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tThe 
omputational potential of arti�
ial living systems 
an be studied without knowingthe algorithms that govern their behavior. Modeling single organisms by means of so-
alled 
ognitive transdu
ers, we will estimate the 
omputational power of AL systems byviewing them as 
onglomerates of su
h organisms. We des
ribe a s
enario in whi
h anarti�
ial living (AL) system is involved in a potentially in�nite, unpredi
table intera
tionwith an a
tive or passive environment, to whi
h it 
an rea
t by learning and adjustingits behaviour. By making use of sequen
es of 
ognitive transdu
ers one 
an also modelthe evolution of AL systems 
aused by `ar
hite
tural' 
hanges. Among the examples are`
ommunities of agents', i.e. by 
ommunities of mobile, intera
tive 
ognitive transdu
ers.Most AL systems show the emergen
e of a 
omputational power that is not present atthe level of the individual organisms. Indeed, in all but trivial 
ases the resulting systemspossess a super-Turing 
omputing power. This means that the systems 
annot be simulatedby traditional 
omputational models like Turing ma
hines and may in prin
iple solve non-
omputable tasks. The results are derived using non-uniform 
omplexity theory.\What we 
an do is understand some of the general prin
iplesof how living things work, and why they exist at all."From: R. Dawkins, The Blind Wat
hmaker, 1986.1 Introdu
tionA tantalizing question in 
omputational mind modeling is the following: if one a

epts that themind 
an be modeled by 
omputational means, how 
an it be explained that mathemati
iansare often able to prove theorems whose truth or falsity 
annot be proved algorithmi
ally within�This resear
h was partially supported by GA �CR grant No. 201/02/1456 and by EC Contra
t IST-1999-14186 (Proje
t ALCOM-FT). A preliminary version of this paper appeared as an invited talk in [29℄. Versiondated: January 10, 2002. 1



a given formal system (e.g. 
orresponding to a 
omputer that simulates the mind) due toG�odel's in
ompleteness theorem. In an extensive dis
ussion of this problem, R. Penrose [10℄
onje
tured that there must be some so far unknown fa
ulty of the brain (sometimes, even inTuring's original work [14℄, 
alled \intuition") that gives it a non-
omputable, non-algorithmi
,\super-Turing" power in some 
ases.A similar, less straightforwardly formalizable question 
on
erns the emergent behavior ofso
ieties, or 
olonies, of living organisms: what is the nature of the (presumably 
omputational)me
hanism behind the 
omplex behavior of su
h so
ieties that emerges, given the often farsimpler behavior of the individual organisms? What is the 
omputational potential of theresulting system as an information pro
essing entity?In this paper we o�er a plausible explanation of this phenomenon in the realm of arti�
ialliving (AL) systems. We will des
ribe a reasonable 
omputational s
enario that shows thatthe ability to surpass the 
omputational limits of traditional Turing ma
hines 
an emerge innon-uniformly evolving families or 
ommunities of far simpler 
omputational devi
es, viz. �nitetransdu
ers. The resulting AL systems will be said to posses a super-Turing 
omputing power ifand only if they 
an perform 
omputational tasks that 
annot be a
hieved by 
lassi
al means,making use of the 
omputational me
hanism of standard Turing ma
hines or its equivalents.The 
omputational s
enario that we des
ribe originates from re
ent 
onsiderations in non-uniform 
omplexity theory.The plan of the paper is as follows. First, in Se
tion 2 we introdu
e the basi
 toolfor modeling a single living organism { an intera
tive 
ognitive transdu
er seen as a �nitedis
rete-state 
omputational devi
e. In Se
tion 3 we model the evolution of su
h devi
es bymeans of potentially in�nite sequen
es of 
ognitive transdu
ers of in
reasing size. We show thatthe resulting \families" possess super-Turing 
omputing power, using basi
 notions from non-uniform 
omplexity theory. In Se
tion 4 we show that so-
alled a
tive 
ognitive transdu
ers,whi
h 
an move in an intera
tive environment and modify it at will, gain the 
omputing powerequivalent to that of standard (intera
tive) Turing ma
hines. Finally, in Se
tion 5 we 
onsiderAL systems 
omposed of evolving 
ommunities of 
ommuni
ating a
tive 
ognitive transdu
ers.We will show a `super-Turing 
omputing power' 
an indeed emerge in su
h systems.All the above mentioned results are based on results from non-uniform 
omputational
omplexity theory (
f. [1℄) and some results re
ently proved by the authors. Our main aimin the present paper is to interpret the results in terms of 
ognitive and evolutionary systems,so as to shed new light on the 
omputational potential of the respe
tive systems. Resultsare mostly quoted and not proved here, as it is their interpretation that presents the main
ontribution of the present paper.2 Cognitive transdu
ersWhen living organisms are modeled in order to study their 
omputing potential, it is importantto keep in mind that the 
omputational power of a model 
an be studied without a
tuallyknowing the 
on
rete algorithms that are used by the organisms in 
on
rete situations. Weonly need to know the set of elementary a
tions whi
h 
an be performed in the given modeland the s
enario of its intera
tion with its environment, i.e. what data 
an be input, whetherand how this data depends on previous outputs, whether data 
an be \o�-loaded" to theenvironment, and so on. 2



