
RICE UNIVERSITY

Efficient Tamper-Evident Data Structures for Untrusted
Servers

by

Scott Alexander Crosby

A T S
 P F
R D

Doctor of Philosophy

A, T C:

Dan S. Wallach, Chair
Associate Professor of Computer Science

Moshe Y. Vardi
Professor in Computational Engineering

Farinaz Koushanfar
Assistant Professor of Electrical and
Computer Engineering

Houston, Texas

December, 2009

ABSTRACT

Efficient Tamper-Evident Data Structures for Untrusted Servers

by

Scott Alexander Crosby

Many real-world applications run on untrusted servers or are run on servers that are

subject to strong insider attacks. Although we cannot prevent an untrusted server from

modifying or deleting data, with tamper-evident data structures, we can discover when this

has occurred. If an untrusted server knows that a particularreply will not be checked for

correctness, it is free to lie. Auditing for correctness is thus a frequent but overlooked oper-

ation. In my thesis, I present and evaluate new efficient data structures for tamper-evident

logging and tamper-evident storage of changing data on untrusted servers, focussing on the

costs of the entire system.

The first data structure is a new tamper-evident log design. Ipropose new semantics

of tamper-evident logs in terms of the auditing process, required to detect misbehavior. To

accomplish efficient auditing, I describe and benchmark a new tree-based data structure

that can generate such proofs with logarithmic size and space, significantly improving over

previous linear constructions while also offering a flexible query mechanism with authen-

ticated results.

The remaining data structures are designs for a persistent authenticated dictionary (PAD)

that allows users to send lookup requests to an untrusted server and get authenticated an-

swers, signed by a trusted author, for both the current and historical versions of the dataset.

Improving on prior constructions that require logarithmicstorage and time, I present new

classes of efficient PAD algorithms offering constant-sized authenticated answers or con-

stant storage per update. I implement 21 different versions of PAD algorithms and perform

a comprehensive evaluation using contemporary cloud-computing prices for computing and

bandwidth to determine the most monetarily cost-effective designs.

iv

Acknowledgments

A graduate student career is a long and arduous process with many experiences and

many people to thank. I would like to thank my advisor for his knowledge, support, and

ideas over my time at Rice University. Some advisors micromanage their students. Dan’s

style was to encourage good research and let me explore many different research areas. My

presentation and writing skills have been greatly improvedby his suggestions and feedback.

The security group at Rice gave me many productive discussions. Seth Nielson directed

me toward using SWIG and gave me valuable feedback throughout my time here. Tsuen-

Wan “Johnny” Ngan and Algis Rudy welcomed me into the group when I arrived. I would

also like to thank the other members of the Security group that I have worked with on

different projects, including Dan Sandler and Anwis Das. Several of my research ideas

were fleshed out in invaluable discussions with the other systems group grad students at

Rice, Animesh Nandi, Atul Singh, and Ajay Gulati as well as mypast office mates, Shu

Du, Kaushik Ram, and Guohui Wang.

Outside of graduate school, Steve Glassman and Vern Paxson gave me internships at

Google and ICSI respectively. Tracy Volz gave valuable critiques for my posters. I would

also like to thank the CS departmental administrative staff and IT staff for solving the

inevitable electronic and bureaucratic bugs I’ve encountered.

Of course, I would never have gotten to this point without friends and family. My

grandparents and parents instilled a lifelong desire for learning, without which I might not

have chosen this career. I would like to give a special thanksto Ruth Tancrede, my high

school math teacher. I probably would not be here without herencouragement, knowledge,

skill with students, and kindness she so generously shared.

Graduate school is stressful and I’d like to thank the Valhalla crowd for keeping me

sane, Todd, Colleen, Chris, Jeff, Julie, Lisa, Zack, Lucinda, and everyone else I’ve met

there. A special thanks to a special friend of mine, Jean Ellis for reminding me about the

real purpose of life, her invaluable support, and her patience during the last year’s crunch.

Contents

Abstract ii

List of Illustrations ix

List of Tables xi

1 Introduction 1

1.1 Tamper evident logging .2

1.1.1 Contributions . 3

1.2 Persistent authenticated dictionaries 4

1.2.1 Contributions . 6

2 Background 8

2.1 Threat models . 10

2.2 Related work . 11

3 Secure logging 15

3.1 Security Model . 17

3.1.1 Semantics of a tamper evident history 19

3.1.2 Client insertion protocol .20

3.1.3 Definition: tamper evident history 21

3.1.4 Other threat models . 22

3.2 Hash chain history . 24

3.3 History tree . 25

3.3.1 Is it safe to skip nodes during an audit? 28

3.3.2 Construction of the history tree 30

vi

3.3.3 Storing the log on secondary storage 35

3.3.4 Comparing to other systems . 35

3.4 Proof for tamper evidence of the history tree 38

3.5 Merkle aggregation . 41

3.5.1 General attributes . 43

3.5.2 Formal description . 44

3.5.3 Queries over attributes . 46

3.5.4 Applications . 48

3.6 Syslog prototype implementation 49

3.6.1 Performance of the logger . 51

3.6.2 Performance of auditors and clients 53

3.6.3 Merkle aggregation results .53

3.7 Scaling a tamper-evident log .. . 56

3.7.1 Faster inserts via concurrency 57

3.7.2 Logs larger than RAM . 58

3.7.3 Signing batches of events . 58

3.8 Summary . 59

4 PAD designs 61

4.1 Definitions and models . 62

4.1.1 Threat model . 63

4.1.2 Features . 65

4.2 Tree-based PADs . 66

4.2.1 Authenticated dictionaries based on Merkle trees 67

4.2.2 Treap . 69

4.2.3 Skiplist . 71

4.2.4 Red-black trees . 73

4.2.5 Persistent binary search trees 75

vii

4.2.6 Making trees persistent and authenticated 77

4.2.7 Details on the median layer cache81

4.3 Tuple-based PADs . 84

4.3.1 PADs based on individually signed tuples 86

4.3.2 Optimizing storage: Tuple superseding 88

4.3.3 Optimizing signatures via speculation 89

4.3.4 Tuple PADs based on RSA accumulators 92

4.4 Scalability . 96

4.5 Future work, applications, and extensions 98

5 Performance analysis of PADs 100

5.1 Big-O evaluation of the different PAD designs 101

5.2 Implementation and methodology .. . 102

5.2.1 Implementation . 102

5.2.2 Serialization . 104

5.2.3 Tree-based PADs . 104

5.2.4 Tuple-based PADs . 106

5.2.5 Accumulators . 106

5.2.6 Cloud provider economics . 107

5.2.7 Methodology . 108

5.3 Tree PAD microbenchmarks . 109

5.3.1 Comparing tree structures . 109

5.3.2 Comparing tree PAD repositories111

5.3.3 Tree PADs in a cloud-computing environment 111

5.3.4 Summary of results . 113

5.4 Tuple PAD microbenchmarks .114

5.4.1 Tuple PAD author costs . 114

5.4.2 Tuple PAD server costs . 117

viii

5.4.3 Tuple PADs in a cloud-computing environment 118

5.4.4 Summary of results . 121

5.5 Macrobenchmark . 121

5.6 Summary of PAD performance results 123

6 Conclusions and future work 125

6.1 Contributions . 126

A Accumulators in practice 128

Bibliography 131

Illustrations

2.1 Graphical representation of a Merkle tree. 9

2.2 Graphical representation of a pruned Merkle tree. 10

3.1 A hash-chain log. 23

3.2 Algebraic construction of a hash-chain history 23

3.3 A version-2 history tree with commitmentC′2 = I ′0,3. 26

3.4 A version-6 history tree with commitmentC′′6 = I ′′0,3. 26

3.5 An incremental proofP between a version-2 and version-6 commitment. . . 27

3.6 Graphical notation for a history tree analogous to the proof in Figure 3.5. . 27

3.7 Recurrence for computing hashes. 31

3.8 A proof skeleton for a version-6 history tree. 31

3.9 Demonstration of Merkle aggregation with some events flagged as important. 43

3.10 Hash computations for Merkle aggregation 45

3.11 Safe deletion overhead. .. . 54

3.12 Query overhead per event. .. 56

4.1 Graphical notation for a lookup proof forM or a proof of

non-membership forN. 67

4.2 Skiplist representation. 74

4.3 Skiplist query for “7.” .. 74

4.4 Four snapshots in a Sarnak-Tarjan versioned-node tree 76

4.5 Tuple authenticated dictionary showing 2 keys and 3 tuples. 85

x

4.6 Tuple PAD containing 5 snapshots. 86

4.7 Example of tuple-superseding. 86

4.8 Example of a PAD using speculation. 91

5.1 Steady-state lookup proof generation performance for red-black trees. . . . 112

5.2 Amortized cost per lookup for red-black tree PADs with two different

hash caching strategies. 112

5.3 Amortized cost per lookup for different PAD algorithms. 119

5.4 Amortized cost per lookup for different PAD algorithms, correcting for

Python overheads. 119

5.5 Amortized cost per lookup for different PAD algorithms processing the

luxury-goods macrobenchmark. 124

A.1 Calculated CPU time per-update for accumulators. 129

Tables

3.1 The time to add an event to the log and the size of full and partial proofs

generated . 36

3.2 Table of Greek letter prefixes and their uses. 40

3.3 Performance of the logger in each of the four steps required to insert an

event. 52

5.1 Persistent authenticated dictionaries, comparing techniques assuming a

snapshot is taken after every update. 103

5.2 Caching strategies for subtree authenticators in a Sarnak-Tarjan tree. 105

5.3 Costs charged by Amazon EC2 and Google AppEngine for

cloud-computing and storage. .107

5.4 Performance across different tree types, inserting 100k keys, and using

path-copying to implement the repository. 110

5.5 Memory usage and lookup proof performance across different persistency

approaches storing red-black trees containing 100k keys. 110

5.6 Bandwidth ratios for each red-black tree PAD algorithmssummarizing the

relative monetary costs of bandwidth and CPU time. 113

5.7 Abbreviations used to denote the different tuple-based algorithms. 114

5.8 Comparing author performance, update sizes and proof sizes across

different PAD designs. 116

xii

5.9 Breakdown of accumulator update and witness computation and

verification costs for tuple PADs using non-hash-chain accumulators with

10,000 keys. 116

5.10 Comparing server and client performance across different PAD designs. . . 116

5.11 Bandwidth ratios for each PAD algorithm summarizing the relative

monetary costs of bandwidth and CPU time. 118

5.12 Performance of different PAD algorithms on the macrobenchmark. 122

5.13 Bandwidth ratios for each algorithm, processing the luxury-goods

macrobenchmark. 123

xiii

To Mom, Dad, and Dawn

1

Chapter 1

Introduction

The Internet offers new opportunities for building systems where the user ofa computing

service may no longer own the computers supplying the service. Users want assurance

of correct behavior despite the owner’s full control due to their ownership and physical

access. In my thesis, I will show that tamper-evident data structures can operate efficiently

on untrusted servers with a variety of rich semantics and robust auditing.

There are many examples of systems built on remote or untrusted machines. In peer-

to-peer (p2p) technology a large number of users collaboratively build a system out of their

individual machines. The recent growth of cloud computing and software-as-a-service

offers a new option for storing data “in the cloud” on potentially remote servers whose use

is rented. And of course, external or internal security breaches can cause any trusted server

to misbehave. Rather than have the security of a system rest upon the correct behavior

of the machines it is running on, this thesis uses cryptographic techniques to encourage

correct behavior by detecting malicious activity.

In this thesis, I model an insider attacker having full knowledge and administrative

control over the server, capable of knowing all cryptographic key material stored on it. This

inside attack model subsumes an external attack model. I further assume the Dolev-Yao [1]

model, where cryptography is perfect, signatures cannot beforged, and cryptographic hash

functions are collision and preimage free. I do not focus on privacy. Depending on the

application, privacy may be attained by encrypting data before sending it to an untrusted

server. For a further discussion on privacy, please see the related work in Section 2.2.

2

While it is impossible to prevent the deletion of records on an untrusted server, tam-

pering with stored records can be detected by using cryptographic data structures. In this

thesis, I present and evaluate new data structures for efficiently storing changing data on

untrusted servers subject to strong insider attacks. The first algorithm I present is a new

design for a tamper-evident log that is built by and stored onan untrusted machine and

audited for correct behavior by trusted auditors. The second set of algorithms I present are

several designs for persistent authenticated dictionaries (PADs). Authenticated dictionaries

allow data to be stored in a tamper-evident fashion on an untrusted server and accessed as

a key-value data store. Lookups return the answer and a proofof its correctness, signed

by the author. PADs extend authenticated dictionaries intosupporting queries to previous

versions of the dictionary.

There are a wide variety of applications of tamper-evident data structures, including

remote backup services, publishing systems, electronic voting systems, banking, price-

lists, stock ticker data, forensic records, legal records,timestamping systems, “cloud com-

puting,” fileservers, peer-to-peer computing, swarm downloading protocols such as Bit-

Torrent [2], data aggregation, smartcard storage, outsourced databases, and many others.

Tamper-evident algorithms may also detect misbehavior on the author because the author’s

signature forces the author to make a commitment, which may be later audited to detect

incorrect behavior.

1.1 Tamper evident logging

The first algorithm I present is a new cryptographic data structure for tamper evident log-

ging. There are over 10,000 U.S. regulations that govern thestorage and management of

data [3, 4]. Many countries have legal, financial, medical, educational and privacy regula-

tions that require businesses to retain a variety of records. Unfortunately, in many organi-

3

zations, the servers used to create and store these logs are housed within the organization.

Malicious users, including insiders with high-level access and the ability to subvert the log-

ging system, may want to perform unlogged activities or tamper with the recorded history.

To include these risks, our threat model for tamper-evidentlogging assumes that the log is

built and stored on a completely untrusted server and that users who generate events to be

logged may later collude with the logger to tamper with theirpreviously stored events.

Current solutions to prevent tampering include administrative controls or commercial

write-once hardware. Cryptographic techniques offer stronger security and can be verified

by remote parties. Current semantics for tamper-evident logging assume that the logger

behaves correctly until it doesn’t, with the goal of detecting any tampering of events stored

before the logger misbehaves. Unfortunately, there is no way to know which logged events

are and are not valid. Conversely, my proposed semantics aremuch stronger and assume

that the logger is never trusted.

Previous tamper-evident log designs overlook a critical design problem: How exactly

tampering is to be discovered. The core of a tamper-evident log isauditing. No matter what

algorithm is used,tampering can not be detected unless some trusted auditor islooking for

it. If a serverknowsthat any particular output will not be audited for correctness, then

the server is free to lie when generating that output. Auditing is therefore a frequent and

thus performance-critical operation and its efficiency must be optimized when designing a

tamper-evident log.

1.1.1 Contributions

In Chapter 3, I present thehistory tree, a new data-structure for tamper-evident logging,

offering efficient random-access and logarithmic overheads. My log design is logarithmic

instead of linear in all operations, making frequent auditing feasible, even on very large

4

logs. The history tree offers other useful features, including permitting authorized purges

from the log, finding events matching a predicate, and improved robustness against lost,

missing, or corrupt data. In my design, I focused on the practicalities, including a design to

represent the history tree on write-once append-only storage. I implement the history tree

and benchmark it using real-world log traces and have shown that it can insert thousands

of events per second and can be scaled to tens of thousands of events per second.

Authorized purging from a tamper evident log and predicate searching are implemented

by Merkle aggregation, which is a new generic and efficient technique for combining anno-

tations and Merkle trees in a way that lets annotations be checked for correctness and con-

sistency. Merkle aggregation is tamper-evident, allows aggregation to occur on untrusted

servers, and is also supported by several of my PAD designs.

1.2 Persistent authenticated dictionaries

The second class of algorithms I investigate are persistentauthenticated dictionaries. The

simple abstraction of an authenticated dictionary [5, 6] and persistent authenticated dictio-

nary [7,8] can underlie a wide variety of services, ranging from version control systems [9],

public key revocation lists [5], stock ticker data, pricingdata, and any other situation where

one author wants to use cloud services to publish data to multiple consumers or store data

remotely when data integrity is the paramount issue. Even with a trusted server, these algo-

rithms are useful whenever data integrity is critical, because of constant possibility of the

server being subverted by an external attacker.

An authenticated dictionaryat its simplest is a data store, stored on an untrusted server.

The data store supports key-value lookup operations and canindicate that a key is not

present. In apersistent authenticated dictionary, the key store changes contents over time,

and lookup queries indicate which version orsnapshotto look at. Explicit versioning, plus

5

an external channel to alert clients to the latest version, will defeat version rollback attacks.

We assume that a trusted author creates the data being storedon the server and uses

digital signatures and cryptography to prevent tampering by the server. Clients generate

lookup requests and use digital signatures to verify that the returned data is correct. In the

case of a publishing system, clients and the author are different. In the case of outsourced

storage or backup services, the client and the author may be the same.

The challenge in designing a PAD is how to minimize the costs of updates and lookups

as well as minimizing the storage on the server for authentication information. Instead of

storing each snapshot as a separate and independent authenticated dictionary, with storage

proportional to the number of keys times the number of snapshots, existing work for persis-

tent authenticated dictionaries proposes more efficient techniques based around applicative

search tree algorithms [7], with logarithmic proof size andlogarithmic storage per update.

PADs based on search trees can be parameterized on the type ofsearch tree used, such

as AVL trees, red-black trees, treaps, or skiplists and the techniques used to efficiently

store the forest of search trees for the different snapshots. My designs incorporate more

efficient representations for storing a persistent search treethat have constant storage per

update [10], but have not been previously used for authenticated dictionaries. In addition,

this thesis presents a new approach for building a PAD. By individually signing each key

and value pair along with some auxiliary metadata, the server can reply to lookup queries

with aconstant sized result, regardless of the number of keys or snapshots in the PAD.

Algorithm cost isn’t measured just in big-O notation. Digital signatures are more ex-

pensive than cryptographic hash operations. Serialization overheads will inflate both the

runtime, and the size of messages sent over the network. Real-world benchmarks are re-

quired in order to determine the actual constant factors. PAD algorithms are designed to

run over the network, which means that they incur the costs ofboth CPU time and band-

6

width. Different PAD algorithms also trade off update costs for lookup costs and the ideal

algorithm for an application depends on its relative ratio between updates and lookups. By

using the prices charged by contemporary cloud-computing providers for bandwidth and

CPU time, we simplify our comparison by reducing each algorithm to itsmonetary cost

per update and per lookup. We then compares the monetary costs of each PAD algorithm

across different lookup to update ratios.

1.2.1 Contributions

Previous PAD designs had logarithmic storage per update, logarithmic proof size, and con-

stant update size. In Chapter 4, I present several new designs for persistent authenticated

dictionaries (PADs), first showing how to adapt efficient representations of a persistent

search tree to create PAD designs offering constant storage per update and a design using

half of the storage of prior techniques. I then present 9 differenttuple PADdesigns based

on a new paradigm for designing PADs that trades off a higher update cost for constant-

sized results for lookups. Through a series of optimizations, I reduce the number of needed

signatures, reduce the storage overheads to constant storage per update, and reduce the

communication costs to constant communication per update.One of the more interesting

optimizations is the first use ofspeculationin building tamper-evident or authenticated data

structures. The author can sign a statement about a future that hasn’t happened yet, as long

as there is the ability to correct errors in these signed statements.

