RICE UNIVERSITY

Efficient Tamper-Evident Data Structures for Untrusted
Servers

by
Scott Alexander Crosby

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Dan S. Wallach, Chair
Associate Professor of Computer Science

Moshe Y. Vardi
Professor in Computational Engineering

Farinaz Koushanfar
Assistant Professor of Electrical and
Computer Engineering

Houston, Texas

December, 2009

ABSTRACT

Efficient Tamper-Evident Data Structures for Untrusted Server

by

Scott Alexander Crosby

Many real-world applications run on untrusted servers erran on servers that are
subject to strong insider attacks. Although we cannot prea@ untrusted server from
modifying or deleting data, with tamper-evident data dtntes, we can discover when this
has occurred. If an untrusted server knows that a particafgy will not be checked for
correctness, itis free to lie. Auditing for correctnessiss a frequent but overlooked oper-
ation. In my thesis, | present and evaluate néiicient data structures for tamper-evident
logging and tamper-evident storage of changing data omistatl servers, focussing on the
costs of the entire system.

The first data structure is a new tamper-evident log desigoropose new semantics
of tamper-evident logs in terms of the auditing procesgjireq to detect misbehavior. To
accomplish #icient auditing, | describe and benchmark a new tree-bastedstiaicture
that can generate such proofs with logarithmic size andesgnificantly improving over
previous linear constructions while alsiering a flexible query mechanism with authen-
ticated results.

The remaining data structures are designs for a persistérerticated dictionary (PAD)
that allows users to send lookup requests to an untrustedrsand get authenticated an-
swers, signed by a trusted author, for both the current astdrial versions of the dataset.

Improving on prior constructions that require logarithreiorage and time, | present new

classes of ficient PAD algorithms fiering constant-sized authenticated answers or con-
stant storage per update. | implement 2fatent versions of PAD algorithms and perform
a comprehensive evaluation using contemporary cloud-atingpprices for computing and

bandwidth to determine the most monetarily co$é&ive designs.

Acknowledgments

A graduate student career is a long and arduous process \aitly experiences and
many people to thank. | would like to thank my advisor for hiowledge, support, and
ideas over my time at Rice University. Some advisors microage their students. Dan’s
style was to encourage good research and let me explore mi@ernedt research areas. My
presentation and writing skills have been greatly imprdwelis suggestions and feedback.

The security group at Rice gave me many productive discuss®eth Nielson directed
me toward using SWIG and gave me valuable feedback throughpt@ime here. Tsuen-
Wan “Johnny” Ngan and Algis Rudy welcomed me into the grougmvharrived. | would
also like to thank the other members of the Security group Itim@ave worked with on
different projects, including Dan Sandler and Anwis Das. Séwérmy research ideas
were fleshed out in invaluable discussions with the othetesys group grad students at
Rice, Animesh Nandi, Atul Singh, and Ajay Gulati as well as past dfice mates, Shu
Du, Kaushik Ram, and Guohui Wang.

Outside of graduate school, Steve Glassman and Vern Paxsennge internships at
Google and ICSI respectively. Tracy Volz gave valuablaguigs for my posters. | would
also like to thank the CS departmental administrativéf tad IT stdf for solving the
inevitable electronic and bureaucratic bugs I've encaacke

Of course, | would never have gotten to this point withouerids and family. My
grandparents and parents instilled a lifelong desire famlieg, without which | might not
have chosen this career. | would like to give a special thanliuth Tancrede, my high
school math teacher. | probably would not be here withoueheouragement, knowledge,
skill with students, and kindness she so generously shared.

Graduate school is stressful and I'd like to thank the Va¢éhatowd for keeping me
sane, Todd, Colleen, Chris,fBeJulie, Lisa, Zack, Lucinda, and everyone else I've met
there. A special thanks to a special friend of mine, Jeas Edli reminding me about the

real purpose of life, her invaluable support, and her pagaturing the last year’s crunch.

Contents

Abstract i
List of Illustrations X
List of Tables Xi
Introduction 1
1.1 Tamperevidentlogging 2
1.1.1 Contributions L 3
1.2 Persistent authenticated dictionaries 4
1.2.1 Contributions 6
Background 8
2.1 Threatmodels 10
2.2 Relatedwork 11
Secure logging 15
3.1 SecurityModel 17
3.1.1 Semantics of atamper evidenthistory19
3.1.2 Clientinsertionprotocol 20
3.1.3 Definition: tamper evidenthistory 21
3.1.4 Otherthreatmodels. 22
3.2 Hashchainhistory 24
3.3 Historytree 25
3.3.1 Isitsafeto skip nodes during an audit?28

3.3.2 Construction of the historytree. 30

Vi

3.3.3 Storing the log on secondary storage35
3.3.4 Comparingtoothersystems 35
3.4 Proof for tamper evidence of the historytree 38
3.5 Merkleaggregation 14
3.5.1 Generalattributes 43
3.5.2 Formaldescription 44
3.5.3 Queriesoverattributes L. 6 4
3.5.4 Applications 48
3.6 Syslog prototype implementation 49
3.6.1 Performance ofthelogger 51
3.6.2 Performance of auditors and clients 53
3.6.3 Merkle aggregationresults 53
3.7 Scaling atamper-evidentlog 56
3.7.1 Fasterinsertsviaconcurrency 57
3.7.2 LogslargerthanRAM, 58
3.7.3 Signing batchesofevents. 8 5
3.8 Summary e e 59
PAD designs 61
4.1 Definitionsandmodels o L 26
4.1.1 Threatmodel 63
4.1.2 Features e 65
4.2 Tree-based PADS 66
4.2.1 Authenticated dictionaries based on Merkle trees 67
422 Treap o e e e e 69
4.2.3 SKiplist 71
424 Red-blacktrees 73
4.2.5 Persistentbinary searchtrees. 75

4.2.6
4.2.7

Making trees persistent and authenticated

Details on the median layercache

4.3 Tuple-basedPADs. e

4.3.1
4.3.2
4.3.3
4.3.4

4.4 Scalability

PADs based on individually signed tuples
Optimizing storage: Tuple superseding
Optimizing signatures via speculation

Tuple PADs based on RSA accumulators

4.5 Future work, applications, and extensions

Performance analysis of PADs

5.1 Big-O evaluation of the dierent PADdesigns

5.2 Implementation and methodology

5.2.1
5.2.2
5.2.3
5.24
5.2.5
5.2.6
5.2.7

Implementation
Serialization L
Tree-based PADs
Tuple-based PADs
Accumulators
Cloud provider economics

Methodology

5.3 Tree PAD microbenchmarks

5.3.1
5.3.2
5.3.3
5.3.4

Comparing tree structures
Comparing tree PAD repositories
Tree PADs in a cloud-computing environment

Summaryofresults L

5.4 Tuple PAD microbenchmarks

5.4.1
5.4.2

Tuple PAD authorcosts

Tuple PADservercosts

Vil

5.4.3 Tuple PADs in a cloud-computing environment 118
544 Summaryofresults, 121
5.5 Macrobenchmark 121
5.6 Summary of PAD performanceresults 123
6 Conclusions and future work 125
6.1 Contributions 612
A Accumulators in practice 128

Bibliography 131

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1

4.2
4.3
4.4
4.5

lllustrations

Graphical representation of a Merkletree. 9
Graphical representation of a pruned Merkletree. 10
Ahash-chainlog. 23
Algebraic construction of a hash-chain history 23

A version-2 history tree with commitme@ = I5,. 26

A version-6 history tree with commitme@f =17, 26
An incremental prodP between a version-2 and version-6 commitment. . . 27
Graphical notation for a history tree analogous to tlefin Figure 3.5. . 27
Recurrence for computinghashes. 31

A proof skeleton for a version-6 historytree. 31
Demonstration of Merkle aggregation with some evenggéld as important. 43

Hash computations for Merkle aggregation. 45
Safe deletionoverhead. 54
Query overhead perevent. 56
Graphical notation for a lookup proof fM or a proof of

non-membershipfoN. L L L Lo 67
Skiplistrepresentation. e 74
Skiplistquery for“7.” 74
Four snapshots in a Sarnak-Tarjan versioned-nodetree 76

Tuple authenticated dictionary showing 2 keys and 3wupl 85

4.6
4.7
4.8

5.1
5.2

5.3
5.4

5.5

Al

Tuple PAD containing 5snapshots.

Example of tuple-superseding.

Example of a PAD using speculation.

Steady-state lookup proof generation performanceefiibtack trees.

Amortized cost per lookup for red-black tree PADs witlo tfferent

hash caching strategies.

Amortized cost per lookup for filerent PAD algorithms.

Amortized cost per lookup for filerent PAD algorithms, correcting for

Pythonoverheads.

Amortized cost per lookup forflierent PAD algorithms processing the

luxury-goods macrobenchmark.

Calculated CPU time per-update for accumulators.

86
86

. 112

. 129

3.1

3.2

3.3

5.1

5.2
5.3

5.4

5.5

5.6

5.7
5.8

Tables

The time to add an event to the log and the size of full amtigb@roofs

generated e 36
Table of Greek letter prefixesand theiruses. 40
Performance of the logger in each of the four steps requa insert an

BVENT. e e e e e e e e e e e e e 52

Persistent authenticated dictionaries, comparirtgiigaes assuming a
snapshot is taken after everyupdate. 103
Caching strategies for subtree authenticators in ee®ararjan tree. 105
Costs charged by Amazon EC2 and Google AppEngine for
cloud-computingand storage. 107
Performance acrosdidirent tree types, inserting 100k keys, and using
path-copying to implement the repository.110
Memory usage and lookup proof performance acrd&srdnt persistency
approaches storing red-black trees containing 100k keys.. 110
Bandwidth ratios for each red-black tree PAD algorittsmsimarizing the
relative monetary costs of bandwidth and CPU time. 113
Abbreviations used to denote th&éient tuple-based algorithms. 114
Comparing author performance, update sizes and przes aicross

different PAD designs. e 116

Xil

5.9 Breakdown of accumulator update and witness computatid

verification costs for tuple PADs using non-hash-chain andators with

10,000 Keys. o 116
5.10 Comparing server and client performance acrdssrdnt PAD designs. . . 116
5.11 Bandwidth ratios for each PAD algorithm summarizing itlative

monetary costs of bandwidthand CPU time. 118
5.12 Performance of ffierent PAD algorithms on the macrobenchmark. 122
5.13 Bandwidth ratios for each algorithm, processing txety-goods

macrobenchmark. 123

Xiii

To Mom, Dad, and Dawn

Chapter 1

Introduction

The Internet @ers new opportunities for building systems where the user@imputing
service may no longer own the computers supplying the sernidsers want assurance
of correct behavior despite the owner’s full control duetieit ownership and physical
access. In my thesis, | will show that tamper-evident datecgires can operatéfeiently
on untrusted servers with a variety of rich semantics andsbauditing.

There are many examples of systems built on remote or uattusaichines. In peer-
to-peer (p2p) technology a large number of users collalvetatbuild a system out of their
individual machines. The recent growth of cloud computing aoftware-as-a-service
offers a new option for storing data “in the cloud” on potenyiadmote servers whose use
is rented. And of course, external or internal security tinea can cause any trusted server
to misbehave. Rather than have the security of a system pest tlne correct behavior
of the machines it is running on, this thesis uses cryptdgcagechniques to encourage
correct behavior by detecting malicious activity.

In this thesis, | model an insider attacker having full knesde and administrative
control over the server, capable of knowing all cryptogrely material stored on it. This
inside attack model subsumes an external attack modekhidiuassume the Dolev-Yao [1]
model, where cryptography is perfect, signatures cannfirged, and cryptographic hash
functions are collision and preimage free. | do not focus ovapy. Depending on the
application, privacy may be attained by encrypting datateesending it to an untrusted

server. For a further discussion on privacy, please seesthed work in Section 2.2.

While it is impossible to prevent the deletion of records anuatrusted server, tam-
pering with stored records can be detected by using cryppdge data structures. In this
thesis, | present and evaluate new data structuresflicremtly storing changing data on
untrusted servers subject to strong insider attacks. Tsiedigorithm | present is a new
design for a tamper-evident log that is built by and storecanruntrusted machine and
audited for correct behavior by trusted auditors. The sésa of algorithms | present are
several designs for persistent authenticated dictioa@A&Ds). Authenticated dictionaries
allow data to be stored in a tamper-evident fashion on arustad server and accessed as
a key-value data store. Lookups return the answer and a pfats correctness, signed
by the author. PADs extend authenticated dictionariessaofgporting queries to previous
versions of the dictionary.

There are a wide variety of applications of tamper-evidatadtructures, including
remote backup services, publishing systems, electroiogy®ystems, banking, price-
lists, stock ticker data, forensic records, legal recaidsstamping systems, “cloud com-
puting,” fileservers, peer-to-peer computing, swarm doading protocols such as Bit-
Torrent [2], data aggregation, smartcard storage, outsdudatabases, and many others.
Tamper-evident algorithms may also detect misbehaviohemtithor because the author’s
signature forces the author to make a commitment, which nealater audited to detect

incorrect behavior.

1.1 Tamper evident logging

The first algorithm | present is a new cryptographic datacstme for tamper evident log-
ging. There are over 10,000 U.S. regulations that goverstihige and management of
data [3,4]. Many countries have legal, financial, medicdljcational and privacy regula-

tions that require businesses to retain a variety of recdda$ortunately, in many organi-

zations, the servers used to create and store these logswsedwithin the organization.
Malicious users, including insiders with high-level accagad the ability to subvert the log-
ging system, may want to perform unlogged activities or tanwath the recorded history.
To include these risks, our threat model for tamper-evitteyging assumes that the log is
built and stored on a completely untrusted server and tleaswsho generate events to be
logged may later collude with the logger to tamper with tipeeviously stored events.

Current solutions to prevent tampering include administeacontrols or commercial
write-once hardware. Cryptographic techniquégrostronger security and can be verified
by remote parties. Current semantics for tamper-evideggitg assume that the logger
behaves correctly until it doesn’t, with the goal of detegtany tampering of events stored
before the logger misbehaves. Unfortunately, there is notainow which logged events
are and are not valid. Conversely, my proposed semantiahiach stronger and assume
that the logger is never trusted.

Previous tamper-evident log designs overlook a criticaigie problem: How exactly
tampering is to be discovered. The core of a tamper-evidgrsbhuditing No matter what
algorithm is usedtampering can not be detected unless some trusted auditwokeg for
it. If a serverknowsthat any particular output will not be audited for correamethen
the server is free to lie when generating that output. Andits therefore a frequent and
thus performance-critical operation and ifBa@ency must be optimized when designing a

tamper-evident log.

1.1.1 Contributions

In Chapter 3, | present theistory tree a new data-structure for tamper-evident logging,
offering dficient random-access and logarithmic overheads. My logydesilogarithmic

instead of linear in all operations, making frequent auaditieasible, even on very large

logs. The history treefters other useful features, including permitting authatiparges
from the log, finding events matching a predicate, and imgaowbustness against lost,
missing, or corrupt data. In my design, | focused on the praldies, including a design to
represent the history tree on write-once append-only georhimplement the history tree
and benchmark it using real-world log traces and have shbamitt can insert thousands
of events per second and can be scaled to tens of thousandents per second.
Authorized purging from a tamper evident log and predicateching are implemented
by Merkle aggregationwhich is a new generic andfient technique for combining anno-
tations and Merkle trees in a way that lets annotations bekeukefor correctness and con-
sistency. Merkle aggregation is tamper-evident, allowgregation to occur on untrusted

servers, and is also supported by several of my PAD designs.

1.2 Persistent authenticated dictionaries

The second class of algorithms | investigate are persisigihienticated dictionaries. The
simple abstraction of an authenticated dictionary [5, @] persistent authenticated dictio-
nary [7,8] can underlie a wide variety of services, rangnogrf version control systems [9],
public key revocation lists [5], stock ticker data, pricidgta, and any other situation where
one author wants to use cloud services to publish data tapteuttonsumers or store data
remotely when data integrity is the paramount issue. Evémavirusted server, these algo-
rithms are useful whenever data integrity is critical, hessaof constant possibility of the
server being subverted by an external attacker.

An authenticated dictionargt its simplest is a data store, stored on an untrusted server
The data store supports key-value lookup operations andncheate that a key is not
present. In gersistent authenticated dictionamne key store changes contents over time,

and lookup queries indicate which versionsmapshoto look at. Explicit versioning, plus

an external channel to alert clients to the latest versidhdefeat version rollback attacks.

We assume that a trusted author creates the data being stotbé server and uses
digital signatures and cryptography to prevent tamperynghle server. Clients generate
lookup requests and use digital signatures to verify thatéturned data is correct. In the
case of a publishing system, clients and the author dFerdnt. In the case of outsourced
storage or backup services, the client and the author mayebsaime.

The challenge in designing a PAD is how to minimize the coktgpdates and lookups
as well as minimizing the storage on the server for authatiio information. Instead of
storing each snapshot as a separate and independent austteehtlictionary, with storage
proportional to the number of keys times the number of snatgskxisting work for persis-
tent authenticated dictionaries proposes mdieient techniques based around applicative
search tree algorithms [7], with logarithmic proof size émghrithmic storage per update.

PADs based on search trees can be parameterized on the typarolf tree used, such
as AVL trees, red-black trees, treaps, or skiplists and ¢lertiques used toffeciently
store the forest of search trees for th&atient snapshots. My designs incorporate more
efficient representations for storing a persistent searchttigenave constant storage per
update [10], but have not been previously used for autheteticdictionaries. In addition,
this thesis presents a new approach for building a PAD. Bividdally signing each key
and value pair along with some auxiliary metadata, the s&ae reply to lookup queries
with aconstant sized resulltegardless of the number of keys or snapshots in the PAD.

Algorithm cost isn’'t measured just in big-O notation. Dajisignatures are more ex-
pensive than cryptographic hash operations. Serializaii@rheads will inflate both the
runtime, and the size of messages sent over the network-viRell benchmarks are re-
quired in order to determine the actual constant factordd BRyorithms are designed to

run over the network, which means that they incur the costsoti CPU time and band-

width. Different PAD algorithms also tradéfapdate costs for lookup costs and the ideal
algorithm for an application depends on its relative ragoAeen updates and lookups. By
using the prices charged by contemporary cloud-computiogigeers for bandwidth and
CPU time, we simplify our comparison by reducing each athamito itsmonetary cost
per update and per lookup. We then compares the monetary @osach PAD algorithm

across dterent lookup to update ratios.

1.2.1 Contributions

Previous PAD designs had logarithmic storage per updajaritbhmic proof size, and con-
stant update size. In Chapter 4, | present several new deiigpersistent authenticated
dictionaries (PADSs), first showing how to adapgfi@ent representations of a persistent
search tree to create PAD desigriiedng constant storage per update and a design using
half of the storage of prior techniques. | then presentfdinttuple PADdesigns based
on a new paradigm for designing PADs that trad&sachigher update cost for constant-
sized results for lookups. Through a series of optimizatjbneduce the number of needed
signatures, reduce the storage overheads to constangestpea update, and reduce the
communication costs to constant communication per update of the more interesting
optimizations is the first use speculationn building tamper-evident or authenticated data
structures. The author can sign a statement about a futatrbaln’t happened yet, as long
as there is the ability to correct errors in these signe@stants.

Chapter 5 contains an evaluation of th&elient PAD designs, performing both a big-O
analysis, and reporting benchmarked results of all 21 dlguos, including CPU usage and
message sizes. | compare my new designs with prior appreadhdetermine the most
efficient balanced tree algorithm among treaps, red-blaclk,tiw®d skiplists for building

an authenticated dictionary. | also identify the moficeent persistency data structure.

The chapter finishes with a comprehensive monetary evatluatiross all 21 algorithms.
This analysis showed that 5ftérent algorithms can be the ‘cheapest’, depending on the
circumstances. Surprisingly, even with a slow implemeoitain an interpreted language,
it is often more expensive to send the reply to a lookup retghes it is to compute it.

This evaluation also measures the update costs, verificatists, and proof sizes of
ordinary authenticated dictionaries based on trees oesupA regular authenticated dic-
tionary is a special case of a persistent authenticatecbdarty when the server purges

unneeded data from older versions, thus saving space.

Chapter 2

Background

There are many cryptographic primitives that are desigonetktect tampering. The sim-
plest is the digital signature and cryptographic hash. tBigiignatures are unforgeable
without the private key. Tampering with the signed valuewticause the signature verifi-
cation to fail. A cryptographitashor digestfunctionH reduces a variable length inpxit
into a fixed length output adigest Assuming that a cryptographic hash function satisfies
certain properties, it tamper evident.

A cryptographic hash function has to fulfill three propesti€irst, it must beollision
resistanf which means that it is infeasible for an attacker to gemedriix) = H(y) with
X # Y. Second, it must bpre-image resistanimeaning that it is diicult to generatex in
y = H(X) given onlyy. Finally, a cryptographic hash must becond pre-image resistant
meaning that it is dficult to generate’ with H(x") = H(xX), knowingx. Assuming we have
such a hash function, we can now demonstrate a simple forangber-evidence. Given
a trusted hasly = H(xX) of some unknown valug, any attempt by an attacker to tamper
and supply an alternative inpxt can be discovered by checkiygz H(x'). If the attacker
were able to findk” # x with y = H(X”), then the hash functioHl violates its assumed
properties.

We can extend this tamper-evidence by having the irgoitain other hashes, forming
arecursive data structure, the Merkle tree [11]. Each notleeitree has a hash value which
is the cryptographic digest of the hashes of its childrenesaghd any data stored in that

node. The root node’s hash value then fixes the contents céritiee tree. Figure 2.1

£

Figure 2.1 : Graphical representation of a Merkle tree. Sgpigepresent null children.

presents a simple Merkle tree.

The benefit of a Merkle tree is that an untrusted server carefihat a particular node is
in the tree without sending the entire contents of the tregtaih subtrees are not necessary
in the proof. For instance, in Figure 2.2, to prove that thevdla nodeA is in the tree, a
server carstubout sibling nodes on the path from the root to ngdéy including just
their hashes and not the contents, and genernattersed tree Merkle’s paradigm of adding
hashes to a binary tree can be applied to any acyclic datettey including balanced
binary trees [5, 6] or skip lists [12]. The only challengehatt mutation of children nodes
will invalidate hashes in the parent nodes. Techniques ftnworld of pure functional
programming are often directly applicable, as we will seerla

Merkle-style hashing data structures have been used intcan@rstorage [13], out-
sourced databases [14], distributed filesystems [15—t&pjgand geometric searching [19],
authenticated responses to XML queries [20], tamper-exilbgging [21-23], certificate

revocation lists [5], and many others.

10

Figure 2.2 : Graphical representation of a pruned Merkle. tiéodes that are solid discs
only have their hash included in the proof. Nodes that are a@reles have their key and
value included in the proof. Grayed out nodes are omitted.

2.1 Threat models

Tamper evident or authenticated data structures can amati a wide variety of threat
models. In cases where the server storing data is not trusteéthe author is, the root of
a Merkle tree storing the data can be signed by the trustécbauResponses to lookup
queries include a pruned tree. Clients verify the resporysasing the pruned tree to
reconstruct the root hash and checking the signature.

In addition to concerns we might have with untrusted storagme applications might
be concerned with untrusted signers, who might wish to behmorrectly by, for example,
modifying or deleting what they said in the past. Our datacitires can be used to prove
this misbehavior. If a dishonest server signs inconsistatd structures, those signatures
are irrefutable evidence of its misbehavior. There are afgdications where the author
and server are honest, but may inadvertentlfesicorruption or make mistakes in data
versioning or when tracking data provenance. Tamper-aciel€ata structures, combined

with auditing, can detect these corruptions.

11
2.2 Related work

In the space of untrusted servers, there are two broad sladg@oblems: privacy and
integrity. We are not concerned with protecting the secoddie data stored on untrusted
servers; this can be addressed with external techniques, likely some form of encryp-
tion [24—26]. For instance, in the case of a tamper-evidamt ¢lients can encrypt events
before sending them to the logger and in the case of a PAD sedéxy trusted clients, the
author can mask a key-value pair by encrypting the value trthg it under the crypto-
graphic hash of the key.

Encryption, however, does not hide the access patterngeaots! In private information
retrieval (PIR) the goal is lookup privacy, where clienta t@okup items stored on a server
without the server knowing which item was examined [27]. Aveaapproach with linear
communications complexity is for clients to download thé@rerdatabase and then perform
the query themselves. Research in PIR focuses on techriigaie®quire sublinear com-
munication [28, 29]. Security can bedfered information-theoretically, where security is
guaranteed without assuming any hardness results byirsplitte database among servers
that are assumed to not all conspire with each other. Cortipo#h PIR’s security rests on
problems that are assumed to be computationally intrae{80]. These systems tend to be
very expensive, often costing(/n) to perform a query. Related to PIR, oblivious RAM
allows a secure processor to use an untrusted external RAkbte its state, while hiding
the contents and access patterns [31]. Although not a foctisese algorithms, some of
these algorithmsféer tamper detection. A full survey of PIR and oblivious rahteiques
are beyond the scope of this thesis. See [29] or [32] for tee=uilts.

Although it is impossible to prevent an untrusted servemfnmisbehaving, tamper-
ing can be detected through many approaches. Authentidatednaries were originally

proposed by Naor and Nissim for a public-key-infrastruetcertificate revocation system,

12

where a trusted author generates a dictionary of validfoatits and users can inquire as
to whether or not a certificate is valid, without trusting sexver [5, 6]. They were later
extended to supporticient updates [33—-35] and queries to older versions [7].

RSA accumulators [36] are a useful way to authenticate a isetanconcised(1) sum-
mary, which can be signed using digital signatures. Dynamomumulators [37] permit
efficient incremental update of an accumulator without reggithat it be regenerated. Ac-
cumulators have been widely proposed for use in systemsasuchrs (see, e.g., Goodrich
et al. [38,39]). They do not support proofs of non-membgrshat are needed to imple-
ment a dictionary.

There has been recent interest in creating append-onlpatsea for regulatory compli-
ance. These databases permit the ability to access oldmerand trace tampering [40].
A variety of different data structures are used, including a B-tree [41] dndl gext in-
dex [42]. The security of these systems depends on a write-samantics of the underly-
ing storage that cannot be independently verified by a reenadéor.

Forward-secure digital signature schemes [43] or stredheatication [44] can be used
for signing commitments in our logging scheme or any othgging scheme. Kelsey and
Schneier [23] have the logger encrypt entries with a keyrdgst after use, preventing an
attacker from reading past log entries. A hash functioreisited to generate the encryption
keys. The initial hash is sent to a trusted auditor so thahit decrypt events. Logcrypt [45]
extends this to public key cryptography.

Ma and Tsudik [46] consider tamper-evident logs built usorgvard-secure sequential
aggregating signature schemes [47,48]. Their design isddsased. Within each round,
the logger evolves its signature, combining a new event thighexisting signature to gen-
erate a new signature, and also evolves the authenticatppni the end of a round, the

final signature can authenticate any event inserted.

13

Davis et. al. [22] permits keyword searching in a log by tngthe logger to build
parallel hash chains for each keyword. Techniques havebasn designed for keyword
searching encrypted logs [49, 50]. A tamper-evident storevbting machines has been
proposed, based on append-only signatures [51], but tmatsige sizes grow with the
number of signed messages [52]. An alternative design ofentrenic voting machine
store has been proposed that is tamper-evident, histdgpendent, subliminal free, and
designed to function on write-once storage [53].

Many timestamping services have been proposed in thetlirera Haber and Stor-
netta [54] introduce a time-stamping service based on hhaimg, which influenced the
design of Surety, a commercial timestamping service thatighes their head commit-
ment in a newspaper once a week. Chronos is a digital timgstgnservice inspired by
a skip list, but with a hashing structure similar to our higttree [55]. This and other
timestamping designs [56, 57] are round-based. In eachdrdba logger collects a set of
events and stores the events within that round in a treeiskipr DAG. At the end of the
round the logger publicly broadcasts (e.g., in a newspdberommitment for that round.
Clients then obtain a logarithmically-sized, tamper-ewitproof that their events are stored
within that round and are consistent with the published cidment. Hficient algorithms
have been constructed for outputting time stamp authericanformation for successive
events within a round in a streaming fashion, with minimakrage on the server [58].
Unlike these systems, our history tree allows events to blecdtb the log, commitments
generated, and audits to be performed at any time.

