γ that compute f with bounded error.

There are several open problems that an efficient algorithm to compute Q2(f)
might help to investigate [5, 7]. Unfortunately, we do not know of such an algorithm.
Here we show that, if we limit the number of qubits, we can obtain a subexponential-
time approximation algorithm via careful exhaustive search. For what follows, it will
be convenient to extend the quantum oracle model to allow intermediate observations.
With an unlimited workspace, this cannot decrease the number of queries needed [6].
In the space-bounded setting, however, it might make a larger difference.

We define a composite algorithm Γ′ to be an alternating sequence Γ1 → D1 →
· · · → Γt → Dt. Each Γi is a quantum query algorithm that uses Ti queries and at
most m qubits of memory for some m ≥ log2 n + 2. When Γi terminates a basis
state |ψi〉 is observed. Each Di is a decision point, which takes as input the sequence
|ψ1〉 , . . . , |ψi〉, and as output decides whether to (1) halt and return f = 0, (2) halt
and return f = 1, or (3) continue to Γi+1. (The final decision point, Dt, must select
between (1) and (2).) There are no computational restrictions placed on the decision
points. However, a decision point cannot modify the quantum algorithms that come
later in the sequence; it can only decide whether to continue with the sequence. For a
particular input, let pk be the probability, over all runs of Γ′, that quantum algorithm
Γk is invoked. Then Γ′ uses a total number of queries

∑t
k=1pkTk.

We define the space-bounded quantum query complexity SQ2,m(f) to be the min-

13

imum number of queries used by any composite algorithm that computes f with error
probability at most 1/3 and that is restricted to m qubits. We give an approxi-
mation algorithm for SQ2,m(f) taking time 2O(4mmn), which when m = O (log n) is
O(Npolylog(N)). The approximation ratio is

√
22/3 + ǫ for any ǫ > 0. The difficulty

in proving the result is as follows.
A unitary transformation is represented by a continuous-valued matrix, which

might suggest that the quantum model of computation is analog rather than digital.
But Bernstein and Vazirani [6] showed that, for a quantum computation taking T
steps, the matrix entries need to be accurate only to within O(log T) bits of precision
in the bounded-error model. However, when we try represent unitary transformations
on a computer with finite precision, a new problem arises. On the one hand, if we
allow only matrices that are exactly unitary, we may not be able to approximate every
unitary matrix. So we also need to admit matrices that are almost unitary. For
example, we might admit a matrix if the norm of each row is sufficiently close to 1,
and if the inner product of each pair of distinct rows is sufficiently close to 0. But
how do we know that every such matrix is close to some actual unitary matrix? If it
is not, then the transformation it represents cannot even approximately be realized
by a quantum computer.

We resolve this issue as follows. First, we show that every almost-unitary matrix
is close to some unitary matrix in a standard metric. Second, we show that every
unitary matrix is close to some almost-unitary matrix representable with limited pre-
cision. Third, we upper-bound the precision that suffices for a quantum algorithm,
given a fixed accuracy that the algorithm needs to attain.

An alternative approach to approximating SQ2,m(f) would be to represent each
unitary matrix as a product of elementary gates. Kitaev [15] and independently
Solovay [21] showed that a 2m× 2m unitary matrix can be represented with arbitrary
accuracy δ > 0 by a product of 2O(m) polylog(1/δ) unitary gates. But this yields a

22O(m) polylog(mn)

algorithm, which is slower than ours. Perhaps the construction or its
analysis can be improved; in any case, though, this approach is not as natural for the
setting of query complexity. Let u • v denote the conjugate inner product of u and v.
The distance |A−B| between matrices A = (aij) and B = (bij) in the Lmax norm is
defined to be maxi,j |aij − bij |.

Definition 7.1. A matrix A is q-almost-unitary if |I − AA†| < q. In the
following lemma, we start with an almost-unitary matrix A and construct an actual
unitary matrix U that is close to A in the Lmax norm.

Lemma 7.2. Let A be a q-almost-unitary s× s matrix, with s ≥ 2 and q ≤ 1/4s.
Then there exists a unitary matrix U such that |A− U | < 4.91q

√
s.