Chapter 5 contains an evaluation of the different PAD designs, performing both a big-O

analysis, and reporting benchmarked results of all 21 algorithms, including CPU usage and

message sizes. I compare my new designs with prior approaches. I determine the most

efficient balanced tree algorithm among treaps, red-black trees, and skiplists for building

an authenticated dictionary. I also identify the most efficient persistency data structure.

7

The chapter finishes with a comprehensive monetary evaluation across all 21 algorithms.

This analysis showed that 5 different algorithms can be the ‘cheapest’, depending on the

circumstances. Surprisingly, even with a slow implementation in an interpreted language,

it is often more expensive to send the reply to a lookup request than it is to compute it.

This evaluation also measures the update costs, verification costs, and proof sizes of

ordinary authenticated dictionaries based on trees or tuples. A regular authenticated dic-

tionary is a special case of a persistent authenticated dictionary when the server purges

unneeded data from older versions, thus saving space.

8

Chapter 2

Background

There are many cryptographic primitives that are designed to detect tampering. The sim-

plest is the digital signature and cryptographic hash. Digital signatures are unforgeable

without the private key. Tampering with the signed value should cause the signature verifi-

cation to fail. A cryptographichashor digestfunctionH reduces a variable length inputx

into a fixed length output ordigest. Assuming that a cryptographic hash function satisfies

certain properties, it tamper evident.

A cryptographic hash function has to fulfill three properties. First, it must becollision

resistant, which means that it is infeasible for an attacker to generate H(x) = H(y) with

x , y. Second, it must bepre-image resistant, meaning that it is difficult to generatex in

y = H(x) given onlyy. Finally, a cryptographic hash must besecond pre-image resistant,

meaning that it is difficult to generatex′ with H(x′) = H(x), knowingx. Assuming we have

such a hash function, we can now demonstrate a simple form of tamper-evidence. Given

a trusted hashy = H(x) of some unknown valuex, any attempt by an attacker to tamper

and supply an alternative inputx′ can be discovered by checkingy
?
= H(x′). If the attacker

were able to findx′′ , x with y = H(x′′), then the hash functionH violates its assumed

properties.

We can extend this tamper-evidence by having the inputx contain other hashes, forming

a recursive data structure, the Merkle tree [11]. Each node in the tree has a hash value which

is the cryptographic digest of the hashes of its children nodes and any data stored in that

node. The root node’s hash value then fixes the contents of theentire tree. Figure 2.1

9

Figure 2.1 : Graphical representation of a Merkle tree. Squares represent null children.

presents a simple Merkle tree.

The benefit of a Merkle tree is that an untrusted server can prove that a particular node is

in the tree without sending the entire contents of the tree. Certain subtrees are not necessary

in the proof. For instance, in Figure 2.2, to prove that the data in nodeA is in the tree, a

server canstubout sibling nodes on the path from the root to nodeA by including just

their hashes and not the contents, and generate apruned tree. Merkle’s paradigm of adding

hashes to a binary tree can be applied to any acyclic data structure, including balanced

binary trees [5, 6] or skip lists [12]. The only challenge is that mutation of children nodes

will invalidate hashes in the parent nodes. Techniques fromthe world of pure functional

programming are often directly applicable, as we will see later.

Merkle-style hashing data structures have been used in smartcard storage [13], out-

sourced databases [14], distributed filesystems [15–18], graph and geometric searching [19],

authenticated responses to XML queries [20], tamper-evident logging [21–23], certificate

revocation lists [5], and many others.

10

A

Figure 2.2 : Graphical representation of a pruned Merkle tree. Nodes that are solid discs
only have their hash included in the proof. Nodes that are open circles have their key and
value included in the proof. Grayed out nodes are omitted.

2.1 Threat models

Tamper evident or authenticated data structures can function in a wide variety of threat

models. In cases where the server storing data is not trusted, but the author is, the root of

a Merkle tree storing the data can be signed by the trusted author. Responses to lookup

queries include a pruned tree. Clients verify the response by using the pruned tree to

reconstruct the root hash and checking the signature.

In addition to concerns we might have with untrusted storage, some applications might

be concerned with untrusted signers, who might wish to behave incorrectly by, for example,

modifying or deleting what they said in the past. Our data structures can be used to prove

this misbehavior. If a dishonest server signs inconsistentdata structures, those signatures

are irrefutable evidence of its misbehavior. There are alsoapplications where the author

and server are honest, but may inadvertently suffer corruption or make mistakes in data

versioning or when tracking data provenance. Tamper-evidence data structures, combined

with auditing, can detect these corruptions.

11

2.2 Related work

In the space of untrusted servers, there are two broad classes of problems: privacy and

integrity. We are not concerned with protecting the secrecyof the data stored on untrusted

servers; this can be addressed with external techniques, most likely some form of encryp-

tion [24–26]. For instance, in the case of a tamper-evident log, clients can encrypt events

before sending them to the logger and in the case of a PAD accessed by trusted clients, the

author can mask a key-value pair by encrypting the value and storing it under the crypto-

graphic hash of the key.

Encryption, however, does not hide the access patterns of clients. In private information

retrieval (PIR) the goal is lookup privacy, where clients can lookup items stored on a server

without the server knowing which item was examined [27]. A naı̈ve approach with linear

communications complexity is for clients to download the entire database and then perform

the query themselves. Research in PIR focuses on techniquesthat require sublinear com-

munication [28, 29]. Security can be offered information-theoretically, where security is

guaranteed without assuming any hardness results by splitting the database among servers

that are assumed to not all conspire with each other. Computational PIR’s security rests on

problems that are assumed to be computationally intractable [30]. These systems tend to be

very expensive, often costingO(
√

n) to perform a query. Related to PIR, oblivious RAM

allows a secure processor to use an untrusted external RAM tostore its state, while hiding

the contents and access patterns [31]. Although not a focus of these algorithms, some of

these algorithms offer tamper detection. A full survey of PIR and oblivious ram techniques

are beyond the scope of this thesis. See [29] or [32] for recent results.

Although it is impossible to prevent an untrusted server from misbehaving, tamper-

ing can be detected through many approaches. Authenticateddictionaries were originally

proposed by Naor and Nissim for a public-key-infrastructure certificate revocation system,

12

where a trusted author generates a dictionary of valid certificates and users can inquire as

to whether or not a certificate is valid, without trusting theserver [5, 6]. They were later

extended to support efficient updates [33–35] and queries to older versions [7].

RSA accumulators [36] are a useful way to authenticate a set with a conciseO(1) sum-

mary, which can be signed using digital signatures. Dynamicaccumulators [37] permit

efficient incremental update of an accumulator without requiring that it be regenerated. Ac-

cumulators have been widely proposed for use in systems suchas ours (see, e.g., Goodrich

et al. [38, 39]). They do not support proofs of non-membership that are needed to imple-

ment a dictionary.

There has been recent interest in creating append-only databases for regulatory compli-

ance. These databases permit the ability to access old versions and trace tampering [40].

A variety of different data structures are used, including a B-tree [41] and afull text in-

dex [42]. The security of these systems depends on a write-once semantics of the underly-

ing storage that cannot be independently verified by a remoteauditor.

Forward-secure digital signature schemes [43] or stream authentication [44] can be used

for signing commitments in our logging scheme or any other logging scheme. Kelsey and

Schneier [23] have the logger encrypt entries with a key destroyed after use, preventing an

attacker from reading past log entries. A hash function is iterated to generate the encryption

keys. The initial hash is sent to a trusted auditor so that it may decrypt events. Logcrypt [45]

extends this to public key cryptography.

Ma and Tsudik [46] consider tamper-evident logs built usingforward-secure sequential

aggregating signature schemes [47, 48]. Their design is round-based. Within each round,

the logger evolves its signature, combining a new event withthe existing signature to gen-

erate a new signature, and also evolves the authentication key. At the end of a round, the

final signature can authenticate any event inserted.

13

Davis et. al. [22] permits keyword searching in a log by trusting the logger to build

parallel hash chains for each keyword. Techniques have alsobeen designed for keyword

searching encrypted logs [49, 50]. A tamper-evident store for voting machines has been

proposed, based on append-only signatures [51], but the signature sizes grow with the

number of signed messages [52]. An alternative design of an electronic voting machine

store has been proposed that is tamper-evident, history-independent, subliminal free, and

designed to function on write-once storage [53].

Many timestamping services have been proposed in the literature. Haber and Stor-

netta [54] introduce a time-stamping service based on hash chains, which influenced the

design of Surety, a commercial timestamping service that publishes their head commit-

ment in a newspaper once a week. Chronos is a digital timestamping service inspired by

a skip list, but with a hashing structure similar to our history tree [55]. This and other

timestamping designs [56, 57] are round-based. In each round, the logger collects a set of

events and stores the events within that round in a tree, skiplist, or DAG. At the end of the

round the logger publicly broadcasts (e.g., in a newspaper)the commitment for that round.

Clients then obtain a logarithmically-sized, tamper-evident proof that their events are stored

within that round and are consistent with the published commitment. Efficient algorithms

have been constructed for outputting time stamp authentication information for successive

events within a round in a streaming fashion, with minimal storage on the server [58].

Unlike these systems, our history tree allows events to be added to the log, commitments

generated, and audits to be performed at any time.

Maniatis and Baker [59] introduced the idea oftimeline entanglement, where every

participant in a distributed system maintains a log. Every time a message is received,

it is added to the log, and every message transmitted contains the hash of the log head.

This process spreads commitments throughout the network, making it harder for malicious

14

nodes to diverge from the canonical timeline without there being evidence somewhere that

could be used in an audit to detect tampering. Auditorium [60] uses this property to create a

shared “bulletin board” that will record the existance of tampering even whenN−1 systems

are faulty.

Secure aggregation has been investigated as a distributed protocol in sensor networks

for computing sums, medians, and other aggregate values when the host doing the ag-

gregation is not trusted. Techniques include trading off approximate results in return for

sublinear communication complexity [61], or using MAC codes to detect one-hop errors

in computing aggregates [62]. Other aggregation protocolshave been based around hash

tree structures similar to the ones we developed for Merkle aggregation. These structures

combine aggregation and cryptographic hashing, and include distributed sensor-network

aggregation protocols for computing authenticated sums [63] and generic aggregation [64].

The sensor network aggregation protocols interactively generate a secure aggregate of a

set of measurements. In Merkle aggregation, we use intermediate aggregates as a tool for

performing efficient queries. Also, our Merkle aggregation construction is more efficient

than these designs, requiring fewer cryptographic hashes to verify an event.

15

Chapter 3

Secure logging

Audit logs are useful for a variety of forensic purposes, such as tracing database tamper-

ing [65] or building a versioned filesystem with verifiable audit trails [17]. Tamper-evident

logs have also been used to build Byzantine fault-tolerant systems [66] and protocols [67],

as well as to detect misbehaving hosts in distributed systems [68]. Logging systems are

required for regulatory compliance and are therefore in wide commercial use (albeit many

without much in the way of security features).

Many authenticated or tamper-evident data structures havebeen proposed for a wide

variety of purposes [5–7, 9, 19, 20]. These store data created by a trusted authorwhose

signature is used as a root-of-trust for authenticating responses of lookup queries. They

thus have no need to detect inconsistencies across versions. For instance, in SUNDR [16],

a trusted network filesystem is implemented on untrusted storage. Although version vec-

tors [69] are used to detect when the server presents forking-inconsistent views to clients,

only trusted clients sign updates for the filesystem.

Tamper-evident logs are fundamentally different: Anuntrustedlogger is the sole author

of the log and is responsible for both building and signing it. A log is a dynamic data

structure, with the author signing a stream of commitments,a new commitment each time

a new event is added to the log. Each commitmentsnapshotsthe entire log up to that

point. If each signed commitment is the root of an authenticated data structure, well-known

authenticated dictionary techniques [33–35] can detect tamperingwithin each snapshot.

However, without additional mechanisms to prevent it, an untrusted logger is free to have

16

different snapshots makeinconsistent claims about the past. To be secure, a tamper-evident

log system must both detect tampering within each signed logand detect when different

instances of the log make inconsistent claims.

Current solutions for detecting when an untrusted server ismaking inconsistent claims

over time require linear space and time. For instance, to prevent undetected tampering,

existing tamper evident logs [22, 23, 70] which rely upon a hash chain require auditors

examine every intermediate event between snapshots. One proposal [59] for a tamper-

evident log was based on a skip list. It has logarithmic lookup times, assuming the log is

known to be internally consistent. However, proving internal consistency requires scanning

the full contents of the log. (See Section 3.3.4 for further analysis of this.)

In the same manner, CATS [71], a network-storage service with strong accountability

properties, snapshots the internal state, and only probabilistically detects tampering by au-

diting a subset of objects for correctness between snapshots. Pavlou and Snodgrass [40]

show how to integrate tamper-evidence into a relational database, and can prove the ex-

istence of tampering, if suspected. Auditing these systemsfor consistency is expensive,

requiring each auditor visit each snapshot to confirm that any changes between snapshots

are authorized.

If an untrusted logger knows that a just-added event or returned commitment will not be

audited, then any tampering with the added event or the events fixed by that commitment

will be undiscovered, and, by definition, the log is not tamper-evident. To prevent this,a

tamper-evident log requires frequent auditing. To this end, we propose a tree-based history

data structure, logarithmic for all auditing and lookup operations. Events may be added

to the log, commitments generated, and audits may be performed independently of one

another and at any time. No batching is used. Unlike past designs, we explicitly focus on

how tampering will be discovered, through auditing, and we optimize the costs of these

17

audits. Ourhistory treeallows loggers to efficiently prove that the sequence of individual

logs committed to, over time, make consistent claims about the past.

In Section 3.1 we present our security model and propose semantics for tamper-evident

logging. In Section 3.2 we demonstrate our semantics on the classic hash chain based log.

In Section 3.3 we present the history tree and in Section 3.4 we prove that it is tamper-

evident. In Section 3.5 we describeMerkle aggregation, a way to annotate events with

attributes which can then be used to perform tamper-evidentqueries over the log andsafe

deletionof events, allowing unneeded events to be removed in-place,with no additional

trusted party, while still being able to prove that no eventswere improperly purged. Sec-

tion 3.6 describes a prototype implementation for tamper-evident logging of syslog data

traces. Section 3.7 discusses approaches for scaling the logger’s performance. A summary

appears in Section 3.8.

3.1 Security Model

In this chapter, we make the usual cryptographic assumptions that an attacker cannot forge

digital signatures or find collisions in cryptographic hashfunctions. We assume that clients

will encrypt their events before storing them if they want privacy. For simplicity, we assume

a single monolithic log on a single host computer. Our goal isto detect tampering as it is

impractical to prevent the destruction or alteration of digital records that are in the custody

of a Byzantine logger. Replication strategies, outside thescope of this paper, can help

ensure availability of the digital records [72].

Tamper-evidence requires auditing. If the log is never examined, then tampering cannot

be detected. To this end, we divide a logging system into three logical entities—many

clientswhich generate events for appending to a log or history, managed on a centralized

but totally untrustedlogger, which is ultimately audited by one or more trustedauditors.

18

Because of the possibility of insider attacks subverting the logger, we do not trust the

logger at any time. We assume clients and auditors have very limited storage capacity while

loggers are assumed to have unlimited storage. By auditing the published commitments and

demanding proofs, auditors can be convinced that the log’s integrity has been maintained.

At least one auditor is assumed to be incorruptible. In our system, we distinguish between

clients and auditors, while a single host could, in fact, perform both roles.

Insider attacks are not theoretical. Horse race gambling uses a pari-mutuel system

where the payout for a particular wager depends on the distribution of all wagers across

the different outcomes. Thetotalizer is a security critical component and is responsible

for storing wagers and summing all of the wagers for each outcome. An insider with full

access to the system subverted the stored wagers for a $3 million dollar payoff [73, 74].

In addition, security policies often explicitly assume that an audit log will exist for later

forensic tracing [75]. Such audit logs are of limited use when they are not tamper-evident.

We must trust clients to behave correctly while they are following the event insertion

protocol, but we trust clients nowhere else. Of course, a malicious client could insert

garbage, but we wish to ensure that an event, once correctly inserted, cannot be unde-

tectably hidden or modified, even if the original client is subsequently colluding with the

logger in an attempt to tamper with old data.

Our threat model uses the minimum trust needed to implement atamper-evident log.

The logger is never trusted. Clients are only trusted to generate the correct events and fulfill

the event insertion protocol, for if events are not generated correctly, no security guarantee

can be offered. If no auditor is honest, then there is no honest agent that will raise the alarm

when detecting tampering. Therefore, at least one honest auditor is required.

To ensure these semantics, an untrusted logger must regularly prove its correct behavior

to auditors and clients.Incremental proofs, demanded of the logger, prove that the current

19

commitment and prior commitment make consistent claims about past events.Membership

proofsask the logger to return a particular event from the log alongwith a proof that the

event is consistent with the current commitment. Membership proofs may be demanded by

clients after adding events or by auditors verifying that older events remain correctly stored

by the logger. These two styles of proofs are sufficient to yield tamper-evidence. As any

vanilla lookup operation may be followed by a request for proof, the logger must behave

faithfully or risk its misbehavior being discovered.

3.1.1 Semantics of a tamper evident history

We now formalize our desired semantics for secure histories. Each time an eventX is

sent to the logger, it assigns an indexi and appends it to the log, generating a version-i

commitmentCi that depends on all of the events to-date,X0 . . .Xi. The commitmentCi is

bound to its version numberi, signed, and published.

Although the stream of histories that a logger commits to (C0 . . .Ci ,Ci+1,Ci+2 . . .) are

supposed to be mutually-consistent, each commitment fixes an independenthistory. Be-

cause histories are not known, a priori, to be consistent with one other, we will use primes

(′) to distinguish between different histories and the events contained within them. In other

words, the events in logCi (i.e., those committed by commitmentCi) areX0 . . .Xi and the

events in logC′j areX′0 . . .X
′
j, and we will need to prove their correspondence.

Membership auditing

Membership auditing is performed both by clients, verifying that new events are correctly

inserted, and by auditors, investigating that old events are still present and unaltered. The

logger is given an event indexi and a commitmentC j, i ≤ j and is required to return theith

element in the log,Xi, and a proof thatC j impliesXi is theith event in the log.

20

Incremental auditing

While a verified membership proof shows that an event was logged correctly insomelog,

represented by its commitmentC j, additional work is necessary to verify that the sequence

of logs committed by the logger is consistent over time. Inincremental auditing, the log-

ger is given two commitmentsC j andC′k, where j ≤ k, and is required to prove that the

two commitments make consistent claims about past events. Averified incremental proof

demonstrates thatXa = X′a for all a ∈ [0, j]. Once verified, the auditor knows thatC j and

C′k commit to the same shared history, and the auditor can safelydiscardC j.

A dishonest logger may attempt to tamper with its history by rolling back the log, creat-

ing a new fork on which it inserts new events, and abandoning the old fork. Such tampering

will be caught if the logging system satisfieshistorical consistency(see Section 3.1.3) and

by a logger’s inability to generate an incremental proof between commitments on different

(and inconsistent) forks when challenged.

