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a given formal system (e.g. orresponding to a omputer that simulates the mind) due toG�odel's inompleteness theorem. In an extensive disussion of this problem, R. Penrose [10℄onjetured that there must be some so far unknown faulty of the brain (sometimes, even inTuring's original work [14℄, alled \intuition") that gives it a non-omputable, non-algorithmi,\super-Turing" power in some ases.A similar, less straightforwardly formalizable question onerns the emergent behavior ofsoieties, or olonies, of living organisms: what is the nature of the (presumably omputational)mehanism behind the omplex behavior of suh soieties that emerges, given the often farsimpler behavior of the individual organisms? What is the omputational potential of theresulting system as an information proessing entity?In this paper we o�er a plausible explanation of this phenomenon in the realm of arti�ialliving (AL) systems. We will desribe a reasonable omputational senario that shows thatthe ability to surpass the omputational limits of traditional Turing mahines an emerge innon-uniformly evolving families or ommunities of far simpler omputational devies, viz. �nitetransduers. The resulting AL systems will be said to posses a super-Turing omputing power ifand only if they an perform omputational tasks that annot be ahieved by lassial means,making use of the omputational mehanism of standard Turing mahines or its equivalents.The omputational senario that we desribe originates from reent onsiderations in non-uniform omplexity theory.The plan of the paper is as follows. First, in Setion 2 we introdue the basi toolfor modeling a single living organism { an interative ognitive transduer seen as a �nitedisrete-state omputational devie. In Setion 3 we model the evolution of suh devies bymeans of potentially in�nite sequenes of ognitive transduers of inreasing size. We show thatthe resulting \families" possess super-Turing omputing power, using basi notions from non-uniform omplexity theory. In Setion 4 we show that so-alled ative ognitive transduers,whih an move in an interative environment and modify it at will, gain the omputing powerequivalent to that of standard (interative) Turing mahines. Finally, in Setion 5 we onsiderAL systems omposed of evolving ommunities of ommuniating ative ognitive transduers.We will show a `super-Turing omputing power' an indeed emerge in suh systems.All the above mentioned results are based on results from non-uniform omputationalomplexity theory (f. [1℄) and some results reently proved by the authors. Our main aimin the present paper is to interpret the results in terms of ognitive and evolutionary systems,so as to shed new light on the omputational potential of the respetive systems. Resultsare mostly quoted and not proved here, as it is their interpretation that presents the mainontribution of the present paper.2 Cognitive transduersWhen living organisms are modeled in order to study their omputing potential, it is importantto keep in mind that the omputational power of a model an be studied without atuallyknowing the onrete algorithms that are used by the organisms in onrete situations. Weonly need to know the set of elementary ations whih an be performed in the given modeland the senario of its interation with its environment, i.e. what data an be input, whetherand how this data depends on previous outputs, whether data an be \o�-loaded" to theenvironment, and so on. 2



Next, one has to take into aount that there is a ruial di�erene between the re-quirements plaed upon a model in ase one wants to simulate the behaviour or ations of themodeled (living) organism, and the requirements in ase one merely wants to investigate itsomputing potential. In the former ase the hoie of a more powerful model than is neessaryis aeptable sine this an simplify the task of simulation. In the latter ase the same hoiewould lead to an overestimation of the omputing potential of the organism. Thus, in thelatter ase the model must neither be too powerful nor too weak: it must exatly apture thefailities that onstitute the essene of the apabilities of the organism to ompute.2.1 Computational senariosFortunately, in the latter ase we are in a muh better situation than one may think. Despitetheir unpreedented omplexity, when measured in terms of the omplexity of human artifats,it is ommonly believed that eah living organism an enter into only a �nite { albeit in mostases astronomi { number of distinguishable internal on�gurations. We annot a�ord to giveexhaustive arguments in favor of this fat here. Instead, we simply postulate for the purposes ofthis paper that a living organism interating with its environment an at eah time be modeledby a �nite disrete-state mahine. In the sequel we will all any �nite disrete-state mahinethat is used in this ontext a ognitive transduer.Finite transduers as known from automata theory are the paradigmati example