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Abstract

The computational potential of artificial living systems can be studied without knowing
the algorithms that govern their behavior. Modeling single organisms by means of so-
called cognitive transducers, we will estimate the computational power of AL systems by
viewing them as conglomerates of such organisms. We describe a scenario in which an
artificial living (AL) system is involved in a potentially infinite, unpredictable interaction
with an active or passive environment, to which it can react by learning and adjusting
its behaviour. By making use of sequences of cognitive transducers one can also model
the evolution of AL systems caused by ‘architectural’ changes. Among the examples are
‘communities of agents’, i.e. by communities of mobile, interactive cognitive transducers.
Most AL systems show the emergence of a computational power that is not present at
the level of the individual organisms. Indeed, in all but trivial cases the resulting systems
possess a super-Turing computing power. This means that the systems cannot be simulated
by traditional computational models like Turing machines and may in principle solve non-
computable tasks. The results are derived using non-uniform complexity theory.

“What we can do is understand some of the general principles
of how living things work, and why they exist at all.”
From: R. Dawkins, The Blind Watchmaker, 1986.

1 Introduction

A tantalizing question in computational mind modeling is the following: if one accepts that the
mind can be modeled by computational means, how can it be explained that mathematicians
are often able to prove theorems whose truth or falsity cannot be proved algorithmically within
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a given formal system (e.g. corresponding to a computer that simulates the mind) due to
Godel’s incompleteness theorem. In an extensive discussion of this problem, R. Penrose [10]
conjectured that there must be some so far unknown faculty of the brain (sometimes, even in
Turing’s original work [14], called “intuition”) that gives it a non-computable, non-algorithmic,
“super-Turing” power in some cases.

A similar, less straightforwardly formalizable question concerns the emergent behavior of
societies, or colonies, of living organisms: what is the nature of the (presumably computational)
mechanism behind the complex behavior of such societies that emerges, given the often far
simpler behavior of the individual organisms? What is the computational potential of the
resulting system as an information processing entity?

In this paper we offer a plausible explanation of this phenomenon in the realm of artificial
living (AL) systems. We will describe a reasonable computational scenario that shows that
the ability to surpass the computational limits of traditional Turing machines can emerge in
non-uniformly evolving families or communities of far simpler computational devices, viz. finite
transducers. The resulting AL systems will be said to posses a super-Turing computing power if
and only if they can perform computational tasks that cannot be achieved by classical means,
making use of the computational mechanism of standard Turing machines or its equivalents.
The computational scenario that we describe originates from recent considerations in non-
uniform complexity theory.

The plan of the paper is as follows. First, in Section 2 we introduce the basic tool
for modeling a single living organism — an interactive cognitive transducer seen as a finite
discrete-state computational device. In Section 3 we model the evolution of such devices by
means of potentially infinite sequences of cognitive transducers of increasing size. We show that
the resulting “families” possess super-Turing computing power, using basic notions from non-
uniform complexity theory. In Section 4 we show that so-called active cognitive transducers,
which can move in an interactive environment and modify it at will, gain the computing power
equivalent to that of standard (interactive) Turing machines. Finally, in Section 5 we consider
AL systems composed of evolving communities of communicating active cognitive transducers.
We will show a ‘super-Turing computing power’ can indeed emerge in such systems.

All the above mentioned results are based on results from non-uniform computational
complexity theory (cf. [1]) and some results recently proved by the authors. Our main aim
in the present paper is to interpret the results in terms of cognitive and evolutionary systems,
so as to shed new light on the computational potential of the respective systems. Results
are mostly quoted and not proved here, as it is their interpretation that presents the main
contribution of the present paper.

2 Cognitive transducers

When living organisms are modeled in order to study their computing potential, it is important
to keep in mind that the computational power of a model can be studied without actually
knowing the concrete algorithms that are used by the organisms in concrete situations. We
only need to know the set of elementary actions which can be performed in the given model
and the scenario of its interaction with its environment, i.e. what data can be input, whether
and how this data depends on previous outputs, whether data can be “off-loaded” to the
environment, and so on.