3.1.2 Client insertion protocol

Once clients receive commitments from the logger after inserting an event, they must imme-

diately redistribute them to auditors. This prevents the clients from subsequently colluding

with the logger to roll back or modify their events. To this end, we need a mechanism, such

as a gossip protocol, to distribute the signed commitments from clients to multiple audi-

tors. It’s unnecessary for every auditor to audit every commitment, so long as some auditor

audits every commitment. (We further discuss tradeoffs with other auditing strategies in

Section 3.3.1.)

In addition, in order to deal with the logger presenting different views of the log to dif-

ferent auditors and clients, auditors must obtain and reconcile commitments received from

multiple clients or auditors, perhaps with the gossip protocol mentioned above. Alterna-

21

tively the logger may publish its commitment in a public fashion so that all auditors receive

the same commitment [54]. All that matters is that auditors have access to a diverse collec-

tion of commitments and demand incremental proofs to verifythat the logger is presenting

a consistent view.

3.1.3 Definition: tamper evident history

We now define a tamper-evident history system as a five-tuple of algorithms:

H.A(X)→ C j. Given an eventX, appends it to the history, returning a new commitment.

H.I.G(Ci ,C j)→ P. Generates an incremental proof betweenCi andC j, wherei ≤ j.

H.M.G(i,C j)→ (P,Xi). Generates a membership proof for eventi from com-

mitmentC j, wherei ≤ j. Also returns the event,Xi.

P.I.V(C′i ,C j)→ {⊤,⊥}. Checks thatP proves thatC j fixes every entry fixed byC′i

(wherei ≤ j). Outputs⊤ if no divergence has been detected.

P.M.V(i,C j,X′i)→ {⊤,⊥}. Checks thatP proves that eventX′i is the i’th event

in the log defined byC j (wherei ≤ j). Outputs⊤ if true.

The first three algorithms run on the logger and are used to append to the logH

and to generateproofs P. Auditors or clients verify the proofs with algorithms{I.V,

M.V}. Ideally, the proofP sent to the auditor is more concise than retransmit-

ting the full historyH. Only commitments need to be signed by the logger. Proofs do

not require digital signatures; either they demonstrate consistency of the commitments and

the contents of an event or they don’t. With these five operations, we now define “tamper

evidence” as a system satisfying:

22

Historical Consistency If we have a valid incremental proof between two commitments

C j and Ck, where j ≤ k, (P.I.V(C j ,Ck) → ⊤), and we have a valid membership

proof P′ for the eventX′i , wherei ≤ j, in the log fixed byC j (i.e., P′.M.V(i,

C j ,X′i) → ⊤) and a valid membership proof forX′′i in the log fixed byCk (i.e., P′′.

M.V(i,Ck,X′′i) → ⊤), then X′i must equalX′′i . (In other words, if two com-

mitments commit consistent histories, then they must both fix the same events for their

shared past.)

3.1.4 Other threat models

Forward integrity Classic tamper-evident logging uses a different threat model, forward

integrity [76]. The forward integrity threat model has two entities: clients who are fully

trusted but have limited storage, and loggers who are assumed to be honest until suffering

a Byzantine failure. In this threat model, the logger must beprevented from undetectably

tampering with events logged prior to the Byzantine failure, but is allowed to undetectably

tamper with events logged after the Byzantine failure. One flaw with this model is that if a

logger is found to have suffered the Byzantine failure, there is no way to know what partsof

the log can be trusted. A more fundamental flaw is that forwardintegrity offers no security

guarantee at all under an insider attack because the logger is always Byzantine.

Although we feel our threat model better characterizes the threats faced by tamper-

evident logging, our history tree and the semantics for tamper-evident logging are appli-

cable to this alternative threat model with only minor changes. Under the semantics of

forward-integrity, membership auditing just-added events is unnecessary because tamper-

evidence only applies to events occurring before the Byzantine failure. Auditing a just-

added event is unneeded if the Byzantine failure hasn’t happened and irrelevant afterwards.

Incremental auditing is still necessary. A client must incrementally audit received commit-

23

. . . C j−3 C j−2 C j−1 C j

X j−3 X j−2 X j−1 X j

Figure 3.1 : A hash-chain log.

C0 = H(X0,�)

Cn = H(Xn,Cn−1)

Figure 3.2 : Algebraic construction of a
hash-chain history

ments to prevent a logger from tampering with events occurring before a Byzantine failure

by rolling back the log and creating a new fork. Membership auditing is required to look

up and examine old events in the log.

Itkis [77] has a similar threat model. His design exploited the fact that if a Byzantine

logger attempts to roll back its history to before the Byzantine failure, the history must fork

into two parallel histories. He proposed a procedure that tested two commitments to detect

divergence without online interaction with the logger and proved anO(n) lower bound on

the commitment size. We achieve a tighter bound by virtue of the logger cooperating in the

generation of these proofs.

Trusted hardware Rather than relying on auditing, an alternative model is to rely on

the logger’s hardware itself to be tamper-resistant [4, 78]. Naturally, the security of these

systems rests on protecting the trusted hardware and the logging system against tampering

by an attacker with complete physical access. Although our design could certainly use

trusted hardware as an auditor, cryptographic schemes likeours rest on simpler assump-

tions, namely the logger can and must prove it is operating correctly.

24

3.2 Hash chain history

We now demonstrate our formulation of tamper-evidence and the auditing process using

a hash chain history. Figure 3.1 demonstrates the construction of a hash chain history.

Commitments are denoted byCi, and events in the history are denoted byXi. � denotes the

null or empty hash value. This figure is equivalent to the algebraic construction given in

Figure 3.2.

For the case of a hash chain history, anincremental proof, the proof that the history

committed to byC′′j agrees with the history committed to byC′i with i ≤ j is simply

P = (X′i+1 . . .X
′
j). The auditor can verify the proof by combining the events inP with C′i , to

reconstructC j which is compared toC′′j . If they match, then the events committed to byC′i

match those committed to byC′′j . The auditor can now discardC′i . Auditors must request

these proofs to validate that prior events remain in the log.As auditors regularly audit a

growing log, the requested incremental proofs will, in aggregate, include every event in the

log and the total size of those proofs will grow linearly.

A logger may also generate amembership proof, demonstrating that a particular event

is fixed by a particular commitment. A membership proof forXi from commitmentC′j,

i ≤ j consists of the commitmentCi−1 and the intermediate entriesP = (Xi . . .X j) from

whichC j is computed and compared toC′j.

A hash chain offers very efficient event insertion. A membership proof that a just-

inserted event was inserted correctly will be constant size. However, hash chain historical

lookups and incremental proofs are very expensive as they require sending every interme-

diate event in the log. Our history tree reduces these costs to logarithmic.

25

3.3 History tree

We now present our new data structure for representing a tamper-evident history. We start

with a Merkle tree [11], which has a long history of uses for authenticating static data.

In a Merkle tree, data is stored at the leaves and the hash at the root is a tamper-evident

summary of the contents. Merkle trees support logarithmic path lengths from the root to

the leaves, permitting efficient random access. Although Merkle trees are a well-known

tamper-evident data structure and our use is straightforward, the novelty in our design is in

using a versioned computation of hashes over the Merkle treeto efficiently prove that differ-

ent log snapshots, represented by Merkle trees, withdistinctroot hashes, make consistent

claims about the past.

A filled history tree of depthd is a binary Merkle hash tree, storing 2d events on the

leaves. Interior nodes,I i,r are identified by their indexi and layerr. Each leaf nodeI i,0,

at layer 0, stores eventXi. Interior nodeI i,r has left childI i,r−1 and right childI i+2r−1,r−1.

(Figures 3.3 through 3.5 demonstrate this numbering scheme.) When a tree is not full,

subtrees containing no events are represented as�. This can be seen starting in Figure 3.3, a

version-2 tree having three events. Figure 3.4 shows a version-6 tree, adding four additional

events. Although the trees in our figures have a depth of 3 and can store up to 8 leaves, our

design clearly extends to trees with greater depth and more leaves.

Each node in the history tree islabeledwith a cryptographic hash which, like a Merkle

tree, fixes the contents of the subtree rooted at that node. For a leaf node, the label is the

hash of the event; for an interior node, the label is the hash of the concatenation of the

labels of its children.

An interesting property of the history tree is the ability toefficiently reconstruct old

versions orviewsof the tree. Consider the history tree given in Figure 3.4. The logger

could reconstructC′′2 analogous to the version-2 tree in Figure 3.3 by pretending that nodes

26

I ′0,3

I ′0,2

I ′0,1

X′0 X′1

I ′2,1

X′2

Figure 3.3 : A version-2 history tree with commitmentC′2 = I ′0,3.

I ′′0,3

I ′′0,2

I ′′0,1

X′′0 X′′1

I ′′2,1

X′′2 X′′3

I ′′4,2

I ′′4,1

X′′4 X′′5

I ′′6,1

X′′6

Figure 3.4 : A version-6 history tree with commitmentC′′6 = I ′′0,3.

I ′′4,2 andX′′3 were� and then recomputing the hashes for the interior nodes and the root.

If the reconstructedC′′2 matched a previously advertised commitmentC′2, then both trees

must have the same contents and commit the same events.

This forms the intuition of how the logger generates an incremental proofP between

two commitments,C′2 andC′′6 . Initially, the auditor only possesses commitmentsC′2 andC′′6 ;

it does not know the underlying Merkle trees that these commitments fix. The logger must

show that both histories commit the same events, i.e.,X′′0 = X′0,X
′′
1 = X′1, andX′′2 = X′2.

To do this, the logger sends apruned tree Pto the auditor, shown in Figure 3.5. This

pruned tree includes just enough of the full history tree to compute the commitmentsC2

andC6. Unnecessary subtrees areelidedout and replaced withstubs. Events can be either

included in the tree or replaced by a stub containing their hash. Because an incremental

proof involvesthreehistory trees, the trees committed byC′2 andC′′6 with unknown contents

27

I0,3

I0,2

I0,1 I2,1

X2 X3

I4,2

I4,1 I6,1

X6

Figure 3.5 : An incremental proofP between a version-2 and version-6 commitment.
Hashes for the circled nodes are included in the proof. Otherhashes can be derived from
their children. Circled nodes in Figures 3.3 and 3.4 must be shown to be equal to the
corresponding circled nodes here.

b

X0 X1 X2 X3

b

X4 X5

b

X6

Figure 3.6 : Graphical notation for a history tree analogousto the proof in Figure 3.5.
Solid discs represent hashes included in the proof. Other nodes are not included. Dots
and open circles represent values that can be recomputed from the values below them; dots
may change as new events are added while open circles will not. Grey circle nodes are
unnecessary for the proof.

28

and the pruned treeP, we distinguish them by using a different number of primes (′).

From P, shown in Figure 3.5, we reconstruct the corresponding rootcommitment for

a version-6 tree,C6. We recompute the hashes of interior nodes based on the hashes of

their children until we compute the hash for nodeI0,3, which will be the commitmentC6.

If C′′6 = C6 then the corresponding nodes, circled in Figures 3.4 and 3.5, in the pruned tree

P and the implicit tree committed byC′′6 must match.

Similarly, from P, shown in Figure 3.5, we can reconstruct the version-2 commitment

C2 by pretending that the nodesX3 and I4,2 are� and, as before, recomputing the hashes

for interior nodes up to the root. IfC′2 = C2, then the corresponding nodes, circled in

Figures 3.3 and 3.5, in the pruned treeP and the implicit tree committed byC′2 must match,

or I ′0,1 = I0,1 andX′2 = X2.

If the events committed byC′2 andC′′6 are the same as the events committed byP, then

they must be equal; we can then conclude that the tree committed byC′′6 is consistent with

the tree committed byC′2. By this we mean that the history trees committed byC′2 andC′′6

both commit the same events, orX′′0 = X′0, X′′1 = X′1, andX′′2 = X′2, even though the events

X′′0 = X′0, X′′1 = X′1, X′′4 , andX′′5 are unknown to the auditor.

3.3.1 Is it safe to skip nodes during an audit?

In the pruned tree in Figure 3.5, we omit the events fixed byI0,1, yet we still preserve the

semantics of a tamper-evident log. Even though these earlier events may not be sent to the

auditor, they are still fixed by the unchanged hashes above them in the tree. Any attempted

tampering will be discovered in future incremental or membership audits of the skipped

events. With the history tree, auditors only receive the portions of the history they need to

audit the events they have chosen to audit. Skipping events makes it possible to conduct a

variety of selective audits and offers more flexibility in designing auditing policies.

29

Existing tamper-evident log designs based on a classic hash-chain have the formCi =

H(Ci−1 ‖ Xi), C−1 = � and do not permit events to be skipped. With a hash chain, an

incremental or membership proof between two commitments orbetween an event and a

commitment must includeeveryintermediate event in the log. In addition, because inter-

mediate events cannot be skipped, each auditor, or client acting as an auditor, must eventu-

ally receive every event in the log. Hash chaining schemes, as such, are only feasible with

low event volumes or in situations where every auditor is already receiving every event.

When membership proofs are used to investigate old events, the ability to skip nodes

can lead to dramatic reductions in proof size. For example, in our prototype described

in Section 3.6, in a log of 80 million events, our history treecan return a complete proof

for any randomly chosen event in 3100 bytes. In a hash chain, where intermediate events

cannot be skipped, an average of 40 million hashes would be sent.

Auditing strategies In many settings, it is possible that not every auditor will be inter-

ested in every logged event. Clients may not be interested inauditing events inserted or

commitments received by other clients. One could easily imagine scenarios where a single

logger is shared across many organizations, each only incentivized to audit the integrity

of its own data. These organizations could run their own auditors, focusing their attention

on commitments from their own clients, and only occasionally exchanging commitments

with other organizations to ensure no forking has occurred.One can also imagine sce-

narios where independent accounting firms operate auditingsystems that run against their

corporate customers’ log servers.

The log remains tamper-evident if clients gossip their received commitments from the

logger to at least one honest auditor who uses it when demanding an incremental proof.

By not requiring that every commitment be audited by every auditor, the total auditing

30

overhead across all auditors can be proportional to the total number of events in the log—

far cheaper than the number of events times the number of auditors as we might otherwise

require.

Skipping nodes offers other time-security tradeoffs. Auditors may conduct audits prob-

abilistically, selecting only a subset of incoming commitments for auditing. If a logger

were to regularly tamper with the log, its odds of remaining undetected would become

vanishingly small.

3.3.2 Construction of the history tree

Now that we have an example of how to use a tree-based history,we will formally define its

construction and semantics. A version-n history tree storesn+ 1 events,X0 . . .Xn. Hashes

are computed over the history tree in a manner that permits the reconstruction of the hashes

of interior nodes of older versions orviews. We denote the hash on nodeI i,r by Av
i,r which is

parametrized by the node’s index, layer and view being computed. A version-v view on a

version-n history tree reconstructs the hashes on interior nodes for aversion-v history tree

that only included eventsX0 . . .Xv. Whenv = n, the reconstructed root commitment isCn.

The hashes are computed with the recurrence defined in Figure3.7.

A history tree can support arbitrary size logs by increasingthe depth when the tree fills

(i.e.,n = 2d − 1) and definingd = ⌈log2(n+ 1)⌉. The new root, one level up, is created with

the old tree as its left child and an empty right child where new events can be added. For

simplicity in our illustrations and proofs, we assume a treewith fixed depthd.

Once a given subtree in the history tree is complete and has nomore slots to add events,

the hash for the root node of that subtree isfrozenand will not change as future events are

added to the log. The logger caches these frozen hashes (i.e., the hashes of frozen nodes)

into FHi,r to avoid the need to recompute them. By exploiting the frozenhash cache, the

31

Av
i,0 =

{

H(0‖Xi) if v ≥ i (3.1)

Av
i,r =

H(1‖Av
i,r−1 ‖�) if v < i + 2r−1

H(1‖Av
i,r−1 ‖A

v
i+2r−1,r−1

) if v ≥ i + 2r−1

(3.2)

Cn = An
0,d (3.3)

Av
i,r ≡ FHi,r wheneverv ≥ i + 2r − 1 (3.4)

Figure 3.7 : Recurrence for computing hashes.

b

X0 X1 X2 X3

b

X4 X5

b

X6

Figure 3.8 : A proof skeleton for a version-6 history tree.

logger can recomputeAv
i,r for any node with at mostO(d) operations. In a version-n tree,

nodeI i,r is frozen whenn ≥ i + 2r − 1. When inserting a new event into the log,O(1)

expected case andO(d) worse case nodes will become frozen. (In Figure 3.3, nodeI ′0,1 is

frozen. If eventX3 is added, nodesI ′2,1 andI ′0,2 will become frozen.)

Now that we have defined the history tree, we will describe theincremental proofs

generated by the logger. Figure 3.6 abstractly illustratesa pruned tree equivalent to the

proof given in Figure 3.5, representing an incremental proof from C2 to C6. Dots represent

unfrozen nodes whose hashes are computed from their children. Open circles represent

32

frozen nodes which are not included in the proof because their hashes can be recomputed

from their children. Solid discs represent frozen nodes whose inclusion is necessary by

being leaves or stubs. Grayed out nodes represent elided subtrees that are not included in

the pruned tree. From this pruned tree and equations (3.1)-(3.4) (shown in Figure 3.7) we

can computeC6 = A6
0,3 anda commitment from an earlier version-2 view,A2

0,3.

This pruned tree is incrementally built from aproof skeleton, seen in Figure 3.8—

the minimum pruned tree of a version-6 tree consisting only of frozen nodes. The proof

skeleton for a version-n tree consists of frozen hashes for the left siblings for the path from

Xn to the root. From the included hashes and using equations (3.1)-(3.4), this proof skeleton

suffices to computeC6 = A6
0,3.

From Figure 3.8 the logger incrementally builds Figure 3.6 by splitting frozen interior

nodes. A node is split by including its children’s hashes in the pruned tree instead of itself.

By recursively splitting nodes on the path to a leaf, the logger canincludethat leaf in the

pruned tree. In this example, we split nodesI0,2 and I2,1. For each commitmentCi that is

to be reconstructable in an incremental proof the pruned tree P must include a path to the

eventXi. The same algorithm is used to generate the membership prooffor an eventXi.

Given these constraints, we can now define the five history operations in terms of the

equations in Figure 3.7.

H.A(X)→ Cn. Event is assigned the next free slot,n. Cn is computed by equations

(3.1)-(3.4).

H.I.G(Ci ,C j)→ P. The pruned treeP is a version-j proof skeleton including a path

to Xi.

H.M.G(i,C j)→ (P,Xi). The pruned treeP is a version-j proof skeleton includ-

ing a path toXi and the eventXi.

33

P.I.V(C′′i ,C
′
j)→ {⊤,⊥}. FromP apply equations (3.1)-(3.4) to computeAi

0,d andA j
0,d.

This can only be done ifP includes a path to the leafXi. Return⊤ if C′′i = Ai
0,d and

C′j = A j
0,d.

P.M.V(i,C′j,X
′
i)→ {⊤,⊥}. FromP apply equations (3.1)-(3.4) to computeA j

0,d.

Also extractXi from the pruned treeP, which can only be done ifP includes a path

to eventXi. Return⊤ if C′j = A j
0,d andXi = X′i .

Although incremental and membership proofs have different semantics, they both fol-

low an identical tree structure and can be built and audited by a common implementation.

In addition, a single pruned treeP can embed paths to several leaves to satisfy multiple

auditing requests.