Proof. We first normalize each row Ai so that Ai •Ai = 1. For each entry aij ,

|aij/(Ai •Ai)− aij | = |aij ||1− (Ai •Ai)|/|Ai •Ai| < q (1 + q) / (1− q) .

We next form a unitary matrix B from A by using the Classical Gram-Schmidt (CGS)
orthogonalization procedure. The idea is to project A2 to make it orthogonal to A1,
then project A3 to make it orthogonal to both A1 and A2, and so on. Initially we set
B1 ← A1. Then for each 2 ≤ i ≤ s, we set Bi ← Ai −

∑i−1
j=1(Ai •Bj)Bj . Therefore

Ai •Bk = (Ai •Ak)−∑k−1
j=1 (Ai •Bj)(Ak •Bj).

We need to show that the discrepancy between A and B does not increase too
drastically as the recursion proceeds. Let σk = maxi Ai •Bk. By hypothesis, σ1 < q.

14

Then σk ≤ σ1 +
∑k−1

j=1 σ
2
j . Assume that σk < q + 4q2s for all k ≤ K. By induction,

σK+1 < q +K
(
q + 4q2s

)2 ≤ q + 4q2s

since q ≤ 1/4s and K ≤ s. So for all k, σk < q + 4q2s.
Let φ = |A−B|. By the definition of B, φ ≤ σ1 |w1| + · · · + σs |ws| where

w is a column of B. Since |w1|2 + · · · + |ws|2 = 1, φ is maximized when wi =
σi
√
s/ (σ1 + · · ·+ σs), or

φ ≤ σ2
1 + · · ·+ σ2

s

√
s/(σ1 + · · ·+ σs) ≤

(
q + 4q2s

)2√
s/q.

Adding q (1 + q) / (1− q) from normalization yields a quantity less than(
4 + 9

√
2/14

)
q
√
s ≈ 4.91q

√
s. This can be seen by working out the arithmetic for

the worst case of s = 2, q = 1/4s.
The next lemma, which is similar to Lemma 6.1.3 of [6], is a sort of converse to

Lemma 7.2: we start with an arbitrary unitary matrix, and show that truncating its
entries to a precision δ > 0 produces an almost-unitary matrix.

Lemma 7.3. Let U and V be s× s matrices with s ≥ 2 and |U − V | < δ. If U is
unitary, then V is

(
2δ
√
s+ δ2s

)
-almost-unitary.

Proof. First,

Ui • Ui =
s∑

k=1

|uk + γk|2 = 1 +
s∑

k=1

(ukγ
∗
k + u∗kγk + γkγ

∗
k)

where the uk’s are entries of U and the γk’s are error terms satisfying |γk| < δ. So by
the Cauchy-Schwarz inequality, Ui •Ui differs from 1 by at most 2δ

√
s+ δ2s. Second,

for i 6= j,

Ui • Uj =

s∑

k=1

(uk + γk)(uk + ηk)∗

where the γk’s and ηk’s are error terms, and the argument proceeds analogously.
In this section we use the results on almost-unitary matrices to construct an algorithm.
First we need a lemma about error buildup in quantum algorithms, which is similar
to Corollary 3.4.4 of [6] (though the proof technique is different).

Lemma 7.4. Let U1, . . . UT be s × s unitary matrices, Û1, . . . ÛT be s × s arbi-
trary matrices, and v be an s × 1 vector with ‖v‖2 = 1. Suppose that, for all i,∣∣∣Ûi − Ui

∣∣∣ < 1/cs, where c > T/2. Then Û1 · · · ÛT v differs from U1 · · ·UT v by at most

2T/ [
√
s (2c− T)] in the L2 norm.

Proof. For each i, let Ei = Ûi−Ui. By hypothesis, every entry of Ei has magnitude
at most 1/cs; thus, each row or column w of Ei has ‖w‖2 ≤ 1/ (c

√
s). Then

Û1 · · · ÛT v = (U1 + E1) · · · (UT + ET) v.

