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Abstract

Complicated control systems are used in many safety critical applications,
such as in cars and airplanes. Due to the nature of these systems verification
can be very difficult to do analytically or algorithmically. The only feasi-
ble analysis and verification method is often simulation. The generation of
good test cases that can expose flaws in models of the system is, therefore,
of great importance. In this paper we investigate the use of optimisation
methods for finding such test cases automatically. For this purpose we give
a language to express assertions in these systems, as well as a translation of
the assertions to a form suitable for optimisation. We also discuss different
ways to generate the input signals for the system to maximise performance of
the optimisation. To evaluate the approach, we provide a case study demon-
strating that optimisation methods are beneficial for investigating properties
of models of control systems.

Keywords: Control Systems, Simulation, Optimisation, Automated Vali-
dation, Testing
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1 Introduction

Complex control systems are used in everything from home entertainment
systems to cars and airplanes. Since control systems are common in safety
critical applications their correctness is very important for the safety and
reliability. Control systems are often hybrid systems with both continu-
ous components and discrete control logic. In some cases properties about
these types of systems can be proved analytically or algorithmically veri-
fied. However, many non-linear systems cannot be analyzed in this manner
and, therefore, the only feasible verification and analysis method is simula-
tion. Hence, ensuring that a control system functions correctly can be very
difficult.

Simulink [10] is a graphical modelling language from MathWorks inc.
that has become popular for simulating and analysing dynamic systems.
The Simulink framework allows the developer to graphically model dynamic
systems using a large library of functional blocks. Models can then be sim-
ulated in order to investigate their behaviour. Simulink has been used suc-
cessfully for developing, among other things, control systems for cars [9, 10]
and airplanes [9, 10].

In order to gain confidence that the control system under development
functions correctly, we model the system in Simulink and show that certain
properties in the model holds. We use assertions to express these proper-
ties of the model we want to verify. However, it is not feasible to test the
validity of the assertions for all possible inputs and therefore suitable test
values have to be chosen carefully. We propose a method for black-box test-
ing of Simulink models where we try to optimise the test input in order to
find test cases that expose flaws in the systems. The object function for
the optimisation is chosen in such a manner that it approaches the optimum
the closer to a false assertion the system is. The optimisation method then
enables efficient automatic search for flaws in the system. If no assertion
violations are found greater confidence in the validity of the Simulink model
can be achieved. To evaluate the performance of the testing method we pro-
vide an example and a case study where we investigate how the optimisation
method compares to random generation of test cases for finding violations
of assertions.

In Section 2 we present related work. Matlab and Simulink are then
presented in Section 3. A description of assertions and their translation to a
form suitable for optimisation is given in Section 4. In Section 5 the testing
methodology is then presented. A small example is given in Section 6 and a
larger case study is presented in 7. In Section 8 we conclude.

2 Related work

There are several tools for checking properties of special types of Simulink
models. A tool called Checkmate 12| can check properties of a special kind
of hybrid systems called threshold event driven hybrid systems. In such a



system a change in the discrete state can only occur when a continuous
variable encounters a threshold. Checkmate provides a library of special
blocks and it can check properties about systems modelled using them. A
tool has also been developed for translating Discrete-time Simulink models
to Lustre for verification [1]. Lustre is a formal language with verification
support via model checkers.

The Matlab and Simulink framework provides a testing toolbox [9, 10].
This toolbox provides tools for measuring coverage of tests, automatic test
generation and tools for managing requirements of the system. It is also
possible to insert assertion blocks into Simulink models. The assertions are
then checked during simulation. If a false assertion is found the simulation
is stopped and the user is notified about the error. However, Simulink does
not provide any systematic way to search for assertion violations, which we
provide in this paper.

Meta heuristic search is a class of search methods, where the algorithms
iteratively search for an optimum of a function that can be non-convex and
even non-continuous. Genetic Algorithms [3] and Simulated Annealing 3]
are examples of this type of search algorithms. The first attempt to use
Genetic Algorithms for software testing was done by Ellis et al [14]. Their
aim was to produce test data for programs written in PASCAL. In his Ph.
D thesis [8] Mantere demonstrates the usefulness of Genetic Algorithms for
testing various aspects of systems. Among other things black-box testing
of systems is discussed. In [13], Tracey et al. present a method for testing
that a program complies with a formal specification. The program input is
optimised using Simulated Annealing in order to find a input that falsifies the
specification. This approach is similar to the approach taken in this paper,
but applied to ordinary programs. However, we try to exploit properties
of control- and signal processing applications to enable better modelling of
properties and increased performance of the search.