What is the size of a pruned tree used as a proof? The pruned tree necessary for sat-

isfying a self-contained incremental proof betweenCi andC j or a membership proof fori

in C j requires that the pruned tree include a path to nodesXi andX j. This resulting pruned

tree contains at most 2d frozen nodes, logarithmic in the size of the log.

In a real implementation, the log may have moved on to a later version,k. If the

auditor requested an incremental proof betweenCi andC j, the logger would return the

latest commitmentCk, and a pruned tree of at most 3d nodes, based around a version-k tree

including paths toXi andX j. More typically, we expect auditors will request an incremental

proof between a commitmentCi and the latest commitment. The logger can reply with the

latest commitmentCk and pruned tree of at most 2d nodes that included a path toXi.

The frozen hash cache In our description of the history tree, we described thefull repre-

sentationwhen we stated that the logger stores frozen hashes for all frozen interior nodes in

the history tree. This cache is redundant whenever a node’s hash can be recomputed from

34

its children. We expect that logger implementations, whichbuild pruned trees for audits

and queries, will maintain and use the cache to improve efficiency.

When generating membership proofs, incremental proofs, and query lookup results,

there is no need for the resulting pruned tree to include redundant hashes on interior nodes

when they can be recomputed from their children. We assume that pruned trees used as

proofs will use thisminimum representation, containing frozen hashes only for stubs, to

reduce communication costs.

Can overheads be reduced by exploiting redundancy between proofs? If an auditor

is in regular communication with the logger, demanding incremental proofs between the

previously seen commitment and the latest commitment, there is redundancy between the

pruned subtrees on successive queries.

If an auditor previously requested an incremental proof betweenCi andC j and later

requests an incremental proofP betweenC j andCn, the two proofs will share hashes on

the path to leafX j. The logger may send apartial proof that omits these common hashes,

and only contains the expectedO(log2(n− j)) frozen hashes that are not shared between the

paths toX j andXn. This devolves toO(1) if a proof is requested after every insertion. The

auditor need only cached frozen hashes to make this work.

Tree history time-stamping service Our history tree can be adapted to implement a

round-based time-stamping service. After every round, thelogger publishes the last com-

mitment in public medium such as a newspaper. LetCi be the commitment from the prior

round andCk be the commitment of the round a client requests that its documentX j be

timestamped. A client can request a pruned tree including a path to leavesXi ,X j,Xk. The

pruned tree can be verified against the published commitments to prove thatX j was sub-

mitted in the round and its order within that round, without the cooperation of the logger.

35

If a separate history tree is built for each round, our history tree is equivalent to the

threaded authentication tree proposed by Buldas et al. [57]for time-stamping systems.

3.3.3 Storing the log on secondary storage

Our history tree offers a curious property: it can be easily mapped onto write-once append-

only storage. Once nodes become frozen, they become immutable, and are thus safe to

output. This ordering is predetermined, starting with (X0), (X1, I0,1), (X2), (X3, I2,1, I0,2),

(X4) Parentheses denote the nodes written by each A transaction. If nodes within

each group are further ordered by their layer in the tree, this order is simply a post-order

traversal of the binary tree. Data written in this linear fashion will minimize disk seek

overhead, improving the disk’s write performance. Given this layout, and assuming all

events are the same size on disk, converting from an (index, layer) to the byte index used to

store that node takesO(logn) arithmetic operations, permitting efficient direct access.

In order to handle variable-length events, event data can bestored in a separate write-

once append-onlyvalue store, while the leaves of the history tree contain offsets into the

value store where the event contents may be found. Decoupling the history tree from the

value store also allows many choices for how events are stored, such as databases, com-

pressed files, or standard flat formats.

3.3.4 Comparing to other systems

In this section, we evaluate the time and space tradeoffs between our history tree and earlier

hash chain and skip list structures. In all three designs, membership proofs have the same

structure and size as incremental proofs, and proofs are generated in time proportional to

their size.

Maniatis and Baker [59] present a tamper-evident log using adeterministic variant of a

36

Hash chain Skip list History tree
A Time O(1) O(1) O(log2 n)
I.G proof size toCk O(n− k) O(n) O(log2 n)
M.G proof size forXk O(n− k) O(n) O(log2 n)
Cache size - O(log2 n) O(log2 n)
I.G partial proof size - O(n− j) O(log2(n− j))
M.G partial proof size - O(log2 (n− i)) O(log2(n− i))

Table 3.1 : We characterize the time to add an event to the log and the size of full and
partial proofs generated in terms ofn, the number of events in the log. For partial proofs
audits, j denotes the number of events in the log at the time of the last audit andi denotes
the index of the event being membership-audited.

skip list [79]. The skip list history is like a hash-chain incorporating extra skip links that

hop over many nodes, allowing for logarithmic lookups.

In Table 3.1 we compare the three designs. All three designs haveO(1) storage per

event andO(1) commitment size. For skip list histories and tree histories, which support

partial proofs (described in Section 3.3.2), we present thecache size and the expected

proof sizes in terms of the number of events in the log,n, and the index,j, of the prior

contact with the logger or the indexi of the event being looked up. Our tree-based history

strictly dominates both hash chains and skip lists in proof generation time and proof sizes,

particularly when individual clients and auditors only audit a subset of the commitments or

when partial proofs are used.

Canonical representation A hash chain history and our history tree have a canonical

representation of both the history and of proofs within the history. In particular, from

a given commitmentCn, there exists one unique path to each eventXi. When there are

multiple paths auditing is more complex because the alternative paths must be checked

for consistency with one another, both within a single history, and between the stream of

historiesCi ,Ci+1, . . . committed by the logger. Extra paths may improve the efficiency of

37

looking up past events, such as in a skip list, or offer more functionality [22], but cannot be

trusted by auditors and must be checked.

Maniatis and Baker [59] claim to support logarithmic-sizedproofs, however they suffer

from this multi-path problem. To verify internal consistency, an auditor with no prior con-

tact with the logger must receive every event in the log in every incremental or membership

proof.

Efficiency improves for auditors in regular contact with the logger that use partial proofs

and cacheO(log2 n) state between incremental audits. If an auditor has previously verified

the log’s internal consistency up toC j, the auditor will be able to verify the log’s internal

consistency up to a future commitmentCn with the receipt of eventsX j+1 . . .Xn Once an

auditor knows that the skip list is internally consistent the links that allow for logarith-

mic lookups can be trusted and subsequent membership proofson old events will run in

O(log2 n) time. Skip list histories were designed to function in thismode, with each auditor

eventually receiving every event in the log.

Auditing is required Hash chains and skip lists only offer a complexity advantage over

the history tree when adding new events, but this advantage is fleeting. If the logger knows

that a given commitment will never be audited, it is free to tamper with the events fixed

by that commitment, and the log is no longer provably tamper evident. Every commitment

returned by the logger must have a non-zero chance of being audited and any evaluation of

tamper-evident logging must include the costs of this unavoidable auditing. With multiple

auditors, auditing overhead is further multiplied. After inserting an event, hash chains and

skip lists suffer anO(n− j) disadvantage the moment they do incremental audits between

the returned commitment and prior commitments. They cannotreduce this overhead by,

for example, only auditing a random subset of commitments.

38

Even if the threat model is weakened from our always-untrusted logger to the forward-

integrity threat model (See Section 3.1.4), hash chains andskip lists are less efficient than

the history tree. Clients can forgo auditing just-added events, but are still required to do

incremental audits to prior commitments, which are expensive with hash chains or skip

lists.

3.4 Proof for tamper evidence of the history tree

In this section, we prove that the history tree is historically consistent. Recall that the logger

creates a stream of commitments,Ci ,Ci+1, Each of these commitments commits some

history, but these histories are not known to be consistent with each other.

In Theorem 1, we prove that if the logger generates a verified incremental proof be-

tween two commitments, then the logs represented by those commitments are consistent

and contain identical events. Note that this proof requiresreferring to several pruned trees

that are not known, in advance, to be consistent. We attach Greek letter prefixes to the

variables representing a history tree, includingAv
i,r ,Ci ,Xi, to distinguish between the vari-

ous trees until we prove them to be equal. For instance, in thestatement of an incremental

proofH.I.G(αC j , βCk)→ P, we know that the commitment valuesαC j andβCk com-

mit to some set of unknown events, but we do not know whether they are the same until the

incremental proof is checked.

Lemma 1 If the reconstructed hashes for a particular view fortwo frozen subtrees are equal

to each other, then corresponding events in those two trees are identical. Algebraically, if

v ≥ i andαAv
i,r = βA

v
i,r thenαXa = βXa for all a ∈ [i, i + 2r − 1] ∩ [0, v], the set of all leaves

in that subtree defined for version v.

Proof is by induction over the layerr.

39

Case r= 0 (leaf nodes): By assumption,v ≥ i. We combine the assumptionαAv
i,r =

βAv
i,r and apply equation 3.1, toαAv

i,r andβAv
i,r and getαXi = αAv

i,r = βA
v
i,r = βXi which

provesαXa = βXa for a ∈ [i, i + 20 − 1].

Case r> 0 (interior nodes): There are two subcases, corresponding to the two cases in

equation (3.2).

Subcase v< i + 2r−1 (empty right child): We apply equation (3.2) to the definition of

αAv
i,r andβAv

i,r and derive:

H(αAv
i,r−1 ‖ �) = αAv

i,r = βA
v
i,r = H(βAv

i,r−1 ‖ �)

By the collision resistance ofH, the left children have the same reconstructed hash,

αAv
i,r−1 = βA

v
i,r−1.

Our inductive hypothesis is true for the left child:αAv
i,r−1 = βA

v
i,r−1. We apply it and get

αXa = βXa for all a ∈ [i, i + 2r−1 − 1] ∩ [0, v] (the child subtree). However, in this subcase,

v < i + 2r−1 so therefore [i, i + 2r−1 − 1] ∩ [0, v] = [i, i + 2r − 1] ∩ [0, v] (i.e., the parent

subtree covers the same interval). Thus,αXa = βXa for all a ∈ [i, i+2r−1−1]∩ [0, v] implies

αXa = βXa for all a ∈ [i, i + 2r − 1] ∩ [0, v], as required.

Subcase v≥ i + 2r−1 (frozen left child): We apply equation (3.2) to the definition of

αAv
i,r andβAv

i,r and derive:

H(αAv
i,r−1 ‖ αAv

i+2r−1,r−1) = αAv
i,r = βA

v
i,r = H(βAv

i,r−1 ‖ βA
v
i+2r−1,r−1)

By the collision resistance ofH, each child has the same reconstructed hash, orαAv
i,r−1 =

βAv
i,r−1 andαAv

i+2r−1,r−1
= βAv

i+2r−1,r−1
.

Our inductive hypothesis is true for each child. We apply it to αAv
i,r−1 = βA

v
i,r−1 (the

left child) andαAv
i+2r−1,r−1

= βAv
i+2r−1,r−1

(the right child) and getαXa = βXa for all a ∈

[i, i +2r−1−1]∩ [0, v] (the left child subtree) andαXa = βXa for all a ∈ [i +2r−1, (i +2r−1)+

40

Prefix Use
None The pruned tree used in the incremental proof.
α The older commitment in the incremental proof.
β The newer commitment in the incremental proof.
γ The pruned tree used to prove membership from the older commitment.
δ The pruned tree used to prove membership from the newer commitment.
ǫ The event verified in the membership proof for the older commitment.
ζ The event verified in the membership proof for the newer commitment.

Table 3.2 : Table of Greek letter prefixes and their uses.

2r−1− 1]∩ [0, v] (the right child subtree). Therefore, combining these intervals,αXa = βXa

for all a ∈ [i, i + 2r − 1] ∩ [0, v] (the parent subtree).�

Corrolary 1 If a commitmentαCi and a reconstructed hash of a viewβAi
0,d have the same

value, they match the same events. More formally,αCi = βAi
0,d, thenαXa = βXa for all

a ∈ [0, i].

Proof: By the definition ofαCi in equation (3.3),αCi = αAi
0,d. Then apply Lemma 1 to

αAi
0,d andβAi

0,d. �

Theorem 1 (Historical Consistency) We prove that this the history tree satisfies the require-

ments of tamper evidence described in Section 3.1.1. If P.I.V(αC j , βCk) → ⊤ with

j ≤ k then for any i≤ j, pruned treesγP andδP, if γP.M.V(i, αC j , ǫXi) → ⊤

andδP.M.V(i, βCk, ζXi) → ⊤ thenǫXi = ζXi. This means that if we have a ver-

ified incremental proof between two commitmentsαC j , βCk, the two commitments commit

to the identical events as long as the membership proofs for those events also verify under

their respective commitments.

Tamper evidence involves proving that two histories, represented by their commitments

αC j andβCk, commit the same events. When we prove tamper evidence, we have three

additional pruned trees,P, γP, andδP, which also must also be tested to be consistent with

41

the commitments. Our proof of historical consistency requires 5 distinct history trees: three

pruned trees, used as proofs and two history trees, denoted only by their commitments. We

also use additional variables to represent events. The trees denoted by our prefixes are

described in Table 3.2. Note that the unprefixedA j
0,d andX denote variables in the pruned

treeP. The proof proceeds in 4 parts.

Part 1 (incremental proof): From the definition ofP.I.V(αC j , βCk)→ ⊤, we know that

αC j = A j
0,d andβCk = Ak

0,d. We are able to reconstructA j
0,d andAk

0,d becauseP includes a

path to the leavesX j andXk. Applying Corollary 1 toαC j = A j
0,d, the events committed

to by P are the same as the events committed to byαC j , thusXa = αXa for all a ∈ [0, j].

Similarly, applying Corollary 1 toβCk = Ak
0,d, the events committed to byP are the same

as the events committed to byβCk, or Xa = βXa for all a ∈ [0, k].

Part 2 (membership proof): From the definition ofγP.M.V(i, αC j, ǫXi)→ ⊤, we

know thatαC j = γA
j
0,d andγXi = ǫXi. We apply Corollary 1 toαC j = γA

j
0,d and derive

αXa = γXa for all a ∈ [0, j].

Part 3 (membership proof): From the definition ofδP.M.V(i, βCk, ζXi)→ ⊤, we

know thatβCk = δAk
0,d andδXi = ζXi. We apply Corollary 1 toβCk = δAk

0,d and derive

βXa = δXa, for all a ∈ [0, k].

Part 4 (combining the pieces): For anyi ≤ j, we can combine our four parts together.

We haveXi = αXi andXi = βXi from part 1,αXi = γXi andγXi = ǫXi from part 2, and

βXi = δXi andδXi = ζXi from part 3. We thus conclude thatǫXi = ζXi. �

3.5 Merkle aggregation

Our history tree permitsO(log2 n) access to arbitrary events, given their index. In this

section, we extend our history tree to support efficient, tamper-evident content searches

42

through a feature we callMerkle aggregation, which encodes auxiliary information into

the history tree. Merkle aggregation permits the logger to perform authorized purges of the

log while detecting unauthorized deletions, a feature we call safe deletion.

As an example, imagine that a client flags certain events in the log as “important” when

it stores them. In the history tree, the logger propagates these flags to interior nodes, setting

the flag whenever either child is flagged. To ensure that the tagged history is tamper-

evident, this flag can be incorporated into the hash label of anode and checked during

auditing. As clients are assumed to be trusted when inserting into the log, we assume

clients will properly annotate their events. Membership auditing will detect if the logger

incorrectly stored a leaf with the wrong flag or improperly propagated the flag. Incremental

audits would detect tampering if any frozen node had its flag altered. Now, when an auditor

requests a list of only flagged events, the logger can generate that list along with a proof

that the list is complete. If there are relatively few “important” events, the query results can

skip over large chunks of the history.

To generate a proof that the list of flagged events is complete, the logger traverses the

full history treeH, pruning any subtrees without the flag set, and returns a pruned tree

P containing only the visited nodes. The auditor can ensure that no flagged nodes were

omitted inP by performing its own recursive traversal onP and verifying that every stub is

unflagged.

Figure 3.9 shows the pruned tree for a query against a version-5 history with eventsX2

andX5 flagged. Interior nodes in the path fromX2 andX5 to the root will also be flagged.

For subtrees containing no matching events, such as the parent of X0 andX1, we only need

to retain the root of the subtree to vouch that its children are unflagged.

43

b

X0 X1 X2 X3

b

X4 X5

Figure 3.9 : Demonstration of Merkle aggregation with some events flagged as important
(highlighted). Frozen nodes that would be included in a query are represented as solid
discs.

3.5.1 General attributes

Boolean flags are only one way we may flag log events for later queries. Rather than

enumerate every possible variation, we abstract an aggregation strategy over attributes into

a 3-tuple, (τ,⊕, Γ). τ represents the type of attribute or attributes that an eventhas.⊕ is a

deterministic function used to compute the attributes on aninterior node in the history tree

by aggregatingthe attributes of the node’s children.Γ is a deterministic function that maps

an event to its attributes. In our example of client-flagged events, the aggregation strategy

is (τ := ,⊕ := ∨, Γ(x) := x.isFlagged).

For example, in a banking application, an attribute could bethe dollar value of a trans-

action, aggregated with the function, permitting queries to find all transactions over a

particular dollar value and detect if the logger tampers with the results. This corresponds

to (τ := ,⊕ := , Γ(x) := x.value). Or, consider events having internal timestamps,

generated by the client, arriving at the logger out of order.If we attribute each node in the

tree with the earliest and latest timestamp found among its children, we can now query the

logger for all nodes within a given time range, regardless ofthe order of event arrival.

There are at least three different ways to implement keyword searching across logs

44

using Merkle aggregation. If the number of keywords is fixed in advance, then the attribute

τ for events can be a bit-vector or sparse bit-vector combinedwith ⊕ := ∨. If the number

of keywords is unknown, but likely to be small,τ can be a sorted list of keywords, with

⊕ := ∪ (set union). If the number of keywords is unknown and potentially unbounded, then

a Bloom filter [80] may be used to represent them, withτ being a bit-vector and⊕ := ∨.

Of course, the Bloom filter would then have the potential of returning false positives to a

query, but there would be no false negatives.

Merkle aggregation is extremely flexible becauseΓ can beany deterministic com-

putable function. However, once a log has been created, (τ,⊕, Γ) are fixed for that log,

and the set of queries that can be made is restricted based on the aggregation strategy cho-

sen. In Section 3.6 we describe how we were able to apply theseconcepts to the metadata

used in Syslog logs.

3.5.2 Formal description

To make attributes tamper-evident in history trees, we modify the computation of hashes

over the tree to include them. Each node now has a hash label denoted byAv
i,r .H and

an annotation denoted byAv
i,r .A for storing attributes. Together these form the node data

that is attached to each node in the history tree. Note that the hash label of node,Av
i,r .H,

doesnot fix its own attributes,Av
i,r .A. Instead, we define asubtree authenticator Avi,r .∗ =

H(Av
i,r .H ‖ Av

i,r .A) that fixes the attributes and hash of a node, and recursivelyfixes every

hash and attribute in its subtree. Frozen hashes FHi,r .A and FHi,r .H and FHi,r .∗ are defined

analogously to the non-Merkle-aggregation case.