The right-hand side, when expanded, has 2T terms. Any term containing k matrices
Ei has L2 norm at most s−1/2c−k, and can therefore add at most c−k/

√
s to the

discrepancy with U1 · · ·UT v. So the total discrepancy is at most

s−1/2
T∑

k=1

(
T

k

)
(1/c)k < s−1/2

(
eT/c − 1

)
.

15

Since d ln t/dt evaluated at t = 2c is 1/2c and since ln t is concave,

ln(2c+ T)− ln(2c− T) ≥ 2T/2c = T/c

when T < 2c. Therefore eT/c ≤ (2c + T)/(2c − T) and the discrepancy is at most
2T/ [

√
s (2c− T)] in the L2 norm.

Applying Lemmas 7.2, 7.3, and 7.4, we now prove the main theorem.
Theorem 7.5. There exists an approximation algorithm for SQ2,m(f) taking

time 2O(4mmn), with approximation ratio
√

22/3 + ǫ.
Proof. Given f , we want, subject to the following two constraints, to find an

algorithm Γ that approximates f with a minimum number of queries. First, Γ uses at
most m qubits, meaning that s = 2m and the relevant matrices are 2m×2m. Second,
the correctness probability of Γ is known to a constant accuracy ±ε. Certainly the
number T of queries never needs to be more than n, for, although each quantum
algorithm is space-bounded, the composite algorithm need not be. Let λ be the Lmax

error we can tolerate in the matrices, and let ∆ be the resultant L2 error in the final
states. Setting c = 1/ (λ2m), by Lemma 7.4 we have

∆ ≤ 2n/
[
2m/2

(
21−m/λ− n

)]
.

From the Cauchy-Schwarz inequality, one can show that ε ≤ 2∆. Then solving for
1/λ, 1/λ ≤ 2m/2n (2/ε+ 1) which, since ε is constant, is O

(
2m/2n

)
. Solving for

c, we can verify that c > T/2, as required by Lemma 7.4. If we generate almost-
unitary matrices, they need to be within λ of actual unitary matrices. By Lemma
7.2 we can use λ/ (4.91

√
s)-almost-unitary matrices. Finally we need to ensure that

we approximate every unitary matrix. Let δ be the needed precision. Invoking
Lemma 7.3, we set λ/ (4.91

√
s) ≥ 2δ

√
s+ δ2s and obtain that

δ ≤ max
[
λ/ (9.82s) , λ1/2/

(
2.22s3/4

)]

is sufficient.
Therefore the number of bits of precision needed per entry, log (1/δ), is O(m).

We thus need only O(4mmn) bits to specify Γ, and can search through all possible Γ
in time 2O(4mmn). The amount of time needed to evaluate a composite algorithm Γ′

is polynomial in m and n, and is absorbed into the exponent. The approximation
algorithm is this: first let ε > 0 be a constant at most 0.0268, and let ω = 22

9 + 4
3ε−8ε2.

Then find the smallest T such that the maximum probability of correctness over all
T -query algorithms Γ′ is at least 2/3−ε (subject to ±ε uncertainty), and return T

√
ω.

The algorithm achieves an approximation ratio of
√
ω, for the following reason. First,

T ≤ SQ2,m(f). Second, ωT ≥ SQ2,m(f), since by repeating the optimal algorithm
Γ∗ until it returns the same answer twice (which takes either two or three repetitions),
the correctness probability can be boosted above 2/3. Finally, a simple calculation
reveals that Γ∗ returns the same answer twice after expected number of invocations
ω.

8. Open Problems. In our view, the most interesting open problem raised by
this paper is that of finding a polynomial-time algorithm to compute quantum query
complexity. Here we discuss two other problems.

First, implicit in the paper of Ambainis [2] is a novel Boolean function property,
which is used to obtain lower bounds on quantum query complexity. To take a
special case: given a function f and a set S of inputs, let the “Ambainis density”

16

ADS (f) be the minimum, over all X ∈ S, of the number of i such that X(i) ∈ S and
f (X) 6= f

(
X(i)

)
. (Here X(i) denotes X with the ith bit negated.) Then let AD (f)

be the maximum of ADS (f) over all S. Ambainis shows that Q2 (f) = Ω (AD (f)).
How efficient an algorithm can we find for AD (f)?