Next, one has to take into account that there is a crucial difference between the re-
quirements placed upon a model in case one wants to simulate the behaviour or actions of the
modeled (living) organism, and the requirements in case one merely wants to investigate its
computing potential. In the former case the choice of a more powerful model than is necessary
is acceptable since this can simplify the task of simulation. In the latter case the same choice
would lead to an overestimation of the computing potential of the organism. Thus, in the
latter case the model must neither be too powerful nor too weak: it must exactly capture the
facilities that constitute the essence of the capabilities of the organism to compute.

2.1 Computational scenarios

Fortunately, in the latter case we are in a much better situation than one may think. Despite
their unprecedented complexity, when measured in terms of the complexity of human artifacts,
it is commonly believed that each living organism can enter into only a finite albeit in most
cases astronomic — number of distinguishable internal configurations. We cannot afford to give
exhaustive arguments in favor of this fact here. Instead, we simply postulate for the purposes of
this paper that a living organism interacting with its environment can at each time be modeled
by a finite discrete-state machine. In the sequel we will call any finite discrete-state machine
that is used in this context a cognitive transducer.

Finite transducers as known from automata theory are the paradigmatic example of
cognitive transducers. Other examples of cognitive transducers are discrete neural (cf. [9],
[24]) or neuroidal [16] nets, neuromata [11] and various other computational models of the
brain (cf. [24], [25]). A more precise definition of a cognitive transducer will be given in
definition 1. If the modeled organism is growing and/or evolving in time, while adapting itself
to its environment, our postulate remains unaffected. The evolution of the organism, and thus
the adaptive mechanism that underlies it, will be captured by making use of sequences of finite
discrete-state machines in Section 3.

A suitable model has to capture the fundamental difference between the standard sce-
nario of computations by finite transducers or Turing machines the non-standard scenario of
‘computations’ by a cognitive transducer. In the former case it is assumed that a finite se-
quence of inputs is known and given, prior to the start of the computation. No changes are
allowed after the computation has begun, not even in the inputs ‘further down’ that are not
yet read!. In this classical scenario, if the finite transducer or Turing machine is set to work
on a next sequence of (new) input data, it must start again from the same initial configuration
as in the previous run. No transfer of information from past runs to future runs takes place.
Under this computational scenario, the respective machines are prevented from learning from
past experience.

The computational scenario of cognitive transducers is quite different from the classical
pattern. It takes after living organisms, interacting with their environment, that process signals
(inputs) as these are delivered by their sensory systems without interruption. The inputs simply
‘appear’, in on-line manner and unexpectedly and possibly as the answer to earlier responses of
the organism. Moreover, the inputs stream into the organism’s cognitive system in parallel via
numerous channels and are also processed in a parallel manner. The number of input channels

!Traditionally also on-line computations are considered, in which input elements are supplied as the compu-
tation goes. Even in this case there is normally no feedback or learning mechanism taken into account.



depends on the complexity (or size) of the organism at hand. As a rule, the input signals must
be processed in real-time?. In most cases, the original inputs are no longer available after they
are ‘read’. In principle the ongoing ‘computation’ never terminates and is practically limited
only by the lifespan of the organism. Given the ability of (especially complex) organisms to
modify their environment or communicate with other organisms, the inputs may depend on
their previous actions or the reactions of other organisms. In this way the systems gain a
potential ability to ‘learn’.

When applied to cognitive transducers, the resulting computational scenario is called
interactive computing. However, aside form being a scenario for computing, the scenario allows
for perpetual interactive adaptation, in the following sense. If, to an outside observer, the same
‘situation’ presents itself in terms of current inputs to an organism, then the organism may
react differently from the past, due to the fact that its reactions depend on the whole history
of inputs seen thus far. Thus, although a (finite) cognitive transducer may display only a finite
number of reactions at any one time, over infinite input streams (the ordering of) its reactions
can vary in an infinite number of ways.

2.2 Modeling a single organism

In order to obtain a suitable computational model of a single living organism, we follow the
paradigm of automata theory [6]. Under the classical scenario, finite transducers like Mealy
automata would be used: they are designed for processing finite sequences of symbols written on
finite ‘tapes’ and, with every transition between states triggered by some input, a fixed output
is associated. Under the interactive scenario, we consider interactive finite transducers (IFTs),
a generalization of Mealy automata, as our basic organism model. IFTs process potentially
infinite strings (called streams) of input symbols and produce a potentially infinite stream of
output symbols, symbol after symbol. More importantly, we assume that there is no input
tape: the transducer obtains (‘reads’) the inputs as they come in via a single input port.
Likewise, we assume that the transducer produces outputs via a single output port. There is
no way to return to inputs once they read, except when they are stored internally. An IFT
follow a fixed finite, Mealy-type transition function. No adaptive and/or evolutionary abilities
are taken into account yet; this follows in Section 3.