We could have defined this recursion in several different ways. This representation

allows us to elide unwanted subtrees with a small stub, containing one hash and one set of

attributes, while exposing the attributes in a way that makes it possible to locally detect if

45

Av
i,r .∗ = H(Av

i,r .H ‖Av
i,r .A) (3.5)

Av
i,0.H =

{

H(0‖Xi) if v ≥ i (3.6)

Av
i,0.A =

{

Γ(Xi) if v ≥ i (3.7)

Av
i,r .H =

H(1‖Av
i,r−1.∗‖�) if v < i + 2r−1

H(1‖Av
i,r−1.∗‖Av

i+2r−1,r−1
.∗) if v ≥ i + 2r−1

(3.8)

Av
i,r .A =

Av
i,r−1.A if v < i + 2r−1

Av
i,r−1.A⊕ Av

i+2r−1,r−1
.A if v ≥ i + 2r−1

(3.9)

Cn = An
0,d.∗ (3.10)

Figure 3.10 : Hash computations for Merkle aggregation

the attributes were improperly aggregated.

Our new mechanism for computing hash and aggregates for a node is given in equations

(3.5)-(3.10) in Figure 3.10. There is a strong correspondence between this recurrence and

the previous one in Figure 3.7. Equations (3.6) and (3.7) extract the hash and attributes

of an event, analogous to equation (3.1). Equation (3.9) handles aggregation of attributes

between a node and its children. Equation (3.8) computes thehash of a node in terms of

the subtree authenticators of its children.

I.G and M.G operate the same as with an ordinary history tree, except

that wherever a frozen hash was included in the proof (FHi,r), we now include both the

hash of the node, FHi,r .H, and its attributes FHi,r .A. Both are required for recomputing

Av
i,r .A andAv

i,r .H for the parent node. A, I.V, and M.V are the same as

46

before except for using the equations (3.5)-(3.10) for computing hashes and propagating

attributes. Merkle aggregation inflates the storage and proof sizes by a factor of (A+ B)/A

whereA is the size of a hash andB is the size of the attributes.

3.5.3 Queries over attributes

In Merkle aggregation queries, we permit query results to contain false positives, i.e., events

that do not match the queryQ. Extra false positive events in the result only impact perfor-

mance, not correctness, as they may be filtered by the auditor. We forbid false negatives;

every event matchingQ will be included in the result.

Unfortunately, Merkle aggregation queries can only match attributes, not events. Con-

sequently, we must conservatively transform a queryQ over events into a predicateQΓ

over attributes and require that it bestable, with the following properties: IfQ matches

an event thenQΓ matches the attributes of that event (i.e.,∀x Q(x) ⇒ QΓ(Γ(x))). Fur-

thermore, ifQΓ is true for either child of a node, it must be true for the node itself (i.e.,

∀x,y QΓ(x) ∨ QΓ(y)⇒ QΓ(x⊕ y) and∀x QΓ(x) ∨ QΓ(�)⇒ QΓ(x⊕ �)).

Stable predicates can falsely match nodes or events for two reasons: events’ attributes

may matchQΓ without the events matchingQ, or nodes may occur where (QΓ(x) ∨ QΓ(y))

is false, butQΓ(x⊕ y) is true. We call a predicateQ exactif there can be no false matches.

This occurs whenQ(x) ⇔ QΓ(Γ(x)) and QΓ(x) ∨ QΓ(y) ⇔ QΓ(x ⊕ y). Exact queries

are more efficient because a query result does not include falsely matching events and the

corresponding pruned tree proving the correctness of the query result does not require extra

nodes.

Given these properties, we can now define the additional operations for performing

authenticated queries on the log for events matching a predicateQΓ.

H.Q(C j ,QΓ)→ P Given a predicateQΓ over attributesτ, returns a pruned tree where

47

every elided subtrees does not matchQΓ.

P.Q.V(C′j ,Q
Γ)→ {⊤,⊥} Checks the pruned treeP and returns⊤ if every stub inP

does not matchQΓ and the reconstructed commitmentC j is the same asC′j.

Building a pruned tree containing all events matching a predicateQΓ is similar to build-

ing the pruned trees for membership or incremental auditing. The logger starts with a

proof skeleton then recursively traverses it, splitting interior nodes whenQΓ(FHi,r .A) is

true. Because the predicateQΓ is stable, no event in any elided subtree can match the pred-

icate. If there aret events matching the predicateQΓ, the pruned tree is of size at most

O((1+ t) log2 n) (i.e., t leaves with log2 n interior tree nodes on the paths to the root).

To verify thatP includes all events matchingQΓ, the auditor does a recursive traversal

overP. If the auditor finds an interior stub whereQΓ(FHi,r .A) is true, the verification fails

because the auditor found a node that was supposed to have been split. (Unfrozen nodes

will always be split as they compose the proof skeleton and only occur on the path fromX j

to the root.) The auditor must also verify that pruned treeP commits the same events as the

commitmentC′j by reconstructing the root commitmentC j using the equations (3.5)-(3.10)

and checking thatC j = C′j.

As with an ordinary history tree, a Merkle aggregating tree requires auditing for tamper-

detection. If an event is never audited, then there is no guarantee that its attributes have

been properly included. Also, a dishonest logger or client could deliberately insert false

log entries whose attributes are aggregated up the tree to the root, causing garbage results

to be included in queries. Even so, ifQ is stable, a malicious logger cannot hide matching

events from query results without detection.

48

3.5.4 Applications

Safe deletion Merkle aggregation can be used for expiring old and obsoleteevents that

do not satisfy some predicate and prove that no other events were deleted inappropriately.

While Merkle aggregation queries prove that no matching event is excluded from a query

result, safe deletion requires the contrapositive: proving to an auditor that each purged

event was legitimately purged because it did not match the predicate.

Let Q(x) be a stable query that is true for all events that the logger must keep. Let

QΓ(x) be the corresponding predicate over attributes. The logger stores a pruned tree that

includes all nodes and leaf events whereQΓ(x) is true. The remaining nodes may be elided

and replaced with stubs. When a logger cannot generate a pathto a previously deleted

eventXi, it instead supplies a pruned tree that includes a path to an ancestor nodeA of Xi

whereQΓ(A) is false. BecauseQ is stable, ifQΓ(A) is false, thenQΓ(Γ(Xi)) andQ(Xi) must

also be false.

Safe deletion and auditing policies must take into account that if a subtree contain-

ing eventsXi . . .X j is purged, the logger is unable to generate incremental or membership

proofs involving commitmentsCi . . .C j. The auditing policy must require that any audits

using those commitments be performed before the corresponding events are deleted, which

may be as simple as requiring that clients periodically request an incremental proof to a

later or long-lived commitment.

Safe deletion will not save space when using the append-onlystorage described in Sec-

tion 3.3.3. However, if data-destruction policies requiredestroying a subset of events in the

log, safe deletion may be used to prove that no unauthorized log events were destroyed.

“Private” search Merkle aggregation enables a weak variant of private information re-

trieval [27], permitting clients to have privacy for the specific contents of their events. To

49

aggregate the attributes of an event, the logger only needs the attributes of an event,Γ(Xi),

not the event itself. To verify that aggregation is done correctly also only requires the at-

tributes of an event. If clients encrypt their events and digitally sign their public attributes,

auditors may verify that aggregation is done correctly while clients preserve their event

privacy from the logger and other clients and auditors.

Bloom filters, in addition to providing a compact and approximate way to represent the

presence or absence of a large number of keywords, can also enable private indexing (see,

e.g., Goh [81]). The logger has no idea what the individual keywords are within the Bloom

filter; many keywords could map to the same bit. This allows for private keywords that are

still protected by the integrity mechanisms of the tree.

Annotations can be useful even when not used in predicate queries. For example, a

log might track resource use. If resource use is measured by an integer and aggregated by

addition, thenτ is an integer anda⊕b := a+b. The annotations on interior nodes aggregate

the total resources used in that subtree, and the annotationon the root summarizes the total

resources used.

3.6 Syslog prototype implementation

Syslog is the standard Unix-based logging system [82], storing events with many attributes.

To demonstrate the effectiveness of our history tree, we built an implementation capable of

storing and searching syslog events. Using events from syslog traces, captured from our

departmental servers, we evaluated the storage and performance costs of tamper-evident

logging and secure deletion.

Each syslog event includes a timestamp, the host generatingthe event, one of 24fa-

cilities or subsystem that generated the event, one of 8 logginglevels, and themessage.

Most events also include atag indicating the program generating the event. Solutions for

50

authentication, management, and reliable delivery of syslog events over the network have

already been proposed [83] and are in the process of being standardized [84], but none of

this work addresses the logging semantics that we wish to provide.

Our prototype implementation was written in a hybrid of Python 2.5.2 and C++ and

was benchmarked on an Intel Core 2 Duo 2.4GHz CPU with 4GB of RAM in 64-bit mode

under Linux. Our present implementation is single-threaded, so the second CPU core is

underutilized. Our implementation uses SHA-1 hashes and 1024-bit DSA signatures, bor-

rowed from the OpenSSL library.

In our implementation, we use the array-based post-order traversal representation dis-

cussed in Section 3.3.3. The value store and history tree arestored in separate write-once

append-only files and mapped into memory. Nodes in the history tree use a fixed number

of bytes, permitting direct access. Generating membershipand incremental proofs requires

RAM proportional to the size of the proof, which is logarithmic in the number of events in

the log. Merkle aggregation query result sizes are presently limited to those which can fit

in RAM, approximately 4 million events.

The storage overheads of our tamper-evident history tree are modest. Our prototype

stores five attributes for each event. Tags and host names areencoded as 2-of-32 bit Bloom

filters. Facilities and hosts are encoded as bit-vectors. Topermit range queries to find every

event in a particular range of time, an interval is used to encode the message timestamp.

All together, there are twenty bytes of attributes and twenty bytes for a SHA-1 hash for

each node in the history tree. Leaves have an additional twelve bytes to store the offset and

length of the event contents in the value store.

We ran a number of simulations of our prototype to determine the processing time and

space overheads of the history tree. To this end, we collected a trace of four million events

from thirteen of our departmental server hosts over 106 hours. We observed 9 facilities, 6

51

levels, and 52 distinct tags. 88.1% of the events are from themail server and 11.5% are from

98,743 failed ssh connection attempts. Only .393% of the loglines are from other sources.

In testing our history tree, we replay this trace 20 times to insert 80 million events. Our

syslog trace, after the replay, occupies 14.0 GB, while the history tree adds an additional

13.6 GB.

3.6.1 Performance of the logger

The logger is the only centralized host in our design and may be a bottleneck. The per-

formance of a real world logger will depend on the auditing policy and relative frequency

between inserting events and requesting audits. Rather than summarize the performance of

the logger for one particular auditing policy, we benchmarkthe costs of the various tasks

performed by the logger.

Our captured syslog traces averaged only ten events per second. Our prototype can

insert events at a rate of 1,750 events per second, includingDSA signature generation.

Inserting an event requires four steps, shown in Table 3.3, with the final step, signing the

resulting commitment, responsible for most of the processing time. Throughput would

increase to 10,500 events per second if the DSA signatures were computed elsewhere (e.g.,

leveraging multiple CPU cores). (Section 3.7 discusses scalability in more detail.) This

corresponds to 1.9MB/sec of uncompressed syslog data (1.1 TB per week).

We also measured the rate at which our prototype can generatemembership and incre-

mental proofs. The size of an incremental proof between two commitments depends upon

the distance between the two commitments. As the distance varies from around two to two

million events, the size of a self-contained proof varies from 1200 bytes to 2500 bytes. The

speed for generating these proofs varies from 10,500 proofs/sec to 18,000 proofs/sec, with

shorter distances having smaller proof sizes and faster performance than longer distances.

52

Step Task % of CPU Rate
(events/sec)

A Parse syslog message 2.4% 81,000
B Insert event into log 2.6% 66,000
C Generate commitment 11.8% 15,000
D Sign commitment 83.3% 2,100

Membership proofs - 8,600
(with locality)

Membership proofs - 32
(no locality)

Table 3.3 : Performance of the logger in each of the four stepsrequired to insert an event
and sign the resulting commitment and in generating membership proofs. Rates are given
assuming nothing other than the specified step is being performed.

For both incremental and membership proofs, compressing bygzip [85] halves the size of

the proofs, but also halves the rate at which proofs can be generated.

After inserting 80 million events into the history tree, thehistory tree and value store re-

quire 27 GB, several times larger than our test machine’s RAMcapacity. Table 3.3 presents

our results for two membership auditing scenarios. In our first scenario we requested mem-

bership proofs for random events chosen among the most recent 5 million events inserted.

Our prototype generated 8,600 self-contained membership proofs per second, averaging

2,400 bytes each. In this high-locality scenario, the most recent 5 million events were al-

ready sitting in RAM. Our second scenario examined the situation when audit requests had

low locality by requesting membership proofs for random events anywhere in the log. The

logger’s performance was limited to our disk’s seek latency. Proof size averaged 3,100

bytes and performance degraded to 32 membership proofs per second. (We discuss how

this might be overcome in Section 3.7.2.)

To test the scalability of the history tree, we benchmarked insert performance and audit-

ing performance on our original 4 million event syslog eventtrace, without replication, and

the 80 million event trace after 20x replication. Event insertion and incremental auditing

53

are roughly 10% slower on the larger log.

3.6.2 Performance of auditors and clients

The history tree places few demands upon auditors or clients. Auditors and clients must

verify the logger’s commitment signatures and must verify the correctness of pruned tree

replies to auditing requests. Our machine can verify 1,900 DSA-1024 signatures per sec-

ond. Our current tree parser is written in Python and is rather slow. It can only parse 480

pruned trees per second. Once the pruned tree has been parsed, our machine can verify

9,000 incremental or membership proofs per second. Presently, one auditor cannot verify

proofs as fast as the logger can generate them, but auditors can clearly operate indepen-

dently of one another, in parallel, allowing for exceptional scaling, if desired.

3.6.3 Merkle aggregation results

In this subsection, we describe the benefits of Merkle aggregation in generating query re-

sults and in safe deletion. In our experiments, due to limitations of our implementation in

generating large pruned trees, our Merkle aggregation experiments used the smaller four

million event log.

We used 86 different predicates to investigate the benefits of safe deletion and the over-

heads of Merkle aggregation queries. We used 52 predicates,each matching one tag, 13

predicates, each matching one host, 9 predicates, each matching one facility, 6 predicates,

one matching each level, and 6 predicates, each matching thek highest logging levels.

The predicates matching tags and hosts use Bloom filters, areinexact, and may have

false positives. This causes 34 of the 65 Bloom filter query results to include more nodes

than our “worst case” expectation for exact predicates. By using larger Bloom filters, we

reduce the chances of spurious matches. When a 4-of-64 Bloomfilter is used for tags and

54

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n
of

 a
nn

ot
at

io
ns

 k
ep

t

Fraction of events kept

Non-bloom
Bloom, 2-of-32 bits
Bloom, 4-of-64 bits

Worst Case
Best Case

Figure 3.11 : Safe deletion overhead. For a variety of queries, we plot the fraction of hashes
and attributes kept after deletion versus the fraction of events kept.

hostnames, pruned trees resulting from search queries average 15% fewer nodes, at the cost

of an extra 64 bits of attributes for each node in the history tree. In a real implementation,

the exact parameters of the Bloom filter would best be tuned tomatch a sample of the events

being logged.

Merkle aggregation and safe deletion Safe deletion allows the purging of unwanted

events from the log. Auditors define a stable predicate over the attributes of events indicat-

ing which events must be kept, and the logger keeps a pruned tree of only those matching

events. In our first test, we simulated the deletion of all events except those from a par-

ticular host. The pruned tree was generated in 14 seconds, containing 1.92% of the events

in the full log and serialized to 2.29% of the size of the full tree. Although 98.08% of the

events were purged, the logger was only able to purge 95.1% ofthe nodes in the history

55

tree because the logger must keep the hash label and attributes for the root nodes of elided

subtrees.

When measuring the size of a pruned history tree generated bysafe deletion, we assume

the logger caches hashes and attributes for all interior nodes in order to be able to quickly

generate proofs. For each predicate, we measure thekept ratio, the number of interior

node or stubs in a pruned tree of all nodes matching the predicate divided by the number of

interior nodes in the full history tree. In Figure 3.11 for each predicate we plot the kept ratio

versus the fraction of events matching the predicate. We also plot the analytic best-case and

worst-case bounds, based on a continuous approximation. The minimum overhead occurs

when the matching events are contiguous in the log. The worst-case occurs when events are

maximally separated in the log. Our Bloom-filter queries do worse than the “worst-case”

bound because Bloom filter matches are inexact and will thus trigger false positive matches

on interior nodes, forcing them to be kept in the resulting pruned tree. Although many

Bloom filters did far worse than the “worst-case,” among the Bloom filters that matched

fewer than 1% of the events in the log, the logger is still ableto purge over 90% of the

nodes in the history tree and often did much better than that.

Merkle aggregation and authenticated query results In our second test, we examine

the overheads for Merkle aggregation query lookup results.When the logger generates the

results to a query, the resulting pruned tree will contain both matching events and history

tree overhead, in the form of hashes and attributes for any stubs. For each predicate, we

measure thequery overhead ratio—the number of stubs and interior nodes in a pruned

tree divided by the number of events in the pruned tree. In Figure 3.12 we plot the query

overhead ratio versus the fraction of events matching the query for each of our 86 predi-

cates. This plot shows, for each event matching a predicate,proportionally how much extra

56

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

 a
nn

ot
at

io
ns

 in
 p

ro
of

 p
er

 e
ve

nt

Fraction of events in the query result

Non-bloom
Bloom, 2-of-32 bits
Bloom, 4-of-64 bits

Worst case
Best case

Figure 3.12 : Query overhead per event. We plot the ratio between the number of hashes
and matching events in the result of each query versus the fraction of events matching the
query.

overhead is incurred, per event, for authentication information. We also plot the analytic

best-case and worst-case bounds, based on a continuous approximation. The minimum

overhead occurs when the matching events are contiguous in the log. The worst-case oc-

curs when events are maximally separated in the log. With exact predicates, the overhead

of authenticated query results is very modest, and again, inexact Bloom filter queries will

sometimes do worse than the “worst case.”

3.7 Scaling a tamper-evident log

In this section, we discuss techniques to improve the insertthroughput of the history tree

by using concurrency, and to improve the auditing throughput with replication. We also

discuss a technique to amortize the overhead of a digital signature over several events.

57

3.7.1 Faster inserts via concurrency

Our tamper-evident log offers many opportunities to leverage concurrency to increasethrough-

put. Perhaps the simplest approach is to offload signature generation. From Table 3.3, sig-

natures account for over 80% of the runtime cost of an insert.Signatures are not included

in any other hashes and there are no interdependencies between signature computations.

Furthermore, signing a commitment does not require knowinganything other than the root

commitment of the history tree. Consequently, it’s easy to offload signature computations

onto additional CPU cores, additional hosts, or hardware crypto accelerators to improve

throughput.

It is possible for a logger to also generate commitments concurrently. If we examine

Table 3.3, parsing and inserting events in the log is about two times faster than generat-

ing commitments. Like signatures, commitments have no interdependencies on one other;

they depend only on the history tree contents. As soon as event X j is inserted into the tree

andO(1) frozen hashes are computed and stored, a new event may be immediately logged.

Computing the commitmentC j only requires read-only access to the history tree, allowing

it to be computed concurrently by another CPU core without interfering with subsequent

events. By using shared memory and taking advantage of the append-only write-once se-

mantics of the history tree, we would expect concurrency overhead to be low.