Second, Bar-Yossef, Kumar, and Sivakumar [4] have defined “approximate” ver-
sions of measures such as block sensitivity. Can we extend the algorithms given in
this paper to compute those measures?

9. Acknowledgments. I thank Rob Pike and Lorenz Huelsbergen for sponsor-
ing the internship during which this work was done and for helpful discussions; Andris
Ambainis, Wim van Dam, Umesh Vazirani, and the anonymous reviewers for com-
ments on the manuscript; Ronald de Wolf for discussions of space-bounded quantum
query complexity; and Peter Bro Miltersen for correspondence.

REFERENCES

[1] S. Aaronson, Boolean Function Wizard 1.0 (software library),
http://www.cs.berkeley.edu/˜aaronson/bfw, 2000.

[2] A. Ambainis, Quantum lower bounds by quantum arguments, in Proc. 32nd ACM STOC, pp.
636–643, 2000. quant-ph/0002066.

[3] A. Ambainis and R. de Wolf, Average-case quantum query complexity, in Proc. Symposium on
Theoretical Aspects of Comp. Sci., 2000. quant-ph/9904079.

[4] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, Sampling algorithms: lower bounds and applica-

tions, in Proc. 33rd ACM STOC, pp. 266–275, 2001.
[5] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, Quantum lower bounds by poly-

nomials, in Proc. 39th IEEE FOCS, 1998, pp. 352–361. quant-ph/9802049.
[6] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput., 26:5, pp. 1411–

1473, 1997.
[7] H. Buhrman and R. de Wolf, Complexity measures and decision tree complexity: a survey, to

appear in Theoretical Comp. Sci.
[8] S. L. A. Czort, The complexity of minimizing disjunctive normal form formulas, Master’s

Thesis, University of Aarhus, 1999.
[9] W. van Dam, Quantum oracle interrogation: getting all the information for almost half the

price, in Proc. 39th IEEE FOCS, pp. 362–367, 1998. quant-ph/9805006.
[10] D. Guijarro, V. Lav́in, and V. Raghavan, Exact learning when irrelevant variables abound,

Information Proc. Lett., 70, pp. 233–239, 1999.
[11] L. K. Grover, A fast quantum mechanical algorithm for database search, in Proc. 28th ACM

STOC, pp. 212–219, 1996. quant-ph/9605043.
[12] T. Hancock, T. Jiang, M. Li, and J. Tromp, Lower bounds on learning decision lists and trees,

Information and Computation, 126, pp. 114–122, 1996.
[13] K. Hoffman and R. Kunze, Linear Algebra, Prentice Hall, 1971.
[14] L. Hyafil and R. L. Rivest, Constructing optimal binary decision trees is NP-complete, Infor-

mation Proc. Lett., 5, pp. 15–17, 1976.
[15] A. Yu. Kitaev, Quantum computations: algorithms and error correction, Russian Math. Sur-

veys, 52:6, pp. 1191–1249, 1997.
[16] N. Nisan, CREW PRAMs and decision trees, SIAM J. Comput., 20:6, pp. 999–1007, 1991.
[17] N. Nisan and M. Szegedy, On the degree of Boolean functions as real polynomials, Computa-

tional Complexity, 4(4), pp. 301–313, 1994. Earlier version in STOC’92.
[18] A. A. Razborov and S. Rudich, Natural proofs, J. Comput. System Sci., 55, pp. 24–35, 1997.
[19] M. Saks and A. Wigderson, Probabilistic Boolean decision trees and the complexity of evaluating

game trees, in Proc. 27th IEEE FOCS, pp. 29–38, 1986.
[20] M. Santha, On the Monte Carlo decision tree complexity of read-once formulae, Random Struc-

tures and Algorithms 6:1, pp. 75–87, 1995.
[21] R. Solovay, Lie groups and quantum circuits, talk at workshop on Mathematics of Quantum

Computation, Mathematical Sciences Research Institute, Spring 2000.

17