We assume throughout that the input and output symbols are taken from the alphabet
¥ ={0,1,A}. The interpretation of a symbol A appearing at a port is that ‘presently, there is
neither 0 nor 1 appearing at this port’. Let 3X“ denote the set of all infinite streams over o. Any
IFT realizes a transduction ¢ that transforms streams from >“ into similar output streams.
The X’s are not suppressed in a transduction. The study of cognitive transducers is basically
the study of the transductions that they realize.

Clearly, instead of IFTs one could consider any other finite-state device such as discrete
neural (cf. [9]) or neuroidal (cf. [16]) nets, neuromata [11], and so on. The latter devices, which
read their input in parallel, must be modified so as to process an infinite input stream in blocks
that correspond to the number of input ports that they have. Moreover, in order to transfer
information (if any) from the previous run to the current one, we assume that they start the
processing of the next block of inputs in the configuration which they reached after processing

2This seems to be a necessary condition for the emergence of at least a rudimentary form of consciousness,
cf. [3], [27].



of the previous block. The various models are called non-uniform because they are configured
differently, possibly non-computably, depending on the size of the input blocks they process.
The following result from [28] shows that these different models have the same computational
power.

Theorem 1 . For transductions ¢ : X% — X% the following are equivalent:
(a) ¢ is realized by an interactive finite transducer.
(b) ¢ is realized by a neuromaton.
(c) ¢ is realized by a discrete neural net.

(d) ¢ is realized by a discrete neuroidal net.

This theorem motivates the following, more precise definition of the class of cognitive trans-
ducers that we will use throughout.

Definition 1 . The class CT of cognitive transducers is inductively defined as follows:
(a) interactive finite transducers (IFTs) are in CT, and

(b) any device computationally equivalent to IFTs is in CT.

Theorem 1 expresses that the basic types of cognitive transducers are all equivalent.
In complexity theory numerous other models of non-uniform computation are known — such
as combinatorial or threshold circuits and many other types of neural nets, especially the
biologically motivated ones (cf. [8]). Nonetheless, the computational equivalence of the respec-
tive models indicates that computational cognition is a rather robust phenomenon that can in
principle be realized by a variety of computational models which are equivalent to IFTs.

We say ‘in principle’ because in practice much will depend upon the efficiency of such
models. This might also be the case for artificial consciousness (cf. [3] for a recent report on
the status quo in this field). For instance, in [27] an algorithmic principle for the emergence
of consciousness in artificial cognitive systems is sketched. In the simplest case consciousness
takes the role of a control mechanism that, based on feed-back information from the sensors of
a system, verifies the correct realization of motoric actions to which orders have been issued. If
these actions are not performed in accordance with these orders, the consciousness will realize it
and take care of the appropriate remedy. In order to fulfill this role, consciousness must operate
in real time w.r.t. the speed of the system. The system must react fast enough to be able to
recognize the erroneous realization of its orders and take the appropriate measures in time so
as to give the opportunity for realizing rescue actions. In practice such requirements disqualify
‘slow’ systems and support the specialized, fast or ‘economical’ solutions. For example, it is
known that there are cognitive tasks that can be realized by a single biological neuron over n
inputs whereas the equivalent neural nets require a quadratic number of standard neurons [8].



2.3 Learning potential

Cognitive transducers embody two features of computing that are not met under the classical
computing scenario: interactivity, and infinity of operation. The interactivity enables one
to describe (albeit a posteriori) the interaction between the transducer and its environment:
inputs succeeding to some outputs may be reactions to these outputs. The infinity of operation
refers to the property that a cognitive transducer is ‘always on’ and never stops processing
inputs.