We have experimentally verified the maximum rate at which ourprototype implemen-

tation, described in Section 3.6, can insert syslog events into the log at 38,000 events per

second using only one CPU core on commodity hardware. This isthe maximum through-

put our hardware could potentially support. In this mode we assume that digital signatures,

commitment generation, and audit requests are delegated toadditional CPU cores or hosts.

With multiple hosts, each host must build a replica of the history tree which can be done at

least as fast as our maximum insert rate of 38,000 events per second. Additional CPU cores

58

on these hosts can then be used for generating commitments orhandling audit requests.

For some applications, 38,000 events per second may still not be fast enough. Scaling

beyond this would require fragmenting the event insertion and storage tasks across multiple

logs. To break interdependencies between them, the fundamental history tree data structure

we presently use would need to evolve, perhaps into disjointlogs that occasionally entan-

gle with one another as in timeline entanglement [59]. Designing and evaluating such a

structure is future work.

3.7.2 Logs larger than RAM

For exceptionally large audits or queries, where the working set size does not fit into RAM,

we observed that throughput was limited to disk seek latency. Similar issues occur in any

database query system that uses secondary storage, and the same software and hardware

techniques used by databases to speed up queries may be used,including faster or higher

throughput storage systems or partitioning the data and storing it in-memory across a cluster

of machines. A single large query can then be issued to the cluster node managing each

sub-tree. The results would then be merged before transmitting the results to the auditor.

Because each sub-tree would fit in its host’s RAM, sub-queries would run quickly.

3.7.3 Signing batches of events

When large computer clusters are unavailable and the performance cost of DSA signatures

is the limiting factor in the logger’s throughput, we may improve performance of the logger

by allowing multiple updates to be handled with one signature computation.

Normally, when a client requests an eventX to be inserted, the logger assigns it an index

i, generates the commitmentCi, signs it, and returns the result. If the logger has insufficient

CPU to sign every commitment, the logger could instead delayreturningCi until it has

59

a signature for some later commitmentC j (j ≥ i). This later signed commitment could

then be sent to the client expecting an earlier one. To ensurethat the eventXi in the log

committed byC j wasX, the client may request a membership proof from commitmentC j

to eventi and verify thatXi = X. This is safe due to the tamper-evidence of our structure.

If the logger were ever to later sign aCi inconsistent withC j, it would fail an incremental

proof.

In our prototype, inserting events into the log is twenty times faster than generating

and signing commitments. The logger may amortize the costs of generating a signed com-

mitment over many inserted events. The number of events per signed commitment could

vary dynamically with the load on the logger. Under light load, the logger could sign every

commitment and insert 1,750 events per second. With increasing load, the logger might

sign one in every 16 commitments to obtain an estimated insert rate of 17,000 events per

second. Clients will still receive signed commitments within a fraction of a second, but

several clients can now receive the same commitment. Note that this analysis only consid-

ers the maximum insert rate for the log and does not include the costs of replying to audits.

The overall performance improvements depend on how often clients request incremental

and membership proofs.

3.8 Summary

In this chapter, we have shown that regular and continous auditing is a critical operation for

any tamper-evident log system, for without auditing, clients cannot detect if a Byzantine

logger is misbehaving by not logging events, removing unaudited events, or forking the

log. From this requirement we have developed a new tamper-evident log design, based on a

new Merkle tree data structure that permits a logger to produce concise proofs of its correct

behavior. Our system eliminates any need to trust the logger, instead allowing clients and

60

auditors of the logger to efficiently verify its correct behavior with only a constant amount

of local state. By sharing commitments among clients and auditors, our design is resistant

even to sophisticated forking or rollback attacks, even in cases where a client might change

its mind and try to repudiate events that it had logged earlier.

We also proposed Merkle aggregation, a flexible mechanism for encoding auxiliary

attributes into a Merkle tree that allows these attributes to be aggregated from the leaves

up to the root of the tree in a verifiable fashion. This technique permits a wide range of

efficient, tamper-evident queries, as well as enabling verifiable, safe deletion of “expired”

events from the log.

Our prototype implementation supports thousands of eventsper second, and can easily

scale to very large logs. We also demonstrated the effectiveness of Bloom filters to enable

a broad range of queries. By virtue of its concise proofs and scalable design, our tech-

niques can be applied in a variety of domains where high volumes of logged events might

otherwise preclude the use of tamper-evident logs.

61

Chapter 4

PAD designs

Authenticated dictionaries were first proposed for representing certificate revocation lists

in a public key infrastructure, allowing the certificate revocation list to be served from

untrusted machines and signed by the trusted author [5]. Clients send lookup requests

for a particular key to the server, which then replies with a proof containing either the

corresponding value, or a “no such value” reply, authenticated by the author’s signature.

Persistent authenticated dictionaries extend this to alsosupport lookups on earlier versions

of the dictionary and were introduced by Anagnostopoulos etal. [7], using applicative (i.e.,

functional or mutation-free) red-black trees and skiplists, requiringO(logn) storage per

update. In this chapter we will describe our persistent authenticated dictionary designs,

their potential features, and various threat models they can run under. We present improved

tree-based PADs and present a new foundation for PAD designs, tuple-based PADs, which

offer constant-sized lookup proofs.

In Section 4.1 we discuss threat models and features that PADs may support. In Sec-

tion 4.2, we show how to adapt Sarnak and Tarjan’s construction [10] in order to build

PADs with lower storage overheads, including a design with constant storage per update.

In Section 4.3 we developsuper-efficientPADs based around a different design principle,

offering constant-sized authentication results, as well as constant storage per update. In

Section 4.4 we discuss approaches for scaling our PAD designs. In Section 4.5 we de-

scribe future work, extensions, and applications of our PADdesigns. In Chapter 5 we will

evaluate all of the PAD designs presented in this chapter.

62

4.1 Definitions and models

In this chapter, we focus on authenticating set-membershipand non-membership queries

over a dynamic set, stored on an untrusted server. To preventthe server from lying about the

data being stored, the author supplies authentication information to the server permitting

lookup responses to be verified.

The authenticated dictionary [5] abstraction supports theordinary dictionary opera-

tions, I(K,V) and D(K), which update the contents. Lookups,

L(K) → (V,P) return both the answer or� if no such key exists, and alookup

proof Pof the correctness of their result. Ultimately, a server must prove that a given query

result is consistent with some external data, such as an author’s signature on the tree’s root

hash.

Authenticated dictionaries become persistent [7] when they allow the author to take

snapshots of the contents of the dictionary. Queries can be on the current version, or any

historical snapshot. Each snapshot results in a newversionof the PAD. The author then

sends anupdate blobto the server containing data and authentication information that the

server stores in arepository, used to respond to lookup requests from clients. Clients send

lookup requests containing a lookup key and a version numberto the server and receive

a lookup proofof the membership of the key and its corresponding value, or aproof of

non-membership of that key, authenticated by the author’s signature. PADs ideally have

efficient storage of all the snapshots, presumably sharing state from one snapshot to the

next. Snapshots can be taken at any time. For simplicity whenwe evaluate costs, we will

assume a snapshot is taken after every update. The security guarantee offered by a PAD is

that a server cannot convince a client of the membership or non-membership of a key and

value in a particular snapshot unless the author placed it there.

63

4.1.1 Threat model

We make typical assumptions for the security of cryptographic primitives. We assume that

we have idealized cryptographic one-way hash functions (i.e., collisions never occur and

the input can never be derived from the output), and that public key cryptography systems’

semantics are similarly idealized. We also assume the existence of a trusted PKI or other

means to identify the public key associated with an author. In addition, there are several

threat models that a PAD design can function under:

Third-party trust model This threat model implements a publishing paradigm with

three parties: anauthor with limited storage and possibly intermittent connectivity, an

untrustedserverwith significant storage and a consistent online connection, and multiple

clientswho perform queries and have limited storage. We assume thatthe author of the data

is trusted by clients who wish to detect if the server is tampering with the stored data or re-

turning incorrect responses to lookups. The author asks theserver to insert or remove (key,

value) pairs, providing any necessary authentication information. When clients contact the

server they will verify the resulting proof which will include validating the consistency of

the server’s data structure as well as the author’s digital signature.

An example of this is the original use of an authenticated dictionary to manage the list of

valid and revoked certificates (the CRL) without trusting the server distributing the list. A

CRL server naturally extends to supporting historical lookups and might be used to answer

questions such as “Was certificateC valid on January 14th, 1998, when contractD was

signed by that certificate?” Another example occurs with a remote backup service where

the author is the client and the author wants to access historical versions of its backed-up

files.

64

Untrusted author We also consider scenarios where the author of a PAD is not trusted,

which can be relevant to a variety of financial auditing and regulatory compliance sce-

narios. For instance, the author may wish to maliciously change past values of the PAD,

possibly in collusion with the server. Or, the author may be responsible for collecting and

aggregating records, such as a list of bank accounts and balances and attempt to misbe-

have. Fortunately, if the author ever signs inconsistent answers or it improperly aggregates

records, its misbehavior can be caught by clients and auditors. For details, please seeroot

authenticatorsin Section 4.1.2.

An example application of a PAD with an untrusted author occurs in pari-mutuel gam-

bling, used in horse racing. When betting is open, preliminary odds are continuously com-

puted, by summing all of the wagers up to that point in time foreach outcome, and dis-

played to bettors. Reporting incorrect odds to bettors, either by accident or fraud, can alter

betting patterns, and thus payoffs. If the server distributes the continuously changing totals

through a PAD, its signature is a commitment and can be used toprove misbehavior.

Buggy server There are also applications, such as libraries or archives,where the author

and server are honest, but may inadvertently suffer corruption or make mistakes in data

versioning or when tracking data provenance.

For instance, digital archives are responsible for managing and preserving large, con-

stantly growing data sets. Three issues that are faced by such archives are detecting lost

data, detecting corruption, and tracking metadata, such aswho created an archived ob-

ject and when. In addition, many datasets are subject to constant revision as new data

arrives [72]. Digital signatures and cryptographic hashesare ideal for binding metadata to

data and detecting corruption. However, an authenticated dictionary or PAD is ideal for

discovering when data has gone missing.

65

4.1.2 Features

An authenticated dictionary (persistent or not) may support many features. In this section,

we describe features supported by the dictionaries we investigate.

Super-efficiency. The proof returned on a lookup request is constant-sized. Our tuple-

based PADs, described in Section 4.3 offer super-efficiency.

Partial persistence. The PADs we consider are actually partially persistent, meaning that

although any version of the authenticated dictionary may bequeried, only the latest version

can be modified.∗ Whenever we use the term “persistent” in this thesis, we really mean

“partially persistent.”

History independence. Some data structures can hide information as to the order in

which they were constructed. For instance, if data items arestored, sorted in an array,

no information would remain as to the insertion order. History independence can derive

from randomization; Micciancio [88] shows a 2-3 tree whose structure depends on coin

tosses, not the keys’ insertion order.

History independence can also derive from data structures that have a canonical or

unique representation [89]. To this end, a data structures can be “set-unique” [90], meaning

that a given set of keys in the dictionary has a unique and canonical representation (see Sec-

tion 4.2.2). Some of our tree-based and tuple-based PAD designs are history-independent.

∗In the persistency literature [86], the term “persistent” is reserved for data structures where any ver-

sion, present or past, may be updated, thus forming a tree of versions. Path copying trees, described in

Section 4.2.5, are an example of such a data structure. Confluently persistent data structures permit merge

operations between snapshots [87].

66

In a persistent dictionary, history independence means that if multiple updates occur

between two adjacent snapshots, the client learns nothing as to the order in which the

updates occurred and the server learns nothing if it receives the updates as a batch. In

addition, it must not be possible for a client to learn anything about the keys in one snapshot,

given query responses from any other snapshots.

Aggregates. Any tree data structure may include aggregates that summarize the children

of a given node (e.g., their minimum and maximum values, or their sum). These aggregates

are valuable on their own and may be used for searching or other applications (see Merkle

aggregation, described in Section 4.2.1). Our tree-based PADs support aggregates.

Root authenticators. For each snapshot, it would be beneficial if there was a singlevalue

that fixes or commits the entire dictionary at that particular time. This value can then be

stored and replicated efficiently by clients, stored in a time-stamping system [54, 57], or

tamper-evident log [21–23]. Root authenticators simplifythe process of discovering when

an untrusted author or server may be lying about the past. Mistrusting clients need only to

discover that the author has signed different root authenticators for the same snapshot.

4.2 Tree-based PADs

In this section, we describe how we can build PADs with balanced search trees. Tree-based

PADs have lookup proof sizes, update sizes and lookup proof verification times that are

logarithmic in the number of keys in the dictionary. Tree-based PADs offer a range of query

time and storage-space tradeoffs. In this section, we first describe the three components

from which we build our tree-based PADs: Merkle trees, treaps, and persistent binary

search trees. We then show how to combine them.

67

H

D S

B F M

K

L

Figure 4.1 : Graphical notation for a lookup proof forM or a proof of non-membership
for N. Circles denote the roots of elided subtrees whose children, grayed out, need not be
included.

4.2.1 Authenticated dictionaries based on Merkle trees

Given a search tree, where each node contains a key, value, and two child pointers, we

can build an authenticated dictionary by building a Merkle tree [11]. For each nodex, we

assign asubtree authenticator x.H with the following recurrence:x.H = H(x.key,H(x.val),

x.left.H, x.right.H). H denotes a cryptographic hash function. Theroot authenticator,

root.H, authenticates the whole tree. It may then be published or signed by the author.

A lookup proof, seen in Fig. 4.1 and returned on a L request, is a proof that a

key kq is or is not in the tree. It consists of a pruned tree containing the search path tokq.

Subtree authenticators for the sibling nodes on the search path are included in the proof

as well as subtree authenticators of the children of the nodecontainingkq, if kq is found.

From this pruned tree, the root authenticator is reconstructed and compared to the given

root authenticator. We can prove that a key is not in the tree by showing that the unique

in-order location where that key would otherwise be stored is empty.

For a balanced search tree, a lookup proof has sizeO(logn), and can be generated in

O(logn) time if the subtree authenticators are precomputed. Conventional implementations

of authenticated search trees implement a logicalsubtree authenticator cachestoring the

68

subtree authenticator for each node in the node itself. Notethat this cache is optional,

because the server could certainly recompute any hash on thefly from the existing tree.

Without a cache, generating a lookup proof requiresO(n) time for recomputing subtree

authenticators of elided subtrees. Of course, the cache hasobvious performance benefits.

In Section 4.2.5, we will consider how, where, and when thesesubtree authenticators are

cached and investigate tradeoffs in caching strategies.

Smaller proofs result if the search tree is very close to being balanced. During updates,

the search tree can be rebalanced by applying the update-rules of any balanced tree algo-

rithm such as a treap or red-black tree. We do not need to include red-black bits or treap

priority values in the hash. These are only hints needed by the author to generate balanced

trees, and thus only affect efficiency, not correctness or security.

Merkle aggregation. Merkle aggregation was described in Section 3.5 as applied to an-

notating events in a Merkle tree storing a tamper-evident log. These annotations are then

aggregated up to the root of the tree where they may be directly queried or used to perform

authenticated searches. To prevent tampering, the annotations of a node are included in

the subtree authenticator of its parent. If the author is nottrusted, these annotations can be

checked by auditors to verify the author’s proper behavior.

Merkle aggregation has a straightforward extension to binary search trees that include

keys and values in interior nodes. We let thesubtree aggregateof a nodex be x.A, Γ be

a function that computes the annotation associated with a key and value pair, and⊕ be a

function that aggregates. If we definex.∗ = H(x.H, x.A), then we can describe the Merkle

aggregation over a search tree with the formulas:x.A = Γ(x.key, x.val)⊕ x.left.A⊕ x.right.A

andx.H = H(x.key,H(x.val), x.left.∗, x.right.∗). Wherever a host previously stored or in-

cluded the hash of a node in a proof, it will now include the node’s hash and aggregate,

69

which can be cached or recomputed as-needed.

Merkle aggregation applied to a search tree or persistent search has several potential

uses. Just as with a tamper-evident log, annotations can be used as an auxiliary index-

ing data structure, allowing items in the dictionary to be found without needing to know

their key. Merkle aggregation can also be used as a generic aggregation strategy, allowing

aggregation to occur in a tamper-evident fashion on an untrusted server.

4.2.2 Treap

Treaps [91] are a randomized search tree that can implement adictionary with aO(logn)

expected cost of an insert, delete, or lookup. Treaps support efficient set union, difference,

and intersection operations [92]. We could use any other balanced search tree that sup-

portsO(1) expected (not amortized) node mutations per update, such as AVL or red-black

trees [93]. We like treaps for their set-uniqueness properties (discussed further below).

Each node in a treap is given a key, value, priority, and left and right child pointers.

Nodes in a treap obey the standard search-key order; a node’skey always compares greater

than all of the keys in its left subtree and less than all of thekeys in its right subtree. In

addition, each node in a treap obeys the heap property on its priorities; a node’s priority

is always less than the priorities of its descendants. Operations that mutate the tree will

perform rotations to preserve the heap property on the priorities. When the priorities are

assigned at random, the resulting tree will be probabilistically balanced. Furthermore,

given an assignment of priorities to nodes, a treap on a givenset is unique.† We exploit

†Proof sketch: If all priorities are unique for a given set of keys, then there exists one unique minimum-

priority node, which becomes the root. This uniquely divides the set of keys in the treap into two sets, those

less than and greater than that node’s key, stored in the leftand right subtrees, respectively. By induction, we

can assume that the subtrees are also unique.

70

this uniqueness by creatingdeterministic treaps, assigning priorities using a cryptographic

digest of the key, creating a set-unique representation.

Assuming that the cryptographic digest is a random oracle, in expectation, each insert

and delete only mutatesO(1) nodes, consisting of one node having a child pointer modified

andO(1) rotations. The expected path length to a key in the treap is O(logn). The worst

case isn.

Benefits of a set-unique representation. Deterministic treaps are set-unique, which means

that all authenticated dictionaries with the same contentshave identical tree structures. If

we build Merkle trees from these treaps, then any two authenticated dictionaries with iden-

tical contents will have identical root hashes. Set-uniqueness makes our treaps history

independent. The root hash that authenticates a treap leaksno information about the inser-

tion order of the keys or the past contents of the treap, whichmay be valuable, for example,

with electronic vote storage or with zero-knowledge proofs.

History-independence is also useful if an dictionary is used to store or synchronize

replicated state in a distributed system. Updates may arrive to replicas out-of-order, per-

haps through multicast or gossip protocols. Also, by using aset-unique authenticated data

structure, we can efficiently determine if two replicas are inconsistent.

History independence makes it easier to recover from backups or create replicas. If

a host tries to recover the dictionary contents from a backupor another replica, history

independence assures that the recovered dictionary has thesame root hash. Were a non-set-

unique data structure, such as red-black tree, used the different insertion order between the

original dictionary and that used when recovering would likely lead to different root hashes

even though the recovered dictionary had the same contents.

71

4.2.3 Skiplist

Anagnostopoulos et al. [7] described PADs based on path copying red-black trees and

skiplists. In this section, we describe skiplists and how they can represent an authenti-

cated dictionary. We improve on their constructions of a skiplist authenticated dictionary

in two ways. First, we represent a skiplist as a strict applicative binary tree to make it

amenable to being stored using any persistent search tree design. We also present a lookup

proof construction that is approximately half the size of previous approaches.