Next, one has to take into a

ount that there is a 
ru
ial di�eren
e between the re-quirements pla
ed upon a model in 
ase one wants to simulate the behaviour or a
tions of themodeled (living) organism, and the requirements in 
ase one merely wants to investigate its
omputing potential. In the former 
ase the 
hoi
e of a more powerful model than is ne
essaryis a

eptable sin
e this 
an simplify the task of simulation. In the latter 
ase the same 
hoi
ewould lead to an overestimation of the 
omputing potential of the organism. Thus, in thelatter 
ase the model must neither be too powerful nor too weak: it must exa
tly 
apture thefa
ilities that 
onstitute the essen
e of the 
apabilities of the organism to 
ompute.2.1 Computational s
enariosFortunately, in the latter 
ase we are in a mu
h better situation than one may think. Despitetheir unpre
edented 
omplexity, when measured in terms of the 
omplexity of human artifa
ts,it is 
ommonly believed that ea
h living organism 
an enter into only a �nite { albeit in most
ases astronomi
 { number of distinguishable internal 
on�gurations. We 
annot a�ord to giveexhaustive arguments in favor of this fa
t here. Instead, we simply postulate for the purposes ofthis paper that a living organism intera
ting with its environment 
an at ea
h time be modeledby a �nite dis
rete-state ma
hine. In the sequel we will 
all any �nite dis
rete-state ma
hinethat is used in this 
ontext a 
ognitive transdu
er.Finite transdu
ers as known from automata theory are the paradigmati
 example of
ognitive transdu
ers. Other examples of 
ognitive transdu
ers are dis
rete neural (
f. [9℄,[24℄) or neuroidal [16℄ nets, neuromata [11℄ and various other 
omputational models of thebrain (
f. [24℄, [25℄). A more pre
ise de�nition of a 
ognitive transdu
er will be given inde�nition 1. If the modeled organism is growing and/or evolving in time, while adapting itselfto its environment, our postulate remains una�e
ted. The evolution of the organism, and thusthe adaptive me
hanism that underlies it, will be 
aptured by making use of sequen
es of �nitedis
rete-state ma
hines in Se
tion 3.A suitable model has to 
apture the fundamental di�eren
e between the standard s
e-nario of 
omputations by �nite transdu
ers or Turing ma
hines the non-standard s
enario of`
omputations' by a 
ognitive transdu
er. In the former 
ase it is assumed that a �nite se-quen
e of inputs is known and given, prior to the start of the 
omputation. No 
hanges areallowed after the 
omputation has begun, not even in the inputs `further down' that are notyet read1. In this 
lassi
al s
enario, if the �nite transdu
er or Turing ma
hine is set to workon a next sequen
e of (new) input data, it must start again from the same initial 
on�gurationas in the previous run. No transfer of information from past runs to future runs takes pla
e.Under this 
omputational s
enario, the respe
tive ma
hines are prevented from learning frompast experien
e.The 
omputational s
enario of 
ognitive transdu
ers is quite di�erent from the 
lassi
alpattern. It takes after living organisms, intera
ting with their environment, that pro
ess signals(inputs) as these are delivered by their sensory systems without interruption. The inputs simply`appear', in on-line manner and unexpe
tedly and possibly as the answer to earlier responses ofthe organism. Moreover, the inputs stream into the organism's 
ognitive system in parallel vianumerous 
hannels and are also pro
essed in a parallel manner. The number of input 
hannels1Traditionally also on-line 
omputations are 
onsidered, in whi
h input elements are supplied as the 
ompu-tation goes. Even in this 
ase there is normally no feedba
k or learning me
hanism taken into a

ount.3



depends on the 
omplexity (or size) of the organism at hand. As a rule, the input signals mustbe pro
essed in real-time2. In most 
ases, the original inputs are no longer available after theyare `read'. In prin
iple the ongoing `
omputation' never terminates and is pra
ti
ally limitedonly by the lifespan of the organism. Given the ability of (espe
ially 
omplex) organisms tomodify their environment or 
ommuni
ate with other organisms, the inputs may depend ontheir previous a
tions or the rea
tions of other organisms. In this way the systems gain apotential ability to `learn'.When applied to 
ognitive transdu
ers, the resulting 
omputational s
enario is 
alledintera
tive 
omputing. However, aside form being a s
enario for 
omputing, the s
enario allowsfor perpetual intera
tive adaptation, in the following sense. If, to an outside observer, the same`situation' presents itself in terms of 
urrent inputs to an organism, then the organism mayrea
t di�erently from the past, due to the fa
t that its rea
tions depend on the whole historyof inputs seen thus far. Thus, although a (�nite) 
ognitive transdu
er may display only a �nitenumber of rea
tions at any one time, over in�nite input streams (the ordering of) its rea
tions
an vary in an in�nite number of ways.2.2 Modeling a single organismIn order to obtain a suitable 
omputational model of a single living organism, we follow theparadigm of automata theory [6℄. Under the 
lassi
al s
enario, �nite transdu
ers like Mealyautomata would be used: they are designed for pro
essing �nite sequen
es of symbols written on�nite `tapes' and, with every transition between states triggered by some input, a �xed outputis asso
iated. Under the intera
tive s
enario, we 
onsider intera
tive �nite transdu
ers (IFTs),a generalization of Mealy automata, as our basi
 organism model. IFTs pro
ess potentiallyin�nite strings (
alled streams) of input symbols and produ
e a potentially in�nite stream ofoutput symbols, symbol after symbol. More importantly, we assume that there is no inputtape: the transdu
er obtains (`reads') the inputs as they 
ome in via a single input port.Likewise, we assume that the transdu
er produ
es outputs via a single output port. There isno way to return to inputs on
e they read, ex
ept when they are stored internally. An IFTfollow a �xed �nite, Mealy-type transition fun
tion. No adaptive and/or evolutionary abilitiesare taken into a