ofognitive transduers. Other examples of ognitive transduers are disrete neural (f. [9℄,[24℄) or neuroidal [16℄ nets, neuromata [11℄ and various other omputational models of thebrain (f. [24℄, [25℄). A more preise de�nition of a ognitive transduer will be given inde�nition 1. If the modeled organism is growing and/or evolving in time, while adapting itselfto its environment, our postulate remains una�eted. The evolution of the organism, and thusthe adaptive mehanism that underlies it, will be aptured by making use of sequenes of �nitedisrete-state mahines in Setion 3.A suitable model has to apture the fundamental di�erene between the standard se-nario of omputations by �nite transduers or Turing mahines the non-standard senario of`omputations' by a ognitive transduer. In the former ase it is assumed that a �nite se-quene of inputs is known and given, prior to the start of the omputation. No hanges areallowed after the omputation has begun, not even in the inputs `further down' that are notyet read1. In this lassial senario, if the �nite transduer or Turing mahine is set to workon a next sequene of (new) input data, it must start again from the same initial on�gurationas in the previous run. No transfer of information from past runs to future runs takes plae.Under this omputational senario, the respetive mahines are prevented from learning frompast experiene.The omputational senario of ognitive transduers is quite di�erent from the lassialpattern. It takes after living organisms, interating with their environment, that proess signals(inputs) as these are delivered by their sensory systems without interruption. The inputs simply`appear', in on-line manner and unexpetedly and possibly as the answer to earlier responses ofthe organism. Moreover, the inputs stream into the organism's ognitive system in parallel vianumerous hannels and are also proessed in a parallel manner. The number of input hannels1Traditionally also on-line omputations are onsidered, in whih input elements are supplied as the ompu-tation goes. Even in this ase there is normally no feedbak or learning mehanism taken into aount.3



depends on the omplexity (or size) of the organism at hand. As a rule, the input signals mustbe proessed in real-time2. In most ases, the original inputs are no longer available after theyare `read'. In priniple the ongoing `omputation' never terminates and is pratially limitedonly by the lifespan of the organism. Given the ability of (espeially omplex) organisms tomodify their environment or ommuniate with other organisms, the inputs may depend ontheir previous ations or the reations of other organisms. In this way the systems gain apotential ability to `learn'.When applied to ognitive transduers, the resulting omputational senario is alledinterative omputing. However, aside form being a senario for omputing, the senario allowsfor perpetual interative adaptation, in the following sense. If, to an outside observer, the same`situation' presents itself in terms of urrent inputs to an organism, then the organism mayreat di�erently from the past, due to the fat that its reations depend on the whole historyof inputs seen thus far. Thus, although a (�nite) ognitive transduer may display only a �nitenumber of reations at any one time, over in�nite input streams (the ordering of) its reationsan vary in an in�nite number of ways.2.2 Modeling a single organismIn order to obtain a suitable omputational model of a single living organism, we follow theparadigm of automata theory [6℄. Under the lassial senario, �nite transduers like Mealyautomata would be used: they are designed for proessing �nite sequenes of symbols written on�nite `tapes' and, with every transition between states triggered by some input, a �xed outputis assoiated. Under the interative senario, we onsider interative �nite transduers (IFTs),a generalization of Mealy automata, as our basi organism model. IFTs proess potentiallyin�nite strings (alled streams) of input symbols and produe a potentially in�nite stream ofoutput symbols, symbol after symbol. More importantly, we assume that there is no inputtape: the transduer obtains (`reads') the inputs as they ome in via a single input port.Likewise, we assume that the transduer produes outputs via a single output port. There isno way to return to inputs one they read, exept when they are stored internally. An IFTfollow a �xed �nite, Mealy-type transition funtion. No adaptive and/or evolutionary abilitiesare taken into aount yet; this follows in Setion 3.We assume throughout that the input and output symbols are taken from the alphabet� = f0; 1; �g. The interpretation of a symbol � appearing at a port is that `presently, there isneither 0 nor 1 appearing at this port'. Let �! denote the set of all in�nite streams over �: AnyIFT realizes a transdution � that transforms streams from �! into similar output streams.The �'s are not suppressed in a transdution. The study of ognitive transduers is basiallythe study of the transdutions that they realize.Clearly, instead of IFTs one ould onsider any other �nite-state devie suh as disreteneural (f. [9℄) or neuroidal (f. [16℄) nets, neuromata [11℄, and so on. The latter devies, whihread their input in parallel, must be modi�ed so as to proess an in�nite input stream in bloksthat orrespond to the number of input ports that they have. Moreover, in order to transferinformation (if any) from the previous run to the urrent one, we assume that they start theproessing of the next blok of inputs in the on�guration whih they reahed after proessing2This seems to be a neessary ondition for the emergene of at least a rudimentary form of onsiousness,f. [3℄, [27℄. 4