Although the learning potential of IFTs is not quite obvious, it can be easily observed
e.g. in the case of neuroids [16]. Namely, they can be seen as ‘programmable neurons’ since this
ability was their primary design goal. It appears that for understanding the cognitive abilities
of organisms, the ‘atomic’ level of individual neurons or state-transitions of a finite transducer
is too low. Thus higher-level models are sought (still equivalent to the elementary model of
finite transducers) in which basic cognitive abilities, such as a potential of detecting frequently
occurring patterns in a sequence of inputs, form the basic set of operations. Such a basic set
of elementary operations of a cognitive transducer is proposed in [16], [25] and [27], in order
to obtain the potential for the development of cognitive abilities via learning. Nevertheless, as
mentioned above, the exact type of learning algorithm is quite unimportant for determining
the computational power of the respective devices at a global level. Of course, due to their
simplicity, cognitive transducers themselves do not posses universal computing power.

3 Sequences of cognitive transducers

So far we do not have any means to model the evolution of cognitive transducers. In this section
we will elaborate on this aspect and introduce a framework in which adaptive behaviour and
evolution can be facilitated. The framework will almost naturally achieve the potential of
universal computing power.

3.1 Evolution through sequences

In order to support the evolvability property, we consider sequences of IFTs as introduced in
[21]. This leads to a framework in which many more complicated transductions can be realized
and the dependence of the computational efficiency on the size of the underlying devices is
revealed. We first give a definition and then proceed to explain the computational scenario of
sequences. Let I/ be some universe of possible states.

Definition 2 Let A = {A1, Ay, ...} be a sequence of IFTs over ¥, and let Q; C U be the set
of states of A;. Let G = {G1,Ga,...} be a sequence of nonempty finite sets of U such that
G; C Q; and G; C Gyyq, fori > 1. Then A with G is called a sequence of IFTs with global
states. We will often omit G from explicit mention.

For a sequence A, there need not exist an algorithmic way to compute the description of the
A;, given 4. Thus, the only way to describe the sequence may be to enumerate all its members.
The set |, G; C U is called the set of global states of A. We always assume sequences of IFTs
to have global states. We will often omit GG from explicit mention when referring to a sequence.



On an infinite stream of inputs over X, a sequence A computes as follows. At the start,
Aq is the active transducer. It reads input and produces output for a while, until it passes
control to Ay. In general, if A; is the current active transducer, it performs its computation
using the local states from the set @Q; — G; (which is non-empty). If an input symbol causes
A; to enter a global state g € G;, then A; stops processing and passes control to A;;q1. The
input stream is re-directed to the input port of A;y 1, A;1q starts in state g € G;41 and it
continues processing the in-coming inputs as the new active transducer, starting with the next
input symbol.

Thus, in effect the input stream is processed by transducers with increasing index. In
a sequence of IFTs with global states, the next transducer can be seen as a ‘next generation’
transducer. This models the property of evolution. The ‘transfer’ of control to the next
transducer is invoked by the transducer currently processing the input. The next transducer
continues from the same state in which the previous transducer stopped, but with a possibly
‘richer’ set of internal configurations to work with. This mechanism enables the transfer of
information from the previous stage, without requiring further detail. Note that in finite time
only a finite part of a sequence of IF'Ts can become active.

Instead of sequences of transducers, one may also consider single transducers that
‘evolve’, with the transducer acting as A; if and only if A; € A is the currently active trans-
ducer. That is, the transition function of the cognitive at hand is the same as that of A; as long
as A; is active. Of course, as the evolution proceeds, the condition concerning the global states
must still be maintained. The resulting type of transducer may appropriately be called an
evolving interactive finite transducer. For our purposes, the framework of sequences will prove
more fruitful. In the context of organisms, the evolution modeled by a sequence of cognitive
transducers corresponds to the evolution of creatures either along an idealized (Darwinian)
evolutionary scale, or along the line of their life experiences.

A sequence of IFTs is called polynomially bounded if and only if there is a polynomial p
such that for every i > 1, the size of A; is at most p(i). The classes of transductions realized by
sequences of IFTs with global states and polynomially or exponentially bounded size will be
denoted as IFT-POLY or IFT-EXP, respectively. We will also consider the classes NA-LOG:
the transductions realized by sequences of neuromata [8] of logarithmic size, and NN-POLY:
the transductions realized by sequences of standard recurrent, or cyclic, discrete neural nets of
polynomial size reading their inputs in parallel.

It is clear that, similar to sequences of IFTs, one can design sequences of any type of
devices from the class of cognitive transducers. Given their computational equivalence, one can
speak of sequence of cognitive transducers without specifying exactly which kind of cognitive
transducers is used. To say more about the computational potential of sequences, we have to
introduce a little bit of complexity theory.