ount yet; this follows in Se
tion 3.We assume throughout that the input and output symbols are taken from the alphabet� = f0; 1; �g. The interpretation of a symbol � appearing at a port is that `presently, there isneither 0 nor 1 appearing at this port'. Let �! denote the set of all in�nite streams over �: AnyIFT realizes a transdu
tion � that transforms streams from �! into similar output streams.The �'s are not suppressed in a transdu
tion. The study of 
ognitive transdu
ers is basi
allythe study of the transdu
tions that they realize.Clearly, instead of IFTs one 
ould 
onsider any other �nite-state devi
e su
h as dis
reteneural (
f. [9℄) or neuroidal (
f. [16℄) nets, neuromata [11℄, and so on. The latter devi
es, whi
hread their input in parallel, must be modi�ed so as to pro
ess an in�nite input stream in blo
ksthat 
orrespond to the number of input ports that they have. Moreover, in order to transferinformation (if any) from the previous run to the 
urrent one, we assume that they start thepro
essing of the next blo
k of inputs in the 
on�guration whi
h they rea
hed after pro
essing2This seems to be a ne
essary 
ondition for the emergen
e of at least a rudimentary form of 
ons
iousness,
f. [3℄, [27℄. 4



of the previous blo
k. The various models are 
alled non-uniform be
ause they are 
on�gureddi�erently, possibly non-
omputably, depending on the size of the input blo
ks they pro
ess.The following result from [28℄ shows that these di�erent models have the same 
omputationalpower.Theorem 1 . For transdu
tions � : �! ! �! the following are equivalent:(a) � is realized by an intera
tive �nite transdu
er.(b) � is realized by a neuromaton.(
) � is realized by a dis
rete neural net.(d) � is realized by a dis
rete neuroidal net.This theorem motivates the following, more pre
ise de�nition of the 
lass of 
ognitive trans-du
ers that we will use throughout.De�nition 1 . The 
lass CT of 
ognitive transdu
ers is indu
tively de�ned as follows:(a) intera
tive �nite transdu
ers (IFTs) are in CT ; and(b) any devi
e 
omputationally equivalent to IFTs is in CT :Theorem 1 expresses that the basi
 types of 
ognitive transdu
ers are all equivalent.In 
omplexity theory numerous other models of non-uniform 
omputation are known { su
has 
ombinatorial or threshold 
ir
uits and many other types of neural nets, espe
ially thebiologi
ally motivated ones (
f. [8℄). Nonetheless, the 
omputational equivalen
e of the respe
-tive models indi
ates that 
omputational 
ognition is a rather robust phenomenon that 
an inprin
iple be realized by a variety of 
omputational models whi
h are equivalent to IFTs.We say `in prin
iple' be
ause in pra
ti
e mu
h will depend upon the eÆ
ien
y of su
hmodels. This might also be the 
ase for arti�
ial 
ons
iousness (
f. [3℄ for a re
ent report onthe status quo in this �eld). For instan
e, in [27℄ an algorithmi
 prin
iple for the emergen
eof 
ons
iousness in arti�
ial 
ognitive systems is sket
hed. In the simplest 
ase 
ons
iousnesstakes the role of a 
ontrol me
hanism that, based on feed-ba
k information from the sensors ofa system, veri�es the 
orre
t realization of motori
 a
tions to whi
h orders have been issued. Ifthese a
tions are not performed in a

ordan
e with these orders, the 
ons
iousness will realize itand take 
are of the appropriate remedy. In order to ful�ll this role, 
ons
iousness must operatein real time w.r.t. the speed of the system. The system must rea
t fast enough to be able tore
ognize the erroneous realization of its orders and take the appropriate measures in time soas to give the opportunity for realizing res
ue a
tions. In pra
ti
e su
h requirements disqualify`slow' systems and support the spe
ialized, fast or `e
onomi
al' solutions. For example, it isknown that there are 
ognitive tasks that 
an be realized by a single biologi
al neuron over ninputs whereas the equivalent neural nets require a quadrati
 number of standard neurons [8℄.
5



2.3 Learning potentialCognitive transdu
ers embody two features of 
omputing that are not met under the 
lassi
al
omputing s
enario: intera
tivity, and in�nity of operation. The intera
tivity enables oneto des
ribe (albeit a posteriori) the intera
tion between the transdu
er and its environment:inputs su

eeding to some outputs may be rea
tions to these outputs. The in�nity of operationrefers to the property that a 
ognitive transdu
er is `always on' and never stops pro
essinginputs.Although the learning potential of IFTs is not quite obvious, it 
an be easily observede.g. in the 
ase of neuroids [16℄. Namely, they 
an be seen as `programmable neurons' sin
e thisability was their primary design goal. It appears that for understanding the 
ognitive abilitiesof organisms, the `atomi
' level of individual neurons or state-transitions of a �nite transdu
eris too low. Thus higher-level models are sought (still equivalent to the elementary model of�nite transdu
ers) in whi
h basi
 