of the previous blok. The various models are alled non-uniform beause they are on�gureddi�erently, possibly non-omputably, depending on the size of the input bloks they proess.The following result from [28℄ shows that these di�erent models have the same omputationalpower.Theorem 1 . For transdutions � : �! ! �! the following are equivalent:(a) � is realized by an interative �nite transduer.(b) � is realized by a neuromaton.() � is realized by a disrete neural net.(d) � is realized by a disrete neuroidal net.This theorem motivates the following, more preise de�nition of the lass of ognitive trans-duers that we will use throughout.De�nition 1 . The lass CT of ognitive transduers is indutively de�ned as follows:(a) interative �nite transduers (IFTs) are in CT ; and(b) any devie omputationally equivalent to IFTs is in CT :Theorem 1 expresses that the basi types of ognitive transduers are all equivalent.In omplexity theory numerous other models of non-uniform omputation are known { suhas ombinatorial or threshold iruits and many other types of neural nets, espeially thebiologially motivated ones (f. [8℄). Nonetheless, the omputational equivalene of the respe-tive models indiates that omputational ognition is a rather robust phenomenon that an inpriniple be realized by a variety of omputational models whih are equivalent to IFTs.We say `in priniple' beause in pratie muh will depend upon the eÆieny of suhmodels. This might also be the ase for arti�ial onsiousness (f. [3℄ for a reent report onthe status quo in this �eld). For instane, in [27℄ an algorithmi priniple for the emergeneof onsiousness in arti�ial ognitive systems is skethed. In the simplest ase onsiousnesstakes the role of a ontrol mehanism that, based on feed-bak information from the sensors ofa system, veri�es the orret realization of motori ations to whih orders have been issued. Ifthese ations are not performed in aordane with these orders, the onsiousness will realize itand take are of the appropriate remedy. In order to ful�ll this role, onsiousness must operatein real time w.r.t. the speed of the system. The system must reat fast enough to be able toreognize the erroneous realization of its orders and take the appropriate measures in time soas to give the opportunity for realizing resue ations. In pratie suh requirements disqualify`slow' systems and support the speialized, fast or `eonomial' solutions. For example, it isknown that there are ognitive tasks that an be realized by a single biologial neuron over ninputs whereas the equivalent neural nets require a quadrati number of standard neurons [8℄.
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2.3 Learning potentialCognitive transduers embody two features of omputing that are not met under the lassialomputing senario: interativity, and in�nity of operation. The interativity enables oneto desribe (albeit a posteriori) the interation between the transduer and its environment:inputs sueeding to some outputs may be reations to these outputs. The in�nity of operationrefers to the property that a ognitive transduer is `always on' and never stops proessinginputs.Although the learning potential of IFTs is not quite obvious, it an be easily observede.g. in the ase of neuroids [16℄. Namely, they an be seen as `programmable neurons' sine thisability was their primary design goal. It appears that for understanding the ognitive abilitiesof organisms, the `atomi' level of individual neurons or state-transitions of a �nite transdueris too low. Thus higher-level models are sought (still equivalent to the elementary model of�nite transduers) in whih basi ognitive abilities, suh as a potential of deteting frequentlyourring patterns in a sequene of inputs, form the basi set of operations. Suh a basi setof elementary operations of a ognitive transduer is proposed in [16℄, [25℄ and [27℄, in orderto obtain the potential for the development of ognitive abilities via learning. Nevertheless, asmentioned above, the exat type of learning algorithm is quite unimportant for determiningthe omputational power of the respetive devies at a global level. Of ourse, due to theirsimpliity, ognitive transduers themselves do not posses universal omputing power.3 Sequenes