Maniatis and Baker [59] introduced the ideatoheline entanglementwhere every
participant in a distributed system maintains a log. Evé@meta message is received,
it is added to the log, and every message transmitted centhenhash of the log head.

This process spreads commitments throughout the netweadking it harder for malicious

14

nodes to diverge from the canonical timeline without themg evidence somewhere that
could be used in an audit to detect tampering. Auditoriunp {8@s this property to create a
shared “bulletin board” that will record the existance ohfering even whelN -1 systems
are faulty.

Secure aggregation has been investigated as a distribudatmtel in sensor networks
for computing sums, medians, and other aggregate valuen thleehost doing the ag-
gregation is not trusted. Techniques include tradiffgapproximate results in return for
sublinear communication complexity [61], or using MAC cede detect one-hop errors
in computing aggregates [62]. Other aggregation protocale been based around hash
tree structures similar to the ones we developed for Merftgegation. These structures
combine aggregation and cryptographic hashing, and iectlistributed sensor-network
aggregation protocols for computing authenticated sujsdBd generic aggregation [64].
The sensor network aggregation protocols interactivehyegate a secure aggregate of a
set of measurements. In Merkle aggregation, we use inteateegiggregates as a tool for
performing dficient queries. Also, our Merkle aggregation construct®more #icient

than these designs, requiring fewer cryptographic hashesrify an event.

15

Chapter 3

Secure logging

Audit logs are useful for a variety of forensic purposes hsas tracing database tamper-
ing [65] or building a versioned filesystem with verifiabledéurails [17]. Tamper-evident
logs have also been used to build Byzantine fault-tolergstesns [66] and protocols [67],
as well as to detect misbehaving hosts in distributed sys{é8]. Logging systems are
required for regulatory compliance and are therefore irevadmmercial use (albeit many
without much in the way of security features).

Many authenticated or tamper-evident data structures baga proposed for a wide
variety of purposes [5-7,9, 19, 20]. These store data adateatrusted authorwhose
signature is used as a root-of-trust for authenticatingaomlses of lookup queries. They
thus have no need to detect inconsistencies across versiongmstance, in SUNDR [16],
a trusted network filesystem is implemented on untrustecgé Although version vec-
tors [69] are used to detect when the server presents ferkoansistent views to clients,
only trusted clients sign updates for the filesystem.

Tamper-evident logs are fundamentallffeient: Anuntrustedogger is the sole author
of the log and is responsible for both building and signingAt log is a dynamic data
structure, with the author signing a stream of commitmemnts&gw commitment each time
a new event is added to the log. Each commitnerapshotghe entire log up to that
point. If each signed commitment is the root of an authetdtdata structure, well-known
authenticated dictionary techniques [33—35] can deteunp&ingwithin each snapshot.

However, without additional mechanisms to prevent it, attusted logger is free to have

16

different snapshots makeonsistent claims about the pa3b be secure, a tamper-evident
log system must both detect tampering within each signediwbdetect when dierent
instances of the log make inconsistent claims.

Current solutions for detecting when an untrusted serveralking inconsistent claims
over time require linear space and time. For instance, teepteundetected tampering,
existing tamper evident logs [22, 23, 70] which rely upon ahhahain require auditors
examine every intermediate event between snapshots. @pesal [59] for a tamper-
evident log was based on a skip list. It has logarithmic Igokmes, assuming the log is
known to be internally consistent. However, proving ingdiconsistency requires scanning
the full contents of the log. (See Section 3.3.4 for furth@algsis of this.)

In the same manner, CATS [71], a network-storage servide stibng accountability
properties, snapshots the internal state, and only pridtadally detects tampering by au-
diting a subset of objects for correctness between snapskaiviou and Snodgrass [40]
show how to integrate tamper-evidence into a relationalakde, and can prove the ex-
istence of tampering, if suspected. Auditing these systi®msonsistency is expensive,
requiring each auditor visit each snapshot to confirm thgtcdwanges between snapshots
are authorized.

If an untrusted logger knows that a just-added event ormetlicommitment will not be
audited, then any tampering with the added event or the g¥etd by that commitment
will be undiscovered, and, by definition, the log is not tam@édent. To prevent thig
tamper-evident log requires frequent auditifi@ this end, we propose a tree-based history
data structure, logarithmic for all auditing and lookup @®ns. Events may be added
to the log, commitments generated, and audits may be pegtbindependently of one
another and at any time. No batching is used. Unlike pasgdssive explicitly focus on

how tampering will be discovered, through auditing, and \pémize the costs of these

17

audits. Ouristory treeallows loggers to ficiently prove that the sequence of individual
logs committed to, over time, make consistent claims abdwipast.

In Section 3.1 we present our security model and proposergersdor tamper-evident
logging. In Section 3.2 we demonstrate our semantics onléissic hash chain based log.
In Section 3.3 we present the history tree and in Section &4reve that it is tamper-
evident. In Section 3.5 we descrildderkle aggregationa way to annotate events with
attributes which can then be used to perform tamper-evigieatties over the log arshfe
deletionof events, allowing unneeded events to be removed in-plaite,no additional
trusted party, while still being able to prove that no evemse improperly purged. Sec-
tion 3.6 describes a prototype implementation for tampeatent logging of syslog data
traces. Section 3.7 discusses approaches for scalinggberls performance. A summary

appears in Section 3.8.

3.1 Security Model

In this chapter, we make the usual cryptographic assunmgptlaat an attacker cannot forge
digital signatures or find collisions in cryptographic h&sictions. We assume that clients
will encrypt their events before storing them if they warvacy. For simplicity, we assume
a single monolithic log on a single host computer. Our go&b idetect tampering as it is
impractical to prevent the destruction or alteration oftdigecords that are in the custody
of a Byzantine logger. Replication strategies, outsidesit@pe of this paper, can help
ensure availability of the digital records [72].

Tamper-evidence requires auditing. If the log is never eradh then tampering cannot
be detected. To this end, we divide a logging system intcethogical entities—many
clientswhich generate events for appending to a log or history, geeh@n a centralized

but totally untrustedogger, which is ultimately audited by one or more trusteaditors

18

Because of the possibility of insider attacks subverting lttygger, we do not trust the
logger at any time. We assume clients and auditors have iveitgtl storage capacity while
loggers are assumed to have unlimited storage. By auditengublished commitments and
demanding proofs, auditors can be convinced that the latgggirity has been maintained.
At least one auditor is assumed to be incorruptible. In oatesy, we distinguish between
clients and auditors, while a single host could, in factfqren both roles.

Insider attacks are not theoretical. Horse race gamblimg aspari-mutuel system
where the payout for a particular wager depends on the hlisiton of all wagers across
the diferent outcomes. Thetalizeris a security critical component and is responsible
for storing wagers and summing all of the wagers for eacharaéc An insider with full
access to the system subverted the stored wagers for a $8mabllar paydt [73, 74].

In addition, security policies often explicitly assumettha audit log will exist for later
forensic tracing [75]. Such audit logs are of limited use wheey are not tamper-evident.

We must trust clients to behave correctly while they areofeihg the event insertion
protocol, but we trust clients nowhere else. Of course, dadmalk client could insert
garbage, but we wish to ensure that an event, once correérted, cannot be unde-
tectably hidden or modified, even if the original client i9ssequently colluding with the
logger in an attempt to tamper with old data.

Our threat model uses the minimum trust needed to implemé&nnper-evident log.
The logger is never trusted. Clients are only trusted to gga¢he correct events and fulfill
the event insertion protocol, for if events are not generaterectly, no security guarantee
can be dfered. If no auditor is honest, then there is no honest agathiHt raise the alarm
when detecting tampering. Therefore, at least one hondgbais required.

To ensure these semantics, an untrusted logger must rgguiave its correct behavior

to auditors and clientdncremental proofsdemanded of the logger, prove that the current

19

commitment and prior commitment make consistent claimsigpast eventdviembership
proofsask the logger to return a particular event from the log ality a proof that the
event is consistent with the current commitment. Memberphoofs may be demanded by
clients after adding events or by auditors verifying thaeolevents remain correctly stored
by the logger. These two styles of proofs ardisient to yield tamper-evidence. As any
vanilla lookup operation may be followed by a request forgbrthe logger must behave

faithfully or risk its misbehavior being discovered.

3.1.1 Semantics of a tamper evident history

We now formalize our desired semantics for secure histortesch time an everX is
sent to the logger, it assigns an indeand appends it to the log, generating a version-
commitmentC; that depends on all of the events to-da&{g, . . X;. The commitmen€; is
bound to its version numbersigned, and published.

Although the stream of histories that a logger commitsGg. (.C;, Ci,1,Ci,»...) are
supposed to be mutually-consistent, each commitment fixesdependenhistory. Be-
cause histories are not known, a priori, to be consistertt @ne other, we will use primes
(") to distinguish between fierent histories and the events contained within them. laroth
words, the events in loG; (i.e., those committed by commitme@y}) areX,... X and the

events in logC} areX;. .. X, and we will need to prove their correspondence.

Membership auditing

Membership auditing is performed both by clients, verifythat new events are correctly
inserted, and by auditors, investigating that old evergsseil present and unaltered. The
logger is given an event indéxand a commitmert;, i < j and is required to return théh

element in the logX;, and a proof tha€; impliesX; is theith event in the log.

20
Incremental auditing

While a verified membership proof shows that an event wasddggrrectly insomelog,
represented by its commitme@t, additional work is necessary to verify that the sequence
of logs committed by the logger is consistent over timeinkremental auditingthe log-
ger is given two commitmentS; andC;, where| < k, and is required to prove that the
two commitments make consistent claims about past eventerifed incremental proof
demonstrates that, = X for all a € [0, j]. Once verified, the auditor knows th@t and
C, commit to the same shared history, and the auditor can sdifetardC;.

A dishonest logger may attempt to tamper with its historydijng back the log, creat-
ing a new fork on which it inserts new events, and abandome@ld fork. Such tampering
will be caught if the logging system satisfieistorical consistencysee Section 3.1.3) and
by a logger’s inability to generate an incremental proofis&tn commitments on filerent

(and inconsistent) forks when challenged.

3.1.2 Client insertion protocol

Once clients receive commitments from the logger aftertimggan event, they mustimme-
diately redistribute them to auditors. This prevents tients from subsequently colluding
with the logger to roll back or modify their events. To thiglewe need a mechanism, such
as a gossip protocol, to distribute the signed commitmentsa tlients to multiple audi-
tors. It's unnecessary for every auditor to audit every cammment, so long as some auditor
audits every commitment. (We further discuss trdtiewith other auditing strategies in
Section 3.3.1.)

In addition, in order to deal with the logger presentinfjetient views of the log to dif-
ferent auditors and clients, auditors must obtain and r@t®oommitments received from

multiple clients or auditors, perhaps with the gossip protanentioned above. Alterna-

21

tively the logger may publish its commitment in a public fashso that all auditors receive
the same commitment [54]. All that matters is that audit@ssaccess to a diverse collec-
tion of commitments and demand incremental proofs to véhidy the logger is presenting

a consistent view.

3.1.3 Definition: tamper evident history

We now define a tamper-evident history system as a five-tdiyorithms:

H.App(X) — C;. Given an evenk, appends it to the history, returning a new commitment.
H.Incr.GeN(C;, Cj) — P. Generates an incremental proof betw€andC;, wherei < j.

H.MemBersHiP.Gex(i, Cj) — (P, X;). Generates a membership proof for eviefiom com-

mitmentC;, wherei < j. Also returns the evenk;.

P.Incr.VF(C{,Cj) — {T, L}. Checks thatP proves thatC; fixes every entry fixed by

(wherei < j). OutputsT if no divergence has been detected.

P.MemBersHIP.VE(i, Cj, X') — {T, L}. Checks thaP proves that evenX/ is thei'th event

in the log defined byC; (wherei <). OutputsT if true.

The first three algorithms run on the logger and are used terappo the logH
and to generatproofs P Auditors or clients verify the proofs with algorithnibicr.VF,
MemsersHIp.VF}. Ideally, the proofP sent to the auditor is more concise than retransmit-
ting the full historyH. Only commitments need to be signed by the logger. Proofs do
not require digital signatures; either they demonstratsistency of the commitments and
the contents of an event or they don’t. With these five opanatiwe now define “tamper

evidence” as a system satisfying:

22

Historical Consistency If we have a valid incremental proof between two commitments
C; andCy, wherej < k, (PIncr.VF(Cj,Cy) — T), and we have a valid membership
proof P’ for the eventX!, wherei < j, in the log fixed byC; (i.e., P".MEmBERsHIP.VE(i,
C;,X') — T) and a valid membership proof fof” in the log fixed byCy (i.e., P".
MewmeersHIP.VE(i, C, X') — T), thenX/ must equalX”. (In other words, if two com-

mitments commit consistent histories, then they must batlhie same events for their

shared past.)

3.1.4 Other threat models

Forward integrity Classic tamper-evident logging uses fietient threat model, forward
integrity [76]. The forward integrity threat model has twatides: clients who are fully
trusted but have limited storage, and loggers who are asbtortge honest until gtering

a Byzantine failure. In this threat model, the logger muspiexented from undetectably
tampering with events logged prior to the Byzantine faijumat is allowed to undetectably
tamper with events logged after the Byzantine failure. Oz fhith this model is that if a
logger is found to have $iered the Byzantine failure, there is no way to know what pafrts
the log can be trusted. A more fundamental flaw is that foriraiebrity offers no security
guarantee at all under an insider attack because the loggkvays Byzantine.

Although we feel our threat model better characterizes lineats faced by tamper-
evident logging, our history tree and the semantics for &mepident logging are appli-
cable to this alternative threat model with only minor chesig Under the semantics of
forward-integrity, membership auditing just-added esaatunnecessary because tamper-
evidence only applies to events occurring before the Byaarfailure. Auditing a just-
added event is unneeded if the Byzantine failure hasn’t éagq and irrelevant afterwards.

Incremental auditing is still necessary. A client must @mentally audit received commit-

23

. Cj_3 Cj_z Cj_l Cj Co = H(Xo, D)

Cn = H(Xn, Cn—l)

Figure 3.2 : Algebraic construction of a
Figure 3.1 : A hash-chain log. hash-chain history

ments to prevent a logger from tampering with events oacgroefore a Byzantine failure
by rolling back the log and creating a new fork. Membershigiting is required to look
up and examine old events in the log.

Itkis [77] has a similar threat model. His design exploitkd fact that if a Byzantine
logger attempts to roll back its history to before the Byramfailure, the history must fork
into two parallel histories. He proposed a procedure tlsetetwo commitments to detect
divergence without online interaction with the logger amoved anO(n) lower bound on
the commitment size. We achieve a tighter bound by virtué®tagger cooperating in the

generation of these proofs.

Trusted hardware Rather than relying on auditing, an alternative model isely obn

the logger’s hardware itself to be tamper-resistant [4, R&jturally, the security of these
systems rests on protecting the trusted hardware and thefpgystem against tampering
by an attacker with complete physical access. Although @sigih could certainly use
trusted hardware as an auditor, cryptographic scheme®slike rest on simpler assump-

tions, namely the logger can and must prove it is operatimgectly.

24
3.2 Hash chain history

We now demonstrate our formulation of tamper-evidence aedatditing process using
a hash chain history. Figure 3.1 demonstrates the constnuct a hash chain history.
Commitments are denoted By, and events in the history are denotedyo denotes the
null or empty hash value. This figure is equivalent to the lalge construction given in
Figure 3.2.

For the case of a hash chain history,inaremental progfthe proof that the history
committed to byC? agrees with the history committed to I&f with i < j is simply
P=(X;...X)). The auditor can verify the proof by combining the eventBinith C/, to
reconstrucC; which is compared t@'. If they match, then the events committed toQfy
match those committed to iy:’. The auditor can now discafg. Auditors must request
these proofs to validate that prior events remain in the lag.auditors regularly audit a
growing log, the requested incremental proofs will, in a&gg@te, include every event in the
log and the total size of those proofs will grow linearly.

A logger may also generateraembership progtdemonstrating that a particular event
is fixed by a particular commitment. A membership proof ¥prfrom commitmentC’,

I <] consists of the commitmef@;_; and the intermediate entriés = (X ... X;) from
whichCj is computed and compared@.

A hash chain fiers very #icient event insertion. A membership proof that a just-
inserted event was inserted correctly will be constant ditmvever, hash chain historical
lookups and incremental proofs are very expensive as tligyreesending every interme-

diate event in the log. Our history tree reduces these co$tgarithmic.

25
3.3 History tree

We now present our new data structure for representing agasyident history. We start
with a Merkle tree [11], which has a long history of uses fothamticating static data.

In a Merkle tree, data is stored at the leaves and the hasle abdit is a tamper-evident
summary of the contents. Merkle trees support logarithratt pengths from the root to
the leaves, permittingfigcient random access. Although Merkle trees are a well-known
tamper-evident data structure and our use is straightforvwae novelty in our design is in
using a versioned computation of hashes over the Merkledre&ciently prove that dter-

ent log snapshots, represented by Merkle trees, ahgtinctroot hashes, make consistent
claims about the past.

A filled history tree of depthd is a binary Merkle hash tree, storin§ 8vents on the
leaves. Interior nodes;, are identified by their indekand layerr. Each leaf nodé,,
at layer O, stores eveny. Interior nodel;, has left childl;,_; and right childlj o—1,_;.
(Figures 3.3 through 3.5 demonstrate this numbering scheivhen a tree is not full,
subtrees containing no events are represented @Bis can be seen starting in Figure 3.3, a
version-2 tree having three events. Figure 3.4 shows aorefstree, adding four additional
events. Although the trees in our figures have a depth of 3 andtore up to 8 leaves, our
design clearly extends to trees with greater depth and reaxes.

Each node in the history treelesbeledwith a cryptographic hash which, like a Merkle
tree, fixes the contents of the subtree rooted at that nodea eaf node, the label is the
hash of the event; for an interior node, the label is the hdsheoconcatenation of the
labels of its children.

An interesting property of the history tree is the abilityefficiently reconstruct old
versions owiewsof the tree. Consider the history tree given in Figure 3.4e Tdyger

could reconstrudE; analogous to the version-2 tree in Figure 3.3 by pretendiagrtodes

26

lo,
T
Y,
Xo X

Figure 3.3 : A version-2 history tree with commitmeZit= |,

I/I

|"<03\|"\
3 x &b

Figure 3.4 : A version-6 history tree with commitmeZjt = I/,.

17, and Xy wereo and then recomputing the hashes for the interior nodes andott.
If the reconstructed’ matched a previously advertised commitmégt then both trees
must have the same contents and commit the same events.

This forms the intuition of how the logger generates an imaetal proofP between
two commitmentsC’, andCy. Initially, the auditor only possesses commitmefsndCy;
it does not know the underlying Merkle trees that these camanits fix. The logger must
show that both histories commit the same events, Xg.= X, X! = X|, andX) = XJ.
To do this, the logger sendspauned tree Pto the auditor, shown in Figure 3.5. This
pruned tree includes just enough of the full history treedmpute the commitments,
andCg. Unnecessary subtrees alededout and replaced witktubs Events can be either
included in the tree or replaced by a stub containing theshhd&8ecause an incremental

proof involvesthreehistory trees, the trees committed®yandCy with unknown contents

27

lo, 2/| 0’3\|

Y &)
0’ 0@5

Figure 3.5 : An incremental prod? between a version-2 and version-6 commitment.
Hashes for the circled nodes are included in the proof. Gthshes can be derived from
their children. Circled nodes in Figures 3.3 and 3.4 musthmve to be equal to the
corresponding circled nodes here.

Xo Xi Ko X3 X4 X5 KXo

Figure 3.6 : Graphical notation for a history tree analogtmuthe proof in Figure 3.5.

Solid discs represent hashes included in the proof. Othdesxare not included. Dots
and open circles represent values that can be recomputedtimvalues below them; dots
may change as new events are added while open circles will@Gay circle nodes are

unnecessary for the proof.

28

and the pruned trel, we distinguish them by using aftBrent number of primes)(

From P, shown in Figure 3.5, we reconstruct the corresponding cootmitment for
a version-6 treeCs. We recompute the hashes of interior nodes based on theshathe
their children until we compute the hash for ndde, which will be the commitmenCs.

If C{ = Cs then the corresponding nodes, circled in Figures 3.4 andr8tbe pruned tree
P and the implicit tree committed b§¢ must match.

Similarly, from P, shown in Figure 3.5, we can reconstruct the version-2 camaenit
C, by pretending that the nodég andl,, areo and, as before, recomputing the hashes
for interior nodes up to the root. €, = C,, then the corresponding nodes, circled in
Figures 3.3 and 3.5, in the pruned tfeand the implicit tree committed b, must match,
orly, =loa andX;, = Xo.

If the events committed b§, andCy are the same as the events committedPbthen
they must be equal; we can then conclude that the tree coethti$tCY’ is consistent with
the tree committed bg’. By this we mean that the history trees committeddjyandCy
both commit the same events, X = X, X{" = X}, andX} = X}, even though the events

X§ =X X! = X{, Xy, andXy are unknown to the auditor.

3.3.1 Is it safe to skip nodes during an audit?

In the pruned tree in Figure 3.5, we omit the events fixedohyyet we still preserve the
semantics of a tamper-evident log. Even though these eav@nts may not be sent to the
auditor, they are still fixed by the unchanged hashes ab@e th the tree. Any attempted
tampering will be discovered in future incremental or mershig audits of the skipped
events. With the history tree, auditors only receive theipos of the history they need to
audit the events they have chosen to audit. Skipping eveaktesnt possible to conduct a

variety of selective audits andfers more flexibility in designing auditing policies.

29

Existing tamper-evident log designs based on a classictizain have the forn€; =
H(Ci_1 || %), C_; = O and do not permit events to be skipped. With a hash chain, an
incremental or membership proof between two commitmentsebiveen an event and a
commitment must includeveryintermediate event in the log. In addition, because inter-
mediate events cannot be skipped, each auditor, or cliéinggeas an auditor, must eventu-
ally receive every event in the log. Hash chaining schengesueh, are only feasible with
low event volumes or in situations where every auditor isadly receiving every event.

When membership proofs are used to investigate old evdrsglility to skip nodes
can lead to dramatic reductions in proof size. For exampleyur prototype described
in Section 3.6, in a log of 80 million events, our history tien return a complete proof
for any randomly chosen event in 3100 bytes. In a hash chdierenvintermediate events

cannot be skipped, an average of 40 million hashes wouldride se

Auditing strategies In many settings, it is possible that not every auditor walibter-
ested in every logged event. Clients may not be interestediditing events inserted or
commitments received by other clients. One could easilygim@ascenarios where a single
logger is shared across many organizations, each only tiuzd to audit the integrity
of its own data. These organizations could run their owntauslifocusing their attention
on commitments from their own clients, and only occasignelchanging commitments
with other organizations to ensure no forking has occurr®te can also imagine sce-
narios where independent accounting firms operate auditistgms that run against their
corporate customers’ log servers.

The log remains tamper-evident if clients gossip their ikembcommitments from the
logger to at least one honest auditor who uses it when dem@uaati incremental proof.

By not requiring that every commitment be audited by evergitan, the total auditing

30

overhead across all auditors can be proportional to thérataber of events in the log—
far cheaper than the number of events times the number afoasidis we might otherwise
require.

Skipping nodes fders other time-security tradffs. Auditors may conduct audits prob-
abilistically, selecting only a subset of incoming comnems for auditing. If a logger
were to regularly tamper with the log, its odds of remainimgletected would become

vanishingly small.

3.3.2 Construction of the history tree

Now that we have an example of how to use a tree-based histemyjll formally define its
construction and semantics. A versioiistory tree stores + 1 eventsXy. .. X,. Hashes
are computed over the history tree in a manner that pernatsetonstruction of the hashes
of interior nodes of older versions giews We denote the hash on noldeby A}fr which is
parametrized by the node’s index, layer and view being cdathuA versionv view on a
versionn history tree reconstructs the hashes on interior nodesversaony history tree
that only included eventX,. .. X,. Whenv = n, the reconstructed root commitmentds.
The hashes are computed with the recurrence defined in R3gtire

A history tree can support arbitrary size logs by increasirgdepth when the tree fills
(i.e.,n = 29— 1) and definingl = [log,(n+ 1)]. The new root, one level up, is created with
the old tree as its left child and an empty right child where/ eeents can be added. For
simplicity in our illustrations and proofs, we assume a trété fixed depthd.

Once a given subtree in the history tree is complete and hasne slots to add events,
the hash for the root node of that subtre&@enand will not change as future events are
added to the log. The logger caches these frozen hashesh@dashes of frozen nodes)

into FH,; to avoid the need to recompute them. By exploiting the frdzash cache, the

31

A = {H(OllXi) if v>i (3.1)
H(LIIAY,_,lIo) ifv<i+2t

A = r (3.2)
HOLIAY, A,) fvi+s2t

Cn = Al (3.3)

A/, = FH;; whenever >i+2" -1 (3.4)

Figure 3.7 : Recurrence for computing hashes.

o S

®
Xo Xg Xo X3 X4 X5 X

Figure 3.8 : A proof skeleton for a version-6 history tree.

logger can recomputd’, for any node with at mosD(d) operations. In a version-ree,
nodel;, is frozen whem > i + 2 — 1. When inserting a new event into the |dg(1)
expected case ar@(d) worse case nodes will become frozen. (In Figure 3.3, ngdeés
frozen. If eventX; is added, nodek ; andl, will become frozen.)

Now that we have defined the history tree, we will describeitioeemental proofs
generated by the logger. Figure 3.6 abstractly illustratgsuned tree equivalent to the
proof given in Figure 3.5, representing an incremental pitmon C, to Cs. Dots represent

unfrozen nodes whose hashes are computed from their ahildd@en circles represent

32

frozen nodes which are not included in the proof because tlashes can be recomputed
from their children. Solid discs represent frozen nodesseghaclusion is necessary by
being leaves or stubs. Grayed out nodes represent elidéessibhat are not included in
the pruned tree. From this pruned tree and equations (3.4)+{shown in Figure 3.7) we

can computéSs = AJ ; anda commitment from an earlier version-2 vied,..

This pruned tree is incrementally built frompoof skeleton seen in Figure 3.8—
the minimum pruned tree of a version-6 tree consisting ofliyazen nodes. The proof
skeleton for a versiom-tree consists of frozen hashes for the left siblings for té from
Xn to the root. From the included hashes and using equatiohs(@4), this proof skeleton
suffices to comput€s = AJ ;.

From Figure 3.8 the logger incrementally builds Figure 3/&plitting frozen interior
nodes. A node is split by including its children’s hashedmpruned tree instead of itself.
By recursively splitting nodes on the path to a leaf, the &gmanincludethat leaf in the
pruned tree. In this example, we split nodgsandl,;. For each commitmer@; that is
to be reconstructable in an incremental proof the prunedRmeust include a path to the
eventX;. The same algorithm is used to generate the membership foroah evenix;.

Given these constraints, we can now define the five historyatipes in terms of the

equations in Figure 3.7.

H.App(X) — C,. Event is assigned the next free slat, C, is computed by equations

(3.1)-(3.4).

H.Incr.GeN(C;, Cj) — P. The pruned tre® is a versionj proof skeleton including a path

to X;.

H.MemBersHir.Gex(i, Cj) — (P, X;). The pruned tre® is a version; proof skeleton includ-

ing a path taX; and the evenk;.

33

PIncr.VF(C/",C}) — {T, L}. FromP apply equations (3.1)-(3.4) to complAg;d andA(")’d.

This can only be done i includes a path to the lea§. ReturnT if C/" = A, and
Ci=A
P.MEeMBERSsHIP.VE(I, Ci. X') — {7, L}. FromP apply equations (3.1)-(3.4) to compuﬂ;éd.