ognitive abilities, su
h as a potential of dete
ting frequentlyo

urring patterns in a sequen
e of inputs, form the basi
 set of operations. Su
h a basi
 setof elementary operations of a 
ognitive transdu
er is proposed in [16℄, [25℄ and [27℄, in orderto obtain the potential for the development of 
ognitive abilities via learning. Nevertheless, asmentioned above, the exa
t type of learning algorithm is quite unimportant for determiningthe 
omputational power of the respe
tive devi
es at a global level. Of 
ourse, due to theirsimpli
ity, 
ognitive transdu
ers themselves do not posses universal 
omputing power.3 Sequen
es of 
ognitive transdu
ersSo far we do not have any means to model the evolution of 
ognitive transdu
ers. In this se
tionwe will elaborate on this aspe
t and introdu
e a framework in whi
h adaptive behaviour andevolution 
an be fa
ilitated. The framework will almost naturally a
hieve the potential ofuniversal 
omputing power.3.1 Evolution through sequen
esIn order to support the evolvability property, we 
onsider sequen
es of IFTs as introdu
ed in[21℄. This leads to a framework in whi
h many more 
ompli
ated transdu
tions 
an be realizedand the dependen
e of the 
omputational eÆ
ien
y on the size of the underlying devi
es isrevealed. We �rst give a de�nition and then pro
eed to explain the 
omputational s
enario ofsequen
es. Let U be some universe of possible states.De�nition 2 Let A = fA1; A2; : : :g be a sequen
e of IFTs over �, and let Qi � U be the setof states of Ai. Let G = fG1; G2; : : :g be a sequen
e of nonempty �nite sets of U su
h thatGi � Qi and Gi � Gi+1, for i � 1. Then A with G is 
alled a sequen
e of IFTs with globalstates. We will often omit G from expli
it mention.For a sequen
e A, there need not exist an algorithmi
 way to 
ompute the des
ription of theAi, given i. Thus, the only way to des
ribe the sequen
e may be to enumerate all its members.The set SiGi � U is 
alled the set of global states of A. We always assume sequen
es of IFTsto have global states. We will often omit G from expli
it mention when referring to a sequen
e.6



On an in�nite stream of inputs over �, a sequen
e A 
omputes as follows. At the start,A1 is the a
tive transdu
er. It reads input and produ
es output for a while, until it passes
ontrol to A2. In general, if Ai is the 
urrent a
tive transdu
er, it performs its 
omputationusing the lo
al states from the set Qi � Gi (whi
h is non-empty). If an input symbol 
ausesAi to enter a global state g 2 Gi, then Ai stops pro
essing and passes 
ontrol to Ai+1. Theinput stream is re-dire
ted to the input port of Ai+1, Ai+1 starts in state g 2 Gi+1 and it
ontinues pro
essing the in-
oming inputs as the new a
tive transdu
er, starting with the nextinput symbol.Thus, in e�e
t the input stream is pro
essed by transdu
ers with in
reasing index. Ina sequen
e of IFTs with global states, the next transdu
er 
an be seen as a `next generation'transdu
er. This models the property of evolution. The `transfer' of 
ontrol to the nexttransdu
er is invoked by the transdu
er 
urrently pro
essing the input. The next transdu
er
ontinues from the same state in whi
h the previous transdu
er stopped, but with a possibly`ri
her' set of internal 
on�gurations to work with. This me
hanism enables the transfer ofinformation from the previous stage, without requiring further detail. Note that in �nite timeonly a �nite part of a sequen
e of IFTs 
an be
ome a
tive.Instead of sequen
es of transdu
ers, one may also 
onsider single transdu
ers that`evolve', with the transdu
er a
ting as Ai if and only if Ai 2 A is the 
urrently a
tive trans-du
er. That is, the transition fun
tion of the 
ognitive at hand is the same as that of Ai as longas Ai is a
tive. Of 
ourse, as the evolution pro
eeds, the 
ondition 
on
erning the global statesmust still be maintained. The resulting type of transdu
er may appropriately be 
alled anevolving intera
tive �nite transdu
er. For our purposes, the framework of sequen
es will provemore fruitful. In the 
ontext of organisms, the evolution modeled by a sequen
e of 
ognitivetransdu
ers 
orresponds to the evolution of 
reatures either along an idealized (Darwinian)evolutionary s
ale, or along the line of their life experien
es.A sequen
e of IFTs is 
alled polynomially bounded if and only if there is a polynomial psu
h that for every i � 1, the size of Ai is at most p(i). The 
lasses of transdu
tions realized bysequen
es of IFTs with global states and polynomially or exponentially bounded size will bedenoted as IFT-POLY or IFT-EXP, respe
tively. We will also 
onsider the 
lasses NA-LOG:the transdu
tions realized by sequen
es of neuromata [8℄ of logarithmi
 size, and NN-POLY:the transdu
tions realized by sequen
es of standard re
urrent, or 
y
li
, dis
rete neural nets ofpolynomial size reading their inputs in parallel.It is 
lear that, similar to sequen
es of IFTs, one 
an design sequen
es of any type ofdevi
es from the 
lass of 
ognitive transdu
ers. Given their 
omputational equivalen
e, one 
anspeak of sequen
e of 
ognitive transdu
ers without spe
ifying exa
tly whi
h kind of 
ognitivetransdu
ers is used. To say more about the 
omputational potential of sequen
es, we have tointrodu
e a little bit of 
omplexity theory.3.2 Ben
hmarking by intera
tive Turing ma
hinesOur main tool for 
hara
terizing the 
omputational eÆ
ien
y of sequen
es of 
ognitive trans-du
ers are intera
tive Turing ma
hines with advi
e. We will �rst des
ribe the model of anintera
tive Turing ma
hine (ITM). The notion of `advi
e' will be added subsequently.Like 
ognitive transdu
ers, ITMs are I/O-oriented ma
hines that allow for an in�nite,7