Our applicative tree-representation of skiplists is basedon the skiplist authentication

trees by Goodrich et al. [12]. A skiplist [79] is a datastructure offering logarithmic lookups,

inserts, and deletes. A classic skiplist is a singly-linkedlist except that nodes may have

several outgoing links, stored in a variable-sized array, which can skip over a large number

of list nodes. An alternative formulation of skiplists exists, shown in Figure 4.2, where

each variable-sized array is represented as a ‘tower’ of nodes where each node has only

two outgoing links.

This forms a representation of a skiplist resembling a set ofparallel sorted linked lists.

Each key in the skiplist is assigned a maximum levelLmax when it is inserted, and it will be

placed in the level-Lmax linked list and all lower-level linked lists.

Maximum levels are assigned using an exponential distribution. The level-0 list con-

tains every list node. The level-ith list contains one in every 2i list nodes on average. In this

example, keys{3, 6, 9, 15} are at level 0, key{8} is at level 1 and keys{5, 11} are at level 3.

If the level of a key is chosen deterministically from the key, the skiplist over a set of keys

is set-unique. Searching a skiplist involves starting in the upper left and ‘skipping’ many

nodes by using the higher level links. Skiplists offer an expectedO(logn) update time and

lookup time. Just as with a treap, the worst-case lookup and update time isO(n).

During lookups, not every edge in a skiplist is used. Extra edges, represented in grey in

72

Figure 4.2, are only needed for performing updates. Our insight is thatcompletely omitting

the extra edges lets us store a skiplist as if it were an ordinary binary tree; it can then be

managed using any of our persistent tree algorithms or implementations. To this end, we

have redesigned the update operations to not require these extra edges.

In Figure 4.3 we present our final representation of this skiplist, similar to the skiplist

authentication trees construction of Goodrich et al. [12].The difference between our con-

structions is that their construction requires level-0 nodes without right siblings to include

the key of their successor. Our improved lookup proof construction, described below,

makes that unnecessary.

In addition to a new formulation of skiplists as binary trees, our lookup proofs im-

prove on prior work in authenticated skiplists. Lookup proofs showing membership consist

of a path from the root to node containing a lookup key. A lookup proof showing non-

membership must prove that the interval between two successor keys in the skiplist does

not contain the lookup key.

In the original formulation of authenticated skiplists, non-membership is proved by

including the right siblings of each node in the path from theroot to the lookup key in the

proof. For example, to prove that the key 7 is not in the skiplist in Figure 4.3, the server

includes the bold-faced edges along with the (−∞,∞) edge atL3 and the (5, 11) edge atL2.

When proving non-membership of a lookup key that occurs after a level-0 node without a

right sibling, the proof of non-membership uses the right successor key stored in that node.

We can improve on this construction. Observe that in a skiplist, the successor of a

level-0 node without a right sibling is always the key storedin the right sibling of the first

ancestor of that node with a right sibling. If the lookup proof already contains the right

sibling of every node in the lookup path, then the successor node is already included in the

proof, removing the need for any nodes to explicitly store the keys of their successors. By

73

removing the non-tree-like behavior of storing successor keys, this construction simplifies

the design and implementation of update operations.

We can further optimize the proof when the author is trusted to correctly build the

skiplist. Instead of including every right sibling in the lookup proof, we only need to

includeoneright sibling. If we want to show that a keyK is not in the skiplist, we do a

search forK. If we find a levelL0 nodeN with key k1 < K and a right child containing

k2 > K, then by including bothN and its right child, we can prove thatK is not in the

skiplist. If N does not have a right child, then the successor key tok1 is stored in the right

sibling of the first ancestor ofN that has a right sibling, if that right sibling has keyk2 > K,

thenK is not in the dictionary. Only this one right sibling needs tobe included in the proof.

For example, in Figure 4.3, the levelL0 node 6’s first ancestor with a right sibling is the

level L1 node 5, whose right sibling contains an 8. This is 6’s successor in the skiplist.

The highlighted edges and nodes would suffice to prove that the value 7 is absent from the

data structure. This optimization makes our construction of a skiplist lookup proof include

approximately half of the number of nodes as prior constructions that include right siblings

for every node in the lookup path.

4.2.4 Red-black trees

Authenticated dictionaries can also be built based on red-black trees [7], offering O(1)

expected node mutations,O(logn) worst-case update costs, andO(logn) worst case path

length. Red-black trees offer a tighter bound than skiplists or treaps. Red-black costshave

a logarithmic worst-case bound, not a logarithmic expected-case bound. Unfortunately,

red-black trees are not history independent. Note that for simplicity in reporting results in

our evaluation, we may refer to red-black trees as havingO(logn) expected costs, instead

of the tighter bound ofO(logn) worst-case costs.

74

Figure 4.2 : Skiplist representation. Dashed arrows represent redundant edges that are
omitted in our implementation.

Figure 4.3 : Skiplist query for “7.” Highlighted nodes will be included in the result proof
to demonstrate that “7” is absent from the result.

75

4.2.5 Persistent binary search trees

Persistent search tree data structures extend ordinary search tree data structures to support

lookups in past snapshots or versions. Persistent data structures were developed to support

these features and have been extensively studied [94,95], particularly with respect to func-

tional programming [96,97]. In this section we summarize the algorithms proposed by Sar-

nak and Tarjan [10], who considered approaches for persistent red-black search trees. Their

techniques apply equally well to treaps, red-black trees, or our version of a skiplist (De-

scribed in Sections 4.2.2 and 4.2.4 and 4.2.3 respectively.).

Logically, a persistent dictionary built with search treesis simply a forest of trees, i.e.,

a separate tree for each snapshot. The root of each of these trees is stored in asnapshot

array, indexed by snapshot version. Historical snapshots are frozen and immutable. The

most recent, orcurrent snapshot can be updated in place to include inserted or removed

keys. Whenever a snapshot is taken, a new root is added to the snapshot array and that

snapshot is thereafter immutable.

Three strategies Sarnak and Tarjan proposed for representing the logical forest arecopy

everything, path copying, andversioned nodes. They range fromO(n) space toO(1) space

per update. Note that these different physical representations store the same logical forest.

The simplest,copy everything, copies the entire tree on every snapshot and costsO(n)

storage for a snapshot containingn keys.

Path copying uses a standard applicative tree, avoiding the redundant storage of subtrees

that are identical across snapshots. Nodes in a path-copying tree are immutable. Where

the normal, mutating treap, red-black, or skiplist algorithm would modify a node’s children

pointers, an applicative tree instead makes a modified cloneof the node with the new chil-

dren pointers. The parent node will also be cloned, with the clone pointing at the new child.

76

0

R

S

1 2 3

R
T=2

Figure 4.4 : Four snapshots in a Sarnak-Tarjan versioned-node tree, starting with an empty
tree, then insertingR, then insertingS, then deletingS. We show the archived children to
the left of a node and the current children to the right. Note thatR is modified in-place for
snapshot 2, but cloned for snapshot 3.

This propagates up to the root, creating a new root. For any ofred-black trees, treaps, or

skiplists, each update will createO(1) new nodes andO(logn) cloned nodes in expectation.

When a snapshot is taken after every update, skiplists and treaps will useO(logn) expected

storage per update while red-black trees will have a worst-case bound ofO(logn) storage

per update.

Versioned nodes are Sarnak and Tarjan’s final technique for implementing partially per-

sistent search trees and can represent the logical forest with O(1) expected amortized stor-

age per update. We will first explain how versioned node treeswork and then, in Sect. 4.2.6,

we will show how to build these techniques into search trees with Merkle hashes.

Rather than allocating new nodes, as with path copying, versioned nodes may contain

pointers to older children as well as the current children. While we could have an infinite

set of old children pointers, versioned nodes only track twosets of children (archivedand

current) and atimestamp T. The archived pointers archive one prior version, withT used to

indicate the snapshot time at which the update occurred so that LV’s know whether

to use the archived or current children pointers. A versioned node cannot have its children

updated twice. If a nodex’s children need to be updated a second time, it will be cloned, as

77

in path copying. The clone’s children will be set to the new children. x’s parent must also

be updated to point to the new clone, which may recursively cause it to be cloned as well if

its archived pointers were already in use. In Fig. 4.4 we present an example of a versioned

node tree.

Each update to a treap or red-black tree requires an expectedO(1) rotations, each of

which requires updating the children of 2 versioned nodes, requiring a total ofO(1) ex-

pected amortized storage per update. To support multiple updates within a single snapshot,

we include a last-modified version number in each versioned node. If the children point-

ers of a node are updated several times within the same snapshot, we may update them in

place. As with path copying trees, saving a copy of the root node in the snapshot array is

sufficient to find the data for subsequent queries.

4.2.6 Making trees persistent and authenticated

A persistent tree is just a forest of individual trees, one for each snapshot, each of which

is an independent authenticated dictionary with the proscribed structure of a tree. As each

snapshot is an ordinary search tree, tree-based PADs naturally extend to support queries of

a given value’s successor, predecessor, and so forth.

In a PAD, the author only needs to store or access one search tree, that of the latest

snapshot. Trees representing earlier snapshots are not needed to perform updates and thus

need not be stored by the author. The server on the other hand needs to be able to store a

representation ofeverysnapshot’s search tree in order to respond to lookup requests from

clients.

The choice of how we represent the logical forest of trees is completely invisible to

clients and has no effect on nature of a lookup proofs in historical snapshots or onthe root

authenticator for a snapshot. We can represent the logical forest of trees representing each

78

snapshot using any of the persistent tree algorithms in Section 4.2.5. Different representa-

tions have different performance and storage cost tradeoffs, in particular the costs of storing

or generating subtree authenticators for elided subtrees,which are needed when generating

lookup proofs.

If copy everythingis used to represent the forest of trees, lookup proofs can becomputed

in time proportional to the depth of the tree, which is expected to beO(logn) for treaps and

skiplists andO(logn) in the worst case for red-black trees. Each node occurs in exactly

one snapshot and each node can cache its subtree authenticator. Whenpath copyingis used

to represent the forest of trees, each node is immutable oncecreated. The subtree rooted

at that node is fixed and the subtree authenticator is constant and can be cached directly

on that node. Lookup proofs can be computed inO(logn) expected time and updates cost

O(logn) expected storage. PADs based on path-copying red-black trees were proposed by

Anagnostopoulos et al. [7].

Caching subtree authenticators in Sarnak-Tarjan versioned nodes adds extra com-

plexity. Unlike before, the descendants of a node are no longer immutable and the subtree

authenticator of a node is no longer constant for all snapshots in which it occurs. For

example, in Fig. 4.4, the node containingR in the version 1 and 2 trees has different au-

thenticators in snapshots 1 and 2. In this section, we present novel techniques for building

authenticated data-structures out of persistent data structures based on versioned nodes by

controlling when and how subtree authenticators are recomputed or cached. In these de-

signs, each update costsO(1) storage to create new versioned nodes plus whatever overhead

is used for caching subtree authenticators.

In our designs, we store subtree authenticators for the current snapshot, mutating it in

place on each update to the tree. Thisephemeral subtree authenticatorcan be used to

79

generate lookup proofs for the current snapshot inO(logn) time. For historical snapshots,

however, it cannot be used.

For historical snapshots, a simple solution is to not cache any subtree authenticators

at all. In thiscache nothingcase, the server can calculate the subtree authenticator for a

node on-the-fly from its descendants and generate a lookup proof in O(n) time. Obviously,

we want to generate proofs faster than that. By spending additional space to cache the

changing subtree authenticators, we can reduce the cost of generating lookup proofs.

Each versioned node can cache the changing authenticator for every version in aver-

sioned referencewhich can be stored as an append-only resizable vector of pairs containing

version number transition pointsvi and valuesr i, ((v1, r1), (v2, r2), . . . (vk, rk))). The refer-

ence is undefined forv < v1. The reference isr1 for v1 ≤ v < v2, r2 for v2 ≤ v < v3,

and so forth. The reference isrk for versions≥ vk. r i = � means that the cache is invalid

and the subtree authenticator must be recomputed by visiting the node’s children. Lookups

by version number use binary search over the vector inO(logk) time in the worst case.

Only O(1) time is required to update each cache if we copy subtree authenticator from the

ephemeral cache at the end of the snapshot.

Note that in this cache design, the most recently cached subtree authenticator remains

valid forever. If a cached subtree authenticator is about tobecomes stale, the authenticator

cache must be either updated with the new subtree authenticator, or explicitly invalidated

for the next snapshot. Note that if the authenticator cache is invalidated for the next snap-

shot, it remains valid for prior snapshots. Similar updateswill also be necessary for the

authenticator caches in the modified node’s ancestors.

Our first caching option,cache everything, ensures that the authenticator cache always

hits. On each update to the tree, we update the cache for each node in the path to the

root. This means that we lose theO(1) benefit of using versioned nodes, because we

80

must pay aO(logn) expected cost to maintain the cached authenticators for treaps and

skiplists or aO(logn) worst-case cost for red-black trees. Generating a lookup proof will

costO(logv · logn) time in expectation for aO(logn) expected binary searches in the sub-

tree authenticator cache. In the example presented in Fig. 4.4, the nodes containingR in the

version 1 and 3 trees have 2 and 1 cached authenticators respectively. The node containing

S has 1 cached subtree authenticator.

Although PADs implemented by versioned nodes implemented using the cache-everything

strategy have the same big-O space usage as PADs implementedby trees that use path copy-

ing, the constant factors are smaller. Appending another hash and timestamp threshold to

O(logn) versioned references implemented by resizable arrays is much more concise than

cloningO(logn) nodes.

We are not required to cache every subtree authenticator. Authenticators may be re-

computed as needed, offering a diverse set of choices for caching strategies and time-space

tradeoffs. Caching strategies may be generic, or exploit spacial or temporal locality, as

long as a cached authenticator is updated or invalidated in any snapshot where a descendant

changes. Caching strategies may also purge authenticatorsat any time to save space. Al-

though many application-specific strategies are possible,we will only present one generic

caching strategy with provable bounds.

Ourmedian layer cacheoffersO(1) storage per update while generating lookup proofs

in historical snapshots inO(
√

n logv) time in expectation by permanently caching subtree

authenticators on exactly those nodes at depthD chosen to be close to the median layerlog2 n
2

in the tree. As nodes enter or leave the median layer, or the median layer itself changes, we

maintain the invariant that for each snapshot, the versioned nodes in the median layer for

that particular snapshot have cached authenticators.

When an update occurs, in the typical case where only leaves’values change, we update

81

the subtree authenticator cache in the ancestor median layer node. In addition, all other

ancestors of the changed node potentially have stale authenticators, forcing us to explicitly

invalidate their caches for the upcoming snapshot. In the atypical case, many nodes may

enter or leave the median layer at a time, due to changes of thenumber of keys in the tree

or rotations among the firstD layers of the tree. However, onlyO(1) expected additional

storage per-update is required to account for these effects.

Computing lookup proofs for the median layer tree can be donein O(
√

n logv) time in

expectation. Generating a lookup proof requires calculatingO(logn) subtree authenticators

in expectation at depthsd = 1, d = 2, . . ., d = O(logn). (Recall thatD = log2

√
n.) There

are three cases for computing any one single subtree authenticator. In the first case, the

subtree authenticator for a node at depthd = D is cached and can be used directly.

Computing a subtree authenticator for a nodex at depthd < D (i.e., x is higher than the

median layer, closer to the root), requires recursing down until hitting nodes at the median

layer, then using the cached authenticators. This recursion will visit at most 2D−d = O
(√

n
2d

)

nodes. Computing a subtree authenticator for a nodex at depthd > D (i.e., x is below the

median layer, closer to the leaves) requires visiting everydescendant ofx. In expectation,

a node at depthd > D hasO
(

n
2d

)

= O
(√

n
2d−D

)

descendants.

4.2.7 Details on the median layer cache

This section includes further detail on the design and expected running time of a subtree

authenticator cache that caches on the median layer of a treap. We maintain the invariant

that ineverysnapshot of the tree, we store the subtree authenticator in the persistent cache

for everynode at depthm, with log2 n
2 − 1 ≤ m≤ log2 n

2 + 1 wheren is the number of keys.m

is allowed to vary within a range to add a hysteresis as to whenthe median layer changes.

Note that there are at most
√

n/4 ≤ 2m ≤
√

n ∗ 4 nodes at depthm. Additionally, as before,

82

each node also stores an ephemeral subtree authenticator.

When updating the tree, we use amortized expected time bounds because many nodes

may require wholesale updating to maintain the invariant with rotations changing depth

of a subtree or the median layer changing due to changing key-count. We evaluate each of

several scenario’s that involve refreshing the cache, calculate the expected number of cache

entries modified, and the probability of the scenario. In expectation, the total storage cost

is O(n+v). Our analysis assumes that each subtree underneath a median layer node has the

same nodecount.

The top of the tree refers to any node occurring in the firstm layers, between the root

and median cache. Thebottomof the tree is any node at or below depthm.

Median layer changing due to increasing or decreasing keycount We only change the

median layer whenever the keycount increases or decreases by a factor of 4, which can

occur no more frequently than once every
(

1− 1
4

)

n updates. This requires invalidating

every median node’s current cache usingO(
√

n) space, and storing new values in the cache

usingO(
√

n) space, requiringO(n) time. Amortized, this comes toO(1/
√

n) space and

O(1) time added onto any insert or delete operation describedbelow.

Inserting into the bottom of the tree Keys are inserted by placing them as a leaf (in

key-order), then rotating them to the proper depth, based onpriority. If a new key ends up

at depthd in the treap, no node of depth< d will have its depth altered during the rotations.

The probability that a new key being inserted ends up at depthd is the probability that its

priority is greater than 2d/n fraction of the keys in the treap. With probability 1−O(1/
√

n), a

key will end up with a final depthd ≥ m. The rotations to insert the key will be constrained

to a subtree of the median layer node, requiring only one persistent cache insert, for the one

median layer node that is an ancestor of the inserted key. In expectation, this involvesO(1)

83

updates to the persistent cache, plus the constant expectedcosts managing the persistent

treap.

Inserting into the top of the tree If the key that is inserted ends up at depthd < m,

then the rotations during the insert will alter the depths ofevery descendant of the newly

inserted node, including 2m/2d median layer nodes. The probability of a depthd insert

is 2d/n, requiring 2m/2d persistent cache inserts. Summing overd ∈ [0,m], the expected

number of updates to the persistent cache ism ∗ 2m/n = m/O(
√

n) ≪ O(1), plus the

constant expected costs in managing the persistent treap.

Deleting a key stored in the bottom of the tree The analysis of deletions is the same as

the analysis of insertions above. The probability of a key being deleted being at depthd

is 2d/n, and all of the rotations involved in the deletion will be constrained to that subtree.

With probability 1− O(1/
√

n), a key will end up with a final depthd ≥ m, and deleting

will only require one median layer node to have its cache updated. In expectation, this

involvesO(1) updates to the persistent cache, plus the constant expected costs of managing

the persistent treap.

Deleting a key stored in the top of the tree If the key is deleted is at depthd < m, then

the rotations involved will alter the depths of every descendant of the to-be-deleted node.

The calculation and result as for inserts, the expected number of updates to the persistent

cache ism∗ 2m/n = m/O(
√

n)≪ O(1), plus the constant expected costs in managing the

persistent treap.