Also extractX; from the pruned tre®, which can only be done P includes a path

to eventX;. ReturnT if C] = A(j)’OI andX = X.

Although incremental and membership proofs haviedent semantics, they both fol-
low an identical tree structure and can be built and audiyed tommon implementation.
In addition, a single pruned tre® can embed paths to several leaves to satisfy multiple

auditing requests.

What is the size of a pruned tree used as a proof? The pruned tree necessary for sat-
isfying a self-contained incremental proof betwé&grandC; or a membership proof far

in C; requires that the pruned tree include a path to nogesdX;. This resulting pruned
tree contains at mostiArozen nodes, logarithmic in the size of the log.

In a real implementation, the log may have moved on to a lagéesion,k. If the
auditor requested an incremental proof betw&€mandC;, the logger would return the
latest commitmenty, and a pruned tree of at most Bodes, based around a versiotree
including paths to; andX;. More typically, we expect auditors will request an incread
proof between a commitme@} and the latest commitment. The logger can reply with the

latest commitment, and pruned tree of at mosti2odes that included a path Xo.

The frozen hash cache In our description of the history tree, we describedftiierepre-
sentationwhen we stated that the logger stores frozen hashes fooaéririnterior nodes in

the history tree. This cache is redundant whenever a nodsls tan be recomputed from

34

its children. We expect that logger implementations, whialld pruned trees for audits
and queries, will maintain and use the cache to imprdveiency.

When generating membership proofs, incremental proofd,carery lookup results,
there is no need for the resulting pruned tree to includenddant hashes on interior nodes
when they can be recomputed from their children. We assuateptinned trees used as
proofs will use thisminimum representatigrcontaining frozen hashes only for stubs, to

reduce communication costs.

Can overheads be reduced by exploiting redundancy betweerrgofs? If an auditor
is in regular communication with the logger, demanding éncental proofs between the
previously seen commitment and the latest commitmentetisaredundancy between the
pruned subtrees on successive queries.

If an auditor previously requested an incremental proofveenC; andC; and later
requests an incremental proefoetweenC; andC,, the two proofs will share hashes on
the path to leak;. The logger may sendartial proofthat omits these common hashes,
and only contains the expect@flog,(n— j)) frozen hashes that are not shared between the
paths toX; andX,. This devolves t@®(1) if a proof is requested after every insertion. The

auditor need only cachfrozen hashes to make this work.

Tree history time-stamping service Our history tree can be adapted to implement a
round-based time-stamping service. After every round|dgger publishes the last com-
mitment in public medium such as a newspaper. G;dte the commitment from the prior
round andCy be the commitment of the round a client requests that its mectX; be
timestamped. A client can request a pruned tree includingtia o leavess;, X;, X. The
pruned tree can be verified against the published commisrienrove thalX; was sub-

mitted in the round and its order within that round, withdwé tooperation of the logger.

35

If a separate history tree is built for each round, our histoee is equivalent to the

threaded authentication tree proposed by Buldas et alf§sTjne-stamping systems.

3.3.3 Storing the log on secondary storage

Our history tree fiers a curious property: it can be easily mapped onto writee@ppend-
only storage. Once nodes become frozen, they become imlautaid are thus safe to
output. This ordering is predetermined, starting wixg)((X, lo1), (X2), (X3, 121, 102),
(X4).... Parentheses denote the nodes written by eaghtfansaction. If nodes within
each group are further ordered by their layer in the tres, dhiler is simply a post-order
traversal of the binary tree. Data written in this linearhias will minimize disk seek
overhead, improving the disk’s write performance. Giveis thyout, and assuming all
events are the same size on disk, converting fromrateg layer) to the byte index used to
store that node tak&3(logn) arithmetic operations, permittingfecient direct access.

In order to handle variable-length events, event data castdred in a separate write-
once append-onlyalue store while the leaves of the history tree contaiffisets into the
value store where the event contents may be found. Decaughlenhistory tree from the
value store also allows many choices for how events aredstsreh as databases, com-

pressed files, or standard flat formats.

3.3.4 Comparing to other systems

In this section, we evaluate the time and space trigeetween our history tree and earlier
hash chain and skip list structures. In all three designsybeeship proofs have the same
structure and size as incremental proofs, and proofs arerggd in time proportional to
their size.

Maniatis and Baker [59] present a tamper-evident log usidegtarministic variant of a

36

Hash chain Skip list History tree
App Time 0(1) 0(1) O(log, n)
INcrR.GEN proof size taCy O(n-K) O(n) O(log, n)
MemBersHip. GEN proof size forXy O(n—-Kk) O(n) O(log, n)
Cache size - O(log, n) O(log, n)
Incr.GeN partial proof size - O(n-j) O(logy(n - j))
Memsership. GEN partial proof size - O(log, (n—1)) O(log,(n— 1))

Table 3.1 : We characterize the time to add an event to therdgtlze size of full and
partial proofs generated in terms mfthe number of events in the log. For partial proofs
audits,] denotes the number of events in the log at the time of the laht andi denotes
the index of the event being membership-audited.

skip list [79]. The skip list history is like a hash-chain arporating extra skip links that
hop over many nodes, allowing for logarithmic lookups.

In Table 3.1 we compare the three designs. All three desigus @(1) storage per
event andO(1) commitment size. For skip list histories and tree hisrwhich support
partial proofs (described in Section 3.3.2), we presentctehe size and the expected
proof sizes in terms of the number of events in the legand the index,, of the prior
contact with the logger or the indé&xf the event being looked up. Our tree-based history
strictly dominates both hash chains and skip lists in presfegation time and proof sizes,
particularly when individual clients and auditors only @uwdsubset of the commitments or

when partial proofs are used.

Canonical representation A hash chain history and our history tree have a canonical
representation of both the history and of proofs within thgdny. In particular, from

a given commitmen€,, there exists one unique path to each ev¢ntWhen there are
multiple paths auditing is more complex because the altesnaaths must be checked
for consistency with one another, both within a single higtand between the stream of

historiesC;, Ci,1, ... committed by the logger. Extra paths may improve theiency of

37

looking up past events, such as in a skip list, feomore functionality [22], but cannot be
trusted by auditors and must be checked.

Maniatis and Baker [59] claim to support logarithmic-sipedofs, however they sier
from this multi-path problem. To verify internal consistgnan auditor with no prior con-
tact with the logger must receive every event in the log imgirecremental or membership
proof.

Efficiency improves for auditors in regular contact with thegegthat use partial proofs
and caché(log, n) state between incremental audits. If an auditor has puelyorerified
the log’s internal consistency up @, the auditor will be able to verify the log’s internal
consistency up to a future commitme®y with the receipt of eventX,; ... X, Once an
auditor knows that the skip list is internally consisterg tmks that allow for logarith-
mic lookups can be trusted and subsequent membership pyoadkl events will run in
O(log, n) time. Skip list histories were designed to function in timsde, with each auditor

eventually receiving every event in the log.

Auditing is required Hash chains and skip lists onlyfer a complexity advantage over
the history tree when adding new events, but this advansaigeting. If the logger knows
that a given commitment will never be audited, it is free tmper with the events fixed
by that commitment, and the log is no longer provably tamp&tent. Every commitment
returned by the logger must have a non-zero chance of beitgedwand any evaluation of
tamper-evident logging must include the costs of this uitalde auditing. With multiple
auditors, auditing overhead is further multiplied. Aftesérting an event, hash chains and
skip lists suiter anO(n — j) disadvantage the moment they do incremental audits batwee
the returned commitment and prior commitments. They caradhice this overhead by,

for example, only auditing a random subset of commitments.

38

Even if the threat model is weakened from our always-ungaikigger to the forward-
integrity threat model (See Section 3.1.4), hash chainskipdlists are lessf&cient than
the history tree. Clients can forgo auditing just-addech&yebut are still required to do
incremental audits to prior commitments, which are expengiith hash chains or skip

lists.

3.4 Proof for tamper evidence of the history tree

In this section, we prove that the history tree is histolyoabnsistent. Recall that the logger
creates a stream of commitmen®,Ci,1,.... Each of these commitments commits some
history, but these histories are not known to be consistéhtemach other.

In Theorem 1, we prove that if the logger generates a verifiecemental proof be-
tween two commitments, then the logs represented by thasendments are consistent
and contain identical events. Note that this proof requieésrring to several pruned trees
that are not known, in advance, to be consistent. We attaekbk3etter prefixes to the
variables representing a history tree, includiig Ci, X;, to distinguish between the vari-
ous trees until we prove them to be equal. For instance, istdtement of an incremental
proofH.Incr.Gen(eCj, BC) — P, we know that the commitment value€; andsCy com-
mit to some set of unknown events, but we do not know whetlegr dine the same until the

incremental proof is checked.

Lemma 1 Ifthe reconstructed hashes for a particular vieviMarfrozen subtrees are equal
to each other, then corresponding events in those two treeglantical. Algebraically, if
v>iandeA, = A thenaXy = X, foralla € [i,i + 2" — 1] N [0, V], the set of all leaves

in that subtree defined for version v.

Proof is by induction over the layer

39

Case r= 0 (leaf nodes): By assumption,> i. We combine the assumptia?y', =
BA, and apply equation 3.1, @A/, andpA, and geteX; = oA/, = BA/, = X which
provesaX, = X, forae[i,i + 20 - 1].

Case r> 0 (interior nodes): There are two subcases, corresponditigettwo cases in
equation (3.2).

Subcase « i + 21 (empty right child): We apply equation (3.2) to the definitiof
aA andpA’ and derive:

H(eA_, | 0) = oA, = BAT, = HBAT,_, || O)

By the collision resistance dfi, the left children have the same reconstructed hash,
A =BA ;-

Our inductive hypothesis is true for the left chilédy,_, = BA/_;. We apply it and get
aXy = BXsforallace[i,i + 271 - 1] n [0, V] (the child subtree). However, in this subcase,
Vv < i+ 271 so thereforei[i + 21 — 1] n[0,V] = [i,i + 2" — 1] n [0, V] (i.e., the parent
subtree covers the same interval). Thu, = X, foralla € [i,i+21-1]n[0, v] implies
aXy =X forallac[i,i+2" - 1]1n[0,Vv], as required.

Subcase & i + 271 (frozen left child): We apply equation (3.2) to the definitiof
aA, andgA and derive:

H(eA, 1 | eA 1, y) = A = BN = HBA, 1 | BA 51, 1)
By the collision resistance &f, each child has the same reconstructed hastigr, =
,BA}fr_l andaAIVﬂ,_l’r_l = A:’+2,_1’r_1.
Our inductive hypothesis is true for each child. We applyit#',_, = A/ _; (the
left child) andaAIV+2r,l’r_1 = ,BA:’+2,,1J_1 (the right child) and getrX, = BX, for all a €

[i,i +2-1-1]N]0,V] (the left child subtree) andX, = gX,forallae [i + 21, (i+21) +

40

Prefix Use

None The pruned tree used in the incremental proof.

The older commitment in the incremental proof.

The newer commitment in the incremental proof.

The pruned tree used to prove membership from the older coment.
The pruned tree used to prove membership from the newer ciomemt.
The event verified in the membership proof for the older cotmant.
The event verified in the membership proof for the newer camemt.

NN SR ™ R

Table 3.2 : Table of Greek letter prefixes and their uses.

2-1-1]1n[0,V] (the right child subtree). Therefore, combining thesenvils,aX, = SXa

forallae[i,i + 2" — 1] N[0, V] (the parent subtreei

Corrolary 1 If a commitmentC; and a reconstructed hash of a vig#, ; have the same
value, they match the same events. More formaly, = ,BAiO’d, thenaX, = BX, for all

aclo,il.

Proof: By the definition o&C; in equation (3.3)aC; = aAiO’d. Then apply Lemma 1 to
aAy 4 andpA, . m

Theorem 1 (Historical Consistency) We prove that this tisolny tree satisfies the require-
ments of tamper evidence described in Section 3.1.1.INé#VE(aCj, BCy) — T with
j < kthen for any i< j, pruned treesyP and¢P, if yP.MemBErsHIP.VE(i, aCj, X)) — T
and6P.MemsersHIP.VE(i, BCy, (X)) — T theneX; = £X;. This means that if we have a ver-
ified incremental proof between two commitmerts, 5Cy, the two commitments commit
to the identical events as long as the membership proofhémet events also verify under

their respective commitments.

Tamper evidence involves proving that two histories, regnéed by their commitments
«C; andpsCy, commit the same events. When we prove tamper evidence, veethaee

additional pruned tree®, yP, andéP, which also must also be tested to be consistent with

41

the commitments. Our proof of historical consistency reegib distinct history trees: three
pruned trees, used as proofs and two history trees, denokgbdytheir commitments. We

also use additional variables to represent events. The tteroted by our prefixes are
described in Table 3.2. Note that the unprefi)@%g andX denote variables in the pruned

treeP. The proof proceeds in 4 parts.

Part 1 (incremental proof): From the definition Bfincr.Ve(aC;, BCx) — T, we know that
aCj = Agm andpCy = A5 ,. We are able to reconstru,éﬂ)’d andAj , becausé includes a
path to the leaveX; andX,. Applying Corollary 1 toaC; = Aéd the events committed
to by P are the same as the events committed ta®y, thusX, = aX, for all a € [0, j].
Similarly, applying Corollary 1 t@gCy = A('g’d, the events committed to by are the same

as the events committed to BZy, or X, = X, for all a € [0, K].

Part 2 (membership proof): From the definition pP.MemersHIP.VE(i, aCj, €Xi) — T, we
know thataC; = yA(j)’d andyX; = €X;. We apply Corollary 1 taC; = yA(j)’d and derive
aXy =yXsforallae]O, j].

Part 3(membership proof): From the definition &.MemsersuiP. VE(i, BCy, £ X)) — T, we
know thatgCy = 5A'(§’d andoX; = ¢X;. We apply Corollary 1 t@8Cy = 6A'(§’d and derive
BXa = 6X,, foralla e [0, K].

Part 4 (combining the pieces): For any< j, we can combine our four parts together.
We haveX; = aX; andX; = BX from part 1,aX; = yX; andyX; = €X; from part 2, and

BXi = 6X; andsX; = £X; from part 3. We thus conclude thaX; = /X;. m

3.5 Merkle aggregation

Our history tree permit©(log, n) access to arbitrary events, given their index. In this

section, we extend our history tree to suppdficeent, tamper-evident content searches

42

through a feature we caMerkle aggregationwhich encodes auxiliary information into
the history tree. Merkle aggregation permits the loggemetdgzm authorized purges of the
log while detecting unauthorized deletions, a feature viesadie deletion

As an example, imagine that a client flags certain eventsitoipas “important” when
it stores them. In the history tree, the logger propagaesgtiiags to interior nodes, setting
the flag whenever either child is flagged. To ensure that thgetd history is tamper-
evident, this flag can be incorporated into the hash label mbde and checked during
auditing. As clients are assumed to be trusted when ingentito the log, we assume
clients will properly annotate their events. Membershiditig will detect if the logger
incorrectly stored a leaf with the wrong flag or improperlgpagated the flag. Incremental
audits would detect tampering if any frozen node had its flegged. Now, when an auditor
requests a list of only flagged events, the logger can gen#hrat list along with a proof
that the list is complete. If there are relatively few “impont” events, the query results can
skip over large chunks of the history.

To generate a proof that the list of flagged events is complletelogger traverses the
full history treeH, pruning any subtrees without the flag set, and returns aeprtree
P containing only the visited nodes. The auditor can ensuaerib flagged nodes were
omitted inP by performing its own recursive traversal Brand verifying that every stub is
unflagged.

Figure 3.9 shows the pruned tree for a query against a vebsiostory with events,
andXs flagged. Interior nodes in the path froxa and Xs to the root will also be flagged.
For subtrees containing no matching events, such as thetp¥, andX;, we only need

to retain the root of the subtree to vouch that its childrenuarflagged.

43

N
< R

Xo Xi X X3 X4 Xs

Figure 3.9 : Demonstration of Merkle aggregation with sowengs flagged as important
(highlighted). Frozen nodes that would be included in a yu#ee represented as solid
discs.

3.5.1 General attributes

Boolean flags are only one way we may flag log events for laterigs. Rather than
enumerate every possible variation, we abstract an agipagdrategy over attributes into
a 3-tuple, ¢,®,I). 7 represents the type of attribute or attributes that an evasito is a
deterministic function used to compute the attributes omtarior node in the history tree
by aggregatinghe attributes of the node’s childreliis a deterministic function that maps
an event to its attributes. In our example of client-flaggeshés, the aggregation strategy
is (r :=BooL,® = V,I'(X) := x.isFlagged.

For example, in a banking application, an attribute coulthieedollar value of a trans-
action, aggregated with thesx function, permitting queries to find all transactions over a
particular dollar value and detect if the logger tamper$hie results. This corresponds
to (r 1= N1, ® = Max,[(X) := xvalug. Or, consider events having internal timestamps,
generated by the client, arriving at the logger out of ortfexe attribute each node in the
tree with the earliest and latest timestamp found amondhitdren, we can now query the
logger for all nodes within a given time range, regardlesheforder of event arrival.

There are at least threeflidirent ways to implement keyword searching across logs

44

using Merkle aggregation. If the number of keywords is fixeddvance, then the attribute
7 for events can be a bit-vector or sparse bit-vector combividde = v. If the number
of keywords is unknown, but likely to be smatl,can be a sorted list of keywords, with
& = U (set union). If the number of keywords is unknown and pogdiytunbounded, then
a Bloom filter [80] may be used to represent them, witheing a bit-vector and = V.
Of course, the Bloom filter would then have the potential ofimeing false positives to a
qguery, but there would be no false negatives.

Merkle aggregation is extremely flexible becadsean beany deterministic com-
putable function. However, once a log has been created, I[) are fixed for that log,
and the set of queries that can be made is restricted baséeé aggregation strategy cho-
sen. In Section 3.6 we describe how we were able to apply tws=pts to the metadata

used in Syslog logs.

3.5.2 Formal description

To make attributes tamper-evident in history trees, we fgdtie computation of hashes
over the tree to include them. Each node now has a hash labeteteby A/, .H and
an annotation denoted by .A for storing attributes. Together these form the node data
that is attached to each node in the history tree. Note tieahdish label of nodey', .H,
doesnot fix its own attributes A, .A. Instead, we define subtree authenticator A« =
H(A',.-H || A.A) that fixes the attributes and hash of a node, and recurdively every
hash and attribute in its subtree. Frozen hashegs.Rldnd FH,.H and FH, .x are defined
analogously to the non-Merkle-aggregation case.

We could have defined this recursion in severdledent ways. This representation
allows us to elide unwanted subtrees with a small stub, aantaone hash and one set of

attributes, while exposing the attributes in a way that makpossible to locally detect if

45

A = HAHIAY, A) (3.5)
A H = {H(onxi) if v>i (3.6)
Ap-A = {r(xi) if v>i (3.7)
A H = H(LIIA,_,+lD) ifv<i+2t a8

HLIA, o+ 1A) ifv>i+ 21

ALLA ifv<i+2t

AXr'A = (3.9)
A AN L A v+ 2

Co = Al (3.10)

Figure 3.10 : Hash computations for Merkle aggregation

the attributes were improperly aggregated.

Our new mechanism for computing hash and aggregates foreisgd/en in equations
(3.5)-(3.10) in Figure 3.10. There is a strong correspooddretween this recurrence and
the previous one in Figure 3.7. Equations (3.6) and (3.7aekthe hash and attributes
of an event, analogous to equation (3.1). Equation (3.9)llearaggregation of attributes
between a node and its children. Equation (3.8) computeldbk of a node in terms of
the subtree authenticators of its children.

Incr.GEN and MemBersHIp.GEN Operate the same as with an ordinary history tree, except
that wherever a frozen hash was included in the proof (Five now include both the
hash of the node, FHH, and its attributes FH.A. Both are required for recomputing

A/..Aand A/, .H for the parent node. b, Incr.VF, and Memeersuip.VF are the same as

46

before except for using the equations (3.5)-(3.10) for catimg hashes and propagating
attributes. Merkle aggregation inflates the storage andfiaes by a factor ofA + B)/A

whereA is the size of a hash arlis the size of the attributes.

3.5.3 Queries over attributes

In Merkle aggregation queries, we permit query results tdaio false positives, i.e., events
that do not match the quefY. Extra false positive events in the result only impact perfo
mance, not correctness, as they may be filtered by the autii®forbid false negatives;
every event matchin@ will be included in the result.

Unfortunately, Merkle aggregation queries can only matttibaites, not events. Con-
sequently, we must conservatively transform a qu@rgver events into a predicat@"
over attributes and require that it séable with the following properties: 11Q matches
an event therQ" matches the attributes of that event (i}, Q(X) = Q' (I'(X))). Fur-
thermore, ifQ' is true for either child of a node, it must be true for the nadelf (i.e.,
Yxy Q' (¥) vV Q' (y) = Q' (x@y) andVx Q' (x) v Q' (1) = Q' (x®).

Stable predicates can falsely match nodes or events fordasons: events’ attributes
may matchQ' without the events matchin@, or nodes may occur wher&®{(x) v Q' (y))
is false, butQ" (x @ y) is true. We call a predicat® exactif there can be no false matches.
This occurs wherQ(x) & Q'(I'(X)) and Q" (x) v Q"' (y) & Q' (x@®y). Exact queries
are more #icient because a query result does not include falsely nmegahents and the
corresponding pruned tree proving the correctness of tg/qasult does not require extra
nodes.

Given these properties, we can now define the additionalatipes for performing

authenticated queries on the log for events matching a qata" .

H.Query(C;, Q") — P Given a predicat€" over attributes, returns a pruned tree where

47
every elided subtrees does not mafgh

P.Query.VF(C/, Q') — {T, L} Checks the pruned tre and returnsr if every stub inP

does not matcly" and the reconstructed commitm@ytis the same a€.

Building a pruned tree containing all events matching aipegdQ' is similar to build-
ing the pruned trees for membership or incremental auditifge logger starts with a
proof skeleton then recursively traverses it, splittingeiior nodes wher@Q' (FH;,.A) is
true. Because the predica@® is stable, no event in any elided subtree can match the pred-
icate. If there are events matching the predica@, the pruned tree is of size at most
O((1 + t)log, n) (i.e.,t leaves with logn interior tree nodes on the paths to the root).

To verify thatP includes all events matchin@', the auditor does a recursive traversal
overP. If the auditor finds an interior stub whe@ (FH;,.A) is true, the verification fails
because the auditor found a node that was supposed to havesplée (Unfrozen nodes
will always be split as they compose the proof skeleton artgl@ccur on the path fronx;
to the root.) The auditor must also verify that pruned eammmits the same events as the
commitmen(C; by reconstructing the root commitmed using the equations (3.5)-(3.10)
and checking thaE; = C;.

As with an ordinary history tree, a Merkle aggregating tespuires auditing for tamper-
detection. If an event is never audited, then there is noaguee that its attributes have
been properly included. Also, a dishonest logger or clientld deliberately insert false
log entries whose attributes are aggregated up the tree tmtt, causing garbage results
to be included in queries. Even so(fis stable, a malicious logger cannot hide matching

events from query results without detection.

48
3.5.4 Applications

Safe deletion Merkle aggregation can be used for expiring old and obs@&etats that
do not satisfy some predicate and prove that no other evesrts deleted inappropriately.
While Merkle aggregation queries prove that no matchingieigeexcluded from a query
result, safe deletion requires the contrapositive: pmvman auditor that each purged
event was legitimately purged because it did not match tedipate.

Let Q(X) be a stable query that is true for all events that the loggestrkeep. Let
Q"(x) be the corresponding predicate over attributes. The logtpees a pruned tree that
includes all nodes and leaf events whé¥dx) is true. The remaining nodes may be elided
and replaced with stubs. When a logger cannot generate a@atlpreviously deleted
eventX;, it instead supplies a pruned tree that includes a path tmesstor nodé\ of X;
whereQ' (A) is false. Becaus® is stable, ifQ" (A) is false, therQ" (I'(X)) andQ(X;) must
also be false.

Safe deletion and auditing policies must take into accohbat if a subtree contain-
ing eventsX; ... X; is purged, the logger is unable to generate incremental atbreeship
proofs involving commitment€; . .. C;. The auditing policy must require that any audits
using those commitments be performed before the corresppruents are deleted, which
may be as simple as requiring that clients periodically estj@n incremental proof to a
later or long-lived commitment.

Safe deletion will not save space when using the appendstoitgge described in Sec-
tion 3.3.3. However, if data-destruction policies requiestroying a subset of events in the

log, safe deletion may be used to prove that no unauthoragedvents were destroyed.

“Private” search Merkle aggregation enables a weak variant of private inédrom re-

trieval [27], permitting clients to have privacy for the sgiee contents of their events. To

49

aggregate the attributes of an event, the logger only néedattributes of an everii(X;),
not the event itself. To verify that aggregation is done ectty also only requires the at-
tributes of an event. If clients encrypt their events andtdlly sign their public attributes,
auditors may verify that aggregation is done correctly whilients preserve their event
privacy from the logger and other clients and auditors.

Bloom filters, in addition to providing a compact and appnoate way to represent the
presence or absence of a large number of keywords, can abtegirivate indexing (see,
e.g., Goh [81]). The logger has no idea what the individughkads are within the Bloom
filter; many keywords could map to the same bit. This allowgpfovate keywords that are
still protected by the integrity mechanisms of the tree.

Annotations can be useful even when not used in predicateegueor example, a
log might track resource use. If resource use is measured byteger and aggregated by
addition, therr is an integer and®b := a+b. The annotations on interior nodes aggregate
the total resources used in that subtree, and the annotatithre root summarizes the total

resources used.

3.6 Syslog prototype implementation

Syslog is the standard Unix-based logging system [82]irgj@vents with many attributes.
To demonstrate thefliectiveness of our history tree, we built an implementatmpable of
storing and searching syslog events. Using events fronog\tshces, captured from our
departmental servers, we evaluated the storage and paricentosts of tamper-evident
logging and secure deletion.

Each syslog event includes a timestamp, the host genelthiingvent, one of 24a-
cilities or subsystem that generated the event, one of 8 loggivels and themessage

Most events also includetag indicating the program generating the event. Solutions for

50

authentication, management, and reliable delivery ofogyslents over the network have
already been proposed [83] and are in the process of beindastdized [84], but none of
this work addresses the logging semantics that we wish tageo

Our prototype implementation was written in a hybrid of Rytl2.5.2 and €+ and
was benchmarked on an Intel Core 2 Duo 2.4GHz CPU with 4GB d¥IRA64-bit mode
under Linux. Our present implementation is single-threlad® the second CPU core is
underutilized. Our implementation uses SHA-1 hashes a@d-bit DSA signatures, bor-
rowed from the OpenSSL library.

In our implementation, we use the array-based post-ordeetsal representation dis-
cussed in Section 3.3.3. The value store and history trestared in separate write-once
append-only files and mapped into memory. Nodes in the lyistee use a fixed number
of bytes, permitting direct access. Generating membegstdagncremental proofs requires
RAM proportional to the size of the proof, which is logaritienm the number of events in
the log. Merkle aggregation query result sizes are preséntited to those which can fit
in RAM, approximately 4 million events.

The storage overheads of our tamper-evident history treenadest. Our prototype
stores five attributes for each event. Tags and host nameseneded as 2-0f-32 bit Bloom
filters. Facilities and hosts are encoded as bit-vectorpefmit range queries to find every
event in a particular range of time, an interval is used tamdadhe message timestamp.
All together, there are twenty bytes of attributes and tydmntes for a SHA-1 hash for
each node in the history tree. Leaves have an additionavéamsites to store thefiset and
length of the event contents in the value store.

We ran a number of simulations of our prototype to deternieeprocessing time and
space overheads of the history tree. To this end, we cotlecteace of four million events

from thirteen of our departmental server hosts over 106hdie observed 9 facilities, 6

51

levels, and 52 distinct tags. 88.1% of the events are fromrmiieserver and 11.5% are from
98,743 failed ssh connection attempts. Only .393% of theitag are from other sources.
In testing our history tree, we replay this trace 20 times&ert 80 million events. Our
syslog trace, after the replay, occupies 14.0 GB, while ikoty tree adds an additional
13.6 GB.