3.2 Benchmarking by interactive Turing machines

Our main tool for characterizing the computational efficiency of sequences of cognitive trans-
ducers are interactive Turing machines with advice. We will first describe the model of an
interactive Turing machine (ITM). The notion of ‘advice’ will be added subsequently.

Like cognitive transducers, ITMs are I/O-oriented machines that allow for an infinite,



never ending exchange of data with their environment®. As before, the input and output
symbols are taken from the alphabet ¥ = {0,1, A} and we assume that in each step an ITM
reads a symbol from its input port and writes a symbol to its output port. We normally
require that an I'TM reacts to any non-empty input by producing a non-empty output symbol
within finite time after receiving the input: the interactiveness or finite delay condition. The
condition ensures that if an input stream has an infinite number of non-empty symbols, then
so does the output stream. I'TMs differ from cognitive transducers in one important respect:
they have the interior structure of a Turing machine and thus are (in principle) infinite state.

Definition 3 A mapping ¢ : ¥ — X% is called the interactive transduction computed by an
ITM T if and only if for all x,y € X%, ¢(x) =y if and only if T produces output 'y on input X.

Inspired by Wegner’s seminal paper [23], the computational power of interactive Turing
machines was studied in [17, 19]. Roughly speaking, the theory leads to a generalization of
standard computability theory to the case of infinite computations, recently referred to as a
‘theory of super-recursive algorithms and computation’ in [2]. The results from [17, 19] indicate
that merely adding interactive properties and allowing endless computations does not break
the computational barrier of Turing machines. The resulting devices are not computationally
more powerful than classical Turing machines because each of their computational steps is still
Turing-computable from the current state and input: interactive machines simply compute
something different from the classical machines — namely infinite transductions. Indepen-
dent studies of the computational power of interaction, under a slightly different framework,
were initiated also by Wegner and several other authors (see e.g. [4]). It appears that a new
quality of computations is only brought into the computing behaviour of ITMs by letting
non-predictability enter into the game (cf. [20]).

The aspect of unpredictability (viz. of program changes) can be captured using the
notion of ‘advice’ as studied in nonuniform computational complexity theory (cf. [7, 1]). Advice
functions allow the insertion of ‘non-computable’ external information into the course of a
computation, in this way leading to a non-uniform operation over time. The resulting machines
are called interactive Turing machines with advice (ITM/As).

Definition 4 An advice function is a function f : ZT — ¥*. An advice is called S(n)-bounded
if for all n, the length of f(n) is bounded by S(n).

A classical TM with advice, operating on an input of size n, is allowed to call for the value of its
advice function during the computation only on the argument n. An ITM/A can call its advice
at time ¢ only for arguments ¢; with #; < ¢. To realize such a call an ITM/A is equipped with
a separate advice tape and a distinguished advice state. By writing the value of the argument
t1 on the advice tape and by entering into the advice state at time ¢ > #1, the value of f(#;)
is assumed to appear on the advice tape in a single step. By this action, the original contents
of the advice tape is completely overwritten. Note that no specific computability assumptions
are made for advice functions. As a result, the mechanism of advice is very powerful and can
provide both classical TMs with advice and ITM/As with highly non-recursive ‘assistance’.
An important fact about ITM/As is that they are provably more powerful than ITM’s without

#Turing machines that operate on infinite inputs, so-called w—Turing machines, have been studied extensively
before cf. [12], but the interactive features described here are of more recent origin.



advice, i.e., ITMs with advice can compute transductions that I'TMs without advice cannot.
The result follows from a countability argument, and examples can be constructed by a careful
diagonalization proof, see [20].

The computational power of sequences of IFTs, and thus of ‘evolving cognitive trans-
ducers’, is linked the theory of non-uniform interactive computing by means of the following
fundamental result from [21].

Theorem 2 A transduction ¢ : X% — X% is realized by a sequence of IFTs if and only if it is
realized by an ITM/A.

3.3 Classifications of cognitive transducers

Using sequences of IFTs as the basic tool for modeling evolving families of interacting organ-
isms, Theorem 2 opens the way to a number of related results that enable a classification of
the ‘information processing power’ of various types of artificial living systems.