never ending ex
hange of data with their environment3. As before, the input and outputsymbols are taken from the alphabet � = f0; 1; �g and we assume that in ea
h step an ITMreads a symbol from its input port and writes a symbol to its output port. We normallyrequire that an ITM rea
ts to any non-empty input by produ
ing a non-empty output symbolwithin �nite time after re
eiving the input: the intera
tiveness or �nite delay 
ondition. The
ondition ensures that if an input stream has an in�nite number of non-empty symbols, thenso does the output stream. ITMs di�er from 
ognitive transdu
ers in one important respe
t:they have the interior stru
ture of a Turing ma
hine and thus are (in prin
iple) in�nite state.De�nition 3 A mapping � : �! ! �! is 
alled the intera
tive transdu
tion 
omputed by anITM I if and only if for all x;y 2 �!, �(x) = y if and only if I produ
es output y on input x:Inspired by Wegner's seminal paper [23℄, the 
omputational power of intera
tive Turingma
hines was studied in [17, 19℄. Roughly speaking, the theory leads to a generalization ofstandard 
omputability theory to the 
ase of in�nite 
omputations, re
ently referred to as a`theory of super-re
ursive algorithms and 
omputation' in [2℄. The results from [17, 19℄ indi
atethat merely adding intera
tive properties and allowing endless 
omputations does not breakthe 
omputational barrier of Turing ma
hines. The resulting devi
es are not 
omputationallymore powerful than 
lassi
al Turing ma
hines be
ause ea
h of their 
omputational steps is stillTuring-
omputable from the 
urrent state and input: intera
tive ma
hines simply 
omputesomething di�erent from the 
lassi
al ma
hines | namely in�nite transdu
tions. Indepen-dent studies of the 
omputational power of intera
tion, under a slightly di�erent framework,were initiated also by Wegner and several other authors (see e.g. [4℄). It appears that a newquality of 
omputations is only brought into the 
omputing behaviour of ITMs by lettingnon-predi
tability enter into the game (
f. [20℄).The aspe
t of unpredi
tability (viz. of program 
hanges) 
an be 
aptured using thenotion of `advi
e' as studied in nonuniform 
omputational 
omplexity theory (
f. [7, 1℄). Advi
efun
tions allow the insertion of `non-
omputable' external information into the 
ourse of a
omputation, in this way leading to a non-uniform operation over time. The resulting ma
hinesare 
alled intera
tive Turing ma
hines with advi
e (ITM/As).De�nition 4 An advi
e fun
tion is a fun
tion f : Z+ ! ��: An advi
e is 
alled S(n)-boundedif for all n; the length of f(n) is bounded by S(n):A 
lassi
al TM with advi
e, operating on an input of size n; is allowed to 
all for the value of itsadvi
e fun
tion during the 
omputation only on the argument n. An ITM/A 
an 
all its advi
eat time t only for arguments t1 with t1 � t: To realize su
h a 
all an ITM/A is equipped witha separate advi
e tape and a distinguished advi
e state. By writing the value of the argumentt1 on the advi
e tape and by entering into the advi
e state at time t � t1; the value of f(t1)is assumed to appear on the advi
e tape in a single step. By this a
tion, the original 
ontentsof the advi
e tape is 
ompletely overwritten. Note that no spe
i�
 
omputability assumptionsare made for advi
e fun
tions. As a result, the me
hanism of advi
e is very powerful and 
anprovide both 
lassi
al TMs with advi
e and ITM/As with highly non-re
ursive `assistan
e'.An important fa
t about ITM/As is that they are provably more powerful than ITM's without3Turing ma
hines that operate on in�nite inputs, so-
alled !�Turing ma
hines, have been studied extensivelybefore 
f. [12℄, but the intera
tive features des
ribed here are of more re
ent origin.8