3.6.1 Performance of the logger

The logger is the only centralized host in our design and neag bottleneck. The per-
formance of a real world logger will depend on the auditinggyoand relative frequency
between inserting events and requesting audits. Rathestiamarize the performance of
the logger for one particular auditing policy, we benchmidudk costs of the various tasks
performed by the logger.

Our captured syslog traces averaged only ten events pencecdur prototype can
insert events at a rate of 1,750 events per second, inclUd®® signature generation.
Inserting an event requires four steps, shown in Table 3itB, twve final step, signing the
resulting commitment, responsible for most of the procgssime. Throughput would
increase to 10,500 events per second if the DSA signatunesaeenputed elsewhere (e.qg.,
leveraging multiple CPU cores). (Section 3.7 discussekalsitidy in more detail.) This
corresponds to 1.9MBec of uncompressed syslog data (1.1 TB per week).

We also measured the rate at which our prototype can gemagatdership and incre-
mental proofs. The size of an incremental proof between twomitments depends upon
the distance between the two commitments. As the distarrees\iaom around two to two
million events, the size of a self-contained proof variesfrl200 bytes to 2500 bytes. The
speed for generating these proofs varies from 10,500 psmaf$o 18,000 proofsec, with

shorter distances having smaller proof sizes and fastéorpeince than longer distances.

52

Step| Task % of CPU Rate
(eventgsec)
A Parse syslog message 2.4% 81,000
B Insert event into log 2.6% 66,000
C Generate commitmernt 11.8% 15,000
D Sign commitment 83.3% 2,100
Membership proofs - 8,600
(with locality)
Membership proofs - 32
(no locality)

Table 3.3 : Performance of the logger in each of the four stegsired to insert an event
and sign the resulting commitment and in generating merhigpsoofs. Rates are given
assuming nothing other than the specified step is being ipeefh

For both incremental and membership proofs, compressirgzipy[85] halves the size of
the proofs, but also halves the rate at which proofs can bergesd.

After inserting 80 million events into the history tree, thistory tree and value store re-
quire 27 GB, several times larger than our test machine’s RApacity. Table 3.3 presents
our results for two membership auditing scenarios. In ost $icenario we requested mem-
bership proofs for random events chosen among the mosttréesiflion events inserted.
Our prototype generated 8,600 self-contained membersbipfg per second, averaging
2,400 bytes each. In this high-locality scenario, the mesént 5 million events were al-
ready sitting in RAM. Our second scenario examined the sadnavhen audit requests had
low locality by requesting membership proofs for randomnés@nywhere in the log. The
logger’s performance was limited to our disk’s seek lateneyoof size averaged 3,100
bytes and performance degraded to 32 membership proofepend. (We discuss how
this might be overcome in Section 3.7.2.)

To test the scalability of the history tree, we benchmarkeeéiit performance and audit-
ing performance on our original 4 million event syslog euteate, without replication, and

the 80 million event trace after 20x replication. Event imis@ and incremental auditing

53

are roughly 10% slower on the larger log.

3.6.2 Performance of auditors and clients

The history tree places few demands upon auditors or cliehtslitors and clients must
verify the logger's commitment signatures and must vetiky torrectness of pruned tree
replies to auditing requests. Our machine can verify 1,9881024 signatures per sec-
ond. Our current tree parser is written in Python and is raglmv. It can only parse 480
pruned trees per second. Once the pruned tree has been,paus@tlachine can verify
9,000 incremental or membership proofs per second. Pigsené auditor cannot verify
proofs as fast as the logger can generate them, but audéorslearly operate indepen-

dently of one another, in parallel, allowing for exceptibsaling, if desired.

3.6.3 Merkle aggregation results

In this subsection, we describe the benefits of Merkle aggi@gin generating query re-
sults and in safe deletion. In our experiments, due to litioites of our implementation in
generating large pruned trees, our Merkle aggregationrerpats used the smaller four
million event log.

We used 86 dierent predicates to investigate the benefits of safe delatid the over-
heads of Merkle aggregation queries. We used 52 predicsdel, matching one tag, 13
predicates, each matching one host, 9 predicates, eachingtime facility, 6 predicates,
one matching each level, and 6 predicates, each matchingtighest logging levels.

The predicates matching tags and hosts use Bloom filterspexact and may have
false positives. This causes 34 of the 65 Bloom filter quesylts to include more nodes
than our “worst case” expectation for exact predicates. Siggilarger Bloom filters, we

reduce the chances of spurious matches. When a 4-of-64 Hitiernis used for tags and

54

1 =
- 0.1}
Q_ X
_g‘.) o)
s
g 0.01 |
< o
° o
s 0.001 | o x
m X
5
S 00001 & °
(&)
E Q Non-bloom
| Bloom, 2-0f-32 bits |
1e-05 Bloom, 4-0f-64 bits ©
Worst Case
Best Case
1e_06 1 1 1 1 1 I

le-07 1le-06 1e-05 0.0001 0.001 0.01 0.1 1
Fraction of events kept

Figure 3.11 : Safe deletion overhead. For a variety of qaewe plot the fraction of hashes
and attributes kept after deletion versus the fraction ehéevkept.

hostnames, pruned trees resulting from search queriesge/@6% fewer nodes, at the cost
of an extra 64 bits of attributes for each node in the histag.tIn a real implementation,
the exact parameters of the Bloom filter would best be tunethiich a sample of the events

being logged.

Merkle aggregation and safe deletion Safe deletion allows the purging of unwanted
events from the log. Auditors define a stable predicate dweattributes of events indicat-
ing which events must be kept, and the logger keeps a pruaedafronly those matching
events. In our first test, we simulated the deletion of allkévexcept those from a par-
ticular host. The pruned tree was generated in 14 secondinmg 1.92% of the events
in the full log and serialized to 2.29% of the size of the fulld. Although 98.08% of the

events were purged, the logger was only able to purge 95.18teafiodes in the history

55

tree because the logger must keep the hash label and atritoutthe root nodes of elided
subtrees.

When measuring the size of a pruned history tree generatsdfbyleletion, we assume
the logger caches hashes and attributes for all interioesadorder to be able to quickly
generate proofs. For each predicate, we measur&dperatiq the number of interior
node or stubs in a pruned tree of all nodes matching the @editivided by the number of
interior nodes in the full history tree. In Figure 3.11 fockgredicate we plot the kept ratio
versus the fraction of events matching the predicate. \Wepdts the analytic best-case and
worst-case bounds, based on a continuous approximatiamitnmum overhead occurs
when the matching events are contiguous in the log. The veaist occurs when events are
maximally separated in the log. Our Bloom-filter queries dwse than the “worst-case”
bound because Bloom filter matches are inexact and will tiggdr false positive matches
on interior nodes, forcing them to be kept in the resultingned tree. Although many
Bloom filters did far worse than the “worst-case,” among theo filters that matched
fewer than 1% of the events in the log, the logger is still @bl@urge over 90% of the

nodes in the history tree and often did much better than that.

Merkle aggregation and authenticated query results In our second test, we examine
the overheads for Merkle aggregation query lookup reswtsen the logger generates the
results to a query, the resulting pruned tree will contaithboatching events and history
tree overhead, in the form of hashes and attributes for arpsstFor each predicate, we
measure theuery overhead ratie-the number of stubs and interior nodes in a pruned
tree divided by the number of events in the pruned tree. Inr€i@.12 we plot the query
overhead ratio versus the fraction of events matching tleeygior each of our 86 predi-

cates. This plot shows, for each event matching a predipedpprtionally how much extra

56

1le+06 L B L B L B AL L |

Non-bloom

< x Bloom, 2-0f-32 bits x

® 100000 F ° Bloom, 4-0f-64 bits o

® 5 x Worst case

Q <o Best case

— 10000 F

(@]

o

o

c 1000

2]

c

.8

= 100

°

g

< 10 |

[¢]

o

o

g L

<

0.1

le-07 1e-06 1le-05 0.0001 0.001 0.01 0.1 1
Fraction of events in the query result

Figure 3.12 : Query overhead per event. We plot the ratio éetvthe number of hashes
and matching events in the result of each query versus thednaof events matching the

query.

overhead is incurred, per event, for authentication infdram. We also plot the analytic
best-case and worst-case bounds, based on a continuousiapgtion. The minimum
overhead occurs when the matching events are contiguobe ilog. The worst-case oc-
curs when events are maximally separated in the log. Withtgxadicates, the overhead
of authenticated query results is very modest, and agaiaut Bloom filter queries will

sometimes do worse than the “worst case.”

3.7 Scaling a tamper-evident log

In this section, we discuss techniques to improve the inkestighput of the history tree
by using concurrency, and to improve the auditing throughyth replication. We also

discuss a technique to amortize the overhead of a digitabsige over several events.

57
3.7.1 Faster inserts via concurrency

Our tamper-evident logfters many opportunities to leverage concurrency to incrimeagh-
put. Perhaps the simplest approach isftipad signature generation. From Table 3.3, sig-
natures account for over 80% of the runtime cost of an in&gnatures are not included
in any other hashes and there are no interdependenciesdrmesignature computations.
Furthermore, signing a commitment does not require knowimghing other than the root
commitment of the history tree. Consequently, it's easyffimad signature computations
onto additional CPU cores, additional hosts, or hardwayptoraccelerators to improve
throughput.

It is possible for a logger to also generate commitments woantly. If we examine
Table 3.3, parsing and inserting events in the log is aboattimes faster than generat-
ing commitments. Like signatures, commitments have nadefgendencies on one other;
they depend only on the history tree contents. As soon ad &yesiinserted into the tree
andO(1) frozen hashes are computed and stored, a new event mayniegiately logged.
Computing the commitmer@; only requires read-only access to the history tree, allgwin
it to be computed concurrently by another CPU core withotérfering with subsequent
events. By using shared memory and taking advantage of fhendponly write-once se-
mantics of the history tree, we would expect concurrencyloead to be low.

We have experimentally verified the maximum rate at whichpyototype implemen-
tation, described in Section 3.6, can insert syslog evemtsthe log at 38,000 events per
second using only one CPU core on commodity hardware. Thigisnaximum through-
put our hardware could potentially support. In this mode ssuae that digital signatures,
commitment generation, and audit requests are delegasattitbtonal CPU cores or hosts.
With multiple hosts, each host must build a replica of theédmistree which can be done at

least as fast as our maximum insert rate of 38,000 eventepend. Additional CPU cores

58

on these hosts can then be used for generating commitmemasdling audit requests.
For some applications, 38,000 events per second may stilenéast enough. Scaling
beyond this would require fragmenting the event insertimhstorage tasks across multiple
logs. To break interdependencies between them, the funttahiestory tree data structure
we presently use would need to evolve, perhaps into disiogs that occasionally entan-
gle with one another as in timeline entanglement [59]. Dasig and evaluating such a

structure is future work.

3.7.2 Logs larger than RAM

For exceptionally large audits or queries, where the waykiet size does not fit into RAM,

we observed that throughput was limited to disk seek lateSgyilar issues occur in any
database query system that uses secondary storage, arairtbesgftware and hardware
techniques used by databases to speed up queries may béncheting faster or higher

throughput storage systems or partitioning the data amihgtibin-memory across a cluster
of machines. A single large query can then be issued to tletectlmode managing each
sub-tree. The results would then be merged before transgitie results to the auditor.

Because each sub-tree would fit in its host’s RAM, sub-gsemeuld run quickly.

3.7.3 Signing batches of events

When large computer clusters are unavailable and the peaface cost of DSA signatures
is the limiting factor in the logger’s throughput, we may irape performance of the logger
by allowing multiple updates to be handled with one sigretamputation.

Normally, when a client requests an ev&rb be inserted, the logger assigns it an index
i, generates the commitmedy signs it, and returns the result. If the logger hasfifisient

CPU to sign every commitment, the logger could instead degtiyrningC; until it has

59

a signature for some later commitmedit (j > i). This later signed commitment could
then be sent to the client expecting an earlier one. To ernbateahe evenk; in the log
committed byC; wasX, the client may request a membership proof from commitr@gnt
to eventi and verify thatX; = X. This is safe due to the tamper-evidence of our structure.
If the logger were ever to later signG inconsistent witlC;, it would fail an incremental
proof.

In our prototype, inserting events into the log is twentydsifaster than generating
and signing commitments. The logger may amortize the cdgjsrterating a signed com-
mitment over many inserted events. The number of eventsigeed commitment could
vary dynamically with the load on the logger. Under lightdothe logger could sign every
commitment and insert 1,750 events per second. With incrgdsad, the logger might
sign one in every 16 commitments to obtain an estimatedtinger of 17,000 events per
second. Clients will still receive signed commitments with fraction of a second, but
several clients can now receive the same commitment. Natehls analysis only consid-
ers the maximum insert rate for the log and does not inclueletists of replying to audits.
The overall performance improvements depend on how oftentsl request incremental

and membership proofs.

3.8 Summary

In this chapter, we have shown that regular and continouisiagds a critical operation for
any tamper-evident log system, for without auditing, disecannot detect if a Byzantine
logger is misbehaving by not logging events, removing urtaddcevents, or forking the
log. From this requirement we have developed a new tampdeetiiog design, based on a
new Merkle tree data structure that permits a logger to pre@oncise proofs of its correct

behavior. Our system eliminates any need to trust the loggsead allowing clients and

60

auditors of the logger tofgciently verify its correct behavior with only a constant amb

of local state. By sharing commitments among clients andaunsd our design is resistant
even to sophisticated forking or rollback attacks, everases where a client might change
its mind and try to repudiate events that it had logged aarlie

We also proposed Merkle aggregation, a flexible mechanisnericoding auxiliary
attributes into a Merkle tree that allows these attributebd aggregated from the leaves
up to the root of the tree in a verifiable fashion. This techrigermits a wide range of
efficient, tamper-evident queries, as well as enabling veldjadafe deletion of “expired”
events from the log.

Our prototype implementation supports thousands of ey@itsecond, and can easily
scale to very large logs. We also demonstrated ffexveness of Bloom filters to enable
a broad range of queries. By virtue of its concise proofs aradable design, our tech-
niques can be applied in a variety of domains where high vekiaf logged events might

otherwise preclude the use of tamper-evident logs.

61

Chapter 4

PAD designs

Authenticated dictionaries were first proposed for represg certificate revocation lists
in a public key infrastructure, allowing the certificate weation list to be served from
untrusted machines and signed by the trusted author [5}en@Glisend lookup requests
for a particular key to the server, which then replies withraogp containing either the
corresponding value, or a “no such value” reply, autheteatdy the author’s signature.
Persistent authenticated dictionaries extend this tosalpport lookups on earlier versions
of the dictionary and were introduced by Anagnostopoul@d.¢7], using applicative (i.e.,
functional or mutation-free) red-black trees and skiplisequiringO(logn) storage per
update. In this chapter we will describe our persistent entibated dictionary designs,
their potential features, and various threat models theywa under. We present improved
tree-based PADs and present a new foundation for PAD degigpis-based PADs, which
offer constant-sized lookup proofs.

In Section 4.1 we discuss threat models and features thasPAdy support. In Sec-
tion 4.2, we show how to adapt Sarnak and Tarjan’s constmudfiO] in order to build
PADs with lower storage overheads, including a design wathistant storage per update.
In Section 4.3 we develoguper-gicient PADs based around afterent design principle,
offering constant-sized authentication results, as well astaot storage per update. In
Section 4.4 we discuss approaches for scaling our PAD desiimnSection 4.5 we de-
scribe future work, extensions, and applications of our R#BiIgns. In Chapter 5 we will

evaluate all of the PAD designs presented in this chapter.

62
4.1 Definitions and models

In this chapter, we focus on authenticating set-member@hionon-membership queries
over a dynamic set, stored on an untrusted server. To prthesérver from lying about the
data being stored, the author supplies authenticatiomrnrdtion to the server permitting
lookup responses to be verified.

The authenticated dictionary [5] abstraction supportsdidnary dictionary opera-
tions, Wsert(Key,Var) and [ecete(Key), which update the contents. Lookups,
Lookupr(Key) — (VaL, P) return both the answer ar if no such key exists, andlaokup
proof Pof the correctness of their result. Ultimately, a serverpusve that a given query
result is consistent with some external data, such as aosighignature on the tree’s root
hash.

Authenticated dictionaries become persistent [7] whey #iw the author to take
shapshots of the contents of the dictionary. Queries camlibeocurrent version, or any
historical snapshot. Each snapshot results in a vewsionof the PAD. The author then
sends amupdate blokto the server containing data and authentication inforonathat the
server stores in eepository used to respond to lookup requests from clients. Clientd se
lookup requests containing a lookup key and a version nurttbre server and receive
a lookup proofof the membership of the key and its corresponding value, noaf of
non-membership of that key, authenticated by the authayisasure. PADs ideally have
efficient storage of all the snapshots, presumably sharing Btah one snapshot to the
next. Snapshots can be taken at any time. For simplicity wesvaluate costs, we will
assume a snapshot is taken after every update. The seauaitgrgee fiered by a PAD is
that a server cannot convince a client of the membership mmnembership of a key and

value in a particular snapshot unless the author placedrnéth

63
4.1.1 Threat model

We make typical assumptions for the security of cryptogiaphmitives. We assume that
we have idealized cryptographic one-way hash functioes, (ollisions never occur and
the input can never be derived from the output), and thatipibl cryptography systems’
semantics are similarly idealized. We also assume theegxistof a trusted PKI or other
means to identify the public key associated with an authorddition, there are several

threat models that a PAD design can function under:

Third-party trust model This threat model implements a publishing paradigm with
three parties: amuthor with limited storage and possibly intermittent connedyivian
untrustedserverwith significant storage and a consistent online connectiad multiple
clientswho perform queries and have limited storage. We assumé#iatthor of the data
is trusted by clients who wish to detect if the server is tanmgewith the stored data or re-
turning incorrect responses to lookups. The author askseher to insert or remove (key,
value) pairs, providing any necessary authenticatiorrmétion. When clients contact the
server they will verify the resulting proof which will inctle validating the consistency of
the server’s data structure as well as the author’s diggjaksure.

An example of this is the original use of an authenticatetdahary to manage the list of
valid and revoked certificates (the CRL) without trusting sierver distributing the list. A
CRL server naturally extends to supporting historical ige&and might be used to answer
qguestions such as “Was certificafevalid on January 14th, 1998, when contr@civas
signed by that certificate?” Another example occurs withraate backup service where
the author is the client and the author wants to access iustaersions of its backed-up

files.

64

Untrusted author We also consider scenarios where the author of a PAD is nstetly
which can be relevant to a variety of financial auditing angutatory compliance sce-
narios. For instance, the author may wish to maliciouslyngespast values of the PAD,
possibly in collusion with the server. Or, the author may ésponsible for collecting and
aggregating records, such as a list of bank accounts anddeslaand attempt to misbe-
have. Fortunately, if the author ever signs inconsistesivans or it improperly aggregates
records, its misbehavior can be caught by clients and agdikor details, please semot
authenticatorsn Section 4.1.2.

An example application of a PAD with an untrusted author e&au pari-mutuel gam-
bling, used in horse racing. When betting is open, prelimyimads are continuously com-
puted, by summing all of the wagers up to that point in timedach outcome, and dis-
played to bettors. Reporting incorrect odds to bettorbgeeiby accident or fraud, can alter
betting patterns, and thus pdig If the server distributes the continuously changingsota

through a PAD, its signature is a commitment and can be uspgt@ misbehavior.

Buggy server There are also applications, such as libraries or archiviesre the author
and server are honest, but may inadvertentlfesiucorruption or make mistakes in data
versioning or when tracking data provenance.

For instance, digital archives are responsible for margpgind preserving large, con-
stantly growing data sets. Three issues that are faced lhyaebives are detecting lost
data, detecting corruption, and tracking metadata, suchhascreated an archived ob-
ject and when. In addition, many datasets are subject tot@moingevision as new data
arrives [72]. Digital signatures and cryptographic hasdresideal for binding metadata to
data and detecting corruption. However, an authenticaitdtbdary or PAD is ideal for

discovering when data has gone missing.

65
4.1.2 Features

An authenticated dictionary (persistent or not) may supp@ny features. In this section,

we describe features supported by the dictionaries we tiges.

Super-dficiency. The proof returned on a lookup request is constant-sized. t@le-

based PADs, described in Section 4fB20super-#iciency.

Partial persistence. The PADs we consider are actually partially persistent,mrepthat
although any version of the authenticated dictionary maguszied, only the latest version
can be modified. Whenever we use the term “persistent” in this thesis, wdy@aéan

“partially persistent.”

History independence. Some data structures can hide information as to the order in
which they were constructed. For instance, if data itemsstoeed, sorted in an array,
no information would remain as to the insertion order. Higtodependence can derive
from randomization; Micciancio [88] shows a 2-3 tree whosedure depends on coin
tosses, not the keys’ insertion order.

History independence can also derive from data structirashave a canonical or
unique representation [89]. To this end, a data structe®e “set-unique” [90], meaning
that a given set of keys in the dictionary has a unique andréealkrepresentation (see Sec-

tion 4.2.2). Some of our tree-based and tuple-based PAQesare history-independent.

*In the persistency literature [86], the term “persistesttéserved for data structures where any ver-
sion, present or past, may be updated, thus forming a treersfons. Path copying trees, described in
Section 4.2.5, are an example of such a data structure. @otiffipersistent data structures permit merge

operations between snapshots [87].

66

In a persistent dictionary, history independence meartsiftinaultiple updates occur
between two adjacent snapshots, the client learns notlirtg ¢he order in which the
updates occurred and the server learns nothing if it resdive updates as a batch. In
addition, it must not be possible for a client to learn anygrabout the keys in one snapshot,

given query responses from any other snapshots.

Aggregates. Any tree data structure may include aggregates that surmentde children
of a given node (e.g., their minimum and maximum values, @r fum). These aggregates
are valuable on their own and may be used for searching or agipdications (see Merkle

aggregation, described in Section 4.2.1). Our tree-ba&&d Bupport aggregates.

Root authenticators. For each snapshot, it would be beneficial if there was a sirajles
that fixes or commits the entire dictionary at that partictilme. This value can then be
stored and replicatedfeiently by clients, stored in a time-stamping system [54, 67
tamper-evident log [21-23]. Root authenticators simghify process of discovering when
an untrusted author or server may be lying about the pastridisng clients need only to

discover that the author has signeffelient root authenticators for the same snapshot.

4.2 Tree-based PADs

In this section, we describe how we can build PADs with ba¢gsearch trees. Tree-based
PADs have lookup proof sizes, update sizes and lookup prewfication times that are
logarithmic in the number of keys in the dictionary. Treeséd PADs fer a range of query
time and storage-space tradl®o In this section, we first describe the three components
from which we build our tree-based PADs: Merkle trees, tseand persistent binary

search trees. We then show how to combine them.

67

Figure 4.1 : Graphical notation for a lookup proof figk or a proof of non-membership
for N. Circles denote the roots of elided subtrees whose childp@yed out, need not be
included.

4.2.1 Authenticated dictionaries based on Merkle trees

Given a search tree, where each node contains a key, valdegwanchild pointers, we
can build an authenticated dictionary by building a Merkéet[11]. For each node we
assign aubtree authenticator.M with the following recurrencex.H = H(x key, H(x.val),
x.left.H, xright.H). H denotes a cryptographic hash function. Trbet authenticator
root.H, authenticates the whole tree. It may then be publishedjoesi by the author.

A lookup proof seen in Fig. 4.1 and returned on adkup request, is a proof that a
key ky is or is not in the tree. It consists of a pruned tree contagitine search path tq,.
Subtree authenticators for the sibling nodes on the seatthare included in the proof
as well as subtree authenticators of the children of the odéainingk,, if k; is found.
From this pruned tree, the root authenticator is reconttduand compared to the given
root authenticator. We can prove that a key is not in the tgeshowing that the unique
in-order location where that key would otherwise be stoseshnpty.

For a balanced search tree, a lookup proof has®{#®gn), and can be generated in
O(logn) time if the subtree authenticators are precomputed. Gaioreal implementations

of authenticated search trees implement a logscbttree authenticator cactstoring the

68

subtree authenticator for each node in the node itself. Mwethis cache is optional,
because the server could certainly recompute any hash diytfrem the existing tree.
Without a cache, generating a lookup proof requi@¥s) time for recomputing subtree
authenticators of elided subtrees. Of course, the cachethagus performance benefits.
In Section 4.2.5, we will consider how, where, and when tlsed#ree authenticators are
cached and investigate tradisoin caching strategies.

Smaller proofs result if the search tree is very close todbalanced. During updates,
the search tree can be rebalanced by applying the upda®-atibny balanced tree algo-
rithm such as a treap or red-black tree. We do not need todealed-black bits or treap
priority values in the hash. These are only hints needed dwtithor to generate balanced

trees, and thus onlyfiect ficiency, not correctness or security.

Merkle aggregation. Merkle aggregation was described in Section 3.5 as appied-t
notating events in a Merkle tree storing a tamper-evidegt lthese annotations are then
aggregated up to the root of the tree where they may be dirgaéried or used to perform
authenticated searches. To prevent tampering, the aror#aif a node are included in
the subtree authenticator of its parent. If the author ignusted, these annotations can be
checked by auditors to verify the author’s proper behavior.

Merkle aggregation has a straightforward extension torgieaarch trees that include
keys and values in interior nodes. We let gwbtree aggregatef a nodex be x. A, I" be
a function that computes the annotation associated wittyakd value pair, andé be a
function that aggregates. If we defire = H(x.H, x.A), then we can describe the Merkle
aggregation over a search tree with the formule&:= I'(x.key, x.val) @ x.left. A® x.right.A
andx.H = H(xkey, H(x.val), x.left.«, x.right.«). Wherever a host previously stored or in-

cluded the hash of a node in a proof, it will now include the éisdhash and aggregate,

69

which can be cached or recomputed as-needed.

Merkle aggregation applied to a search tree or persistamtisdas several potential
uses. Just as with a tamper-evident log, annotations carsdsk as an auxiliary index-
ing data structure, allowing items in the dictionary to barfd without needing to know
their key. Merkle aggregation can also be used as a genagre@afion strategy, allowing

aggregation to occur in a tamper-evident fashion on an staduserver.

4.2.2 Treap

Treaps [91] are a randomized search tree that can implendintianary with aO(logn)
expected cost of an insert, delete, or lookup. Treaps supfimient set union, dierence,
and intersection operations [92]. We could use any otheartwald search tree that sup-
portsO(1) expected (not amortized) node mutations per updaté, asiVL or red-black
trees [93]. We like treaps for their set-uniqueness pragee(tiscussed further below).
Each node in a treap is given a key, value, priority, and leét aght child pointers.
Nodes in a treap obey the standard search-key order; a naesdways compares greater
than all of the keys in its left subtree and less than all ofkigs in its right subtree. In
addition, each node in a treap obeys the heap property omidsties; a node’s priority
is always less than the priorities of its descendants. Qipesathat mutate the tree will
perform rotations to preserve the heap property on theipeisr When the priorities are
assigned at random, the resulting tree will be probalihbdiy balanced. Furthermore,

given an assignment of priorities to nodes, a treap on a gie¢is uniqué. We exploit

"Proof sketch: If all priorities are unique for a given set ef/&, then there exists one unique minimum-
priority node, which becomes the root. This uniquely digidee set of keys in the treap into two sets, those
less than and greater than that node’s key, stored in thandftight subtrees, respectively. By induction, we

can assume that the subtrees are also unique.

70

this uniqueness by creatimgterministic treapsassigning priorities using a cryptographic
digest of the key, creating a set-unique representation.

Assuming that the cryptographic digest is a random oraclexpectation, each insert
and delete only mutaté&3(1) nodes, consisting of one node having a child pointer frextli
andO(1) rotations. The expected path length to a key in the tre@logn). The worst

case iq.