3 Simulink

Simulink [10] is a framework provided by MathWorks inc. for the modelling,
simulation and analysis of dynamic systems. Dynamic systems can often
be described as a system of first-order ordinary differential equations. The
system can then be written in the form:

x = f(x,u)

y = g(X, u) ’ X(tO) -

Here the vector u gives the input signals to the system, y gives the vector
of output signals from the system and the vector x gives the state of the
system.

Simulink consist of a graphical interface where the designer can drag
and drop different functional blocks. The blocks are then connected to each
other by signals. Simulink have a large library of different blocks modelling



among other things: functions, difference equations, differential equations,
data sources and sinks. The blocks can be used together to create systems
with both discrete and continuous dynamics. Simulink contains several dif-
ferent differential equation solvers for numerically simulating different types
of modelled systems. The model can then be simulated to investigate its be-
haviour and to check that it satisfies all requirements. Executable code can
be automatically generated from the Simulink model as long as the blocks
used to model the system belong to the subset of blocks that can be imple-
mented.

Simulink is an integrated part of the Matlab environment. Matlab is a
interactive environment for numerical calculations and efficient matrix ma-
nipulation. It contains a scripting language where the user can write pro-
grams and perform calculations. The simulation of Simulink models can
also be completely controlled by scripts from Matlab. Data for simulations
of Simulink models can then be read from and written to the Matlab environ-
ment. This is used in order to use optimisation routines present in Matlab
in our testing method.

4 Assertions

Assertions are boolean conditions often used in software development for
stating properties about, e.g., safety or correctness constraints. We like to
express assertions over signals. Signals in Simulink can be viewed as total
functions from the time interval during which the system was simulated to
real values. Hence, the signal y is defined as a total function y € [to..tf] — R,
where tg,t; € RT and ¢y < ¢;. The assertions describing the properties of
the system we like to verify are expressed using first order predicate logic
[4]. The language used for constructing the predicates is given below. An
assertion @ is defined as:

B = By A By|Dy V Dy|B|b(t,)|Tt.(1)|VE.(E)

Here the domain of the time ¢ is assumed to be restricted to the interval
[to..tf] over which the system is simulated. The constant . is an instance of
time in that same interval. The formula ¢(¢) is then given as

B(t) = d1(t) A g2(t)|d1(t) V P2(t)|=d(t)]s1(t)asa(t)

where s; and s9 are arithmetic expressions on signals and constants. The
relation o denotes an relation that can be used to compare arithmetic ex-
pressions. Currently the relations < and > are supported. Equality is not
supported since we use floating point numbers in the simulations.

As an example of assertions, consider the two formulas & = Vt.(y1(t) <
1 Aya(t) <0) and P2 = Ft.(y1(t) — y2(t) > 0) containing two signals y;
and yo. Both the formula ®; stating that y; should be less than one and y»
should be less than zero during the entire simulation, as well as, the formula
®y stating that for some time during the simulation the difference between



y1 and y2 should be greater than zero, are valid assertions. Furthermore, the
conjunction of the formulas ®; A @5, disjunction of the formulas ®; V &5 and
the negation of the formulas -®; and —®2 are valid assertions.

4.1 Real valued representation of assertions

We like to use optimisation techniques to check the validity of assertions.
However, boolean expressions are not suitable for optimisation since they can
only have the values true or false and, hence do not provide any direction
to search in. In order to make the assertions more suitable for optimisation
they are transformed to evaluate to real values. We define that if a predicate
6 evaluates to true then its corresponding real valued expression ' is greater
or equal to zero and if 6 evaluates to false then €’ is less than zero.

f=0<6
-0 =0>6

Note that the symbol 6 denotes either ® or ¢(¢).