of ognitive transduersSo far we do not have any means to model the evolution of ognitive transduers. In this setionwe will elaborate on this aspet and introdue a framework in whih adaptive behaviour andevolution an be failitated. The framework will almost naturally ahieve the potential ofuniversal omputing power.3.1 Evolution through sequenesIn order to support the evolvability property, we onsider sequenes of IFTs as introdued in[21℄. This leads to a framework in whih many more ompliated transdutions an be realizedand the dependene of the omputational eÆieny on the size of the underlying devies isrevealed. We �rst give a de�nition and then proeed to explain the omputational senario ofsequenes. Let U be some universe of possible states.De�nition 2 Let A = fA1; A2; : : :g be a sequene of IFTs over �, and let Qi � U be the setof states of Ai. Let G = fG1; G2; : : :g be a sequene of nonempty �nite sets of U suh thatGi � Qi and Gi � Gi+1, for i � 1. Then A with G is alled a sequene of IFTs with globalstates. We will often omit G from expliit mention.For a sequene A, there need not exist an algorithmi way to ompute the desription of theAi, given i. Thus, the only way to desribe the sequene may be to enumerate all its members.The set SiGi � U is alled the set of global states of A. We always assume sequenes of IFTsto have global states. We will often omit G from expliit mention when referring to a sequene.6



On an in�nite stream of inputs over �, a sequene A omputes as follows. At the start,A1 is the ative transduer. It reads input and produes output for a while, until it passesontrol to A2. In general, if Ai is the urrent ative transduer, it performs its omputationusing the loal states from the set Qi � Gi (whih is non-empty). If an input symbol ausesAi to enter a global state g 2 Gi, then Ai stops proessing and passes ontrol to Ai+1. Theinput stream is re-direted to the input port of Ai+1, Ai+1 starts in state g 2 Gi+1 and itontinues proessing the in-oming inputs as the new ative transduer, starting with the nextinput symbol.Thus, in e�et the input stream is proessed by transduers with inreasing index. Ina sequene of IFTs with global states, the next transduer an be seen as a `next generation'transduer. This models the property of evolution. The `transfer' of ontrol to the nexttransduer is invoked by the transduer urrently proessing the input. The next transduerontinues from the same state in whih the previous transduer stopped, but with a possibly`riher' set of internal on�gurations to work with. This mehanism enables the transfer ofinformation from the previous stage, without requiring further detail. Note that in �nite timeonly a �nite part of a sequene of IFTs an beome ative.Instead of sequenes of transduers, one may also onsider single transduers that`evolve', with the transduer ating as Ai if and only if Ai 2 A is the urrently ative trans-duer. That is, the transition funtion of the ognitive at hand is the same as that of Ai as longas Ai is ative. Of ourse, as the evolution proeeds, the ondition onerning the global statesmust still be maintained. The resulting type of transduer may appropriately be alled anevolving interative �nite transduer. For our purposes, the framework of sequenes will provemore fruitful. In the ontext of organisms, the evolution modeled by a sequene of ognitivetransduers orresponds to the evolution of reatures either along an idealized (Darwinian)evolutionary sale, or along the line of their life experienes.A sequene of IFTs is alled polynomially bounded if and only if there is a polynomial psuh that for every i � 1, the size of Ai is at most p(i). The lasses of transdutions realized bysequenes of IFTs with global states and polynomially or exponentially bounded size will bedenoted as IFT-POLY or IFT-EXP, respetively. We will also onsider the lasses NA-LOG:the transdutions realized by sequenes of neuromata [8℄ of logarithmi size, and NN-POLY:the transdutions realized by sequenes of standard reurrent, or yli, disrete neural nets ofpolynomial size reading their inputs in parallel.It is lear that, similar to sequenes of IFTs, one an design sequenes of any type ofdevies from the lass of ognitive transduers. Given their omputational equivalene, one anspeak of sequene of ognitive transduers without speifying exatly whih kind of ognitivetransduers is used. To say more about the omputational potential of sequenes, we have tointrodue a little bit of omplexity theory.3.2 Benhmarking by interative Turing mahinesOur main tool for haraterizing the omputational eÆieny of sequenes of ognitive trans-duers are interative Turing mahines with advie. We will �rst desribe the model of aninterative Turing mahine (ITM). The notion of `advie' will be added subsequently.Like ognitive transduers, ITMs are I/O-oriented mahines that allow for an in�nite,7