Benefits of a set-unique representation. Deterministic treaps are set-unique, which means
that all authenticated dictionaries with the same conteat® identical tree structures. If
we build Merkle trees from these treaps, then any two auittegietd dictionaries with iden-
tical contents will have identical root hashes. Set-unipss makes our treaps history
independent. The root hash that authenticates a treaprieakéormation about the inser-
tion order of the keys or the past contents of the treap, wiiay be valuable, for example,
with electronic vote storage or with zero-knowledge proofs

History-independence is also useful if an dictionary isduse store or synchronize
replicated state in a distributed system. Updates mayeatoiveplicas out-of-order, per-
haps through multicast or gossip protocols. Also, by usisgtaunique authenticated data
structure, we canficiently determine if two replicas are inconsistent.

History independence makes it easier to recover from backugreate replicas. If
a host tries to recover the dictionary contents from a baakuanother replica, history
independence assures that the recovered dictionary haartieroot hash. Were a non-set-
unique data structure, such as red-black tree, used fiieeatit insertion order between the
original dictionary and that used when recovering wouldlidead to diterent root hashes

even though the recovered dictionary had the same contents.

71
4.2.3 Skiplist

Anagnostopoulos et al. [7] described PADs based on pathimgpyed-black trees and
skiplists. In this section, we describe skiplists and hoeytbhan represent an authenti-
cated dictionary. We improve on their constructions of glssi authenticated dictionary
in two ways. First, we represent a skiplist as a strict apgille binary tree to make it
amenable to being stored using any persistent search tsegd&Ve also present a lookup
proof construction that is approximately half the size @vious approaches.

Our applicative tree-representation of skiplists is basedhe skiplist authentication
trees by Goodrich et al. [12]. A skiplist [79] is a datasturetdtering logarithmic lookups,
inserts, and deletes. A classic skiplist is a singly-linketlexcept that nodes may have
several outgoing links, stored in a variable-sized arrdyctvcan skip over a large number
of list nodes. An alternative formulation of skiplists esisshown in Figure 4.2, where
each variable-sized array is represented as a ‘tower’ oésiechere each node has only
two outgoing links.

This forms a representation of a skiplist resembling a spbodllel sorted linked lists.
Each key in the skiplist is assigned a maximum ldygl, when it is inserted, and it will be
placed in the level-y . linked list and all lower-level linked lists.

Maximum levels are assigned using an exponential distdbutThe level-0 list con-

tains every list node. The levéh list contains one in every fist nodes on average. In this
example, key$3, 6,9, 15} are at level 0, key8} is at level 1 and key&b, 11} are at level 3.
If the level of a key is chosen deterministically from the kige skiplist over a set of keys
is set-unique. Searching a skiplist involves starting i tipper left and ‘skipping’ many
nodes by using the higher level links. Skiplistéap an expecte®(logn) update time and
lookup time. Just as with a treap, the worst-case lookup addte time isO(n).

During lookups, not every edge in a skiplist is used. Extigesdrepresented in grey in

72

Figure 4.2, are only needed for performing updates. Ougiss thatcompletely omitting
the extra edges lets us store a skiplist as if it were an orglip@ary tree; it can then be
managed using any of our persistent tree algorithms or imgeations. To this end, we
have redesigned the update operations to not require tRaeselges.

In Figure 4.3 we present our final representation of thislskjsimilar to the skiplist
authentication trees construction of Goodrich et al. [I2]e diference between our con-
structions is that their construction requires level-Ogwdithout right siblings to include
the key of their successor. Our improved lookup proof camsiton, described below,
makes that unnecessary.

In addition to a new formulation of skiplists as binary treear lookup proofs im-
prove on prior work in authenticated skiplists. Lookup gsoghowing membership consist
of a path from the root to node containing a lookup key. A Igokwoof showing non-
membership must prove that the interval between two succésys in the skiplist does
not contain the lookup key.

In the original formulation of authenticated skiplists,namembership is proved by
including the right siblings of each node in the path fromrbet to the lookup key in the
proof. For example, to prove that the key 7 is not in the s&iph Figure 4.3, the server
includes the bold-faced edges along with theo(«0) edge al; and the (511) edge at.,.
When proving non-membership of a lookup key that occurg aftevel-0 node without a
right sibling, the proof of non-membership uses the riglstessor key stored in that node.

We can improve on this construction. Observe that in a sltipthe successor of a
level-0 node without a right sibling is always the key stomethe right sibling of the first
ancestor of that node with a right sibling. If the lookup pgratready contains the right
sibling of every node in the lookup path, then the successde s already included in the

proof, removing the need for any nodes to explicitly stoeekhlys of their successors. By

73

removing the non-tree-like behavior of storing succesggskthis construction simplifies
the design and implementation of update operations.

We can further optimize the proof when the author is trusteddrrectly build the
skiplist. Instead of including every right sibling in theokup proof, we only need to
includeoneright sibling. If we want to show that a kdy is not in the skiplist, we do a
search forK. If we find a levelL, nodeN with key k; < K and a right child containing
k, > K, then by including botiN and its right child, we can prove thé&t is not in the
skiplist. If N does not have a right child, then the successor kdy t® stored in the right
sibling of the first ancestor df that has a right sibling, if that right sibling has key> K,
thenK is not in the dictionary. Only this one right sibling need$®included in the proof.
For example, in Figure 4.3, the levie§ node 6’s first ancestor with a right sibling is the
level L, node 5, whose right sibling contains an 8. This is 6’s suareissthe skiplist.
The highlighted edges and nodes wouldfise to prove that the value 7 is absent from the
data structure. This optimization makes our constructfanskiplist lookup proof include
approximately half of the number of nodes as prior consipastthat include right siblings

for every node in the lookup path.

4.2.4 Red-black trees

Authenticated dictionaries can also be built based on fadkbtrees [7], @ering O(1)
expected node mutation®(logn) worst-case update costs, aBdogn) worst case path
length. Red-black treedfer a tighter bound than skiplists or treaps. Red-black dusie

a logarithmic worst-case bound, not a logarithmic expectsk bound. Unfortunately,
red-black trees are not history independent. Note thatifioplgcity in reporting results in
our evaluation, we may refer to red-black trees as ha@figgn) expected costs, instead

of the tighter bound o©(log n) worst-case costs.

74

S, o)
Y VV\
(> >)
y A\ A A V\
w () . > L)
Y Y A Y

o0 3

o

Figure 4.2 : Skiplist representation. Dashed arrows remtesedundant edges that are
omitted in our implementation.

L @ :@

O

©
o

HONNNG SO

Y

0@ Q@) ()

Figure 4.3 : Skiplist query for “7.” Highlighted nodes wilelincluded in the result proof
to demonstrate that “7” is absent from the result.

75
4.2.5 Persistent binary search trees

Persistent search tree data structures extend ordinaighsteee data structures to support
lookups in past snapshots or versions. Persistent datawgtes were developed to support
these features and have been extensively studied [94,&%icydarly with respect to func-
tional programming [96,97]. In this section we summarizedlgorithms proposed by Sar-
nak and Tarjan [10], who considered approaches for pensistd-black search trees. Their
techniques apply equally well to treaps, red-black treeguo version of a skiplist (De-
scribed in Sections 4.2.2 and 4.2.4 and 4.2.3 respecfiively.

Logically, a persistent dictionary built with search trégsimply a forest of trees, i.e.,
a separate tree for each snapshot. The root of each of tleeseis¢rstored in anapshot
array, indexed by snapshot version. Historical snapshots arefrand immutable. The
most recent, ocurrent snapshot can be updated in place to include inserted or eunov
keys. Whenever a snapshot is taken, a new root is added toépsisot array and that
shapshot is thereafter immutable.

Three strategies Sarnak and Tarjan proposed for reprageht logical forest areopy
everything path copyingandversioned nodesThey range fron©(n) space td)(1) space
per update. Note that thesefdrent physical representations store the same logicadtfore
The simplestcopy everythingcopies the entire tree on every snapshot and dOgty

storage for a snapshot containingeys.

Path copying uses a standard applicative tree, avoiding the redundanaigs of subtrees
that are identical across snapshots. Nodes in a path-apprga are immutable. Where
the normal, mutating treap, red-black, or skiplist algoritwould modify a node’s children
pointers, an applicative tree instead makes a modified @btiee node with the new chil-

dren pointers. The parent node will also be cloned, with theecpointing at the new child.

76

Figure 4.4 : Four snapshots in a Sarnak-Tarjan versionde-tree, starting with an empty
tree, then insertin®, then insertings, then deletings. We show the archived children to
the left of a node and the current children to the right. Nb&R is modified in-place for
snapshot 2, but cloned for snapshot 3.

This propagates up to the root, creating a new root. For amgdbblack trees, treaps, or
skiplists, each update will crea1) new nodes an@(logn) cloned nodes in expectation.
When a snapshot is taken after every update, skiplists aaggrwill useD(log n) expected
storage per update while red-black trees will have a waase®ound oO(logn) storage

per update.

Versioned nodes are Sarnak and Tarjan’s final technique for implementingjgdgr per-
sistent search trees and can represent the logical fordsO§d) expected amortized stor-
age per update. We will first explain how versioned node tnewk and then, in Sect. 4.2.6,
we will show how to build these techniques into search treés Merkle hashes.

Rather than allocating new nodes, as with path copyingjames nodes may contain
pointers to older children as well as the current childrerhiléive could have an infinite
set of old children pointers, versioned nodes only track $ets of childrendrchivedand
currenf) and atimestamp T The archived pointers archive one prior version, Withsed to
indicate the snapshot time at which the update occurredatd toxurV's know whether
to use the archived or current children pointers. A versiomade cannot have its children

updated twice. If a nodes children need to be updated a second time, it will be cloasd

77

in path copying. The clone’s children will be set to the newdrien. x's parent must also
be updated to point to the new clone, which may recursivalgeadt to be cloned as well if
its archived pointers were already in use. In Fig. 4.4 wegnean example of a versioned
node tree.

Each update to a treap or red-black tree requires an exp€¢fgdotations, each of
which requires updating the children of 2 versioned nodeguiring a total ofO(1) ex-
pected amortized storage per update. To support multiglateg within a single snapshot,
we include a last-modified version number in each versioretbn If the children point-
ers of a node are updated several times within the same sstapghmay update them in
place. As with path copying trees, saving a copy of the rodtena the snapshot array is

suficient to find the data for subsequent queries.

4.2.6 Making trees persistent and authenticated

A persistent tree is just a forest of individual trees, oneefach snapshot, each of which
is an independent authenticated dictionary with the pirbedrstructure of a tree. As each
snapshot is an ordinary search tree, tree-based PADs inaexiend to support queries of
a given value’s successor, predecessor, and so forth.

In a PAD, the author only needs to store or access one seaehttat of the latest
snapshot. Trees representing earlier snapshots are rasceeperform updates and thus
need not be stored by the author. The server on the other heat$ mo be able to store a
representation oéverysnapshot’s search tree in order to respond to lookup regjfresh
clients.

The choice of how we represent the logical forest of treempietely invisible to
clients and has nofkect on nature of a lookup proofs in historical snapshots ahemoot

authenticator for a snapshot. We can represent the logicadif of trees representing each

78

snapshot using any of the persistent tree algorithms in@e4t2.5. Diferent representa-
tions have dierent performance and storage cost tréidem particular the costs of storing
or generating subtree authenticators for elided subtve@sh are needed when generating
lookup proofs.

If copy everythings used to represent the forest of trees, lookup proofs canmeuted
in time proportional to the depth of the tree, which is expddb beO(log n) for treaps and
skiplists andO(logn) in the worst case for red-black trees. Each node occursantkyx
one snapshot and each node can cache its subtree autl@nii¢aenpath copyings used
to represent the forest of trees, each node is immutable a@eeted. The subtree rooted
at that node is fixed and the subtree authenticator is canatehcan be cached directly
on that node. Lookup proofs can be compute®{fogn) expected time and updates cost
O(logn) expected storage. PADs based on path-copying red-blaek were proposed by

Anagnostopoulos et al. [7].

Caching subtree authenticators in Sarnak-Tarjan versiond nodes adds extra com-
plexity. Unlike before, the descendants of a node are nodoimgmutable and the subtree
authenticator of a node is no longer constant for all snagsimowhich it occurs. For
example, in Fig. 4.4, the node containiRgn the version 1 and 2 trees hadgtdrent au-
thenticators in snapshots 1 and 2. In this section, we preseel techniques for building
authenticated data-structures out of persistent datetstes based on versioned nodes by
controlling when and how subtree authenticators are reatedpor cached. In these de-
signs, each update co€¢1) storage to create new versioned nodes plus whateveresgr
is used for caching subtree authenticators.

In our designs, we store subtree authenticators for thetusnapshot, mutating it in

place on each update to the tree. Tamhemeral subtree authenticatoan be used to

79

generate lookup proofs for the current snapsh@(iogn) time. For historical snapshots,
however, it cannot be used.

For historical snapshots, a simple solution is to not cachesabtree authenticators
at all. In thiscache nothingase, the server can calculate the subtree authenticatar fo
node on-the-fly from its descendants and generate a lookgs prO(n) time. Obviously,
we want to generate proofs faster than that. By spendingiaddi space to cache the
changing subtree authenticators, we can reduce the coshefating lookup proofs.

Each versioned node can cache the changing authenticatevdoy version in aver-
sioned referencevhich can be stored as an append-only resizable vector if gamtaining
version number transition pointg and values;, ((Vi,r1), (V2,r2), ... (Vk, k). The refer-
ence is undefined for < v;. The reference is; for vi < v < v, ry for v, < v < vg,
and so forth. The referenceligfor versions> v,. rj = 0 means that the cache is invalid
and the subtree authenticator must be recomputed by gsktennode’s children. Lookups
by version number use binary search over the vect@(ingk) time in the worst case.
Only O(1) time is required to update each cache if we copy subtrdesaticator from the
ephemeral cache at the end of the snapshot.

Note that in this cache design, the most recently cachedemibtithenticator remains
valid forever. If a cached subtree authenticator is abobetomes stale, the authenticator
cache must be either updated with the new subtree authtamtioa explicitly invalidated
for the next snapshot. Note that if the authenticator caslwvalidated for the next snap-
shot, it remains valid for prior snapshots. Similar updatdsalso be necessary for the
authenticator caches in the modified node’s ancestors.

Our first caching optioncache everythingensures that the authenticator cache always
hits. On each update to the tree, we update the cache for eaehin the path to the

root. This means that we lose tli&1) benefit of using versioned nodes, because we

80

must pay aO(logn) expected cost to maintain the cached authenticators déap$ and
skiplists or aO(log n) worst-case cost for red-black trees. Generating a lookapfpvill
costO(logv - logn) time in expectation for &(logn) expected binary searches in the sub-
tree authenticator cache. In the example presented in Bigthe nodes containirfgin the
version 1 and 3 trees have 2 and 1 cached authenticatorgtigsfye The node containing
S has 1 cached subtree authenticator.

Although PADs implemented by versioned nodes implemergadjthe cache-everything
strategy have the same big-O space usage as PADs implenbgriteds that use path copy-
ing, the constant factors are smaller. Appending anothehn bhad timestamp threshold to
O(logn) versioned references implemented by resizable arraysichmore concise than
cloningO(logn) nodes.

We are not required to cache every subtree authenticatathefticators may be re-
computed as neededfering a diverse set of choices for caching strategies aretsipace
tradedts. Caching strategies may be generic, or exploit spaciatroporal locality, as
long as a cached authenticator is updated or invalidatedyis@apshot where a descendant
changes. Caching strategies may also purge authentigdtars time to save space. Al-
though many application-specific strategies are possi®ayill only present one generic
caching strategy with provable bounds.

Ourmedian layer cacheffersO(1) storage per update while generating lookup proofs
in historical snapshots i®(+/nlogv) time in expectation by permanently caching subtree
authenticators on exactly those nodes at d€pthosen to be close to the median Ia@%ﬁﬂ
in the tree. As nodes enter or leave the median layer, or tidgaméayer itself changes, we
maintain the invariant that for each snapshot, the versiomeles in the median layer for
that particular snapshot have cached authenticators.

When an update occurs, in the typical case where only lesa&ges change, we update

81

the subtree authenticator cache in the ancestor mediandage. In addition, all other
ancestors of the changed node potentially have stale aidhtms, forcing us to explicitly
invalidate their caches for the upcoming snapshot. In thgiedl case, many nodes may
enter or leave the median layer at a time, due to changes olutnéer of keys in the tree
or rotations among the firf layers of the tree. However, onY(1) expected additional
storage per-update is required to account for théeets.

Computing lookup proofs for the median layer tree can be do@ v/nlogv) time in
expectation. Generating a lookup proof requires calauy@di(log n) subtree authenticators
in expectation at depths= 1,d = 2,...,d = O(logn). (Recall thaD = log, y/n.) There
are three cases for computing any one single subtree aidgdient In the first case, the
subtree authenticator for a node at deghth D is cached and can be used directly.

Computing a subtree authenticator for a nade depthd < D (i.e., xis higher than the
median layer, closer to the root), requires recursing domti kitting nodes at the median
layer, then using the cached authenticators. This requrgiibvisit at most -9 = 0(2—@)
nodes. Computing a subtree authenticator for a noaledepthd > D (i.e., x is below the
median layer, closer to the leaves) requires visiting edelscendant of. In expectation,

a node at deptd > D hasO(z—r],) = O(zdi;) descendants.

4.2.7 Details on the median layer cache

This section includes further detail on the design and egoleinning time of a subtree
authenticator cache that caches on the median layer of @ ti¥a maintain the invariant
that ineverysnapshot of the tree, we store the subtree authenticatioe ipdrsistent cache
for everynode at deptim, with '0972” -1<m< '0972” + 1 wheren is the number of keysn

is allowed to vary within a range to add a hysteresis as to wihemedian layer changes.

Note that there are at mosfn/4 < 2™ < vn * 4 nodes at deptim. Additionally, as before,

82

each node also stores an ephemeral subtree authenticator.

When updating the tree, we use amortized expected time lscagmhuse many nodes
may require wholesale updating to maintain the invariath wotations changing depth
of a subtree or the median layer changing due to changing&egt. We evaluate each of
several scenario’s that involve refreshing the cacheutatie the expected number of cache
entries modified, and the probability of the scenario. Ineetation, the total storage cost
is O(n+V). Our analysis assumes that each subtree underneath artedianode has the
same nodecount.

Thetop of the tree refers to any node occurring in the firslayers, between the root

and median cache. Thmttomof the tree is any node at or below depth

Median layer changing due to increasing or decreasing keyemt We only change the
median layer whenever the keycount increases or decregsaddator of 4, which can
occur no more frequently than once evéy- 3)n updates. This requires invalidating
every median node’s current cache usi(gyn) space, and storing new values in the cache
using O(+/n) space, requiringd(n) time. Amortized, this comes t®(1/ v/n) space and

O(1) time added onto any insert or delete operation descbieémlv.

Inserting into the bottom of the tree Keys are inserted by placing them as a leaf (in
key-order), then rotating them to the proper depth, baseationty. If a new key ends up
at depthd in the treap, no node of depthd will have its depth altered during the rotations.
The probability that a new key being inserted ends up at deéjhthe probability that its
priority is greater than®@ n fraction of the keys in the treap. With probability®(1/ vn), a
key will end up with a final deptd > m. The rotations to insert the key will be constrained
to a subtree of the median layer node, requiring only ondagierg cache insert, for the one

median layer node that is an ancestor of the inserted keyxpeatation, this involve®(1)

83

updates to the persistent cache, plus the constant expam$ésimanaging the persistent

treap.

Inserting into the top of the tree If the key that is inserted ends up at depth< m,
then the rotations during the insert will alter the depthewdry descendant of the newly
inserted node, including™2¢ median layer nodes. The probability of a depitinsert
is 29/n, requiring 2"/2¢ persistent cache inserts. Summing odlez [0, m], the expected
number of updates to the persistent cachenis 2"/n = m/O(+/n) < O(1), plus the

constant expected costs in managing the persistent treap.

Deleting a key stored in the bottom of the tree The analysis of deletions is the same as
the analysis of insertions above. The probability of a keydpeleleted being at depth

is 24/n, and all of the rotations involved in the deletion will be strained to that subtree.
With probability 1- O(1/ v/n), a key will end up with a final deptd > m, and deleting
will only require one median layer node to have its cache tgmlaln expectation, this
involvesO(1) updates to the persistent cache, plus the constanttexpausts of managing

the persistent treap.

Deleting a key stored in the top of the tree If the key is deleted is at depth< m, then

the rotations involved will alter the depths of every destzart of the to-be-deleted node.
The calculation and result as for inserts, the expected pumibupdates to the persistent
cache ian* 2"/n = m/O(+/n) < O(1), plus the constant expected costs in managing the

persistent treap.

Cost of a lookup Lookup costs ar®©(sqrtn). Their calculation was described above.

84
Result

Any update to the persistent authenticated dictionaryrs@fl) storage cost per update
for the persistent tree arfd(1) storage into the persistent cache. The persistent dache
soft-state, the specific layer chosen as the median laygraffielcts the computation com-
plexity. In fact, all of the storage choices we discuss is f@ction are just ffierent ways to
store the forest of closely related snapshotted treapgjitietient ways the subtree authen-
ticator cache is managed. These choices mavefect upon the generated authenticators
and proofs.All of the approaches we propose aguivalentto each other in output, and
only differ in storage and performance as we can always reconstrugsingisubtree

authenticator from the keys and values in the subtree.

4.3 Tuple-based PADs

Previously, we described how to design PADs based on Memds t éfering constant up-
date size and logarithmic update time. In this section, weldg@ a novel alternative foun-
dation. These designs are sup#fegent, yielding constant-sized query response proofs in-
stead of theD(logn) proofs from tree-based PADs. The traff@e that tuple PAD updates
are much more expensive. In addition, these PABsrdifferent features, functionality,
and dficiency choices.

This class of techniques usesuple representationf a dictionary. If a dictionary has
keysk; ...k, with k < k,; and corresponding values...c,, we subdivide the entire
key-ID space into disjoint intervalsd, ki), [ki, k2), and so forth. Each intervak{, k;.1)
contains a single dictionary key & with value c; and indicates that there is no other
key elsewhere in the interval. Let this be represented asufiie (;, kj.1), ¢;), which we

can formally read as: “Ke¥; has valuecj, and there are no keys in the dictionary in the

85

MIN K, K, MAX
o C, C,

Figure 4.5 : Tuple authenticated dictionary showing 2 keps & tuples. Tuple
([kj, kj+1), c;) is represented as a rectangle frignto Kkj.; containingc;.

interval Kj, kj+1).” Keys could be integers, strings, hash values, or any tgpeadmits a
total ordering. In order to cover the key-ID space beforefittst key k; and after the last
key k, in the dictionary, we include two sentinelsk{][., k1), @) and (K, kmax), Cn) Where
kmin andkmax denote the lowest and highest key-IDs respectively. Anrsdiie/e would use
a circular key-1D space rather than the sentinels. Figlrdldstrates the tuples composing
a dictionary.

If each tuple is individually signed by an author to form anhamticated dictionary,
then the server can prove the presence or absence oflg keyn the authenticated dictio-
nary by returning the one signed tufle= ([k;, kj.1), ¢;) thatmatches kby being responsi-
ble for the section of the key-space containkggor, more formally, havinds, € [Kj, Kj+1).
The keyk, is in the dictionary with value; if k; = k; andc; # o (o denotes no key).
If kg # k;, the client may concludg, is absent from the dictionary. This representation
offers super-gicient, O(1), lookup proofs of membership and nonmembership of atkey i
the dictionary.

Now that we have explained the tuple representation of desimgthenticated dictio-
nary, the challenges are how to add persistence, hofiitiemtly store the tuples and their
signatures, how to reduce the number of tuples that need sahed, and finally how to

authenticate tuples without individually signing each.one

86

MIN K, k, K MAX MIN K, K, K MAX
Vo o Vo o

Vv, O C Vi C

V,| B G, G, \Z C,

\VA G, C | G A C, c, | c

v, B C, G, V, G

Figure 4.6 : Tuple PAD containing 5 snap- Figure 4.7 : Example of tuple-superseding
shots. From top to bottom, starting with representation of Fig. 4.6, showing the
an empty PAD, insertind, ¢;, inserting space savings when tuples can span many
ko, Co, inserting ks, c3, and removingk,. version numbers. As before, each rectan-
Each rectangle corresponds to a signed tu-gle corresponds to a signed tuple.

ple.

4.3.1 PADs based on individually signed tuples

In a solitary PAD, each tuple is individually signed by thereu. The author signs + 1
tuples for each snapshot. To support persistency, tupthsde a version number and have
the form: .. [K;, kj+1), C;), which can be read as “In versiop, keyk; has contents;, and
there is no key in the dictionary with a key betwdgrandk;,;.” Figure 4.6 graphically
shows such a PAD. The server can prove the membership or earbership of any kelg,
in snapshoty in the PAD by returning one signed tuple= (vq, [Kj, kj+1), ¢;) that matches
the lookup request by havirlg € [kj, kj+1). This design is superfiécient, persistent and
history independent, but does not have a root authenticasupport Merkle aggregation.
Updates are clearly expensive. The author must sign eatd iwghvidually on each
snapshot and send the signatures to the server, which narststore them. The per-

shapshot computation, storage, and communications c@st¥X1a).

Optimizing storage by coalescing tuples. If we assume that a snapshot is generated after
every update, all but at most two of the signed tuples in dmatps will have the same keys
and values in snapshgt + 1. This is because an insert into the dictionary will splé th

range of the prior tuple into two ranges. Removing a key veitjuire deleting a tuple and

87

replacing its predecessor tuple with a new one with an exgédnahge.

Most tuples may remain unchanged across many snapshoteadnsf storing each
of the tuples, \,, [k, Kj+1),Cj), (Vo + L [K;,Kj+1),Cj)s ... (Vo + 6, [Kj, Kj+1),Cj), and sig-
natures on each of these tuples, the server may storeaalesced tuplé[v,,V, + J],
[K;, Kj+1), Cj, SIGS that encodes that the key space frémto kj,; did not change from
shapshov, tov, + 6. In each coalesced tupl8|GSstores thé + 1 signatures signing each
individual snapshot’s tuple. The coalesced tuple, itsetever signed.

Upon a lookup query fok, at time vy, the server finds the tuplé = ([v,,V, + d],
[k, Kj+1), €j, SIGS that matches, andvy by havingvy € [V,,V, + 6] andky € [K;, Kj+1),

from which it regenerates the tuph([K;, kj;1). C;), which the author signed earlier.

Storing tuples with a persistent search tree. Our next challenge is how to store coa-
lesced tuples and signatures so that they may be easily fdunilg lookups. We need a
data structure that can store the varying set of coalesgdekttepresenting each snapshot,
and for any given snapshot version, we need to be able to fexlifiie containing a search
key. This can be easily done with a persistent search trésupaorts predecessor queries,
such as th®(1) persistent search tree data structure described ir8etPR.5.

Each snapshot in the PAD has a corresponding snapshot irethistent search tree
PSTfor storing the tuples representing that snapshot. Wherevaipdate occurs, the
author will indicate which tuples amew(i.e., their key interval or value was not in the
prior snapshot), and which tuples are todateted(i.e., their key interval or value is not in
the new snapshot). The remaining tuplesrafeeshed At most two tuples will be deleted
and one tuple will be new. The author transmits signaturesseny new or refreshed tuple.

When a tuple ., Vs, [k, kj+1), Cj, SIGS is to be deleted from snapshgf + 1, the

server removes that tuple from the next snapsh®®%. When a tuple is to be added to

88

snapshot; + 1, the server inserts\{ + 1,v; + 1], [Kj, Kj+1), ¢j, SIG) into PST If a tuple
T = ([Va, Vgl [Kj. Kj11), C;) is refreshed, the server appends the author’s signatureatul
updates the ending snapshot versioute 1.