We need to translate all logical operators in the predicate to return a
real value as a result in order to use them for optimisation. The rules for
the operators are chosen in manner that ensures that the smaller the result
is the assertion is closer to being false. Hence, we get the following rules for
using these operators with real valued assertions:

l.a<bseb—a>0

2.a>bsa—-0b2>0

3. 01 Ny & min(6;,65) >0

4. 01V 0y & max(07,05) >0

5. =0 < if (¢ > 0)then — (¢’ +1)else —6' >0

Here a and b are arithmetic expressions and 6 is a formula of the form ® or
¢(t). The quantified expressions are also translated. The expression ¢ is a
function of time and the universal quantifier corresponds to computing the
minimum of ¢'(¢) for all ¢ in the interval [to..t¢]. The existential quantifier
corresponds to computing the maximum.

1. Vt.¢(t) < ming ¢'(t) > 0

2. 3t.¢(t) & maxy ¢'(t) > 0

The rules above are then applied recursively until the entire first order pred-
icate logic formula has been translated. The translated assertions now eval-
uates to a real value with appropriate properties and can thereby be used
for optimisation.



4.2 Checking boolean assertions in dynamic systems

Using the translated assertions we can now state the problem of deciding
the validity of an assertion as an optimisation problem. Assume we have a
dynamic system as described in Section 3 with input signals u(t), output
signals y(¢t) and an assertion to be checked ®(y). The assertion is first
translated to its real valued representation ®. The optimisation problem is
then given as:

min ®’

u(t)
This means that in order to decide if an assertion holds, we need to find the
input signal u(t) that minimises the translated assertion. If the minimum is
less than zero a violation of the assertion was found.

In order to handle the quantified expressions Vt.¢(t) and 3t.¢(t) dur-
ing the optimisation min ¢’(t) or max ¢’(¢) needs to be computed. If ¢(¢)
is continuous this would be very difficult or even impossible. If the sys-
tem is discrete, i.e. signals are piecewise constant, the expression ¢(t) is
given as sequences of values and min ¢/(¢) and max ¢’(t) can be easily com-
puted. The optimisation problem then becomes to find an optimal sequence
u(1l),...,u(n) of values where the real valued representation of ®, ®’, is min-
imal. This problem is well suited for optimisation by existing optimisation
methods, since there is a finite number of inputs and the object function
@’ can be easily computed. The approach no longer work for very long se-
quences or when u(t) is continuous. We can then use parameterised functions
to construct the input signal u(t).

Note that a simulation in Simulink is always discrete since it uses only
numerical differential equation solvers. The object function @ can, there-
fore, always be computed efficiently. However, in general the the number
of evaluations and instants of time the system will be evaluated at are not
known in advance, which leads to problems if the input is given as a sequence
u(1l),...,u(n) for continuous systems.

The object function @’ is in the general case not convex and, therefore,
there are no numerical optimization methods that are guaranteed to find the
optimum [5]. We also restrict ourselves to only check the the system for a
finite time interval. Hence, this method for checking assertions cannot guar-
antee that all possible assertion violations are found. However, optimisation
techniques can often perform well on problems like these and give valuable
insight in the behaviour of the system.

4.2.1 Continuous systems

When the input to a system is a continuous signal or when the discrete
system require very long input sequence we have to represent the signal wu(t)
using a function f(w,t). The function f(w,t) is a function of a vector of
parameters w and the time ¢. The problem is similar to the problem of
function approximation, which has been extensively studied. Often used



approximations are Fourier series and Radial Basis Functions (RBF) [11].
Fourier series can be described as:

Fw,1) = 3wt
n

The angular frequency w is given as w = 27 f, where f is the fundamental
frequency. This function can written using only sine and cosine functions
which, is better suited for our purpose since it does not then contain complex
numbers:

f(wo,a,b,t) =wy + Z(an cos(nwt) + by, sin(nwt))

A disadvantage with Fourier series is that the frequency content of the signal
is fixed the at the beginning and, hence it cannot be changed by the optimi-
sation procedure. The Radial Basis Functions normally consists of a sum of
Gaussian functions:

f(w,o,t) = Z wy e~ (t=tn)*/20

The parameter w,, gives the height of the Gaussian and o, gives the width.
Both these parameters can be optimised to obtain the best result. Fourier se-
ries are better for representing periodic signals while Radial Basis Functions
are better for representing transient signals.