In order to state some of the pertinent results here, we will consider advice functions
whose values are bounded in length by known (computable) functions of ¢, especially by poly-
nomially or even logarithmically bounded functions. For the definition of complexity measures
for ITM/As, see [19]. Let ITM-C denote the class of transductions computed by ITMs of
C-bounded complexity.

Definition 5 The class ITM-C/F consists of the transductions ¢ computed by interactive
Turing machines from ITM-C using an advice function from F.

Common choices for ITM-C that we consider here are: ITM-LOGSPACE (deterministic loga-
rithmic space), ITM-PTIME (deterministic polynomial time), and ITM-PSPACE (polynomial
space). Common choices for F are log (logarithmically bounded advice functions) and poly
(polynomially bounded advice functions).

In non-uniform computational complexity theory and in the theory of neurocomputing,
relations between the complexity classes of Turing machines with advice and various instances
of neural networks are studied (cf. [9]). These results can be extended to the interactive
case [21]. To circumvent the different input-output conventions in some cases, we call two
complexity classes ‘equal’ only when the devices corresponding to both classes read their inputs
sequentially; otherwise, when the devices in one class read their inputs in parallel, we say that
they ‘correspond’.

Theorem 3 ([21]) The following relations hold:

(a) TFT-POLY equals ITM-LOGSPACE/poly, i.e., the class of transductions computed by
sequences of interactive finite transducers of polynomial size equals the class of loga-
rithmically space—bounded transductions of ITM/As with polynomially bounded advice
functions.

b) NA-LOG equals ITM-LOGSPACE/log, i.e., the class of transductions computed by se-
q 9, ) ) p Y
quences of neuromata of logarithmic size equals the class of logarithmically space—bounded
transductions of ITM/As with logarithmically bounded advice functions.



(¢) NN-POLY corresponds to ITM-PSPACE /poly, i.e., the class of transductions computed
by sequences of neural nets of polynomial size corresponds to the class of polynomially
space—bounded transductions of ITM/As with polynomially bounded advice functions.

(d) IFT-EXP equals ITM-PSPACE/exp, i.e. the class of transductions computed by se-
quences of interactive finite transducers of exponential size equals the class of polynomially
space—bounded transductions of ITM/As with exponentially bounded advice functions.

Theorem 3 illustrates the varying degrees of efficiency of different classes of cognitive
transducers. For instance, the family of neural nets of polynomial size has the power of I'TM-
PSPACE/poly, whereas families of finite transducers of the same size only have the power
of ITM-LOGSPACE /poly. It also demonstrates the emergence of super-Turing power in the
course of evolution within sequences, due to the fact that general computations of ITM/As do
posses such power.

4 From cognitive transducers to cognitive Turing machines

In Section 2 cognitive transducers were introduced to model the signal processing capabilities
of single living organisms interacting with their environment. This leaves an aspect of living
organisms open, namely their ability to influence and modify the environment in which they
operate. In this section we extend the model to incorporate it.

Consider a cognitive transducer enhanced by a facility that enables it to move around
in its (potentially infinite) living environment and to mark the environment in a way that can
later be recognized again by the transducer. The resulting device is called an active cognitive
transducer. We assume that an active transducer can store and retrieve information in/from
its environment, similar to a cognitive robot system. The question of what computational
abilities are gained in this way, can be answered by looking at the versions of active cognitive
transducers encountered in automata theory.

Models of finite transducers with a two-way input tape which can mark cells on their
input tape, have been studied for years in automata theory (cf. [22]). The machines are com-
putationally provably more powerful than their non-marking counterparts. When one allows a
finite set of marks that can be placed to or removed from a potentially infinite environment, one
obtains a model equivalent to the interactive Turing machine (ITM) described earlier. Several
further conditions may be imposed on the way the machine interacts with its environment, e.g.
to model the bounded delay property that cognitive systems often display in their response
behaviour (cf. [18]). By suitably formalizing the concepts involved, the following result is
immediate, illustrating once more the usefulness of I'TMs as benchmark for the theory.

Theorem 4 Active cognitive transducers have a computational power equivalent to interactive
Turing machines.