advi
e, i.e., ITMs with advi
e 
an 
ompute transdu
tions that ITMs without advi
e 
annot.The result follows from a 
ountability argument, and examples 
an be 
onstru
ted by a 
arefuldiagonalization proof, see [20℄.The 
omputational power of sequen
es of IFTs, and thus of `evolving 
ognitive trans-du
ers', is linked the theory of non-uniform intera
tive 
omputing by means of the followingfundamental result from [21℄.Theorem 2 A transdu
tion � : �! ! �! is realized by a sequen
e of IFTs if and only if it isrealized by an ITM/A.3.3 Classi�
ations of 
ognitive transdu
ersUsing sequen
es of IFTs as the basi
 tool for modeling evolving families of intera
ting organ-isms, Theorem 2 opens the way to a number of related results that enable a 
lassi�
ation ofthe `information pro
essing power' of various types of arti�
ial living systems.In order to state some of the pertinent results here, we will 
onsider advi
e fun
tionswhose values are bounded in length by known (
omputable) fun
tions of t, espe
ially by poly-nomially or even logarithmi
ally bounded fun
tions. For the de�nition of 
omplexity measuresfor ITM/As, see [19℄. Let ITM-C denote the 
lass of transdu
tions 
omputed by ITMs ofC-bounded 
omplexity.De�nition 5 The 
lass ITM-C=F 
onsists of the transdu
tions � 
omputed by intera
tiveTuring ma
hines from ITM-C using an advi
e fun
tion from F .Common 
hoi
es for ITM-C that we 
onsider here are: ITM-LOGSPACE (deterministi
 loga-rithmi
 spa
e), ITM-PTIME (deterministi
 polynomial time), and ITM-PSPACE (polynomialspa
e). Common 
hoi
es for F are log (logarithmi
ally bounded advi
e fun
tions) and poly(polynomially bounded advi
e fun
tions).In non-uniform 
omputational 
omplexity theory and in the theory of neuro
omputing,relations between the 
omplexity 
lasses of Turing ma
hines with advi
e and various instan
esof neural networks are studied (
f. [9℄). These results 
an be extended to the intera
tive
ase [21℄. To 
ir
umvent the di�erent input-output 
onventions in some 
ases, we 
all two
omplexity 
lasses `equal' only when the devi
es 
orresponding to both 
lasses read their inputssequentially; otherwise, when the devi
es in one 
lass read their inputs in parallel, we say thatthey `
orrespond'.Theorem 3 ([21℄) The following relations hold:(a) IFT-POLY equals ITM-LOGSPACE/poly, i.e., the 
lass of transdu
tions 
omputed bysequen
es of intera
tive �nite transdu
ers of polynomial size equals the 
lass of loga-rithmi
ally spa
e{bounded transdu
tions of ITM/As with polynomially bounded advi
efun
tions.(b) NA-LOG equals ITM-LOGSPACE/log, i.e., the 
lass of transdu
tions 
omputed by se-quen
es of neuromata of logarithmi
 size equals the 
lass of logarithmi
ally spa
e{boundedtransdu
tions of ITM/As with logarithmi
ally bounded advi
e fun
tions.9



(
) NN-POLY 
orresponds to ITM-PSPACE/poly, i.e., the 
lass of transdu
tions 
omputedby sequen
es of neural nets of polynomial size 
orresponds to the 
lass of polynomiallyspa
e{bounded transdu
tions of ITM/As with polynomially bounded advi
e fun
tions.(d) IFT-EXP equals ITM-PSPACE/exp, i.e. the 
lass of transdu
tions 
omputed by se-quen
es of intera
tive �nite transdu
ers of exponential size equals the 
lass of polynomiallyspa
e{bounded transdu
tions of ITM/As with exponentially bounded advi
e fun
tions.Theorem 3 illustrates the varying degrees of eÆ
ien
y of di�erent 
lasses of 
ognitivetransdu
ers. For instan
e, the family of neural nets of polynomial size has the power of ITM-PSPACE/poly; whereas families of �nite transdu
ers of the same size only have the powerof ITM-LOGSPACE/poly: It also demonstrates the emergen
e of super-Turing power in the
ourse of evolution within sequen
es, due to the fa
t that general 
omputations of ITM/As doposses su
h power.4 From 
ognitive transdu
ers to 
ognitive Turing ma
hinesIn Se
tion 2 
ognitive transdu
ers were introdu
ed to model the signal pro
essing 
apabilitiesof single living organisms intera
ting with their environment. This leaves an aspe
t of livingorganisms open, namely their ability to in
uen
e and modify the environment in whi
h theyoperate. In this se
tion we extend the model to in
orporate it.Consider a 
ognitive transdu
er enhan
ed by a fa
ility that enables it to move aroundin its (potentially in�nite) living environment and to mark the environment in a way that 
anlater be re
ognized again by the transdu
er. The resulting devi
e is 
alled an a
tive 
ognitivetransdu
er. We assume that an a
tive transdu
er 
an store and retrieve information in/fromits environment, similar to a 
ognitive robot system. The question of what 
omputationalabilities are gained in this way, 
an be answered by looking at the versions of a
tive 
ognitivetransdu
ers en
ountered in automata theory.Models of �nite transdu
ers with a two-way input tape whi
h 
an mark 
ells on theirinput tape, have been studied for years in automata theory (
f. [22℄). The ma
hines are 
om-putationally provably more powerful than their non-marking 
ounterparts. When one allows a�nite set of marks that 
an be pla
ed to or removed from a potentially in�nite environment, oneobtains a model equivalent to the intera
tive Turing ma
hine (ITM) des
ribed earlier. Severalfurther 
onditions may be imposed on the way the ma
hine intera
ts with its environment, e.g.to model the bounded delay property that 
ognitive systems often display in their responsebehaviour (
f. [18℄). By suitably formalizing the 
on
epts involved, the following result isimmediate, illustrating on
e more the usefulness of ITMs as ben
hmark for the theory.Theorem 4 A
tive 
ognitive transdu
ers have a 
omputational power equivalent to intera
tiveTuring ma
hines.Theorem 4 shows that 
ognitive transdu
ers indeed a
hieve a jump in 
omputationalpower when they are equipped with sensors that 
an s
an the environment and with e�e
tuatorsby means of whi
h they 
an modify their environment. By gaining the ability to `o�-load' and`re-load' data, individual a
tive 
ognitive transdu
ers (or 
ognitive robots) thus gain the powerof intera
tive Turing ma
hines. In other words, the original �nite-state system turns into a10