This data-structure requir€X1) storage per update for managing the coalesced tuples
representing the PAD and can find the matching coalesced &gl signature for any key
in any snapshot in logarithmic time. Unfortunately, theifiddal costs ofO(n) signatures
for every snapshot must also be included in the communitatid storage costs. Reducing

these costs is the challenge in building tuple-based PADs.

4.3.2 Optimizing storage: Tuple superseding

We now show how to reduce storage costs on the server @gmto O(1) signatures per
snapshot. Previously, authors signed tuples of the fegniK;, ki.1). c;) for each snapshot.
With tuple superseding, the author signs a coalesced tdiie éorm ([v,, Vg], [K;, Kj+1), Cj)
attesting that for all snapshots ia,[Vgs], key k; has valuec; and there is no key in the
interval ;, Kj.1). Figure 4.7 shows the benefits of tuple superseding, whegnatsire can
span many version numbers. Clients authenticating a reggon querk, in snapshot
will receive a tuple of the form {,, v4], [Kj, Kj+1), ;). They will verify that its signature is
valid and thak, € [Kj, Kj+1) andvg € [Vq, Vg].

For tuples that are refreshed, the server will receive aet(pl, vs + 1], [k;, Kj+1). C;),
signed by the author. This newly signed tuple supersedesghed tuple .. vs]. [Kj, Kj+1), C;)
already possessed by the server and can transparentlgeeplalthough the author must
sign O(n) tuples and send them to the server for each snapshot, aD{@ytof them re-
fresh existing tuples. Only th®(1) new tuples and their signatures add to storage on the
server. When tuple superseding is used, the PAD is no long@rhindependent because

the signed tuples describe keys in earlier snapshots.

89

Iterated hash functions.

Public key signatures are notably slow to generate andyvelrif contrast, cryptographic
hash functions are very fast. With a light-weight signaf®® implemented by iterated
hash functions, we can indicate that a tuple is refreshethdR#han signing each super-
seded tuple, the author now only signs the tuple., i™(R), [k;. Kj.+1), ¢;) where H™(R)
represent the result of iterating a hash functiotimes on a random nond® The au-
thor can indicate that a tuple is refreshed in successivestiogs by releasing successive
preimages oH™(R) which it can incrementally generate @(1) time andO(logm) space.

A client will need to verify at mosin hashes, which will still be significantly cheaper than

the cost of verifying the digital signature for reasonaldies ofm.

4.3.3 Optimizing signatures via speculation

Speculation has been previously used to optimize byzafamlé tolerance [66]. In this
section we show how a novel applicationspleculatiorcan be used to significantly reduce
the number of needed signatures by exploiting redundaneydes snapshots. In our orig-
inal design, the author was required to sign every tuple fi@sh it for a new snapshot,
at a cost proportional to the number of keys in that snapsivetcan improve on this by
dividing the PADP into two generations: a young generat®snthat contains keys that are
recently modified, and an old generatiGn that contains all other keys. Tuples in the old
generatior, are speculatively signed with version intervals that strétto the future, but
are only considered when there is a proof that the key is nah $ke younger generation.
(Section 4.3.1 noted that it's trivial to prove the absenta key by returning the signed
tuple for the interval containing that key.)ftEctively,Gy contains “patch” tuples that can
correct erroneous speculations@a. Tuples now include generation markeggs.or g;, to

indicate which generation they're in. In Fig. 4.8 we presanth a speculative PAD with

90

an epoch of 3 snapshots.

A snapshot ofGy must be taken every time a snapshot is takeR,ofvhich requires
signing every new or refreshed tuple@a. To reduce these costs, we keep the siz&pf
small by dividing time inteepochs EveryE; times a snapshot is taken Bf we migrate all
of the entries fronG, into G,, take a snapshot @&;, and eras&,. With a snapshot taken
after every update, this ensures t@@gtcontains at modg; + 1 tuples.

When an insert int® is requested, the author inserts the tuple representirkethand
value intoGo. When a removal ok; from P is requestedG, is updated to store the tuple
(9o, [V, Vg, [Kj, kj+1), O), indicating that ke); is not in the PAD in version;.

Tuples inGg have the formdp, [Vs, Vg]. [Kj, Kj+1), O), indicating the one version that they
are valid for, while tuples i, have the form,d, [v,. v, + E; — 1], [K;, k]+1), ¢;), indicating
that they are valid for the duration of an epoch. At the sta/wery epoch, the author
enumerates every key-value pair in the current snapsh@g,irand inserts them intG;.
During this process, the author may find opportunities tagaéuples representing deleted
keys. If atuple @o, [Vs — 1, Vs — 1], [K;, Kj+1), O) representing a removed key is migrated, it
may force the deletion of a tuplegi([vs — Ei1, v5 — 1], [K;, k]+1),c’.), in G; from the next
epoch. After migrating keys int®;, the author speculatively signs each tupleGnas
valid for the entire duration of the future epoch.

On a lookup of keyk, in snapshoty, the server returns two signed tuples, (/.
[kj, Kj+1), ¢j) with vq = v andkq € [kj, k1) and @1, [vy, v, + Eq = 1], [K, K7,), €) with
Vg € [V, vy + E1 — 1] andkg € [Kj, K, ;). There are two cases. kf = k;, then the key is in
Gy with valuec;, with ¢; = 0 denoting a deleted key. Otherwisekife (kj, kj.1), we must
examineG;. If ky = ki, then the key is i, with valuec]. Otherwise, ifk; € (ki, ki, ;) then
the lookup key is not in the snapshot.

Speculation can reduce the number of signatures requirédebguthor fromO(n) to

91

Old generation Young generation

MIN K, k, Kk, MAX MIN K, k, ki MAX

VO VO ?

v, o v ? G Add (y,¢,)
v, VL 2 G LG Add (k,,C)
V, Vs ? Add (ks,Cs)
Vv, | B C, G, Cs Va ? = Remove k,
Vs Vsl 2 | o = Remove k,
Ve Vs ? Add (k,.c,)

o C, C,

Figure 4.8 : Example of a PAD using speculation with an epdcéh snapshots. Lookups
examine the young generation first. Because we did not usewdani ID-space the sentinal
tuple in the young generation uses a key of ? to indicate Heablder generation must be
examined foky = Kyin.

O(+/n) amortized for each update if we assume a snapshot is tatesreséry update. The
author must sigie; + 1 tuples inGg each timeP has a snapshot taken, and, once e¥gry
snapshots, the author must signre# 1 tuples inG;. The amortized number of signatures
per update i©(E; + n/E;), with a minimum wherg; = +/n. If DSA signatures are used,
latency can be reduced at the start of an epoch by partiadlggonputing signatures [99].
This creates a supeffient, history-independent PAD witB(4/n) amortized signatures
andO(+/n) storage per update. Note that speculation makes a PAD myeidnstory in-
dependent because the tuplesGndescribe keys contained in the PAD at the start of the

epoch.

More than two generations. Speculative PADs can be extended to more than two gener-
ations. As before, generati@y is definitive, and later generations are progressively more
speculative. Lookup proofs will include one tuple per gatien.

In the case of 3 generations, we have epochs elgrgnapshots, when keys are mi-
grated fromGg to G1, and evenE, snapshots, when keys are migrated fi@gto G,. If we

assume a snapshot after every update, the author must signatizedO (& + £ + E;)

92

Wi

tuples per update. This is minimized @{+/n) whenE, = n3 andE; = ni. More gener-
ally, if there areC generations, lookup proofs contdinsignatures, the author must sign a

O(C ¥n) tuples, and the storage per updat®{€ ¥/n) if tuple superseding is not used.

Speculation and tuple superseding. Speculation reduces the total number of signatures
by the author and thus reduces the space required on the gestere them. It can be nat-
urally combined with tuple-superseding (with our withostng iterated hashes) to reduce

the number of tuples the server must sav®(G) per update.

4.3.4 Tuple PADs based on RSA accumulators

RSA accumulators [36] are a useful way to authenticate aitievconciséd(1) summary,
which can be signed using digital signatures. Membershgm@&iement in the set is proved
with a constant-sizewitness which may be computed by the untrusted server. Recent
developments include an accumulator supportifigient non-membership proofs [100]
or batch update of witnesses [101, 102].

By storing tuples in a signed accumulator, the update siza $mapshot can be reduced
to O(1) while supporting a root authenticator. In this sectiadesign such a PADfi@r-
ing constant update size, constant storage per updatetaobmpsoof size, and sublinear

computation per update, all by using accumulator techsique

Background Accumulators use RSA exponentiation to generate an integeauthenti-
cates a set. The server proves that an element is in the sehting the item in question,
the accumulator as signed by the author, and the witness.

Consider storing a set efr-bit prime number®; ... pe. The accumulator storing these
keys works as follows: The author selectssnit modulusN = pgand a generatay with

s> 3r. p andq are strong primes, amglis a quadratic residue mdd. p andq are kept

93

secret. The RSA accumulatérover this set igPPe, The accumulatoA is then signed.
To prove that a ke¥; is in the set, the server supplies a witn@gs= gPPz-P-1Pi-1-Pe (To
prevent keys from having a mathematical relationship wita other, prime numbers must
be used to represent the set members.)

The author, with its knowledge of the factorization f may insert or remove keys
from the accumulator witl©®(1) exponentiations per update. Witnesses can be computed
by an untrusted server without the knowledge of any secféis witness for any single key
can be computed witD(e) exponentiations and the set of all withesses can be compute
with anO(eloge) algorithm [103].

A membership proof that primp, is in the set, consists o”A(W, p;), and the author’s
signature orA. The proof is verified by checking the signaturedmand thatA = (W,)".

By the Strong RSA Assumption [103], it is hard for a computasilly bounded adversary
to findy > 1 such tha = A mod N without knowing the factorization dfl.

Baric and Pfitzmann [103] observed that we can gengretae representativefor
arbitrary keys in the random oracle model by cryptograghyideashing the key and then
appending a fixed numberof extra bits.t is chosen such that there is a prime number in
[21(X), 2/(X + 1)) with high probability. The value of those extra bits is chosech that
the concatenation is a prime number. Inputs for which thiispossible cannot be stored
in the RSA accumulator. Papamanthou et al. [39] recentljempnted an authenticated
hash table following this design.

In our design, we require that the conversion from a hashevialto a prime represen-
tative is deterministic. This ensures that the RSA accutaufar a given set is uniquely
defined by the inputs to the set and can be recomputed fronmetrsedeing inserted. To do
this, we follow Baric and Pfitzmann [103], testing successntegers until we find a prime

number.

94

Design By cryptographically hashing tuples and then convertirepthnto prime repre-
sentatives, we can use RSA accumulators to authenticatieod wgples as a singl©(1)
accumulator that can then be bound to the version numberigneldsby the author. Define
A(vq) to be the accumulator value for versign A(v,) authenticates tuples of the form
([kj, kj+1), c;) containing a key range and a contents. These tuples cantloenitersion
numbervy because it is in the signature over the accumulator.

Each update to a PAD now only requires adding or removing &t @) tuples. The
accumulator for the next snapshé{yv,.1), can be computed by incrementally modifying
A(vq) at a cost ofO(1) exponentiations per dictionary update to add or remopes.
Updates requir®(1) communication; the author sends the keys being insertezimoved
from the PAD, the new accumulator, and the signature. Stoiraggeases by onl@(1) per
update for storing the updated key. The server could compitnesses lazily upon lookup
requests at a cost @(n) exponentiations, using no additional storage. Altexadyithe
server can expen@(n) additional storage per-snapshot for precomputed wigses$he
server can precompute witnesses by itself withg, n exponentiations or the author can
incrementally update thewitnesses irO(n) time and send them along with the update.

When a server receives a lookup request from a client forkkeg snapshoty,, the
server returns the accumulatafv,), bound to the version numbegy and signed by the
author, a tupld = ([kj, kj+1), ¢;) with ky € [Kj, kj+1), prime representativg, and a witness
for tuplei in snapshot\;, W,,,). The client verifies that the prime representative corre-
sponds to the returned tuplke%ij = H(T), that the accumulator authenticates the tuple,
(Wiy,)? = A(vg), and that the signature on the accumulator is valid.

Unlike standard accumulator schemes, this representafiers super-gicient proofs
of non-membership. The tuple = ([k;, kj.1), ¢;) attests that there is no key in the interval

(kj, Kj+1) is in the set.

95

Speculation and witness computation. Accumulator-based tuple PADs can be com-
bined with speculation, as described in Section 4.3.3. Huieases the size of a lookup
proof toO(C) but reduces the costs of witness computation f@gmlogn) to O ((C + 1) ¢n)
exponentiations per update.

Rather than individually sign each generation’s accunoul&{Go, v), A(G;, v) and so
forth, we could instead collect these accumulators inteat $tash chaim(v) = H(A(Go, v),
H(A(G1, V), H(A(G,, V) .. .))), and then bind the root of this hash chdgty), to its version
number and sign it. However, signing each generation iddadly only uses % % times
more signatures than using a hash chain.

On each update to the PAD, the author perfof€) amortized exponentiations, one
to update the accumulator f&g, and the remaining exponentiations account for the amor-
tized costs of updating the accumulators for the other geiogis. The author then trans-
mits the update and the new sigrig@ + 1) to the server, who can deterministically update
its copy of the PAD.

When using speculation, on{y,, containingO(¥/n) tuples, is updated on every snap-
shot. The amortized cost for computing witnesses over akkgeions using th®(eloge)
algorithm isO((C + 1) ¥n = logn). The server must store these witnesses at an amortized

cost of O(C ¥/n) per update to the PAD.

Accumulators and tuple superseding. When we first discussed tuple superseding, in
Section 4.3.2, it was used to reduce the signature storatiee@erver. This same principal
may be applied to witness storage on the server for accuanslat

We alter the tuples stored in the accumulator to include #grsign number when they
are created, e.g.v{ [Kj, Kj+1), ¢j). If the accumulato’(vy.s) contains that tuple and is

signed by the author, we consider the tuple to be valid foveionsv € [vg, Vq.5]. Thus,

96

when a client queries for a kdyin snapshoty (Wwherek € [k;, Kj;1)), the server may send as
a proof a signed\(vy), the tupleT = (vq, [Kj, Kj+1), ;) with k € [Kj, kj.+1) andvy € [Vq, Vgss],
and a witness proving thdt € A(vq4.s). The same response can authenticate any version
Vy € [Vg. Vges]. Instead of storing one witness for each snapshot, theeseow can store
only one witness, the one #(vy,s) that authenticates.

As before, we assume a snapshot is taken after every updesieasithe situation de-
scribed in Section 4.3.2, each time a snapshot occurs thersaust generate a full set
of witnesses. At most two of those withesses will be for nearyated tuples. The re-
maining witnesses are for refreshed tuples and can be sgsetand replace the witnesses
previously stored. Computation cost is the same, but theipéate storage costs drop to

o).

Accumulators, tuple superseding, and speculation can be combined to form our penul-
timate PAD design, fbering constant time on the author per update, constant cammu
cation per update, constant storage per update on the sardeconstant lookup proof
size. Computing a new set of withesses is sublinear in thebeumof keys in the pad at
O((C + 1) ¥/n) exponentiations per update. Unlike before, we indiviusign each gen-
eration’s accumulator in order to independently choosaegises from dierent snapshots

for each generation.

4.4 Scalability

We expect that the server may well be called upon to scalertarularge clusters and
support much higher insertion and query rates. This sectimsiders scalability issues
for such environments and how our algorithms could be matierun faster in such

environments.

97

Faster server insertion rates. Keys exist in a large key space. We can patrtition that key
space across a large cluster of machines, with each seppamsible for only a fraction of
the key space (much as is standard practice in distributgttalle implementations). Each
server then maintains that fraction of the PAD. Assumingskase uniformly distributed
across the key space, each server should see a unifornofradtthe load. To guarantee
this uniformity, keys could be hashed before being storaderPAD.

For any tuple PAD implementation, without RSA accumulattngs split is quite nat-
ural. Different servers can be responsible fdfatent key ranges, allowing for excellent
scalability. For tree PADs, each server would be respoadinl a diferent subtree, but

coordination would be required for changes to the sharetetags of the tree.

Faster client query rates. Client queries require no mutation of state on the server. As
such, server state may be arbitrarily replicated to suppoger client query rates. This
would require inbound mutation operations from authorsddalistributed to each replica

responsible for any given key.

Lots of snapshots. While some measure of coordination is required, as abovegndle
the most current version of a PAD, older versions are sthtia.large server cluster, older
snapshots can be replicated onto dedicated machines. #&eg gange of keys from any
given snapshot can be stored on multiplé&eatent servers, allowing for excellent scalabil-

ity both in terms of storage capacity and supported cliertyuates.

Faster authors. Presently, we assume that the “author” is running on a sicgheputer,
but we could imagine a large number of machines, sharingutieds crypto key material,
concurrently authoring a PAD. Assuming the server is readupport the higher insertion

rate, as above, the challenge is to coordinate all the auibaes. For modest scalability,

98

a single-threaded author can control the tree or tuple laygmllegating expensive crypto-
graphic computations to other nodes in its cluster. If DSfxatures are used, latency can
be further reduced by having author nodes partially precdaepignatures [99].

For broader scaling, the author nodes could follow a panitig strategy, similar to
that described for the server. Again, this partitioninguge natural with tuple PADs and

will require coordination of the higher layers in the tree ti@e PADs.

4.5 Future work, applications, and extensions

PADs are suitable for a variety of problems, such as in a pWdgy infrastructure where
they can éiciently store a constantly-changing set of valid certifsatf a PAD supporting
a root authenticator is used, the root authenticator maytdredsin a tamper-evident log
such as the one described in Chapter 3 and the author cateranladify it without detec-
tion. Similarly, the root authenticator could be submitied time-stamping service [54,57]
every time a snapshot is taken to prove its existence. PADbeaised to implement many
forms of outsourced databases. Using Merkle aggregatiidsean be used to implement
flexible query languages, or in the case of Pari-mutuel gangpés used in horse racing,
to count wagers. With a canonical or history independemesgmtation, PADs can make
distributed algorithms more robust.

In this work we developed several new ways of implementindp®A We presented
designs ffering constant-sized proofs and lower storage overheadsal¥é developed
speculation as a new technique for designing authentiaidtad structures. Future work
in PAD designs could include creating fully persistent auaticated dictionaries based on
fully persistent data structures [86].

In the next chapter, we will perform an evaluation of eachwfalgorithms and of their

respective costs for each operation in order to guide whigbrghm is right for which

99

situation. We will also compare our designs to alternat&B RIgorithms [7] and evaluate

PADs based on RSA accumulators and other cryptographicimpobs.

100

Chapter 5

Performance analysis of PADs

In this chapter, we describe our implementation of 2fedent PAD algorithms, includ-
ing prior designs based on Merkle trees [7] and the desigseritbed in Chapter 4. Our
evaluation includes both a big-O analysis and includes tracks of an implementation
of each algorithm. For each algorithm we measure the timacespnd communication
overheads, determining real-world performance includhmg constant factors of digital
signature generation, modular exponentiation, prim#disging, serialization, and so forth.
In this evaluation, for simplicity, we assume a snapshaksm of the dictionary after every
update.

The PAD algorithms we built make filerent tradefis of CPU, bandwidth, and storage
requirements. The ideal algorithm for any given workload thius depend on the relative
costs of these resources. Rather than guess at theseffsademinstead normalize them
using contemporary costs, in U.S. Dollars, charged by Goagt Amazon for bandwidth,
CPU time, and storage on their EC2 and AppEngine serviceg #ssume that Google and
Amazon are fiering these resources at their marginal cost, i.e., thatrdwes charged for
bandwidth, CPU time, and storage are close to the actuad tmstny provider delivering
large quantities of these resources, then our evaluatiategly should generalize to other
vendors as well.

In Section 5.1, we compare the big-O times for thedent algorithms against each
other. In Section 5.2, we describe our PAD implementationsevaluation methodology.

Section 5.3 presents benchmark results for our tree PADeimehtations. Section 5.4

101

presents benchmark results for our tuple-based PAD impigatiens, including the RSA
accumulator variation. Section 5.5 presents realisticberark results against real-world
traces. Finally, conclusions and future work are discusseection 5.6. Appendix A

presents further detailed performance measurements oraR&Anulators.

5.1 Big-O evaluation of the dfferent PAD designs

In Chapter 4, we presented a variety of algorithms for im@etimg a PAD. In this sec-
tion, we do a big-O comparison across th&atient algorithms. In Table 5.1 we compare
our designs to the existing related work and present a casgpeof the space usage and
amortized expected running time of each algorithm in terfrth® number of keys and
number of snapshots We assume that a snapshot is taken after every update. €léer tr
based PADs, query times include t¥logv) cost to binary search in the authenticator
cache. For tuple-based PADs, query times include searchimgersistent tree for the
tuple.

A modular exponentation, used in signatures, is much mgreresive than many cryp-
tographic hashes. A standard big-O bound would not capheset&ects. To enable a
more accurate comparison, we account for exponentiatised in verifying signatures by

usingp to denote its cost. Table 5.1 then describes:
1. Server storage (per-update).Storage, per update, on the server.
2. Lookup proof size. Size of a lookup proof sent to a client.
3. Query time (historical). Time to make a lookup proof for old snapshots.
4. Query time (current). Time to make a lookup proof for the current snapshot.

5. Verify time. Time to verify a lookup proof by a client.

102
6. Update info. The size of an update, sent to the server.
7. Author update time. Time on the author required to generate an update.

8. Server update time.Time on the server required to process an update.

5.2 Implementation and methodology
5.2.1 Implementation

Our implementation is a hybrid of-&+ and Python, connected with SWIG-generated inter-
face wrappers. Because of the complexity of implementihglatifferent configurations,
our initial implementation was in Python. Python made it measier to design correct
algorithms, debug our implementation, and cleanly modzgathe code. We could then
progressively and quickly port the debugged algorithms+a-(function by function and
module by module while fully preserving both the originatiikyn implementation, and the
equivalence between the+& and Python implementations, applying our Python test cases
against our @+ implementation. In this paper, we present the results afteting many

of the slowest modules to-G-.

We ported persistent search trees first, because of theinusee-based PADs, and
their use for storing the tuple repository. We achieved a2A@x speed up from converting
the code. We used profile-based analysis for our portifayte only porting modules and
functions that were not bottlenecked in cryptographic astéxg C++ code. To guide these
choices, we separately measured the time spent in sigsatesgalization, and modular
exponentiations.

As public-key cryptographic operations like RSA can be dwitk variable key lengths,

trading df speed for cryptographic strength, we selected parametms ‘d 12-bit security

Reference Storage Query Query Proof Verify Update Update Update

Size Time Time Size Time Time Time Size
(historical) (current) (author) (server)

Tree PAD (Path Copy) [7] O(logn) O(logn) O(logn) | O(logn) | B+ O(logn) || B8+ O(logn) | O(logn) 0(1)

Tree PAD (Versioned Node) O(2) O(n) O(logn) | O(logn) | B+ O(logn) || B+ O(logn) | O(logn) 0o(1)

(No Cache)

Tree PAD (Versioned Node) || O(logn) || O(logv-logn) | O(logn) | O(logn) | B+ O(logn) || 8+ O(logn) | O(logn) 0o(1)

(Cache Everywhere)

Tree PAD (Versioned Node) O(2) O(+/nlogv) O(logn) | O(logn) | B+ O(logn) || B8+ O(logn) | O(logn) 0(1)

(Median Cache)

Tuple PAD O(n) O(logn) O(logn) 0(1) B+ 0(1) o(Bn) O(n) O(n)

Tuple PAD (Speculating) o(C ¥n) O(Clogn) O(Clogn) | O(C) BC o(sC - Yn) | O(C) o(C ¥n)

Tuple PAD (Speculating) 0O(C) O(Clogn) O(Clogn) | O(C) BC o(sC - Yn) | O(CHn) o(C ¥n)

(+Superseding)

Tuple PAD (Speculating) 0O(C) O(Clogn) O(Clogn) | O(C) (B+D)C O(CHn O(C) O(C ¥n)

(+SupersedinglterHash) (g + D))

Accum PAD (Author O(n) O(logn) O(logn) 0O(1) 2B Oo(Bn) o(n) o(n)

precomputes witnesses)

Accum PAD O(n) O(logn) O(logn) 0(1) 28 O(B) O(Bnlogn) 0(1)

Accum PAD o(C ¥n) O(Clogn) O(Clogn) o(C) (C+1)B O(BC) op((C + 1) O(C)

(Speculating) {nlogn)

Accum PAD O(C) O(Clogn) O(Clogn) o(C) 2CB O(BC) o, + 1) O(C)

(Speculating Superseding) {nlogn)

Table 5.1 : Persistent authenticated dictionaries, comg&echniques assuming a snapshot is taken after everyaudfsimrage
sizes are measured per-upd#teenotes the cost of an exponentiation used during signg&urerationC denotes the number of
generations in a speculative PAD abdlenotes the maximum hash-chain length. In this table, wartépe amortized expected
time or space usage. “Accum PAD” refers to tuple PADs basedrat accumulators. Except when stated otherwise, tuplesPAD
using accumulators are assumed to precompute witnesske earver.

eoT

104

level” [104]. Keys and values are assumed to be 28-byte Isaahe modular operations
are done with a 2048-bit modulus.

All of our benchmarks were run on an Intel Core 2 Duo 2.4 GHaikimachine with
4GB of RAM running in 64-bit mode. We used Python version£2&nd compiled our
C++ code with Gec 4.3.4.

5.2.2 Serialization

For completeness, our evaluation includes the actual sizesessages used in our PAD
system. To this end, we serialized each update from the gughoh request from clients,
and each reply from the server. Rather than error-prone at@omstruction of mutually
compatible serialization code in bothr&€ and Python, we used the Google protocofteu
library to automatically generate interoperable seraion code. Protocol liters support
nested message types and very low space overhead. In oungassgach message field
has a field header of one byte. Integers use a variable-lemgthding. Blobs and encapsu-
lated messages require a field header, length, and the lmoatgnts.

Protocol bifers generate very fast+G code. Unfortunately, the current Python im-
plementation is unoptimized, often dominating the CPU tirfibe not-yet-released next

version of protocol bffers for Python is reported to be significantly faster.

5.2.3 Tree-based PADs

There are many types of balanced tree-like data-structtoeswhich Merkle trees can be
built. We implemented treaps [91], red-black trees [93{ akiplists [79].

When implementing a PAD, the author only needs to manage eaels tree, that
of the latest snapshot. On the server, each snapshot is @llygilistinct Merkle tree

with a different signed root hash. Rather than storing each snapstzotsinct tree,

105

Caching strategies Storage Lookup proof
T (per update) (time)

No cache o) O(n)

Cache everywhere O(log n) O(logn)

Median layer 0(1) O(+/n)

Table 5.2 : Caching strategies for subtree authenticatcasSarnak-Tarjan tree.

we can exploit the similarity between trees across snapsbatnplement a more space-
efficient repository on the server. The classic approach ferisimiath copyingwhich uses

a standard applicative tree to avoid the redundant storhgehtrees that are unchanged
across snapshots. Under our assumption that we take a soafin every update, path
copying will requireO(logn) storage per update and lookup proofs can be generated in
logarithmic time.

For the server’s repository of persistent trees, we impldrpath copying and the three
variations of storingecomputing subtree authenticators for Sarnak-Tarjas tdescussed
in Section 4.2.6 and summarized in Table 5.2. We implemelf2etiferent tree-based PAD
variations in Python and €+ consisting of 3 kinds of tree data structures andffiedent
repository designs. We only present performance data foCeu implementations. PADs
based on two of these 12 variations were proposed by Anagpasios et al. [7], red-black
trees and skiplists both using path copying.