Theorem 4 shows that cognitive transducers indeed achieve a jump in computational
power when they are equipped with sensors that can scan the environment and with effectuators
by means of which they can modify their environment. By gaining the ability to ‘off-load” and
‘re-load’ data, individual active cognitive transducers (or cognitive robots) thus gain the power
of interactive Turing machines. In other words, the original finite-state system turns into a
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system that can reach a potentially unbounded number of configurations, by exploiting its
environment®. It is clear that some types of cognitive transducers are more easily adapted to
active form than others, but in principle it leads to the appropriate general model of a single
living organism that we aimed for in Section 2. Using sequences as in Section 3, one can
incorporate the notion of evolution again. In Section 5 this will be extended to communities
of transducers that evolve over time.

In his design of the ‘automatic machine (a-machine)’, now known as the Turing ma-
chine, Turing [13] admits that he was motivated by a (human) ‘computer’, which in his days
meant ‘a person who calculates’. Such a person calculates with the help of a finite table (a
‘program’) that is held in the person’s head, and further using a (square) paper, a pencil and
a rubber. In accordance with Turing’s motivation, generations of researchers working in arti-
ficial intelligence and philosophers of mind have believed that the Turing machine as a whole
corresponds to the model of the human ‘computer’. Hodges, Turing’s biographer, writes in [5]:
Turing’s model is that of a human mind at work. But this is only true to a certain extent: in
Turing’s model, merely the machine’s finite control corresponds to the mind of the modeled
calculating person. Our previous discussion suggests that in modeling a computing person, one
has to distinguish among three different aspects: the computer’s finite control (its ‘program’),
its ‘sensors, effectuators and motoric unit’ (that enable it to actively interact with the envi-
ronment), and the environment itself (the working area or tape). Theorem 4 shows that when
in addition to the ‘mind’ of the computer one also takes the sensory, effectual and motoric
capabilities and the interaction with a ‘rewritable’ and potentially infinite environment into
account, a computationally more powerful model results.

5 Communities of active cognitive transducers

The final step in our exposition is the composition of ‘artificial living systems’ from individ-
ual organisms (active cognitive transducers) and to show how a Super-Turing computational
potential can arise almost naturally in them. To emphasize the similarity of active cognitive
transducers to robotic systems we will refer to them as ‘agents’ mostly.

Ultimately, active cognitive transducers are of interest only in large conglomerates,
interacting like ‘organisms’ or ‘agents’ of individually limited powers. A community of active
cognitive transducers (or: a community of agents) is a time-varying set of devices which at
each moment consists of finitely many active cognitive transducers of the same type sharing
the same environment. KEach transducer of the set makes use of a piece of its immediate
environment as its private, potentially unbounded external memory, giving it the computing
power of an interactive Turing machine (as stated in Theorem 4). Each transducer has its own
input and output port. The ports of all transducers together present the input and output
ports of the community. The number of these ports varies along with the cardinality of the
community. Within the set the transducers are identified by a unique name (or address).

The active transducers (agents) can communicate by sending their outputs as inputs to
other transducers identified by their addresses, or by writing a message into their environment

4This is a nice argument that qualitatively illustrates e.g. the revolutionary contribution of the development
of the script to the development of human civilization. Namely, along the lines of the given considerations, the
development of the script has promoted each literate person’s information processing capacity from that of a
finite-state machine to that of an (interactive) Turing machine.
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in a way such that it can be read by other transducers. One can see it as if the agents move
in their environment and encounter each other randomly, unpredictably or intentionally, and
exchange messages. Who encounters whom, who will send a message, and the delivery time
of each message is unpredictable. The idea is to capture in the model any reasonable message
delivery mechanism among organisms or agents, be it signals in some format, spoken language
in direct contact, snail mail, via mobile phones, the Internet, and so on, depending on the
entities that are modeled. Moreover, agents are assumed to be ‘mortal’: they emerge and
vanish also unpredictably.

The description of a community of agents at each moment in time is given by the list
of names and ‘programs’ of all living agents at that time, and the list of all transient messages
at that time (including the respective senders and addressees, the time of the expedition
of each message, and the message delivery times). Note that in general most of the required
parameters needed in the description of a community at a given time are non-computable, since
according to our description of how communities function they are unpredictable. Nevertheless,
communities can be described by a finite table at each moment in time, i.e. the description of
a whole community at any time is always finite.