Note that the difference between our problem and function approximation
is that we try to find a vector w that minimizes an assertion while function
approximation methods minimizes an error function. Furthermore, we have
an additional constraint that f(w,t) have to be within certain bounds, since
signals are usually bounded in real control systems. This leads to an con-
strained optimisation problem with the constraint fin < f(W,t) < fraz-

5 Testing Simulink models

The primary use of assertions in Simulink is to state model consistency con-
straints and safety properties. We can state that certain physical laws hold,
for example, that energy or momentum is conserved. We can also state
assumptions we have made, for example, that pressure is always positive.
Safety properties such as the position or pressure should be within certain
bounds can also be expressed using assertions. In our framework we can also
state some restricted liveness properties. This means that we can state that
something will happen eventually, e.g., that the pressure will reach a certain
point.

The validity of the assertions is checked by using optimisation techniques.
To evaluate the optimisation approach we give two examples where we test
different assertions. The first example is a small toy example consisting of a
discrete control system. The second example is a realistic model of hydraulic
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Figure 1: A model for testing a system.

servo system, similar to the model found in a paper by Linjama et al, |7].
All tests in this paper were performed on a PC with Intel Pentium 4 CPU at
2.8GHz and 1GB of memory. We used Matlab version 6.5R13 and Simulink
version 5.0R13 running on the Fedora Core 2 Linux distribution. Execution
times given in this paper should be considered with this in mind.

5.1 The testing environment

We use optimisation routines implemented in Matlab for checking the asser-
tions. The assertion expressions are also computed using the Matlab script-
ing language and not modelled in Simulink in order to keep the Simulink
models readable. Hence, the Simulink model to test needs to contain blocks
for obtaining the input from the optimiser in Matlab and for providing the
signal values needed in the assertion expression. The input for the model
can be read by a suitable block from the Matlab environment. The val-
ues from the model needed for the assertion can be exported to the Matlab
environment with fo Workspace blocks.

The architecture of a discrete test model is shown in Figure 1. This model
is used for discrete input signals where the vector of optimised values is used
directly as input sequence to the system. The sub-system block, System, is
the system to test. The lookup table gives the optimised values via a variable
SIMIN. The digital clock gives the time instances when the values are looked
up in the table. The object function then has the structure:

function y=obj_function(x,...,model,...)
global SIMIN;
SIMIN=x;

sim(model,...);
y=assert(al,...,an);

The parameter x is the input signal values computed by the optimisation
algorithm and the parameter model is the test model to simulate. The
variables ay,...,a, are variables created by the to Workspace blocks in the
model.

In conclusion, there are five steps to perform before starting to test:

1. Construct a test model that contains blocks for providing input. Add
toWorkspace blocks for exporting the interesting signal values to the
Matlab environment.



2. Choose an optimisation algorithm to use.

3. Create an assertion function that returns a value according to the de-
scription of assertions in Section 4.

4. In the object function of the optimiser, set the assertion function to be
evaluated after the model has been simulated.

5. Choose initial values to start the optimisation from.

Note that using our optimisation approach we can only check one assertion
at the time. However, a script in Matlab can then be used to schedule the
check of several different assertions to run automatically.

5.2 Optimisation algorithms

There are several classes of optimisation algorithms that each are aimed at
different problems. Local optimisation methods are methods that iteratively
search for an optimal value based on the gradient in each iteration. These
methods cannot optimise functions that are not convex. To remedy this
problem so called global optimisation methods have been developed. There
are two types of global optimisation techniques deterministic and stochastic.
In deterministic methods the search space is deterministically searched for
an optimal value, as in for example MCS [6]. In stochastic methods the
search space is randomly search based on some heuristics. Popular stochastic
methods are Simulated Annealing [3| that mimics the annealing process used
in metallurgy and Genetic Algorithms [3] that mimics evolution in biology.
We use an function in the Matlab optimisation toolbox based on gradient
search.

The optimisation toolbox in Matlab [9] contains a function called fmin-
con for solving constrained, non-linear, multi-variable optimisation prob-
lems. This method is a local optimisation method based on gradient search.
It uses Sequential Quadric Programming (SQP) |5] or a Reflective Newton
Method [2| depending on the size of the problem. We have chosen this func-
tion because it is fast, easy to use and generally produces good results.