Because we are supportingférent types of applicative representations, our red-black
skiplist and treap implementations awaly allowed to “mutate” the children of a node
through an abstract interface which, given a node and a paew left and right children,
returns a node representing the result of applying thosegdsa The result depends on the
underlying repository implementation. With path copyiigyill always be a clone. With
Sarnak-Tarjan trees, it may or may not be a clone. This regtirat the implementations

of these algorithms bleottom-upandmutation-free In addition, because nodes store keys

106

and values, we must preserve node identity during rotatamialsother operations, reusing
nodes that already store the needed key and value, updatirgchildren through our

abstract interface, rather than needlessly cloning thodes

5.2.4 Tuple-based PADs

Tuple PADs dfer a more complex parameterized set of design choices,dingjiseveral
optimizations described in Section 4.3. Apart from signéagh tuple individually, tuple-
superseding may be used alone, or in combination with liglght signatures. Any of
these three designs may be combined with speculation. Iti@udo this, there are the
three RSA accumulator-based designs described in Sec8ch 4

Except for lightweight signatures, our implementationusgdy in Python. Despite the
overheads of the Python interpreter, many of the desigmatans bottleneck in unavoid-

able cryptographic operations that already run at natieedp

5.2.5 Accumulators

We used the GMP library for all modular operations. Our aaglators use 184-bit prime
representativés The prime representative of a tuple must be found detesticaily. The
SHA-1 hash of a tuple is concatenated with 24 zero bits aadtdeas an integer. The prime
representative is chosen as the numerically smallest prun#er greater than that integer,
found by performing 82 Miller-Rabin [105] primality testaq advised by NIST [104]) to

confirm a candidate representative. Due to the expense afdirzdprime representative,

“Implementing the 112-bit security level would properly uegg 248-bit prime representatives based
around SHA-224. Our current crypto library limited us to SH/ashes. Our results therefore underes-

timate the costs of RSA accumulators.

107

| Amazon Google

CPU time (cent$our) 8.5 10
Storage (cent&B*month) 15 15
Bandwidth (cent&B) 10-17 10-12

Table 5.3 : Costs charged by Amazon EC2 and Google AppEngmeldud-computing
and storage.

the author sends thdteet to the prime representative along as a hint. In our impigaa

tion, we perform all witness computation on the server.

5.2.6 Cloud provider economics

In Table 5.3 we present the current costs of two cloud prasidémazon EC2 and Google
AppEngine. While the absolute prices we measure may vargéarfuture, what matters
in our evaluation is the relative prices between storagedWwalth, and CPU cycles. We
observe that both providers charge very similar prices uimamalysis, we will assume that
the relative costs in this table indicate traffedhat apply with any large service provider;
we will also assume that the author is spending the moneywahdttempt to minimize
the total costs for the author and server. For simplicityun @valuation of algorithms we
will assume that cloud providers charge by CPU time, whitetdsk is executing. Or, if a
cloud provider charges by wall-clock time, the CPU utiliaatis 100%.

We observe that transmitting an extra kilobyte of data gostsas much as computing
for 1/200" of a second. This defines tipeovider equilibrium rate measured in KBsec.
An algorithm need not be perfectly balanced to be optimatpofse, but this demonstrates
that an optimal algorithm may well tradéksomewhat more communication for a greater

savings in computation or vice versa.

108

5.2.7 Methodology

Our analysis has too many algorithms for us to directly campd@/e reduce the complexity
of our evaluation by first performing microbenchmarks tcedetine optimal parameters for
each algorithm. We then make comparisons across algoriththsonger traces.

In our growing microbenchmarkve evaluate the performance when inserting one key
in each snapshot, then performing random queries agaiostsgmpshot. In Section 5.5,
we present our results of running a macro-benchmark of tfferdnt PAD algorithms’
performance when used to store a constantly changing setlués/taken from a trace of
e-commerce prices.

For each benchmark we evaluate its raw performance on thwrauublisher and
client. We then evaluate the algorithmgfextiveness in the context of a cloud-computing
environment, based on the charges made by Amazon and Gaogleir online services.
For each algorithm, we can evaluate the relative contioutif bandwidth or CPU time
to the monetary costs of an update or a lookup. We definepate bandwidth ratias
the result of the dividing the update size (in kilobytes) by time to perform an update, in
seconds We define théookup bandwidth ratisimilarly. Both are measured in kilobytes
per second. For updates, we include time spent on the autd@eaver. For lookup proofs,
we only count costs on the server.

We can compare the bandwidth ratio of an algorithm to theigemequilibrium rate to
determine whether bandwidth or CPU time is responsiblefemtajority of the monetary
costs of an algorithm. When the bandwidth ratio of an algamitexceeds the provider

equilibrium rate, the bandwidth is responsible for the mgjaf the costs.

TEquivalently, we could multiply the size of a message by #te (in messagg¢sec) at which the algorithm

generates updates.

109

While bandwidth ratios for updates and lookups are a useéahanism for comparing
the relative contribution of bandwidth or CPU time to thetsosf an update or lookup,
the absolute costs, both per update, and totaled over aditep@re also important. Some
of the algorithms we presentftlr in cost by less than a millionth of a dollar per lookup.
Optimizing algorithms to this degree is only important whkere are billions or trillions
of lookups. In addition, we assume that costs on the authdsarver are equal and the
goal is to minimize the total monetary cost of the implemeata For systems under other
constraints, or built under aftierent pricing structure, the analysis would bfetient.

This evaluation methodology also measures the update, cesification costs, and
proof sizes of dynamic authenticated dictionaries basethese designs. Recall that the
only difference between a PAD and DAD is that the server for a DAD wilgpuata from

older versions

5.3 Tree PAD microbenchmarks

We first consider the relative performance of treaps, regfbtrees, and skiplists against
microbenchmark loads. We also consider hdlicently these tree-like structures reuse

state across versions, comparing path copying and thre@l&darjan variations.

5.3.1 Comparing tree structures

Our first evaluation considers which type of tree-like datacture runs fastest. We per-
formed a growing microbenchmark with 100,000 keys. In gehetl three tree algorithms
performed similarly with 730-750 inserts per second, an@-@80 lookup proof verifica-

tions per second. All three tree algorithms spent 80%-90%eif time computing cryp-

It might be tempting to remove version numbers entirelyfipalarly the version number ranges from

tuple PADs. This could enable version rollback attacks, edeave this information in the DAD.

110

Proof Lookuprate RAM used

size (kB) (keygsec) (MB)
Treap 1.98 7649 1079
Red-black 1.53 7756 843
Skiplist 2.67 4346 1587

Table 5.4 : Performance acrosdfdrent tree types, inserting 100k keys, and using path-
copying to implement the repository.

Queries RAM used
(per sec) (MB)
Path Copying 7756. 843
Cache Nowhere 15 182
Cache Everywhere 7423. 358
Cache Median 196. 205

Table 5.5 : Memory usage and lookup proof performance acitisent persistency ap-
proaches storing red-black trees containing 100k keys.

tographic signatures, implying that additional perforeetuning on our part would yield
limited gains. All three algorithms had an update size of hp@s.

There are dferences between the algorithms that can be seen in Tabl&&d#black
generates the shallowest trees, causing it to have theeshldbkup proofs, the fastest
performance, and the least RAM usage. Although red-blagstmake the mosfieient
trees to use for authenticated dictionaries, they are trst coonplex; their implementation
requires 38 distinct rulés Treaps and our skiplists are much simpler, requiring 18suln
addition they ardnistory independer{B8, 89], meaning that the root hash does not depend

on the insertion order. For some uses of a PAD, history indié@ece may be desirable.

$The authors wish to thank Stefan Kahrs at the University oftker making a Haskell implementation
of red-black trees that correctly handles deletion avédlab the Internet. We ported his code to Python and

then Cr+.

111

5.3.2 Comparing tree PAD repositories

Our second evaluation of tree PADs considers tlkeidint strategies for representing the
repository for their &iciency at storing the forest of trees that represents theichal
snapshots. In our implementation, each Sarnak-Tarjan aled®/s caches the subtree au-
thenticator for the latest snapshot, and lookup proof geiter performance on that snap-
shot is between 4,300-7,600 proofs per second, dependitigedree used, as discussed in
Section 5.3.1.

In Table 5.5 we present the RAM usage and the lookup rate éofailr type of repos-
itories when querying for historical snapshots. As expctiee Sarnak-Tarjan trees use
much less memory than path copying trees and tiereént caching strategies follow the
asymptotic memory usage and performance that we would haected (see Table 5.2).
Even though Sarnak-Tarjan trees that cache everywherethaveame logarithmic space
and CPU costs as path copying trees, they use less memonyseeadding to the authen-
ticator cache is much cheaper than cloning nodes.

To better understand the scaling behavior of tree PADs, wearsteady-state mi-
crobenchmark We fill the PAD to some capacity, and then add one key and rermae
key in each snapshot. Figure 5.1 show how the performanceexf-alack tree varies for
different keycounts in the dictionary with all four of our tre@asitory strategies. As ex-
pected, the penalty for cache-nowhere and cache-medianilagyreases as the dictionary

gets more keys, with cache-median degrading more slowly.

5.3.3 Tree PADs in a cloud-computing environment

In this section we will evaluate the trad&obetween the two tree versioning strategies in
the last section with the best tifispace trades, cache everywhere and cache median, in

a cloud computing environment. We will evaluate red-blaekes$ containing 10k and 100k

112

< 100000 ——

5

8 T R

0 i e .

o 10000 | R
8 |

N T

S oo,

o 1000 B b
S Zog

—_— B
o 100 i
=

©

(0]

c

S 10 | Path copying —— E
S Cache nowhere

@ Cache everwhere - oo

5:5 1 Cachtla median N .

10 100 1000 10000 100000
Number of keys in dictionary

Figure 5.1 : Steady-state lookup proof generation perfagador red-black trees.

4e'05 T T T T T
3.5e-05 \ -
- 3e-05 | - -
IS
[0}
o 2.5e-05 . 1
o .
2 ¥
S 2e-05 ¢ T KKK
o
E =]
o 1.5e-05 E B | | =) g g = = = h
@
(@]
) 1e-05 | -
100k, Cache median ——
5e-06 | 100k, Cache everywhere 4
10k, Cache median Koo
0 . 1|0k nghe.eve.:ryyvh.ere. o .

1 10 100 1000 10000 100000 1e+06
Lookups per update

Figure 5.2 : Amortized cost per lookup for red-black tree RARIth two diferent hash
caching strategies.

113

Bandwidth Ratio
Updates Lookups
Cache everywhere, 10k keys 109 13190

Cache median, 10k keys 109 562
Cache everywhere, 100k keys 90 11357
Cache median, 100k keys 102 300

Table 5.6 : Bandwidth ratios for each red-black tree PAD algms summarizing the rel-
ative monetary costs of bandwidth and CPU time. For rati@s twe provider equilibrium
ratio (200kBsec), proof size dominates the monetary costs. For smatlesy computation
time dominates.

keys.

In Table 5.6 we present our results. Surprisingly, evenghaache median has lookups
almost 40 timeslowerthan cache everywhere, both algorithms are fast enoughhbat
bandwidth of the reply message is the majority of the mogetast of deployment.

The average per-lookup monetary cost of a PAD algorithm e@ap depending on the
ratio between lookups and updates. In Figure 5.2 we plotdets@er update acrosgier-
ent lookup to update ratios for thefidirent configurations of red-black tree PADs. Cache
median is only 50% more expensive than cache everywheregduitred 40% less memory

usage.

5.3.4 Summary of results

We conclude that tree-based PADs should use Sarnak-Tagssnvith the cache-everywhere
versioning strategy. In the case where very few queries adenfor historical snapshots
or where available memory is low, caching on the median lay&y have sfiicient query
throughput. We also conclude that red-black trees dominesgs and skiplists, running
faster, having smaller lookup-proof sizes, and using lemsge. Treaps enable other use-
ful semantics which we have not discussed in this paper (sesb§ and Wallach [8] for

details), but there is no reason to ever use a skiplist.

114

BaserSS No speculation. Optimized with superseding.

BaserLW No speculation. Optimized with lightweight signatures.

SpeaSS Speculation with 2 generations. Optimized with supersgdin

SpeaLW Speculation with 2 generations. Optimized with lightweighy-
natures.

Accumulators | Speculation with 2 generations. Uses accumulators.
Chain Accum.| Speculation with 2 generations. Uses accumulators in a hash
chain.

Table 5.7 : Abbreviations used to denote thgedent tuple-based algorithms.

5.4 Tuple PAD microbenchmarks

In this section, we will evaluate the various tuple PAD dasiglescribed in Section 4.3.
Table 5.7 describes the abbreviations we will use for thEedint algorithms. We only
present results with tuple superseding; not using supergds a trivial impact on CPU
time, update sizes, and lookup proof sizes. Supersedingsawes storage on the server.
For comparison, we also report results for red-black treggrthe cache-everywhere strat-

egy. Because of the slower performance of tuple PADs, weloemghmarked 10,000 keys.

5.4.1 Tuple PAD author costs

In Table 5.8, we present the performance of each tuple PADridign we analyzed. We
also present red-black results for comparison. Note thattdyoor insert performance,
we only ran BaseSupersede for 2915 inserts, instead of 10,000. If we exiagub its
performance at 10,000 inserts, we would expect .10 updatesepgond and a 250kB update
size.

Table 5.8 demonstrates several of the trdidcletween the PAD algorithms. It shows
the benefits of speculation increasing performance by arfatt30 and reducing update
sizes by a factor of 50. Lightweight signatures have a shiyilstrong impact on perfor-

mance. We also observe that lightweight signatures dfeigmtly cheap that crypto costs

115

are no longer the dominant limiting factor in PAD insertiogriprmance. Since much of

the remaining code, in these cases, is written in Pythonxwed that significant speedups
could still be available from performance tuning. Lightglat signatures have a small neg-
ative performance interaction with speculation. Whenéveldength of an epoch changes,
every tuple must be re-signed with a public key signature.

This table also shows the poor update performance of tuped®gorithms. Even if we
assume non-crypto overheads on the author are zero, thstfagtle PAD is still four times
slower than a simple red-black tree PAD. The network comeatiin needed for updating
the red-black tree PAD is similarly as small as the very bestimulator-enhanced tuple
PAD.

We implemented the hash chain optimiziation described tti@® 4.3.4 and observe
the essentially identical CPU performance as signing eadermtion’s accumulator indi-
vidually because because primality computation and expitateon operations dominate,
compared to computing4 % times as many signatures. Unexpectedly, accumulators, al-
though being “constant size,” are surprisingly large anuegate lookup proofs no smaller

than red-black trees storing 10k keys.

Accumulator tuple PAD costs In Table 5.9 we break down the unavoidable crypto-
graphic costs of accumulator operations on the author awérsel'hese results show that
99% of CPU time spent on the publisher handling accumulgidates is in the underlying
costs of the accumulator. In addition, of the 67% of the CPhétspent on cryptography by
the author, 91% is spent on underlying costs of the accuomléfe discuss accumulator

overheads more extensively in Appendix A.

Inserts Size (kB) Number

(persec) % incryptg Update Proof| Inserted

BaserSS .35 61%| 86.95 15 2915
BaserLW .94 5%/ 156.72 21| 10000
Spee-SS 4.5 59% 6.42 .30 10000
SpeeLW 30. 24% 3.76 42| 10000
Chain Accum.| 54.7 67% 14 1.23] 10000
Accumulators | 53.9 67% 14 1.29| 10000
Red-black 776. 92% A5 1.24] 10000

116

Table 5.8 : Comparing author performance, update sizes evaf pizes across fier-
ent PAD designs. Crypto costs include digital signatureslirig prime representatives,
lightweight signatures, and exponentiations. Except fase-Supersede,” where 2915
keys were inserted, we ran each algorithm with 10,000 keys.

Author
Update RSA accumulator 13% Server generating reply
Find prime representative 48% -
Digital signature 6%
Client verifying proof
Server receiving update Verify signature 44%
Compute witnesses 91% Verify accumulator 34%
Find accumulator value 8%

Table 5.9 : Breakdown of accumulator update and witness atetipn and verification

costs for tuple PADs using non-hash-chain accumulatots ¥t000 keys.

Updates Server response Client response verification

(persec) % incryptg generation (per seg) (per sec) % in crypto
BaserSS 1.7 — 1182 486 68
Base-LW 1.03 — 1088 441 65
SpeaSS 20.8 — 620 240 67
SpeeLW 45.4 — 571 227 64
Chain Accum. .92 99% 522 201 62
Accumulators .92 99% 480 157 70
Red-black 10869. — 10992 642 90

Table 5.10 : Comparing server and client performance aclifesent PAD designs. Cryp-
tographic costs include digital signatures, finding primyeresentatives, lightweight signa-
tures, and exponentiations.

117

5.4.2 Tuple PAD server costs

In Table 5.10, we present the server’s costs for thfedint PAD algorithms. On each
update, most algorithms do nothing other than store tupidssaynatures into the repos-
itory, taking time proportional to the update size. Accuatat algorithms, however, also
have to compute witnesses for each tuple and are extrenwly $5ee Appendix A for
performance details on this.) In this table we can see themet benefits of speculation,
which improves performance on the server by reducing thebeurof tuples the server
must process for each snapshot fr@fm) to O(v/n).

Except for withess computation overheads in tuple PADsguastumulators, servers
do not perform any cryptography when handling an updateve®gmalso never perform
cryptography when generating replies to clients. From @pedence with optimizing tree
PADs in G++, this non-crypto code is significantly slowed down due tdBytoverheads.
We expect that the non-crypto server performance wouldovgby a factor of 10-50 if
the tuple PAD code was rewritten i@

The time for a client to verify a lookup proof varies acrose tliferent algorithms.
Except for tuple PADs using accumulators, the cost of vargfys dominated by signature
verification. Designs using speculation usually requirgfysg two signatures, one in
each generation, and thus take twice as long.

Accumulator PADs using hash chains do not have an apprgaaidller lookup proof.
The size of a lookup proof is dominated by the 2048 bit accatoulvalue and the 2048-
bit witness, required for each generation. These overhaadsrge compared to the 240-
bit cost of an extra signature. Hash chains somewhat impamiaip proof verification
performance. When a hash chain is used, only one signatacebeechecked. This can be
seen in Table 5.10 in the increased performance verifyirgsh bhain accumulator lookup

proof.

118

Bandwidth Ratio
Updates Lookups
BaserSS 25. 177
BaserLW 77. 228
SpeaSS 24, 186
SpeaLW 68. 240
Chain Accum. 126 624
Accumulators 126 619
Red-black 1009. 13630

Table 5.11 : Bandwidth ratios for each PAD algorithm summaiag the relative mon-
etary costs of bandwidth and CPU time. For ratios over theiges equilibrium ratio
(200kB/sec), proof size dominates the monetary costs. For smalliersy computation
time dominates.

5.4.3 Tuple PADs in a cloud-computing environment

In this section, we will evaluate the tradéobetween the various PAD designs in the con-
text of a cloud-computing environment and perform the agialgescribed in Section 5.2.7.
In Table 5.11 we present the bandwidth ratio for each algoritWhenever the ratio ex-
ceeds 200 kBec, the monetary cost of transmitting the message exchedsdnetary
cost of computing the message. Every implementation hasdwdth ratio over 177 for
lookups, meaning that at least 45% of the monetary costsesktlalgorithms will come
from bandwidth of the reply, not the CPU time, despite slowhBy implementations.

The overall monetary cost of each algorithm depends on théwe ratio between up-
dates and lookups. In Figure 5.3 we plot the costs per lookupsa diferent lookup to
update ratios for several algorithms. This plot conciskiysirates the traddfs between
the diferent algorithms. Except for the algorithms using accutousaeachother algo-
rithm is the cheapest at some ratio of lookups to updates gdibt also demonstrates that
accumulators are more expensive than red-black trees ratia$ when the PAD contains

10k keys.

119

001 T T T T T
Base+lW ——
Spec+SS
Spec+LW - Koo
Accum g
- 0.001 Red-black 10k i
IS
[}
)
o i
E 3
o) 0.0001 E
k=)
]
o
*(7‘) B] =] & =] i)
o le-05 AN K Koo P oo R 1
o e T —
1e_06 s Ll s Ll s Ll s Ll s Ll s P
1 10 100 1000 10000 100000 1e+06

Lookups per update

Figure 5.3 : Amortized cost per lookup forfiiirent PAD algorithms.

0.01 T L L T L L T
Base+LW —+—
Spec+SS
SpectLW -
Accum a

0.001 Red-black 10k i

0.0001 }

Cost per lookup (cents)

*.
le-05 | e \]
1e-06 1 1 1 1 1
1 10 100 1000 10000 100000 1e+06

Lookups per update

Figure 5.4 : Amortized cost per lookup forfiirent PAD algorithms, correcting for Python
overheads.

120

Correcting for Python overheads In this analysis, so far, we used our measured CPU
performance, despite the tuple PAD algorithms not havingmimized G-+ implementa-
tion. We correct for these performance anomalies by assuthat a G-+ implementation

of SpeeLW will have an update performance on the author three timmsgef and that
BaserLW will also have its performance increase by a factor of 1& WMl also assume
that G++ versions of the non-accumulator tuple PAD algorithms carc@ss updates ten
times faster.

Finally, we will assume that the tuple repository can rethtuple matching a lookup
query in .1ms. When the server responds to a lookup request)yi needs to find the
matching tuple in the repository, implemented using a ptest red-black tree, and seri-
alize it. In Table 5.10, we benchmarked our-£red-black tree PAD at generating over
10,000 lookups proofs per second, with each proof requsgrglizing the entire search
path to the lookup key, clearly a more expensive operatariuple PADs that use specula-
tion, multiple tuples are required in a proof and we multighlg lookup time by the number
of generations.

Under these assumptions, Figure 5.4 presents the costgserddor the diferent PAD
algorithms. The cost per lookup across the algorithms doeshmnge much. From the
bandwidth ratios reported in Table 5.11, bandwidth costewatready responsible for 50%-
75% of the monetary costs of most of the PAD algorithms andcieg) the CPU consump-
tion has a smallfect on the total cost. The bandwidth ratios in Table 5.11 dwvstat
66%-99.9% of the monetary costs of updates for are from CRigwoption, which are

affected by our assumed performance increases af«ai@plementation.

121
5.4.4 Summary of results

Whether we use the corrected or uncorrected performancéensimwve can reach several
conclusions. RSA accumulators are so expensive, from a @abandwidth perspective,

that we will never recover these costs for any realistic jgobset. For PADs which are

updated very frequently, red-black tree PADs clearly winwdver, for more stable PADs

with higher query rates, the tuple-based PAD structures ttee RSA accumulator, become
the preferable strategy. For workloads where a widely vayyange of lookups per update
might be expected, the full set of optimizations, includgmgculation, lightweight signa-

tures, and superseding, seems to be an excellent strategyoFkloads where over 1000

lookups might be expected per update, the non-speculatie PAD, but with lightweight

signatures, would seem to be the appropriate algorithm.

5.5 Macrobenchmark

Now that we have done many microbenchmarks of tifeedint PAD designs, we now
analzye the performance and monetary costs of tiierdnt PAD algorithms when used to
store a constantly changing set of values taken from a tragecommerce prices.

Our data set represents the selling prices fiedent products for three brands of high-
end luxury goods asftered by a number of vendors on the Internet. All price obseEma
were made between January 1, 2009 and June 30, 2009 in¢ltegivesenting 27 distinct
dates. In total, 1,272 fferent luxury items were found online for the three brandsaon
total of 544 diferent web sites. In total, there are 38,39%taent observations in the data
set. Our data tracked the price of each good on each webaiteinig 14,374 distinct keys

in the PAD1

IData provided by Glenn Kramer Consulting, LLC, representiotual brands and products monitored

122

Insert All Process All Size (kb) Lookups
Keys (sec) Updates (se¢)Update Proof| (per sec)
BaserSS | 565. 154. 711 .18 1067
BaserLW | 281. 135. 550 24 710
SpeeLW | 215. 101. 460 A2 614
Red-black| 1.75 1.48 149 1.59| 10012

Table 5.12 : Performance offtirent PAD algorithms on the macrobenchmark, including
the total time on the author and server to insert six monthwioé data, the average size
of an update and lookup proof, and the lookup rate.

Table 5.12 presents the performance of thedent algorithms on this benchmark. This
dataset is very dierent than our microbenchmarks. It has a course granuldBtyupdates
are contained in only 27 snapshots leading to large updateages. Lookup performance
is as fast as we saw in our earlier microbenchmarks.

This dataset also demonstrates that the strengths of spiecubccur when there are
many snapshots and relatively few keys are modified in anysaapshot. In this dataset,
with the default epoch size, speculation only reduces tmebau of signatures needed by
7%. However, when we reduced the epoch-size to 6, the ideahegize for this data set,
speculation reduced the needed signatures by 48%. We presetts with an epoch size
of 6. Lightweight signatures were also very beneficial, ceag the number of public-key
signatures by over 80%.

We also performed a cloud-computing analysis of the mopetasts of diferent PAD
algorithms over this data set. Bandwidth ratios are regarnerlable 5.13 and the band-
width ratios for lookup messages are within 20% of what weeoked earlier in Ta-
bles 5.6 and 5.11 when running the growing benchmark. Thatepdessage bandwidth
ratio for red-black trees is much larger than we saw in TalBeb®cause the message size

has grown to include all of the updated keys, while the nundéeZPU-time-expensive

for an anonymous client, blinded and provided with cliepgsmission.

123

Bandwidth Ratio
Updates Lookups

BaserSS 27 192
Base- LW 36 170
Spee-LW 45 261

Red-black 1244 15919

Table 5.13 : Bandwidth ratios for each algorithm, procegdime luxury-goods mac-
robenchmark, summarizing the relative monetary costs nflwalth and CPU time. For
ratios over the provider equilibrium ratio (200}g&c), proof size dominates the monetary
costs. For smaller ratios, computation time dominates.

digital signatures remains at one per snapshot.

In Figure 5.5 we plot the cost per lookup. In this dataset)dahge number of changes
per snapshot results in large per-update monetary costbwhist be amortized over many
messages before the smaller response sizes of tuple PAlsesethe overall costs.

From this, we can conclude that the red-black tree PAD (&afagan, cache-everywhere)
is the preferred PAD algorithm until the query rate exceedghly 5000 lookups per up-
date. Only then do the tuple PAD structures become more @easttige, with the simpler
“Baset+SS” strategy (no speculation or lightweight signaturest guperseding) ultimately

winning only when the query rate exceeds 25k lookupdate.

5.6 Summary of PAD performance results

Our analysis considered two veryfidirent structures for implementing persistent authen-
ticated dictionaries: those based on Merkle tree-like datactures and those based on
independently signed “tuples.” We implemented Merkle grbased on skiplists, treaps,
and red-black trees, along with foulfidirent strategies for how to share related state across
different versions of the trees. We implemented several tugdedd PAD designs, both

using accumulators and including a variety of optimizagion

124

0.1 T L L 1 L L M
Base+SS ——
Base+LW
‘ Spec+LW —x
001 | * Red-black = i

)

<

() i

)

o 0.001 | : b

>

X

(@]

o

© 0.0001 .

1)

@]

O =) =) {1
1le-05 e
1e_06 1 1 1 1 1

1 10 100 1000 10000 100000 1e+06

Lookups per update

Figure 5.5 : Amortized cost per lookup forfiirent PAD algorithms processing the luxury-
goods macrobenchmark.

These algorithms make a variety offférent tradefis between computation, band-
width, and storage. Our strategy of converting all of thesigsunto monetary currency,
based on commodity pricing from Amazon and Googléer@d us a very useful insight
into which algorithms are preferable under which condgiolost notably, we conclude
that the fixed costs of RSA accumulators dwarf their asynmptmnefits, making them
unsuitable for production use. We conclude that red-blesdst, implemented with Sarnak
and Tarjan’s versioning strategy, and caching subtreesatittators at every node for every
version, is the optimal strategy for PADs experiencing fiextt updates. However, when
the query rate grows much larger than the update rate, ole RiD strategies, with the

full suite of optimizations, seem to be the preferable styat

125

Chapter 6

Conclusions and future work

In this thesis | have presented two classes of tamper-emitdea structures, tamper-evident
logs and persistent authenticated dictionaries. Thesestiatctures are designed to run on
untrusted servers. As an untrusted machine can nominabiyihing, tamper-evidence is
the strongest guarantee that can Bered. To this end, we have presented the history tree,
several persistent authenticated dictionary algoritrems, an evaluation of these designs
including both big-O and the measured performance of wgrkimplementations.