system that 
an rea
h a potentially unbounded number of 
on�gurations, by exploiting itsenvironment4. It is 
lear that some types of 
ognitive transdu
ers are more easily adapted toa
tive form than others, but in prin
iple it leads to the appropriate general model of a singleliving organism that we aimed for in Se
tion 2. Using sequen
es as in Se
tion 3, one 
anin
orporate the notion of evolution again. In Se
tion 5 this will be extended to 
ommunitiesof transdu
ers that evolve over time.In his design of the `automati
 ma
hine (a-ma
hine)', now known as the Turing ma-
hine, Turing [13℄ admits that he was motivated by a (human) `
omputer', whi
h in his daysmeant `a person who 
al
ulates'. Su
h a person 
al
ulates with the help of a �nite table (a`program') that is held in the person's head, and further using a (square) paper, a pen
il anda rubber. In a

ordan
e with Turing's motivation, generations of resear
hers working in arti-�
ial intelligen
e and philosophers of mind have believed that the Turing ma
hine as a whole
orresponds to the model of the human `
omputer'. Hodges, Turing's biographer, writes in [5℄:Turing's model is that of a human mind at work. But this is only true to a 
ertain extent: inTuring's model, merely the ma
hine's �nite 
ontrol 
orresponds to the mind of the modeled
al
ulating person. Our previous dis
ussion suggests that in modeling a 
omputing person, onehas to distinguish among three di�erent aspe
ts: the 
omputer's �nite 
ontrol (its `program'),its `sensors, e�e
tuators and motori
 unit' (that enable it to a
tively intera
t with the envi-ronment), and the environment itself (the working area or tape). Theorem 4 shows that whenin addition to the `mind' of the 
omputer one also takes the sensory, e�e
tual and motori

apabilities and the intera
tion with a `rewritable' and potentially in�nite environment intoa

ount, a 
omputationally more powerful model results.5 Communities of a
tive 
ognitive transdu
ersThe �nal step in our exposition is the 
omposition of `arti�
ial living systems' from individ-ual organisms (a
tive 
ognitive transdu
ers) and to show how a Super-Turing 
omputationalpotential 
an arise almost naturally in them. To emphasize the similarity of a
tive 
ognitivetransdu
ers to roboti
 systems we will refer to them as `agents' mostly.Ultimately, a
tive 
ognitive transdu
ers are of interest only in large 
onglomerates,intera
ting like `organisms' or `agents' of individually limited powers. A 
ommunity of a
tive
ognitive transdu
ers (or: a 
ommunity of agents) is a time-varying set of devi
es whi
h atea
h moment 
onsists of �nitely many a
tive 
ognitive transdu
ers of the same type sharingthe same environment. Ea
h transdu
er of the set makes use of a pie
e of its immediateenvironment as its private, potentially unbounded external memory, giving it the 
omputingpower of an intera
tive Turing ma
hine (as stated in Theorem 4). Ea
h transdu
er has its owninput and output port. The ports of all transdu
ers together present the input and outputports of the 
ommunity. The number of these ports varies along with the 
ardinality of the
ommunity. Within the set the transdu
ers are identi�ed by a unique name (or address).The a
tive transdu
ers (agents) 
an 
ommuni
ate by sending their outputs as inputs toother transdu
ers identi�ed by their addresses, or by writing a message into their environment4This is a ni
e argument that qualitatively illustrates e.g. the revolutionary 
ontribution of the developmentof the s
ript to the development of human 
ivilization. Namely, along the lines of the given 
onsiderations, thedevelopment of the s
ript has promoted ea
h literate person's information pro
essing 
apa
ity from that of a�nite-state ma
hine to that of an (intera
tive) Turing ma
hine.11



in a way su
h that it 
an be read by other transdu
ers. One 
an see it as if the agents movein their environment and en
ounter ea
h other randomly, unpredi
tably or intentionally, andex
hange messages. Who en
ounters whom, who will send a message, and the delivery timeof ea
h message is unpredi
table. The idea is to 
apture in the model any reasonable messagedelivery me
hanism among organisms or agents, be it signals in some format, spoken languagein dire
t 
onta
t, snail mail, via mobile phones, the Internet, and so on, depending on theentities that are modeled. Moreover, agents are assumed to be `mortal': they emerge andvanish also unpredi
tably.The des
ription of a 
ommunity of agents at ea
h moment in time is given by the listof names and `programs' of all living agents at that time, and the list of all transient messagesat that time (in
luding the respe
tive senders and addressees, the time of the expeditionof ea
h message, and the message delivery times). Note that in general most of the requiredparameters needed in the des
ription of a 
ommunity at a given time are non-
omputable, sin
ea