5.3 Choosing initial values

Since the optimisation problems here are not convex, the performance of
the optimisation algorithms depends heavily on the initial values. There
is no correct choice of initial values and usually good ones are found by
experimentation. In general good initial values creates an input for which,
the output is close to the truth-limit of the assertion. The limitations of
local optimisation methods can also be partially remedied by performing the
optimisation multiple times starting from different initial values.
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Figure 2: The control system to test.

5.3.1 Random values

The easiest way to choose initial values is to choose random values. If the
vector of values is directly used as the input sequence we get a random
signal, i.e., a signal consisting of white noise. This type of signal can be
useful in some systems but usually it is not a good choice. The vector of
random values can also be used for the parameters w when using a function
f(w,t) to construct the input signal. This also seems to be the best choice
for choosing the initial values of w.

5.3.2 A sequence in the form of a step function

Step functions are often used to investigate the behaviour of a system. Here
we use a step function as a starting point for the optimisation procedure.
The step function can only be used successfully when the vector is used as
the input sequence to the system.

5.3.3 Two step optimisation

The optimisation can be performed in two steps. For example, in the first
step the frequency of a sine wave can be optimised to discover the frequency
for the maximum of the systems frequency response. A sequence consisting
of a sine wave of that frequency can then be used as a initial value for the
actual optimisation.

6 A small example

To demonstrate our approach to checking assertions we have made a small
example. The example consists of a discrete linear system controlled by a
PI-controller. The system is shown in Figure 2. The transfer function of the
system to be controlled is:

-2
G(Z) _ b()z .

1 —apz~

The parameters ag and by have the values 0.8 and 1.4, respectively. The
controller is constructed in such a manner that the closed-loop system will



have a overshoot of less than 4% for a step function. The controller is then:

o ko — koaozfl

1—2z-1

C(z)

Where the parameter kg = —1/(3bg). We here test if the 4% overshoot limit
can be violated with the optimised inputs. The input signal is limited to
be in the range [0..1]. The assertion becomes Vt.(xmax(t) > xval(t)) where
xmax is 1.04 for all ¢ and xwval is the output signal of the system.

6.1 Evaluation

In order to test how well the optimisation method work we here compare
the optimisation function fmincon in the Matlab optimisation toolbox with
random search for minimising the assertion. The random search is performed
by simulating the system 2000 times with random values. The minimum of
the assertion for these simulations is then chosen. As a measure of perfor-
mance of the method, we test how close to the truth-limit of the assertion
the method gets. The closer to the limit the system is, the more stress the
method puts on the system. To estimate how consistent the results of the
optimisation are depending on initial values, the system is tested ten times
for each sequence length and method. The average of the found minimums
and standard deviations are then computed.

6.1.1 Direct sequence with random initial values

In the first test of the system, the optimised vector of values was directly
used as input sequence to the system. The test was performed with se-
quences of length 50, 100 and 500 with random initial values. Figure 3
shows the distributions of the minimums found with fmincon and random
search for sequences with length 100. The results obtained with fmincon
are concentrated fairly close to 0.0021, while results from random search are
more spread out and considerable worse.

The results for all sequences lengths are presented in Table 1. The func-

minimum | average | standard deviation

fmincon 50 0.0016 | 0.0023 0.00057
fmincon 100 0.0017 | 0.0020 0.00039
fmincon 500 0.0017 | 0.0021 0.00032
random search 50 0.0351 | 0.0531 0.0104
random search 100 0.0302 | 0.0514 0.0113
random search 500 0.0354 | 0.0446 0.0056

Table 1: Minimum with random initial values.

tion fmincon finds considerably lower values of the minimum of the assertion

10
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Figure 3: Distribution of the minimums of the assertions for sequences with
length 100.

for all sequence lengths. However, the standard deviation is significant mean-
ing that the performance depends on the initial values. This is expected since
fmincon is not a global optimisation procedure.