never ending exhange of data with their environment3. As before, the input and outputsymbols are taken from the alphabet � = f0; 1; �g and we assume that in eah step an ITMreads a symbol from its input port and writes a symbol to its output port. We normallyrequire that an ITM reats to any non-empty input by produing a non-empty output symbolwithin �nite time after reeiving the input: the interativeness or �nite delay ondition. Theondition ensures that if an input stream has an in�nite number of non-empty symbols, thenso does the output stream. ITMs di�er from ognitive transduers in one important respet:they have the interior struture of a Turing mahine and thus are (in priniple) in�nite state.De�nition 3 A mapping � : �! ! �! is alled the interative transdution omputed by anITM I if and only if for all x;y 2 �!, �(x) = y if and only if I produes output y on input x:Inspired by Wegner's seminal paper [23℄, the omputational power of interative Turingmahines was studied in [17, 19℄. Roughly speaking, the theory leads to a generalization ofstandard omputability theory to the ase of in�nite omputations, reently referred to as a`theory of super-reursive algorithms and omputation' in [2℄. The results from [17, 19℄ indiatethat merely adding interative properties and allowing endless omputations does not breakthe omputational barrier of Turing mahines. The resulting devies are not omputationallymore powerful than lassial Turing mahines beause eah of their omputational steps is stillTuring-omputable from the urrent state and input: interative mahines simply omputesomething di�erent from the lassial mahines | namely in�nite transdutions. Indepen-dent studies of the omputational power of interation, under a slightly di�erent framework,were initiated also by Wegner and several other authors (see e.g. [4℄). It appears that a newquality of omputations is only brought into the omputing behaviour of ITMs by lettingnon-preditability enter into the game (f. [20℄).The aspet of unpreditability (viz. of program hanges) an be aptured using thenotion of `advie' as studied in nonuniform omputational omplexity theory (f. [7, 1℄). Adviefuntions allow the insertion of `non-omputable' external information into the ourse of aomputation, in this way leading to a non-uniform operation over time. The resulting mahinesare alled interative Turing mahines with advie (ITM/As).De�nition 4 An advie funtion is a funtion f : Z+ ! ��: An advie is alled S(n)-boundedif for all n; the length of f(n) is bounded by S(n):A lassial TM with advie, operating on an input of size n; is allowed to all for the value of itsadvie funtion during the omputation only on the argument n. An ITM/A an all its advieat time t only for arguments t1 with t1 � t: To realize suh a all an ITM/A is equipped witha separate advie tape and a distinguished advie state. By writing the value of the argumentt1 on the advie tape and by entering into the advie state at time t � t1; the value of f(t1)is assumed to appear on the advie tape in a single step. By this ation, the original ontentsof the advie tape is ompletely overwritten. Note that no spei� omputability assumptionsare made for advie funtions. As a result, the mehanism of advie is very powerful and anprovide both lassial TMs with advie and ITM/As with highly non-reursive `assistane'.An important fat about ITM/As is that they are provably more powerful than ITM's without3Turing mahines that operate on in�nite inputs, so-alled !�Turing mahines, have been studied extensivelybefore f. [12℄, but the interative features desribed here are of more reent origin.8



advie, i.e., ITMs with advie an ompute transdutions that ITMs without advie annot.The result follows from a ountability argument, and examples an be onstruted by a arefuldiagonalization proof, see [20℄.The omputational power of sequenes of IFTs, and thus of `evolving ognitive trans-duers', is linked the theory of non-uniform interative omputing by means of the followingfundamental result from [21℄.Theorem 2 A transdution � : �! ! �! is realized by a sequene of IFTs if and only if it isrealized by an ITM/A.3.3 Classi�ations of ognitive transduersUsing sequenes of IFTs as the basi tool for modeling evolving families of interating organ-isms, Theorem 2 opens the way to a number of related results that enable a lassi�ation ofthe `information proessing power' of various types of arti�ial living systems.In order to state some of the pertinent results here, we will onsider advie funtionswhose values are bounded in length by known (omputable) funtions of t, espeially by poly-nomially or even logarithmially bounded funtions. For the de�nition of omplexity measuresfor ITM/As, see [19℄. Let ITM-C denote the lass of transdutions omputed by ITMs ofC-bounded omplexity.De�nition 5 The lass ITM-C=F onsists of the transdutions � omputed by interativeTuring mahines from ITM-C using an advie funtion from F .Common hoies for ITM-C that we onsider here are: ITM-LOGSPACE (deterministi loga-rithmi spae), ITM-PTIME (deterministi polynomial time), and ITM-PSPACE (polynomialspae). Common hoies for F are log (logarithmially bounded advie funtions) and poly(polynomially bounded advie funtions).In non-uniform omputational omplexity theory and in the theory of neuroomputing,relations between the omplexity lasses of Turing mahines with advie and various instanesof neural networks are studied (f. [9℄). These results an be extended to the interativease [21℄. To irumvent the di�erent input-output onventions in some ases, we all twoomplexity lasses `equal' only when the devies orresponding to both lasses read their inputssequentially; otherwise, when the devies in one lass read their inputs in parallel, we say thatthey `orrespond'.Theorem 3 ([21℄) The following relations hold:(a) IFT-POLY equals ITM-LOGSPACE/poly, i.e., the lass of transdutions omputed bysequenes of interative �nite transduers of polynomial size equals the lass of loga-rithmially spae{bounded transdutions of ITM/As with polynomially bounded adviefuntions.(b) NA-LOG equals ITM-LOGSPACE/log, i.e., the lass of transdutions omputed by se-quenes of neuromata of logarithmi size equals the lass of logarithmially spae{boundedtransdutions of ITM/As with logarithmially bounded advie funtions.9



() NN-POLY orresponds to ITM-PSPACE/poly, i.e., the lass of transdutions omputedby sequenes of neural nets of polynomial size orresponds to the lass of polynomiallyspae{bounded transdutions of ITM/As with polynomially bounded advie funtions.(d) IFT-EXP equals ITM-PSPACE/exp, i.e. the lass of transdutions omputed by se-quenes of interative �nite transduers of exponential size equals the lass of polynomiallyspae{bounded transdutions of ITM/As with exponentially bounded advie funtions.Theorem 3 illustrates the varying degrees of eÆieny of di�erent lasses of ognitivetransduers. For instane, the family of neural nets of polynomial size has the power of ITM-PSPACE/poly; whereas families of �nite transduers of the same size only have the powerof ITM-LOGSPACE/poly: It also demonstrates the emergene of super-Turing power in theourse of evolution within sequenes, due to the fat that general omputations of ITM/As doposses suh power.4 From ognitive transduers to ognitive Turing mahinesIn Setion 2 ognitive transduers were introdued to model the signal proessing apabilitiesof single living organisms interating with their environment. This leaves an aspet of livingorganisms open, namely their ability to inuene and modify the environment in whih theyoperate. In this setion we extend the model to inorporate it.Consider a ognitive transduer enhaned by a faility that enables it to move aroundin its (potentially in�nite) living environment and to mark the environment in a way that anlater be reognized again by the transduer. The resulting devie is alled an ative ognitivetransduer. We assume that an ative transduer an store and retrieve information in/fromits environment, similar to a ognitive robot system. The question of what omputationalabilities are gained in this way, an be answered by looking at the versions of ative ognitivetransduers enountered in automata theory.Models of �nite transduers with a two-way input tape whih an mark ells on theirinput tape, have been studied for years in automata theory (f. [22℄). The mahines are om-putationally provably more powerful than their non-marking ounterparts. When one allows a�nite set of marks that an be plaed to or removed from a potentially in�nite environment, oneobtains a model equivalent to the interative Turing mahine (ITM) desribed earlier. Severalfurther onditions may be imposed on the way the mahine interats with its environment, e.g.to model the bounded delay property that ognitive systems often display in their responsebehaviour (f. [18℄). By suitably formalizing the onepts involved, the following result isimmediate, illustrating one more the usefulness of ITMs as benhmark for the theory.Theorem 4 Ative ognitive transduers have a omputational power equivalent to interativeTuring mahines.Theorem 4 shows that ognitive transduers indeed ahieve a jump in omputationalpower when they are equipped with sensors that an san the environment and with e�etuatorsby means of whih they an modify their environment. By gaining the ability to `o�-load' and`re-load' data, individual ative ognitive transduers (or ognitive robots) thus gain the powerof interative Turing mahines. In other words, the original �nite-state system turns into a10