For a given community and given data, a (potentially infinite) sequence of descriptions
over time enables us to recover the evolution of the community (its ‘dynamics’) as a sequence
of instantaneous descriptions (configurations) of the community. However, the mechanisms
that ‘implement’ the dynamics (e.g., the way an agent enters or leaves a community, the way
it gets its identity or changes its program) are not part of the model. In [18, 20] the following
result is proved for the case of ‘real’ agents communicating via an Internet-like infrastructure.

Theorem 5 Communities of agents have a computational power equivalent to interactive Tur-
ing machines with an advice function whose values grow at most linearly in size with the pro-
cessing time.

Returning to the context of artificial living systems, Theorem 5 asserts that a community
of active cognitive transducers has a much greater computing power than just the ‘sum’ of
the powers of the individual transducers. Here we see the emerging super-recursive, thus non-
recursive computing power arising due to the unpredictable external information that can enter
into a system. Do results like Theorem 5 really mean that the corresponding systems can solve
undecidable problems? The answer of course is that they cannot, unless certain assumptions
are made. In order for these systems to simulate a Turing machine with advice, they need
a ‘cooperating environment’. Its role is to deliver the same information as is offered by the
advice. Thus the result is of a non-constructive nature: both the advice and the corresponding
inputs from the environment exist in principle but there is no algorithmic way to obtain them.
In practice the assumption of the existence of external inputs suitable for the solution of a
concrete undecidable problem such as the Halting Problem (cf. [6]), is not fulfilled. Hence,
without such ‘right’ inputs, no community of cognitive transducers will solve an undecidable
problem.

On the other hand, no Turing machine without an advice could simulate e.g. the (ex-
isting) human society — simply because the society develops in a completely unpredictable,
non-algorithmic way. One can say that the current human society realizes a transduction that,
however, emerges somehow ‘all by itself’, by the joint interplay of all members of the society
who interact with each other and change their environment and interact with it in a completely
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unpredictable manner. All members jointly play the role of an ‘advice’ — nonetheless the re-
spective advice keeps emerging on-line, incrementally, and is ‘blind’, possessing as a whole
no specific information processing, or computational intention. The same holds e.g. for the
development of the Internet it also evolves in a non-algorithmic way and therefore cannot be
modeled by a single computer (without advice).

Note that due to Theorem 2, both sequences of cognitive transducers and communities
of active cognitive transducers have super-Turing computing power. This is a rather surprising
result, from certain perspectives. It means that in ‘practice’ with some exaggeration e.g. a
coral colony (i.e., a stationary but growing configuration of simple living organisms) has in
principle the same computational potential as e.g. a developing, dynamically changing human
society. The source of the power of both entities is given by their basic cognitive powers, the
potentially unlimited cardinality of the community, by their potentially unlimited life span,
and by the non-computable characteristics of the community at any given time, along with
the unpredictable shape of the colony or the unpredictable interaction among society members
(leading to non-uniformity of the resulting system). The difference between the two is, of
course, in their computational efficiency, as captured by Theorem 3. Again, theoretically, to
keep pace with a polynomially fast developing human society the coral colony should grow
exponentially, as seen from Theorem 3 part (d).

What remains is to answer Penrose’s question from the introduction of this paper. Con-
sider the information computed and stored in the environment in a long run by a community of
agents. By virtue of Theorem 5 this is information that cannot be computed classically. Now,
since each member of the community has access to this information, this information effectively
plays the role of an advice and, due to this, in principle each member of the community gains
a super-Turing computing power.

6 Conclusion

The results in this paper can be seen as applications of non-classical computability theory to
artificial living systems. The main result explaining the emergence of a super-Turing com-
puting potential in such systems justifies the approach, and concretely proves what is often
speculated on in informal explanations (cf.[23] or, more recently [2]). It also points to the
increasing role that computer science will play in problems related to understanding the na-
ture of the emergence of the mechanisms of life and of intelligence in particular (cf. [26]). The
above results also point to quite realistic instances in which the classical paradigm of classical
Turing machines as the generic model of all computers, capable of capturing all algorithmic
computations, is clearly insufficient. It appears that the time has come to reconsider this
paradigm and replace it by its extended version — viz. interactive Turing machines with advice
or an equivalent of it. Our results have also shown that this extension amounts to considering
interactive, evolutionary scenarios where finite agents operating the computational devices at
hand play the role of advice. For a more extended discussion of the related issues, see [18] or
[21].
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