The number of times function fmincon evaluates the system depends
on the size of the input sequence as shown in Table 2. For long sequences

obj. fun. calls ‘ time in fmincon ‘ time in obj. fun.

fmincon 50 750 3.83s 3.29s
fmincon 100 1577 7.92s 6.89s
fmincon 500 7164 53.2s 39.4s

Table 2: Average execution times of fmincon.

the object function is evaluated several times more than for random search.
The number of evaluations seems to scale linearly with the length of the
input sequence. The overhead created by fmincon also becomes larger as
the length of the sequence increases. It even seems to be increasing more
rapidly than the increase in the number of evaluations. The progress of the
optimisation of a sequence of length 100 with fmincon and random search is
shown in Figure 4. The result converges quickly close to the optimal value
for fmincon. In random search the result is improved in steps when a new
optimal value is randomly found.

11
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Figure 4: The progress of the optimisation for a sequence of length 100.

Minimum ‘ Average ‘ Standard dev.
fmincon 0.0400 0.0594 0.0332
Random search 0.0400 0.0400 7.3443e-7

Table 3: The results when using a sine function as input signal.

6.1.2 Step function as initial value

As a second test a step function was used as a start sequence. Again the
optimised vector of values was used as the input sequence and the number
of elements in the sequence was 100. The step from 0 to 1 was placed
after element 50. The step function forces the system fairly close to the
truth limit of the assertion. The aim of the test was to investigate if the
optimisation procedure could minimise the assertion further. The value of
the assertion for a step function was 0.0030 and it could not be improved by
the function fmincon. The step function seems to be a local optimum and a
global optimisation method would be needed.

6.1.3 A sine wave

In the last test the input consisted of a sine wave. The input signal wu(t)
is described as wu(t) = sin(2w ft), where the frequency f is optimised. The
initial value for fmincon was chosen at random. The results are displayed
in Table 3. The optimal value of the assertion that can be achieved with
this input function is 0.0400, since the maximum of the frequency response

12



is one. Both methods find the optimal value. However, random search finds
it more often. The number of iterations used by fmincon is considerable
lower than for random search. The object function is on average evaluated
23 times during a call to fmincon, while it is evaluated 2000 times using
random search.

6.1.4 Discussion

The function fmincon produces significantly better results than random
search in the first test. However, it is not a global optimisation procedure
and therefore the results depend on the choice of initial values. The length
of the sequence also influences the result and it also affects the execution
time. The number of times the object function is evaluated for a sequence
of 500 elements is almost 10 times the number it is evaluated for a sequence
of 50 elements, while the best result is obtained with sequences consisting
of 50 elements. Furthermore, the optimisation using fmincon performed for
a sequence with length 50 evaluates the object function less than half the
times random search evaluates it, which leads to a significantly lower execu-
tion time. The sine function in the last test cannot produce good results in
this example due to its properties.

7 A case study

To evaluate the optimisation based testing method on a larger system we
have used our method to check assertions in a model of a hydraulic servo
system, similar to the one found in [7]. The model consists of a hydraulics
system with controller and model of the physical system. The physical sys-
tem consists of a load mass and a hydraulic cylinder driven by a servo valve.
The aim of the controller is then to control the position of a load mass.

The Simulink model of the system is shown in Figure 5. It is fairly
large consisting of more than 200 blocks. The input to the model consists
of two signals v,ey and z,.¢. The signal v,.; is the desired speed and z,.f
is the desired position of the load mass. The signals are sampled with a
sampling time of 40ms. The sub-system Closed-loop controller contains the
feedback controller for the system. The pump providing the supply pressure
to the system is modelled in the sub-system Pump. The sub-system Valves
models the behaviour of the valves that control the pressure in cylinder. The
hydraulic cylinder is modelled by the sub-system Cylinders and the load mass
is modelled by the sub-system Mechanism.

7.1 Testing strategy

The aim of our tests is to find functions for the inputs v,y and z,.s that
makes the system violate an assertion. The system can use both feed-forward
control of speed (v) and position (z) feedback to move from one position to

13
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Figure 5: Overview of the model.

another. For simplicity we only use only feedback control of position. This
comes at a small cost of slightly degraded performance.