The essence of our history tree is its ability to detect umanized changes between
different versions, without sending intermediate events. llaMike to extend this property
to data structures more complex than an append-only log.

There are several avenues of future work in persistent atitda¢ed dictionaries. There
are a number of properties | would like to formally prove,lutting big-O bounds on the
storage costs and tighter bounds on lookup time, as wellragalty proving that my PAD
designs always detect failure or return the correct answerdrious threat models. Future
work includes expanding our trust model for PADs to bettgapsut multiple, mutually-
untrusting authors, féer stronger privacy features, as well as extending our teplB
designs to support out-sourced storage where a trusteckdeses a small amount of trusted
storage to detect faults in a larger untrusted storage 1104,

My algorithms and my evaluation generalize to the case ofreayc authenticated
dictionary, when persistence is unnecessary, but tampeesmce is, by simplifying the

techniques to only preserve the data necessary to authtntie latest snapshot. | plan to

126

adapt speculation and lightweight signatures to createnardic super-icient authenti-
cated dictionary.

Given my flexible software implementation of so manffelient PAD variations, I in-
tend to pursue applications of my data structures towarcerooncrete problems, such as
building robust file storage above potentially untrustedagje like Amazon’s S3 service. |

also intend to release my code under a suitable open-sacecesé.

6.1 Contributions

My research makes the following contributions:

e Recognizing that auditing is a critical and frequent operain designing tamper-

evident data structures.
¢ Designing, implementing, and evaluating the history teseger-evident log.
e Merkle aggregation, a generic technique of aggregatingtations up a Merkle tree.

e Improvements on existing tree-based persistent autlaatiadictionaries and pre-

senting tuple PADs, a new paradigm for PADfgoing constant sized lookup results.

e A new way of evaluating algorithms that use network bandwiahd CPU time
in terms of their monetary costs by using the prices chargedidud-computing

providers.

e An implementation and evaluation of all current PAD aldamis that generalizes to

non-persistent authenticated dictionaries.

Tamper-evident data structures are widely applicable.yda& detect malicious in-
siders and increase the trust in software services anddatomputing”. Along with pre-

senting and evaluating specific designs for new and impraesigns for tamper-evident

127

logs and dictionaries, this thesis also presents desigiipgls for designing new tamper-

evident data structures along with several optimizaticabie by tamper-evident systems.

128

Appendix A

Accumulators in practice

Our research showed that RSA accumulators, when appliedpte PADs, introduced
significant overheads both in terms of CPU and bandwidths¢désading us to conclude
that RSA accumulators, despite their asymptotic benefigsewnsuitable for production
use in PADs.

In this appendix, we take a closer look at RSA accumulators steind-alone entity,
and their costs on the author, server, and clients. Thipagnce evaluation assumes
the “112 bit security level,” requiring 224-bit hashes, 2:0prime representatives, and
2048-bit modulus operations.

In Figure A.1, we graph the cost of updating an accumulatarfaaction of the number
of keys in the accumulator. For each accumulator set sizegstimmate the runtime by
combining microbenchmarks of the costs of primality test$ @xponentiations of tfierent
sizes, and by counting the exact number of exponentiatiodgeamality tests required to
update that accumulator.

Generating a prime representative takes 7.68ms if 120 iMREbin primality tests are
performed. 120 primality tests are needed to attain a madtieah security factor of 22°,

A less conservative design could test a tentative primeesgmtative with 5 Miller-Rabin
tests, taking 1.50ms. The author, knowing the factorizatibn can incrementally update
precomputed witnesses for the next snapshot at a c@{inp£048-bit exponentiations per
shapshot, each costing 2.42 ms by using the Chinese remd#nsdeem. Alternatively the

publisher may batch compute all witnesses viitm log n) 240-bit exponentiations, each

129

1e+08 7 dawE pérdnap ~ T~
10 updates per snap
100000 ¢ 100 updates per snap - 1
Witnesses on server = .
g 10000 F Witnesses on author o
% DDDDD
S 1000 F = 1
c Bel
72} E
) 100 f = 1
o DDDD
n 15|
_8 10 ¢ DDDDD 3
] ==
o 1k o J
2 DDD§¥ wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
— DD
= 0.1 F P 1
‘r—,r‘
0.01 p =" ;
o
O'Ool 1 1 1 1 1
1 10 100 1000 10000 100000 1e+06

Number of items in the accumulator

Figure A.1 : Calculated CPU time per-update for accumugator

requiring .99ms. Verifying an accumulator requires one&b# exponentiation, costing
8.59ms.

A membership proof in an RSA accumulator requires 2048 bisehd the accumulator
value and 2048 bits to send the witness. In addition, theasiga over the accumulator and
the item in the accumulator must also be included.

The advantage of RSA accumulators is in saving the bandwedjinred for an update.
If withesses are computed on the author and sent, no bartdisidaved unless witnesses
are smaller than signatures. If withesses are computedeosettver, then an accumulator
only makes sense when the cost of the time to compute witaéssbeaper than the cost
of the time required to sign each item, as in the tuple PADgiesiand the cost of the band-
width to send the signatures to the server. With Amazon aray@¢s prices for bandwidth

and computation, it is far cheaper to simply use a tuple PADawoid accumulators.

130

Future accumulator designs may solve these problems.nalige accumulator designs
have been proposed around elliptic curve cryptographgmatly ofering smaller accu-
mulator sizes. However, the designs we examined requireed bound on the number of

keys in the accumulator [108] or have quadratic overheaddorputing witnesses [109].

[1]

[2]

[3]

[4]

[5]

[6]

131

Bibliography

D. Dolev and A. C. Yao, “On the security of public key protids,” Annual IEEE

Symposium on Foundations of Computer Sciemak 0, pp. 350-357, 1981.

B. Cohen, “Incentives build robustness in BitTorrentgch. rep., bittorrent.org,

2003.

P. A. Gerr, B. Babineau, and P. C. Gordon, “Compliance:e Tdfect on in-
formation management and the storage industry.” The Enseristorage Group,
May 2003. http://searchstorage.techtarget.com/tip/0,289483,sid5_

gci906152,00.html.

R. Sion, “Strong WORM,” ininternational Conference on Distributed Computing

Systemg(Beijing, China), pp. 69-76, May 2008.

M. Naor and K. Nissim, “Certificate revocation and ceddfie update,” IVSENIX

Security SymposiyniSan Antonio, TX), Jan. 1998.

P. C. Kocher, “On certificate revocation and validation,International Conference
on Financial Cryptography (FC '98)Anguilla, British West Indies), pp. 172-177,
Feb. 1998.

[7] A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia,rsi¢ent authenticated

dictionaries and their applications,” International Conference on Information Se-

curity (ISC) (Seoul, Korea), pp. 379-393, Dec. 2001.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

132

S. A. Crosby and D. S. Wallach, “Supeffieient aggregating history-independent
persistent authenticated dictionaries,” Rmtoceedings of ESORICS 2Q0&aint
Malo, France), pp. 671-688, Sept. 2009.

J. S. Shapiro and J. Vanderburgh, “Access and integatytrol in a public-access,
high-assurance configuration management systemPJSfENIX Security Sympo-

sium (San Francisco, CA), pp. 109-120, Aug. 2002.

N. Sarnak and R. E. Tarjan, “Planar point location ugiegsistent search trees,”

Communications of the ACMol. 29, no. 7, pp. 669-679, 1986.

R. C. Merkle, “A digital signature based on a convenéibencryption function,” in

CRYPTO '88pp. 369-378, 1988.

M. Goodrich, R. Tamassia, and A. Schwerin, “Impleméotaof an authenticated
dictionary with skip lists and commutative hashing,DARPA Information Surviv-
ability Conference Exposition Il (DISCEX II) (Anaheim, CA), pp. 68-82, June
2001.

B. Gassend, G. Suh, D. Clarke, M. Dijk, and S. Devadasches and hash trees
for efficient memory integrity verification,” ifhe 9th International Symposium on

High Performance Computer Architecture (HPCRnaheim, CA), Feb. 2003.

P. Williams, R. Sion, and D. Shasha, “The blind stonddatbOutsourcing dura-
bility,” in Sixteenth Annual Network and Distributed Systems Sechyityposium

(NDSS) (San Diego, CA), Feb. 2009.

A. Muthitacharoen, R. Morris, T. Gil, and B. Chen, “Iv readwrite peer-to-peer
file system,” iInUSENIX Symposium on Operating Systems Design and Impl@ment
tion (OSDI '02) (Boston, MA), Dec. 2002.

133

[16] J. Li, M. Krohn, D. Mazieres, and D. Shasha, “Securerusted data repository
(SUNDR),” in Operating Systems Designimplementation (OSDJ)San Francisco,
CA), Dec. 2004.

[17] Z. N. J. Peterson, R. Burns, G. Ateniese, and S. Bonositgeand implementation
of verifiable audit trails for a versioning file system,”"WSENIX Conference on File

and Storage TechnologigsSan Jose, CA), Feb. 2007.

[18] K. Fu, M. F. Kaashoek, and D. Mazieres, “Fast and sedistibuted read-only file

system,”ACM Transactions on Compututer Systend. 20, no. 1, pp. 1-24, 2002.

[19] M. T. Goodrich, R. Tamassia, N. Triandopoulos, and RCé&hen, “Authenticated
data structures for graph and geometric searchingTapics in Cryptology, The
Cryptographers’ Track at the RSA Conference (CT-R$%8an Francisco, CA),
pp. 295-313, Apr. 2003.

[20] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. NuckollsidaS. G. Stubblebine,
“Flexible authentication of XML documentsJournal of Computer Securityol. 12,

no. 6, pp. 841-864, 2004.

[21] S. A. Crosby and D. S. Wallach, fEcient data structures for tamper-evident log-
ging,” in Proceedings of the 18th USENIX Security Sympogsiiantreal, Canada),
Aug. 2009.

[22] D. Davis, F. Monrose, and M. K. Reiter, “Time-scopedrseang of encrypted audit
logs,” in Information and Communications Security Conferer{ééalaga, Spain),

pp. 532-545, Oct. 2004.

[23] B. Schneier and J. Kelsey, “Secure audit logs to supgartputer forensics ACM

Transactions on Information and System Secuwty. 1, no. 3, 1999.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

134

R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-bdsencryption with non-
monotonic access structures,” ACM Conference on Computer and Communica-

tions Security (CCS '07)JAlexandria, VA), pp. 195-203, Oct. 2007.

V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribbtesed encryption for fine-
grained access control of encrypted data,’/A@M Conference on Computer and

Communications Security (CCS 'Q@Alexandria, VA), pp. 89-98, Oct. 2006.

A. Sahai and B. Waters, “Fuzzy identity based encryptioan Workshop on the
Theory and Application of Cryptographic Techniques on Ades in Cryptology
(EuroCrypt '05) vol. 3494, pp. 457 — 473, May 2005.

B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, iate information re-
trieval,” in Annual Symposium on Foundations of Computer SciefMiwaukee,

WI), pp. 41-50, Oct. 1995,

P. Williams and R. Sion, “Usable PIR,” Network and Distributed System Security
Symposium (NDSS)San Diego, CA), The Internet Society, Feb. 2008.

I. Goldberg, “Improving the robustness of private infation retrieval,” inlEEE

Symposium on Security and Priva¢®@akland, CA), May 2007.

B. Chor and N. Gilboa, “Computationally private infoation retrieval,” inACM
symposium on Theory of computing (STOCYEl Paso, Texas, United States),
pp. 304-313, May 1997.

O. Goldreich and R. Ostrovsky, “Software protectiord aaimulation on oblivious

RAMs,” Journal of the ACMvol. 43, no. 3, pp. 431-473, 1996.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

135

P. Williams, R. Sion, and B. Carbunar, “Building castleut of mud: Practical ac-
cess pattern privacy and correctness on untrusted storagdCM Conference on
Computer and Communications Security (CCS, Q8)exandria, VA), pp. 139-148,
Oct. 2008.

H. Weatherspoon, C. Wells, and J. Kubiatowicz, “Namgugd integrity: Self-
verifying data in peer-to-peer systems.,’Hature Directions in Distributed Comput-
ing (FuDiCo), Lecture Notes in Computer Science, (Bologna, Italy), pi2-1.47,
June 2002.

P. Maniatis and M. Baker, “Enabling the archival staag signed documents,” in
FAST '02: Proceedings of the 1st USENIX Conference on Fitk Storage Tech-

nologies (Monterey, CA), 2002.

P. Devanbu, M. Gertz, C. Martel, and S. G. StubblebiAathentic data publication

over the Internet,Journal Computer Securityol. 11, no. 3, pp. 291-314, 2003.

J. Benaloh and M. de Mare, “One-way accumulators: A deedized alterna-
tive to digital signatures,” inWorkshop on the Theory and Application of Crypto-
graphic Techniques on Advances in Cryptology (EuroCry},’@ ofthus, Norway),
pp. 274-285, May 1993.

J. Camenisch and A. Lysyanskaya, “Dynamic accumusadoid application tofi-
cient revocation of anonymous credentials,GRYPTO '02 (Santa Barbara, CA),

pp. 61-76, Aug. 2002.

M. T. Goodrich, R. Tamassia, and J. Hasic, “Affi@ent dynamic and distributed
cryptographic accumulator,” iRroceedings of the 5th International Conference on

Information Security (ISC)YSao Paulo, Brazil), pp. 372—-388, Sept. 2002.

136

[39] C. Papamanthou, R. Tamassia, and N. Triandopoulogh&aticated hash tables,” in
ACM Conference on Computer and Communications Securitys (08), (Alexan-

dria, VA), pp. 437-448, Oct. 2008.

[40] K. Pavlou and R. T. Snodgrass, “Forensic analysis ohllgade tampering,” in
ACM SIGMOD International Conference on Management of DéEhicago, IL),
pp. 109-120, June 2006.

[41] Q. Zhu and W. W. Hsu, “Fossilized index: The linchpin nfgtworthy non-alterable
electronic records,” iIMCM SIGMOD International Conference on Management of

Data, (Baltimore, MD), pp. 395-406, June 2005.

[42] S. Mitra, W. W. Hsu, and M. Winslett, “Trustworthy keywbsearch for regulatory-
compliant records retention,” imternational Conference on Very Large Databases

(VLDB), (Seoul, Korea), pp. 1001-1012, Sept. 2006.

[43] M. Bellare and S. K. Miner, “A forward-secure digitalgsiature scheme,” in

CRYPTO '99(Santa Barbara, CA), pp. 431-448, Aug. 1999.

[44] R. Gennaro and P. Rohatgi, “How to sign digital strednms CRYPTO 97 (Santa
Barbara, CA), pp. 180-197, Aug. 1997.

[45] J. E. Holt, “Logcrypt: Forward security and public viezation for secure audit logs,
in Australasian Workshops on Grid Computing and E-reseafidobart, Tasmania,

Australia), 2006.

[46] D.Ma and G. Tsudik, “A new approach to secure loggidgdnsactions on Storage

vol. 5, no. 1, pp. 1-21, 2009.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

137

D. Ma, “Practical forward secure sequential aggregagpatures,” irProceedings of
the 2008 ACM symposium on Information, computer and conuations security

(ASIACCS’08)(Tokyo, Japan), pp. 341-352, Mar. 2008.

D. Ma and G. Tsudik, “Forward-secure sequential aggtreguthentication,” iPro-
ceedings of the 2007 IEEE Symposium on Security and Pri{@akland, CA),
pp. 86-91, IEEE Computer Society, May 2007.

D. X. Song, D. Wagner, and A. Perrig, “Practical techugq for searches on en-
crypted data,” iIHEEE Symposium on Security and Priva§erkeley, CA), pp. 44—
55, May 2000.

B. R. Waters, D. Balfanz, G. Durfee, and D. K. SmetteBuifding an encrypted
and searchable audit log,” Metwork and Distributed System Security Symposium

(NDSS) (San Diego, CA), Feb. 2004.

E. Kiltz, A. Mityagin, S. Panjwani, and B. Raghavan, ‘B#end-only signatures,”
in International Colloquium on Automata, Languages and Pamgming (Lisboa,

Portugal), July 2005.

J. Bethencourt, D. Boneh, and B. Waters, “Cryptographéethods for storing bal-
lots on a voting machine,” iNetwork and Distributed System Security Symposium

(NDSS) (San Diego, CA), Feb. 2007.

D. Molnar, T. Kohno, N. Sastry, and D. Wagner, “Tampeident, history-
independent, subliminal-free data structures on PROMag®ror- How to store
ballots on a voting machine (extended abstract) JHRE Symposium on Security

and Privacy (Oakland, CA), May 2006.

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

138

S. Haber and W. S. Stornetta, “How to time-stamp a digiteument,” inCRYPTO
'98, (Santa Barbara, CA), pp. 437-455, 1990.

K. Blibech and A. Gabillon, “CHRONOS: An authenticatgidtionary based on skip
lists for timestamping systems,” iWorkshop on Secure Web Servidésirfax, VA),

pp. 84-90, Nov. 2005.

A. Buldas, P. Laud, H. Lipmaa, and J. Willemson, “Tintaraping with binary link-
ing schemes,” ICRYPTO '98 (Santa Barbara, CA), pp. 486-501, Aug. 1998.

A. Buldas, H. Lipmaa, and B. Schoenmakers, “Optimatticeent accountable time-
stamping,” inInternational Workshop on Practice and Theory in Public Kayp-

tography (PKC) (Melbourne, Victoria, Australia), pp. 293-305, Jan. 2000

H. Lipmaa, “On optimal hash tree traversal for intertrale-stamping,” inrProceed-
ings of the 5th International Conference on Information8ig (ISC02) (Seoul,

Korea), pp. 357-371, Nov. 2002.

P. Maniatis and M. Baker, “Secure history preservatimough timeline entangle-

ment,” iNUSENIX Security Symposiu®an Francisco, CA), Aug. 2002.

D. Sandler and D. S. Wallach, “Casting votes in the Amodlitm,” in
USENIXACCURATE Electronic Voting Technology Workshop (EVT, @Bpston,
MA), Aug. 2007.

H. Chan, A. Perrig, B. Przydatek, and D. Song, “SIA: Secinformation aggre-
gation in sensor networksJournal Computer Securityol. 15, no. 1, pp. 69-102,

2007.

139

[62] L. Hu and D. Evans, “Secure aggregation for wirelessvoeks,” in Symposium on

Applications and the Internet Workshops (SAINOrlando, FL), p. 384, July 2003.

[63] H. Chan, A. Perrig, and D. Song, “Secure hierarchicahétwork aggregation in
sensor networks,” iIMCM Conference on Computer and Communications Security

(CCS '06) (Alexandria, VA), pp. 278-287, Oct. 2006.

[64] M. Manulis and J. Schwenk, “Provably secure framewankihformation aggrega-
tion in sensor networks,” iIComputational Science and Its Applications (ICCSA)

(Kuala Lumpur, Malaysia), pp. 603—621, Aug. 2007.

[65] R. T. Snodgrass, S. S. Yao, and C. Collberg, “Tamperdtiete in audit logs,” in
Conference on Very Large Data Bases (VLD&Jpronto, Canada), pp. 504-515,
Aug. 2004.

[66] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. WongZYyzzyva: Speculative
byzantine fault tolerance,” iIBOSP '07 (Stevenson, WA), pp. 45-58, Oct. 2007.

[67] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowiéttested append-only
memory: Making adversaries stick to their word,”3©SP '07 (Stevenson, WA),

pp. 189-204, Oct. 2007

[68] A.Haeberlen, P. Kouznetsov, and P. Druschel, “PeadRePractical accountability

for distributed systems,” iBOSP '07 (Stevenson, WA), Oct. 2007.

[69] J. D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton].BNalker, E. Walton,
J. M. Chow, D. Edwards, S. Kiser, and C. Kline, “Detection aftoal inconsistency
in distributed systemsJEEE Transactions on Software Engineeringl. 9, no. 3,

pp. 240-247, 1983.

140

[70] B. Schneier and J. Kelsey, “Automatic event-streananpation using digital signa-

tures,” inSecurity Protocols WorkshofCambridge, UK), pp. 155-169, Apr. 1996.

[71] A. R. Yumerefendi and J. S. Chase, “Strong accountglidir network storage,”

ACM Transactions on Storageol. 3, no. 3, 2007.

[72] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rdsah and M. Baker, “The
LOCKSS peer-to-peer digital preservation systeGM Transactions on Computer

Systemsvol. 23, no. 1, pp. 2-50, 2005.

[73] New York Times,HORSE RACING; 3 Sentenced in Breeders’ Cup Betting, Plot
Mar. 21 2003. p. S-3.

[74] J. Drape, “Horse racing; Ways to keep schemers fromifigp#tie system,” ifNew

York Timespp. D-8, Oct. 22 2003.

[75] Office of the Kansas Secretary of State, “Voting system secpoiigy,” Mar. 2004.

http://www.kssos.org/other/voting_security_policy.html.

[76] M. Bellare and B. S. Yee, “Forward integrity for secureld logs,” tech. rep., Uni-

versity of California at San Diego, Nov. 1997.

[77] G. ltkis, “Cryptographic tamper evidence,” WRCM Conference on Computer and

Communications Security (CCS "Q8ashington D.C.), pp. 355-364, Oct. 2003.

[78] R. Accorsi and A. Hohl, “Delegating secure logging inngasive computing sys-

tems,” inSecurity in Pervasive Computingrork, UK), pp. 58—72, Apr. 2006.

[79] W. Pugh, “Skip lists: A probabilistic alternative tolaaced trees,Communications

of the ACM vol. 33, pp. 668-676, June 1990.

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

141

B. H. Bloom, “Spacgime trade-d&s in hash coding with allowable error&§ommu-

nications of the ACMvol. 13, no. 7, pp. 422-426, 1970.

E.-J. Goh, “Secure indexes.” Cryptology ePrint ArahivReport 200216,
2003.http://eprint.iacr.org/2003/216/ See alshttp://eujingoh.com/

papers/secureindex/.

C. Lonvick, “The BSD Syslog protocol.” RFC 3164, Aug.@0 http://www.

ietf.org/rfc/rfc3164.txt.

S. D. S. Monteiro and R. F. Erbacher, “Exemplifying akadentification and anal-
ysis in a novel forensically viable Syslog model,” \Workshop on Systematic Ap-

proaches to Digital Forensic Engineerin@©akland, CA), pp. 57-68, May 2008.

J. Kelsey, J. Callas, and A. Clemm, “Signed Syslog ngssahttp://tools.
ietf.org/id/draft-ietf-syslog-sign-23.txt (work in progress), Sept.

2007.

P. Deutsch, “Gzip file format specification version 2.RFC 1952, May 1996.

http://www.ietf.org/rfc/rfc1952.txt.

J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjdlaking data structures
persistent,” inProceedings of the Eighteenth Annual ACM Symposium on Yiudor
Computing (STOGC)Berkeley, CA), pp. 109-121, May 1986.

A. Fiat and H. Kaplan, “Making data structures conflgmersistent,”Journal of

Algorithms vol. 48, no. 1, pp. 16-58, 2003.

D. Micciancio, “Oblivious data structures: Applicatis to cryptography,” ifPro-

ceedings of the 29th Annual ACM Symposium on Theory of Camg&TOC) (El

142

Paso, Texas), pp. 456464, May 1997.

[89] M. Naor and V. Teague, “Anti-presistence: History ipdadent data structures,” in
Proceedings of the Thirty-Third Annual ACM Symposium oromhef Computing
(STOC) (Heraklion, Crete, Greece), pp. 492-501, July 2001.

[90] A. Anderson and T. Ottmann, “Faster uniquely represedictionaries,” irProceed-
ings of the 32nd Annual Symposium on Foundations of Comfaience (SFCS)
(San Juan, Puerto Rico), pp. 642—-649, Oct. 1991.

[91] C. R. Aragon and R. G. Seidel, “Randomized search tree<roceedings of the
30th Annual Symposium on Foundations of Computer ScierSSpp. 540-545,
Oct. 1989.

[92] G. E. Blelloch and M. Reid-Miller, “Fast set operationsing treaps,” irProceed-
ings of the Tenth Annual ACM Symposium on Parallel Algorstlamd Architectures
(SPAA) (Puerto Vallarta, Mexico), pp. 16—26, June 1998.

[93] L. J. Guibas and R. Sedgewick, “A dichromatic framewéok balanced trees,” in
Proceedings of the 19th Annual Symposium on Foundation®ofpGter Science

(SFCS) pp. 8-21, Oct. 1978.

[94] G. S. Brodal, “Partially persistent data structuredotinded degree with constant

update time,Nordic Journal of Computingvol. 3, no. 3, pp. 238-255, 1996.

[95] H. Kaplan, “Persistent data structures,Handbook on Data Structures and Appli-

cations(D. Mehta and S. Sahni, eds.), CRC Press, 2001.

[96] C. OkasakiPurely Functional Data StructuresCambridge University Press, 1999.

143

[97] P. Bagwell, “Fast functional lists, hash-lists, degj@ad variable length arrays,” in
In Implementation of Functional Languages, 14th Interoasil Workshop(Madrid,

Spain), p. 34, Sept. 2002.

[98] S. Micali, “Efficient certificate revocation,” Tech. Rep. TM-542b, Massaelits
Institute of Technology, Cambridge, MA, 1996.http://www.ncstrl.org:
8900/ncstrl/servlet/search? formname=detail\&id=o0ai%3Ancstrlh%

3Amitai%3AMIT-LCS%2F%2FMIT%2FLCS%2FTM-542b.

[99] D. Naccache, D. M’'Raihi, S. Vaudenay, and D. Raphaé&lari DSA be improved?
Complexity trade-fis with the digital signature standard,” EuroCrypt (Perugia,
Italy), pp. 77 — 85, May 1994.

[100] J. Li, N. Li, and R. Xue, “Universal accumulators witkfieient nonmembership
proofs,” in Proceedings of the 5th International Conference on AppGegbtogra-

phy and Network Security (ACN$Xhuhai, China), pp. 253-269, June 2007.

[101] P. Wang, H. Wang, and J. Pieprzyk, “A new dynamic acdamou for batch updates,”
in Information and Communications Security, 9th Internagic@onference (ICICS

2007) (Zhengzhou, China), pp. 98-112, Dec. 2007.

[102] P. Wang, H. Wang, and J. Pieprzyk, “Improvement of aasgit accumulator at
ICICS 07 and its application in multi-user keyword-basettieeal on encrypted
data,” in Asia-Pacific Services Computing Conferen@élan, Taiwan), pp. 1381—

1386, Dec. 2008.

[103] N. Bari and B. Pfitzmann, “Collision-free accumulaaoand fail-stop signature
schemes without trees,” iRuroCrypt (Konstanz, Germany), pp. 480-494, May
1997.

144

[104] NIST Special Publication 800-5Recommendation for Key Management — Part 1.

general National Institute for Standards and Technology, Mar.7200

[105] M. O. Rabin, “Probabilistic algorithm for testing prality,” Journal of Number The-
ory, vol. 12, no. 1, pp. 128-138, 1980.

[106] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naohé&€king the correct-
ness of memories,” iProceedings of the 32nd annual symposium on Foundations

of computer science (SFG$¥$an Juan, Puerto Rico), pp. 90-99, Oct. 1991.

[107] C. Dwork, M. Naor, G. N. Rothblum, and V. VaikuntanathdHow efficient can
memory checking be?,” iRroceedings of the Theory of Cryptography Conference

(TCC), (San Francisco, CA), pp. 503-520, Mar. 2009.

[108] L. Nguyen, “Accumulators from bilinear pairings anpipdications,” inCryptogra-
phers’ Track at the RSA Conference (CT-R8an Francisco, CA), pp. 275-292,
Feb. 2005.

[109] J. Camenisch, M. Kohlweiss, and C. Soriente, “An acglator based on bilinear
maps andficient revocation for anonymous credentials,12th International Con-
ference on Practice and Theory in Public Key Cryptographi@2009) (Irvine,
CA), pp. 481-500, Mar. 2009.