system that an reah a potentially unbounded number of on�gurations, by exploiting itsenvironment4. It is lear that some types of ognitive transduers are more easily adapted toative form than others, but in priniple it leads to the appropriate general model of a singleliving organism that we aimed for in Setion 2. Using sequenes as in Setion 3, one aninorporate the notion of evolution again. In Setion 5 this will be extended to ommunitiesof transduers that evolve over time.In his design of the `automati mahine (a-mahine)', now known as the Turing ma-hine, Turing [13℄ admits that he was motivated by a (human) `omputer', whih in his daysmeant `a person who alulates'. Suh a person alulates with the help of a �nite table (a`program') that is held in the person's head, and further using a (square) paper, a penil anda rubber. In aordane with Turing's motivation, generations of researhers working in arti-�ial intelligene and philosophers of mind have believed that the Turing mahine as a wholeorresponds to the model of the human `omputer'. Hodges, Turing's biographer, writes in [5℄:Turing's model is that of a human mind at work. But this is only true to a ertain extent: inTuring's model, merely the mahine's �nite ontrol orresponds to the mind of the modeledalulating person. Our previous disussion suggests that in modeling a omputing person, onehas to distinguish among three di�erent aspets: the omputer's �nite ontrol (its `program'),its `sensors, e�etuators and motori unit' (that enable it to atively interat with the envi-ronment), and the environment itself (the working area or tape). Theorem 4 shows that whenin addition to the `mind' of the omputer one also takes the sensory, e�etual and motoriapabilities and the interation with a `rewritable' and potentially in�nite environment intoaount, a omputationally more powerful model results.5 Communities of ative ognitive transduersThe �nal step in our exposition is the omposition of `arti�ial living systems' from individ-ual organisms (ative ognitive transduers) and to show how a Super-Turing omputationalpotential an arise almost naturally in them. To emphasize the similarity of ative ognitivetransduers to roboti systems we will refer to them as `agents' mostly.Ultimately, ative ognitive transduers are of interest only in large onglomerates,interating like `organisms' or `agents' of individually limited powers. A ommunity of ativeognitive transduers (or: a ommunity of agents) is a time-varying set of devies whih ateah moment onsists of �nitely many ative ognitive transduers of the same type sharingthe same environment. Eah transduer of the set makes use of a piee of its immediateenvironment as its private, potentially unbounded external memory, giving it the omputingpower of an interative Turing mahine (as stated in Theorem 4). Eah transduer has its owninput and output port. The ports of all transduers together present the input and outputports of the ommunity. The number of these ports varies along with the ardinality of theommunity. Within the set the transduers are identi�ed by a unique name (or address).The ative transduers (agents) an ommuniate by sending their outputs as inputs toother transduers identi�ed by their addresses, or by writing a message into their environment4This is a nie argument that qualitatively illustrates e.g. the revolutionary ontribution of the developmentof the sript to the development of human ivilization. Namely, along the lines of the given onsiderations, thedevelopment of the sript has promoted eah literate person's information proessing apaity from that of a�nite-state mahine to that of an (interative) Turing mahine.11



in a way suh that it an be read by other transduers. One an see it as if the agents movein their environment and enounter eah other randomly, unpreditably or intentionally, andexhange messages. Who enounters whom, who will send a message, and the delivery timeof eah message is unpreditable. The idea is to apture in the model any reasonable messagedelivery mehanism among organisms or agents, be it signals in some format, spoken languagein diret ontat, snail mail, via mobile phones, the Internet, and so on, depending on theentities that are modeled. Moreover, agents are assumed to be `mortal': they emerge andvanish also unpreditably.The desription of a ommunity of agents at eah moment in time is given by the listof names and `programs' of all living agents at that time, and the list of all transient messagesat that time (inluding the respetive senders and addressees, the time of the expeditionof eah message, and the message delivery times). Note that in general most of the requiredparameters needed in the desription of a ommunity at a given time are non-omputable, sineaording to our desription of how ommunities funtion they are unpreditable. Nevertheless,ommunities an be desribed by a �nite table at eah moment in time, i.e. the desription ofa whole ommunity at any time is always �nite.For a given ommunity and given data, a (potentially in�nite) sequene of desriptionsover time enables us to reover the evolution of the ommunity (its `dynamis') as a sequeneof instantaneous desriptions (on�gurations) of the ommunity. However, the mehanismsthat `implement' the dynamis (e.g., the way an agent enters or leaves a ommunity, the wayit gets its identity or hanges its program) are not part of the model. In [18, 20℄ the followingresult is proved for the ase of `real' agents ommuniating via an Internet-like infrastruture.Theorem 5 