We do tests using two different assertions stating different properties of
the system. We compare the function fmincon and random search as well as
different ways to represent input signals. Both fmincon and random search
are tested five times for each way of generating input signal and method for
choosing initial values. The minimum, average and standard deviation from
the five tests are computed to get a better overview of how well each method
performs. Due to time considerations and problems with convergence we
limit the optimisation algorithms in fmincon to evaluate the object function
at most 2000 times. The random search procedure again also simulates
the model 2000 times and chooses the minimum of the assertion from these
simulations.

7.2 The first assertion

The first assertion to test states that the position x should always be smaller
than a position gz, VE.(2(t) < Zmae), Where e, = 0.20. The range of
the input signal z,. is limited to the interval 0..0.15. Two different ways
to represent the input signal are used. First the optimised vector is directly
used as input sequence and then a sine wave with optimised frequency is
used.

7.2.1 Direct sequence and random initial values

First we tested using the vector directly as the input sequence x,.s to the
system. The initial values were chosen at random. The minimums of the
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Figure 6: Minimums of the assertion for a sequence of 100 values.

assertion for the optimisation with fmincon and random search are shown in
Figure 6. As in the simple example in Section 6 the results for fmincon are
better. However, the variation in the result of fmincon is much larger due
to the increased complexity of the model.

The average and standard deviation for the obtained minimums of the
assertion were also computed as shown in Table 4. The function fmincon

Minimum | Average ‘ Standard dev. ‘

fmincon 100 0.0355 0.0436 0.0068
Random search 100 0.0615 0.0680 0.0047

Table 4: Direct sequence with random initial values.

performs better than random search with both a lower minimum and average
of the minimum of the assertion. However, in the corresponding test on the
small example in section 6, fmincon performed about 20 times better that
random search and now it performs only about 2 times better. This is due to
the increased complexity of the model. The standard deviation is also high
since the optimisation algorithm depends on the initial values.

The execution times become fairly long due to the size of the model and
the large number of times the model has to be simulated, as shown in Table
5. The object function is evaluated about 2000 times for each call to fmincon.
The overhead associated with fmincon becomes very small compared to the
simulation of the model. The random search is faster probably due to how
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‘ Number of evaluations | Total time

fmincon 100 1 578.5s
Object functin 2018 570.5s
Random search 100 2000 442 .0s

Table 5: Execution times for a sequence of length 100.

Matlab handles function calls.

7.2.2 Direct sequence and step function as initial value

As a second test we checked how much closer to the truth-limit the optimisa-
tion algorithms get from a step function. Again 100 samples were used and
the step was at sample 50. The step function and fmincon are deterministic
and, hence the optimisation only needs to be performed once. The result

‘ ‘ Minimum ‘
| Step function 100 0.0040 |
| fmincon 100 0.0020 |

Table 6: Sequence of 100 values and a step function as initial value.

of the optimisation is shown in Table 6. The optimisation can improve the
result significantly, as opposed to corresponding test on the small example
in Section 6. Note that the step function provides a smaller minimum than
any of the minimums obtained when starting from a random sequence. The
object function is here evaluated 2002 times using fmincon and, hence this
initial value does not improve the speed of the optimisation procedure.

7.2.3 Sine wave

In this test the frequency f of a sine wave was optimised to minimize
the assertion. The formula for the input signal x,¢ is given as xef(t) =
0.075sin(2m ft) + 0.075. This formula ensures that ,.s is also here in the
same interval [0..0.15] as in the previous tests. The system was simulated
using a time interval of 5 seconds and the initial value was chosen randomly.
The result is shown in Table 7. Random search is actually better than fmin-

‘ ‘ Minimum | Average ‘ Standard dev. ‘

| fmincon 1 0.0211 [ 0.1013 0.0448 |
| Random search 1 0.0105 [ 0.0128 0.0021 |

Table 7: A sine wave with random initial value.

con in this case. However, the minimum of the assertion is not as good here
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as in the previous test. The procedure fmincon often get stuck in a local
optimum and, therefore it cannot find better values.

The object function is evaluated on average 36 times using fmincon com-
pared to 2000 times for random search. This means that the optimisation
using fmincon can be performed more than 50 times in the same time as
one random search. Hence, several optimisations using fmincon can be per-
formed using the same mount of time as one random search and thereby
improve the result.