ording to our des
ription of how 
ommunities fun
tion they are unpredi
table. Nevertheless,
ommunities 
an be des
ribed by a �nite table at ea
h moment in time, i.e. the des
ription ofa whole 
ommunity at any time is always �nite.For a given 
ommunity and given data, a (potentially in�nite) sequen
e of des
riptionsover time enables us to re
over the evolution of the 
ommunity (its `dynami
s') as a sequen
eof instantaneous des
riptions (
on�gurations) of the 
ommunity. However, the me
hanismsthat `implement' the dynami
s (e.g., the way an agent enters or leaves a 
ommunity, the wayit gets its identity or 
hanges its program) are not part of the model. In [18, 20℄ the followingresult is proved for the 
ase of `real' agents 
ommuni
ating via an Internet-like infrastru
ture.Theorem 5 Communities of agents have a 
omputational power equivalent to intera
tive Tur-ing ma
hines with an advi
e fun
tion whose values grow at most linearly in size with the pro-
essing time.Returning to the 
ontext of arti�
ial living systems, Theorem 5 asserts that a 
ommunityof a
tive 
ognitive transdu
ers has a mu
h greater 
omputing power than just the `sum' ofthe powers of the individual transdu
ers. Here we see the emerging super-re
ursive, thus non-re
ursive 
omputing power arising due to the unpredi
table external information that 
an enterinto a system. Do results like Theorem 5 really mean that the 
orresponding systems 
an solveunde
idable problems? The answer of 
ourse is that they 
annot, unless 
ertain assumptionsare made. In order for these systems to simulate a Turing ma
hine with advi
e, they needa `
ooperating environment'. Its role is to deliver the same information as is o�ered by theadvi
e. Thus the result is of a non-
onstru
tive nature: both the advi
e and the 
orrespondinginputs from the environment exist in prin
iple but there is no algorithmi
 way to obtain them.In pra
ti
e the assumption of the existen
e of external inputs suitable for the solution of a
on
rete unde
idable problem su
h as the Halting Problem (
f. [6℄), is not ful�lled. Hen
e,without su
h `right' inputs, no 
ommunity of 
ognitive transdu
ers will solve an unde
idableproblem.On the other hand, no Turing ma
hine without an advi
e 
ould simulate e.g. the (ex-isting) human so
iety { simply be
ause the so
iety develops in a 
ompletely unpredi
table,non-algorithmi
 way. One 
an say that the 
urrent human so
iety realizes a transdu
tion that,however, emerges somehow `all by itself', by the joint interplay of all members of the so
ietywho intera
t with ea
h other and 
hange their environment and intera
t with it in a 
ompletely12



unpredi
table manner. All members jointly play the role of an `advi
e' { nonetheless the re-spe
tive advi
e keeps emerging on-line, in
rementally, and is `blind', possessing as a wholeno spe
i�
 information pro
essing, or 
omputational intention. The same holds e.g. for thedevelopment of the Internet { it also evolves in a non-algorithmi
 way and therefore 
annot bemodeled by a single 
omputer (without advi
e).Note that due to Theorem 2, both sequen
es of 
ognitive transdu
ers and 
ommunitiesof a
tive 
ognitive transdu
ers have super-Turing 
omputing power. This is a rather surprisingresult, from 
ertain perspe
tives. It means that in `pra
ti
e' with some exaggeration e.g. a
oral 
olony (i.e., a stationary but growing 
on�guration of simple living organisms) has inprin
iple the same 
omputational potential as e.g. a developing, dynami
ally 
hanging humanso
iety. The sour
e of the power of both entities is given by their basi
 
ognitive powers, thepotentially unlimited 
ardinality of the 
ommunity, by their potentially unlimited life span,and by the non-
omputable 
hara
teristi
s of the 
ommunity at any given time, along withthe unpredi
table shape of the 
olony or the unpredi
table intera
tion among so
iety members(leading to non-uniformity of the resulting system). The di�eren
e between the two is, of
ourse, in their 
omputational eÆ
ien
y, as 
aptured by Theorem 3. Again, theoreti
ally, tokeep pa
e with a polynomially fast developing human so
iety the 
oral 
olony should growexponentially, as seen from Theorem 3 part (d).What remains is to answer Penrose's question from the introdu
tion of this paper. Con-sider the information 
omputed and stored in the environment in a long run by a 
ommunity ofagents. By virtue of Theorem 5 this is information that 
annot be 
omputed 
lassi
ally. Now,sin
e ea
h member of the 
ommunity has a

ess to this information, this information e�e
tivelyplays the role of an advi
e and, due to this, in prin
iple ea
h member of the 
ommunity gainsa super-Turing 
omputing power.6 Con
lusionThe results in this paper 
an be seen as appli
ations of non-
lassi
al 
omputability theory toarti�
ial living systems. The main result explaining the emergen
e of a super-Turing 
om-puting potential in su
h systems justi�es the approa
h, and 
on
retely proves what is oftenspe
ulated on in informal explanations (
f.[23℄ or, more re
ently [2℄). It also points to thein
reasing role that 
omputer s
ien
e will play in problems related to understanding the na-ture of the emergen
e of the me
hanisms of life and of intelligen
e in parti
ular (
f. [26℄). Theabove results also point to quite realisti
 instan
es in whi
h the 
lassi
al paradigm of 
lassi
alTuring ma
hines as the generi
 model of all 
omputers, 
apable of 
apturing all algorithmi

omputations, is 
learly insuÆ
ient. It appears that the time has 
ome to re
onsider thisparadigm and repla
e it by its extended version { viz. intera
tive Turing ma
hines with advi
eor an equivalent of it. Our results have also shown that this extension amounts to 
onsideringintera
tive, evolutionary s
enarios where �nite agents operating the 
omputational devi
es athand play the role of advi
e. For a more extended dis
ussion of the related issues, see [18℄ or[21℄.
13
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