Communities of agents have a omputational power equivalent to interative Tur-ing mahines with an advie funtion whose values grow at most linearly in size with the pro-essing time.Returning to the ontext of arti�ial living systems, Theorem 5 asserts that a ommunityof ative ognitive transduers has a muh greater omputing power than just the `sum' ofthe powers of the individual transduers. Here we see the emerging super-reursive, thus non-reursive omputing power arising due to the unpreditable external information that an enterinto a system. Do results like Theorem 5 really mean that the orresponding systems an solveundeidable problems? The answer of ourse is that they annot, unless ertain assumptionsare made. In order for these systems to simulate a Turing mahine with advie, they needa `ooperating environment'. Its role is to deliver the same information as is o�ered by theadvie. Thus the result is of a non-onstrutive nature: both the advie and the orrespondinginputs from the environment exist in priniple but there is no algorithmi way to obtain them.In pratie the assumption of the existene of external inputs suitable for the solution of aonrete undeidable problem suh as the Halting Problem (f. [6℄), is not ful�lled. Hene,without suh `right' inputs, no ommunity of ognitive transduers will solve an undeidableproblem.On the other hand, no Turing mahine without an advie ould simulate e.g. the (ex-isting) human soiety { simply beause the soiety develops in a ompletely unpreditable,non-algorithmi way. One an say that the urrent human soiety realizes a transdution that,however, emerges somehow `all by itself', by the joint interplay of all members of the soietywho interat with eah other and hange their environment and interat with it in a ompletely12



unpreditable manner. All members jointly play the role of an `advie' { nonetheless the re-spetive advie keeps emerging on-line, inrementally, and is `blind', possessing as a wholeno spei� information proessing, or omputational intention. The same holds e.g. for thedevelopment of the Internet { it also evolves in a non-algorithmi way and therefore annot bemodeled by a single omputer (without advie).Note that due to Theorem 2, both sequenes of ognitive transduers and ommunitiesof ative ognitive transduers have super-Turing omputing power. This is a rather surprisingresult, from ertain perspetives. It means that in `pratie' with some exaggeration e.g. aoral olony (i.e., a stationary but growing on�guration of simple living organisms) has inpriniple the same omputational potential as e.g. a developing, dynamially hanging humansoiety. The soure of the power of both entities is given by their basi ognitive powers, thepotentially unlimited ardinality of the ommunity, by their potentially unlimited life span,and by the non-omputable harateristis of the ommunity at any given time, along withthe unpreditable shape of the olony or the unpreditable interation among soiety members(leading to non-uniformity of the resulting system). The di�erene between the two is, ofourse, in their omputational eÆieny, as aptured by Theorem 3. Again, theoretially, tokeep pae with a polynomially fast developing human soiety the oral olony should growexponentially, as seen from Theorem 3 part (d).What remains is to answer Penrose's question from the introdution of this paper. Con-sider the information omputed and stored in the environment in a long run by a ommunity ofagents. By virtue of Theorem 5 this is information that annot be omputed lassially. Now,sine eah member of the ommunity has aess to this information, this information e�etivelyplays the role of an advie and, due to this, in priniple eah member of the ommunity gainsa super-Turing omputing power.6 ConlusionThe results in this paper an be seen as appliations of non-lassial omputability theory toarti�ial living systems. The main result explaining the emergene of a super-Turing om-puting potential in suh systems justi�es the approah, and onretely proves what is oftenspeulated on in informal explanations (f.[23℄ or, more reently [2℄). It also points to theinreasing role that omputer siene will play in problems related to understanding the na-ture of the emergene of the mehanisms of life and of intelligene in partiular (f. [26℄). Theabove results also point to quite realisti instanes in whih the lassial paradigm of lassialTuring mahines as the generi model of all omputers, apable of apturing all algorithmiomputations, is learly insuÆient. It appears that the time has ome to reonsider thisparadigm and replae it by its extended version { viz. interative Turing mahines with advieor an equivalent of it. Our results have also shown that this extension amounts to onsideringinterative, evolutionary senarios where �nite agents operating the omputational devies athand play the role of advie. For a more extended disussion of the related issues, see [18℄ or[21℄.
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