7.3 The second assertion

The second assertion states that the position = should never be greater than
the reference position x,e¢ plus a certain limit, Vt.(x(t) — xypep(t) < limit).
To test this assertion we use Fourier series and the sine wave with optimised
frequency to construct the input. Fourier series were not used for testing the
previous assertion, since it is difficult to control the precise maximum of the
input signal using them. Here the value of the assertion is not directly related
to the maximum of the input signal. We do not use the optimised vector
directly as input sequence here, since fmincon does often not terminate for
this assertion. This is due to a bug where fmincon fails to terminate on
certain ill-conditioned problems. However, the bug is fixed in newer versions
of fmincon.

When using Fourier series we optimised the value of 11 parameters (1
constant term, 5 sine waves and 5 cosine waves), where each parameter
was in the interval 0..0.05. The initial values were chosen at random. The
simulation time was 4 seconds and we have that f = 1/T and T = 4s. The
sine wave was generated in similar manner as previously in Subsection 7.2,
Zref(t) = 0.15sin(27 ft). Note that the frequency components of the Fourier
series is limited by the relatively small value of the weights w;, which might
give the sine wave an unfair advantage.

The results are shown in Figure 7 and summarized in Table 8. Iere the

’ Minimum ‘ Average ‘ Standard dev.

Fourier, fmincon -0.2697 | -0.2372 0.0293
Fourier, random search -0.1897 | -0.1887 0.0040
Sine, fmincon -0.3376 | -0.2186 0.0764
Sine, random search -0.3372 | -0.3363 0.00083

Table 8: Results for the Fourier series and sine wave.

assertion does not hold in the model. Both the function fmincon and random
search discover this fact for each type of input function, but fmincon again
produces the better (smaller) results. However, for the sine wave fmincon
produces a better value only in one instance. The use of a sine wave with
optimal frequency seems to be the best way to generate inputs with this
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Figure 7: The results obtained when the input signal is a sine wave or a
Fourier serie.

assertion. As for earlier experiments the result of the optimisation depends
on the initial values.

The advantage of fmincon becomes clear when comparing the average
number of iterations performed in each test, shown in Figure 8 . When using
a sine wave the number of iterations used by random search is more than 50
times the number used by fmincon. When using Fourier series almost ten
times as many iterations are used by random search. This means that several
more tests can be performed using fmincon within the time of one random
search which, can lead to further improvement in the optimised values.

7.4 Discussion

The system in the case study has non-linear dynamics and is fairly compli-
cated. The optimisation function fmincon can still often produce good results
but the advantage over random search is smaller than in the small example
in Section 6. The choice of input signal representation can often have as
much influence on the result as the optimisation method. The choice of ini-
tial values is also important. By using a representation of the input signal
that requires few optimisation variables the number of iterations required by
fmincon can be greatly reduced. This is beneficial since, when using a local
optimisation method such as fmincon the optimisation should be performed
several times with different initial values to obtain good results.
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Figure 8: The average number of iterations for each test.

8 Conclusions

In this paper we have formulated the assertion checking problem in Simulink
models as an optimisation problem. To enable optimisation based check-
ing of assertions, we have introduced a simple language for expressing the
assertions and shown how it is translated to a form suitable for optimisa-
tion. We have used a gradient based search method in Matlab optimisation
toolbox for checking these translated assertions. This provides a method
for automatically generate good test cases for exposing flaws in the system.
The optimisation method was compared to random search in a case study
and it was shown that the optimisation achieved smaller assertion values,
and hence better results, in most cases. The overhead associated with the
optimisation algorithm was also shown to be negligible compared to random
search for a moderate numbers of optimisation variables.

The optimisation can be further improved by using global optimisation
techniques. Randomized methods such as Simulated Annealing [3| or Genetic
Algorithms [3] could be very efficient for this purpose. Function approxima-
tion methods and technique from the area of adaptive systems and neuro
computing [11] could also be investigated for finding optimal parameters to
the parameterised functions used to construct the input signals.

Verification of non-linear control system consisting of both continuous
and discrete parts is hard. The approach to test case generation presented
here provides an automated way to search for good test cases, and that
way minimize the risk of errors in the final system. The method cannot
guarantee that all assertion violations are found but it can at least increase
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the confidence that the system works as intended.
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