Cost of a lookup Lookup costs areO(sqrtn). Their calculation was described above.

84

Result

Any update to the persistent authenticated dictionary incurs O(1) storage cost per update

for the persistent tree andO(1) storage into the persistent cache. The persistent cacheis

soft-state, the specific layer chosen as the median layer only affects the computation com-

plexity. In fact, all of the storage choices we discuss in this section are just different ways to

store the forest of closely related snapshotted treaps, anddifferent ways the subtree authen-

ticator cache is managed. These choices haveno effect upon the generated authenticators

and proofs.All of the approaches we propose areequivalentto each other in output, and

only differ in storage and performance as we can always reconstruct a missing subtree

authenticator from the keys and values in the subtree.

4.3 Tuple-based PADs

Previously, we described how to design PADs based on Merkle trees, offering constant up-

date size and logarithmic update time. In this section, we develop a novel alternative foun-

dation. These designs are super-efficient, yielding constant-sized query response proofs in-

stead of theO(logn) proofs from tree-based PADs. The tradeoff is that tuple PAD updates

are much more expensive. In addition, these PADs offer different features, functionality,

and efficiency choices.

This class of techniques uses atuple representationof a dictionary. If a dictionary has

keysk1 . . . kn, with ki < ki+1 and corresponding valuesc1 . . . cn, we subdivide the entire

key-ID space into disjoint intervals [k0, k1), [k1, k2), and so forth. Each interval [kj , kj+1)

contains a single dictionary key atkj with value cj and indicates that there is no other

key elsewhere in the interval. Let this be represented as thetuple ([kj , kj+1), cj), which we

can formally read as: “Keykj has valuecj, and there are no keys in the dictionary in the

85

MIN MAX

C1 C2

k1 k2

Figure 4.5 : Tuple authenticated dictionary showing 2 keys and 3 tuples. Tuple
([kj , kj+1), cj) is represented as a rectangle fromkj to kj+1 containingcj.

interval (kj , kj+1).” Keys could be integers, strings, hash values, or any typethat admits a

total ordering. In order to cover the key-ID space before thefirst keyk1 and after the last

key kn in the dictionary, we include two sentinels, ([kmin, k1),�) and ([kn, kmax), cn) where

kmin andkmax denote the lowest and highest key-IDs respectively. An alternative would use

a circular key-ID space rather than the sentinels. Figure 4.5 illustrates the tuples composing

a dictionary.

If each tuple is individually signed by an author to form an authenticated dictionary,

then the server can prove the presence or absence of a keykq from the authenticated dictio-

nary by returning the one signed tupleT = ([kj , kj+1), cj) thatmatches kq by being responsi-

ble for the section of the key-space containingkq, or, more formally, havingkq ∈ [kj , kj+1).

The keykq is in the dictionary with valuecj if kq = kj andcj , � (� denotes no key).

If kq , kj, the client may concludekq is absent from the dictionary. This representation

offers super-efficient,O(1), lookup proofs of membership and nonmembership of a key in

the dictionary.

Now that we have explained the tuple representation of a single authenticated dictio-

nary, the challenges are how to add persistence, how to efficiently store the tuples and their

signatures, how to reduce the number of tuples that need to besigned, and finally how to

authenticate tuples without individually signing each one.

86

MIN MAX

C3

k1 k2

C1 C2

C1

C1 C2

k3

C3C1

V0

V1

V2

V3

V4

Figure 4.6 : Tuple PAD containing 5 snap-
shots. From top to bottom, starting with
an empty PAD, insertingk1, c1, inserting
k2, c2, inserting k3, c3, and removingk2.
Each rectangle corresponds to a signed tu-
ple.

MIN MAX

C3

k1 k2

C1

C2

C1

C2

k3

C3

V0

V1

V2

V3

V4

Figure 4.7 : Example of tuple-superseding
representation of Fig. 4.6, showing the
space savings when tuples can span many
version numbers. As before, each rectan-
gle corresponds to a signed tuple.

4.3.1 PADs based on individually signed tuples

In a solitary PAD, each tuple is individually signed by the author. The author signsn + 1

tuples for each snapshot. To support persistency, tuples include a version number and have

the form: (vα, [kj , kj+1), cj), which can be read as “In versionvα, keykj has contentscj, and

there is no key in the dictionary with a key betweenkj andkj+1.” Figure 4.6 graphically

shows such a PAD. The server can prove the membership or non-membership of any keykq

in snapshotvq in the PAD by returning one signed tupleT = (vq, [kj, kj+1), cj) that matches

the lookup request by havingkq ∈ [kj , kj+1). This design is super-efficient, persistent and

history independent, but does not have a root authenticatoror support Merkle aggregation.

Updates are clearly expensive. The author must sign each tuple individually on each

snapshot and send the signatures to the server, which must then store them. The per-

snapshot computation, storage, and communications costs areO(n).

Optimizing storage by coalescing tuples. If we assume that a snapshot is generated after

every update, all but at most two of the signed tuples in snapshotvα will have the same keys

and values in snapshotvα + 1. This is because an insert into the dictionary will split the

range of the prior tuple into two ranges. Removing a key will require deleting a tuple and

87

replacing its predecessor tuple with a new one with an expanded range.

Most tuples may remain unchanged across many snapshots. Instead of storing each

of the tuples, (vα, [kj , kj+1), cj), (vα + 1, [kj, kj+1), cj), . . . (vα + δ, [kj, kj+1), cj), and sig-

natures on each of these tuples, the server may store onecoalesced tuple([vα, vα + δ],

[kj , kj+1), cj,SIGS) that encodes that the key space fromkj to kj+1 did not change from

snapshotvα to vα+ δ. In each coalesced tuple,SIGSstores theδ+1 signatures signing each

individual snapshot’s tuple. The coalesced tuple, itself,is never signed.

Upon a lookup query forkq at timevq, the server finds the tupleT = ([vα, vα + δ],

[kj , kj+1), cj,SIGS) that matcheskq andvq by havingvq ∈ [vα, vα + δ] and kq ∈ [kj , kj+1),

from which it regenerates the tuple (vq, [kj, kj+1), cj), which the author signed earlier.

Storing tuples with a persistent search tree. Our next challenge is how to store coa-

lesced tuples and signatures so that they may be easily foundduring lookups. We need a

data structure that can store the varying set of coalesced tuples representing each snapshot,

and for any given snapshot version, we need to be able to find the tuple containing a search

key. This can be easily done with a persistent search tree that supports predecessor queries,

such as theO(1) persistent search tree data structure described in Section 4.2.5.

Each snapshot in the PAD has a corresponding snapshot in the persistent search tree

PST for storing the tuples representing that snapshot. Whenever an update occurs, the

author will indicate which tuples arenew (i.e., their key interval or value was not in the

prior snapshot), and which tuples are to bedeleted(i.e., their key interval or value is not in

the new snapshot). The remaining tuples arerefreshed. At most two tuples will be deleted

and one tuple will be new. The author transmits signatures onevery new or refreshed tuple.

When a tuple ([vα, vβ], [kj , kj+1), cj,SIGS) is to be deleted from snapshotvβ + 1, the

server removes that tuple from the next snapshot ofPST. When a tuple is to be added to

88

snapshotvβ + 1, the server inserts ([vβ + 1, vβ + 1], [kj, kj+1), cj ,SIG) into PST. If a tuple

T = ([vα, vβ], [kj , kj+1), cj) is refreshed, the server appends the author’s signature toT and

updates the ending snapshot version tovβ + 1.

This data-structure requiresO(1) storage per update for managing the coalesced tuples

representing the PAD and can find the matching coalesced tuple and signature for any key

in any snapshot in logarithmic time. Unfortunately, the additional costs ofO(n) signatures

for every snapshot must also be included in the communication and storage costs. Reducing

these costs is the challenge in building tuple-based PADs.

4.3.2 Optimizing storage: Tuple superseding

We now show how to reduce storage costs on the server fromO(n) to O(1) signatures per

snapshot. Previously, authors signed tuples of the form (vα, [kj, kj+1), cj) for each snapshot.

With tuple superseding, the author signs a coalesced tuple of the form ([vα, vβ], [kj , kj+1), cj)

attesting that for all snapshots in [vα, vβ], key kj has valuecj and there is no key in the

interval (kj , kj+1). Figure 4.7 shows the benefits of tuple superseding, when a signature can

span many version numbers. Clients authenticating a response to a querykq in snapshotvq

will receive a tuple of the form ([vα, vβ], [kj , kj+1), cj). They will verify that its signature is

valid and thatkq ∈ [kj , kj+1) andvq ∈ [vα, vβ].

For tuples that are refreshed, the server will receive a tuple ([vα, vβ + 1], [kj , kj+1), cj),

signed by the author. This newly signed tuple supersedes thesigned tuple ([vα, vβ], [kj, kj+1), cj)

already possessed by the server and can transparently replace it. Although the author must

sign O(n) tuples and send them to the server for each snapshot, all butO(1) of them re-

fresh existing tuples. Only theO(1) new tuples and their signatures add to storage on the

server. When tuple superseding is used, the PAD is no longer history independent because

the signed tuples describe keys in earlier snapshots.

89

Iterated hash functions.

Public key signatures are notably slow to generate and verify. In contrast, cryptographic

hash functions are very fast. With a light-weight signature[98] implemented by iterated

hash functions, we can indicate that a tuple is refreshed. Rather than signing each super-

seded tuple, the author now only signs the tuple: (vα,Hm(R), [kj , kj+1), cj) whereHm(R)

represent the result of iterating a hash functionm times on a random nonceR. The au-

thor can indicate that a tuple is refreshed in successive snapshots by releasing successive

preimages ofHm(R) which it can incrementally generate inO(1) time andO(logm) space.

A client will need to verify at mostm hashes, which will still be significantly cheaper than

the cost of verifying the digital signature for reasonable values ofm.

4.3.3 Optimizing signatures via speculation

Speculation has been previously used to optimize byzantinefault tolerance [66]. In this

section we show how a novel application ofspeculationcan be used to significantly reduce

the number of needed signatures by exploiting redundancy between snapshots. In our orig-

inal design, the author was required to sign every tuple to refresh it for a new snapshot,

at a cost proportional to the number of keys in that snapshot.We can improve on this by

dividing the PADP into two generations: a young generationG0 that contains keys that are

recently modified, and an old generationG1 that contains all other keys. Tuples in the old

generationG1 are speculatively signed with version intervals that stretch into the future, but

are only considered when there is a proof that the key is not set in the younger generation.

(Section 4.3.1 noted that it’s trivial to prove the absence of a key by returning the signed

tuple for the interval containing that key.) Effectively,G0 contains “patch” tuples that can

correct erroneous speculations inG1. Tuples now include generation markers,g0 or g1, to

indicate which generation they’re in. In Fig. 4.8 we presentsuch a speculative PAD with

90

an epoch of 3 snapshots.

A snapshot ofG0 must be taken every time a snapshot is taken ofP, which requires

signing every new or refreshed tuple inG0. To reduce these costs, we keep the size ofG0

small by dividing time intoepochs. EveryE1 times a snapshot is taken ofP, we migrate all

of the entries fromG0 into G1, take a snapshot ofG1, and eraseG0. With a snapshot taken

after every update, this ensures thatG0 contains at mostE1 + 1 tuples.

When an insert intoP is requested, the author inserts the tuple representing thekey and

value intoG0. When a removal ofkj from P is requested,G0 is updated to store the tuple

(g0, [vβ, vβ], [kj, kj+1),�), indicating that keykj is not in the PAD in versionvβ.

Tuples inG0 have the form (g0, [vβ, vβ], [kj , kj+1),�), indicating the one version that they

are valid for, while tuples inG1 have the form, (g1, [vγ, vγ+E1−1], [kj , k′j+1), c
′
j), indicating

that they are valid for the duration of an epoch. At the start of every epoch, the author

enumerates every key-value pair in the current snapshot inG0, and inserts them intoG1.

During this process, the author may find opportunities to merge tuples representing deleted

keys. If a tuple (g0, [vβ − 1, vβ − 1], [kj, kj+1),�) representing a removed key is migrated, it

may force the deletion of a tuple, (g1, [vβ − E1, vβ − 1], [kj, k′j+1), c
′
j), in G1 from the next

epoch. After migrating keys intoG1, the author speculatively signs each tuple inG1 as

valid for the entire duration of the future epoch.

On a lookup of keykq in snapshotvq, the server returns two signed tuples: (g0, vβ,

[kj , kj+1), cj) with vq = vβ andkq ∈ [kj , kj+1) and (g1, [vγ, vγ + E1 − 1], [k′j , k
′
j+1), c

′
j) with

vq ∈ [vγ, vγ + E1 − 1] andkq ∈ [k′j , k
′
j+1). There are two cases. Ifkq = kj, then the key is in

G0 with valuecj, with cj = � denoting a deleted key. Otherwise, ifkq ∈ (kj , kj+1), we must

examineG1. If kq = k′j, then the key is inG1 with valuec′j. Otherwise, ifkq ∈ (k′j , k
′
j+1) then

the lookup key is not in the snapshot.

Speculation can reduce the number of signatures required bythe author fromO(n) to

91

Old generation Young generation

MIN MAXk1 k2 k3

?

C1 C2?
C1

?

?

?

V0

V1

V2

V3

V4

V5

Add (k1,c1)
Add (k2,c2)
Add (k3,c3)
Remove k2

Remove k1

MIN MAXk1 k2 k3

C3C1 C2

V0

V3

V4

V5

V2

?

V1

C3

V6
V6 Add (k1,c1)

?

C1

Figure 4.8 : Example of a PAD using speculation with an epoch of 3 snapshots. Lookups
examine the young generation first. Because we did not use a circular ID-space the sentinal
tuple in the young generation uses a key of ? to indicate that the older generation must be
examined forkq = kMIN .

O(
√

n) amortized for each update if we assume a snapshot is taken after every update. The

author must signE1 + 1 tuples inG0 each timeP has a snapshot taken, and, once everyE1

snapshots, the author must sign alln+ 1 tuples inG1. The amortized number of signatures

per update isO(E1 + n/E1), with a minimum whenE1 =
√

n. If DSA signatures are used,

latency can be reduced at the start of an epoch by partially precomputing signatures [99].

This creates a super-efficient, history-independent PAD withO(
√

n) amortized signatures

andO(
√

n) storage per update. Note that speculation makes a PAD no longer history in-

dependent because the tuples inG1 describe keys contained in the PAD at the start of the

epoch.

More than two generations. Speculative PADs can be extended to more than two gener-

ations. As before, generationG0 is definitive, and later generations are progressively more

speculative. Lookup proofs will include one tuple per generation.

In the case of 3 generations, we have epochs everyE1 snapshots, when keys are mi-

grated fromG0 toG1, and everyE2 snapshots, when keys are migrated fromG1 toG2. If we

assume a snapshot after every update, the author must sign anamortizedO
(

n
E2 +

E2
E1
+ E1

)

92

tuples per update. This is minimized toO(3
√

n) whenE2 = n
2
3 andE1 = n

1
3 . More gener-

ally, if there areC generations, lookup proofs containC signatures, the author must sign a

O(C C
√

n) tuples, and the storage per update isO(C C
√

n) if tuple superseding is not used.

Speculation and tuple superseding. Speculation reduces the total number of signatures

by the author and thus reduces the space required on the server to store them. It can be nat-

urally combined with tuple-superseding (with our without using iterated hashes) to reduce

the number of tuples the server must save toO(C) per update.

4.3.4 Tuple PADs based on RSA accumulators

RSA accumulators [36] are a useful way to authenticate a set with a conciseO(1) summary,

which can be signed using digital signatures. Membership ofan element in the set is proved

with a constant-sizedwitness, which may be computed by the untrusted server. Recent

developments include an accumulator supporting efficient non-membership proofs [100]

or batch update of witnesses [101,102].

By storing tuples in a signed accumulator, the update size for a snapshot can be reduced

to O(1) while supporting a root authenticator. In this section we design such a PAD offer-

ing constant update size, constant storage per update, constant proof size, and sublinear

computation per update, all by using accumulator techniques.

Background Accumulators use RSA exponentiation to generate an integerthat authenti-

cates a set. The server proves that an element is in the set by sending the item in question,

the accumulator as signed by the author, and the witness.

Consider storing a set ofe r-bit prime numbersp1 . . . pe. The accumulator storing these

keys works as follows: The author selects ans-bit modulusN = pq and a generatorg with

s > 3r. p andq are strong primes, andg is a quadratic residue modN. p andq are kept

93

secret. The RSA accumulatorA over this set isgp1...pe. The accumulatorA is then signed.

To prove that a keyki is in the set, the server supplies a witnessWi = gp1p2...pi−1pi+1...pe. (To

prevent keys from having a mathematical relationship with one other, prime numbers must

be used to represent the set members.)

The author, with its knowledge of the factorization ofN, may insert or remove keys

from the accumulator withO(1) exponentiations per update. Witnesses can be computed

by an untrusted server without the knowledge of any secrets.The witness for any single key

can be computed withO(e) exponentiations and the set of all witnesses can be computed

with anO(eloge) algorithm [103].

A membership proof that primepi is in the set, consists of (A,Wi, pi), and the author’s

signature onA. The proof is verified by checking the signature onA and thatA = (Wi)pi .

By the Strong RSA Assumption [103], it is hard for a computationally bounded adversary

to find y > 1 such thatgy = A mod N without knowing the factorization ofN.

Baric and Pfitzmann [103] observed that we can generateprime representativesfor

arbitrary keys in the random oracle model by cryptographically hashing the key and then

appending a fixed numbert of extra bits.t is chosen such that there is a prime number in
[

2t(X), 2t(X + 1)
)

with high probability. The value of those extra bits is chosen such that

the concatenation is a prime number. Inputs for which this isnot possible cannot be stored

in the RSA accumulator. Papamanthou et al. [39] recently implemented an authenticated

hash table following this design.

In our design, we require that the conversion from a hash value into a prime represen-

tative is deterministic. This ensures that the RSA accumulator for a given set is uniquely

defined by the inputs to the set and can be recomputed from the keys being inserted. To do

this, we follow Baric and Pfitzmann [103], testing successive integers until we find a prime

number.

94

Design By cryptographically hashing tuples and then converting them into prime repre-

sentatives, we can use RSA accumulators to authenticate a set of tuples as a singleO(1)

accumulator that can then be bound to the version number and signed by the author. Define

A(vq) to be the accumulator value for versionvq. A(vq) authenticates tuples of the form

([kj , kj+1), cj) containing a key range and a contents. These tuples can omitthe version

numbervq because it is in the signature over the accumulator.

Each update to a PAD now only requires adding or removing at most O(1) tuples. The

accumulator for the next snapshot,A(vq+1), can be computed by incrementally modifying

A(vq) at a cost ofO(1) exponentiations per dictionary update to add or remove tuples.

Updates requireO(1) communication; the author sends the keys being insertedor removed

from the PAD, the new accumulator, and the signature. Storage increases by onlyO(1) per

update for storing the updated key. The server could computewitnesses lazily upon lookup

requests at a cost ofO(n) exponentiations, using no additional storage. Alternatively the

server can expendO(n) additional storage per-snapshot for precomputed witnesses. The

server can precompute witnesses by itself withn log2 n exponentiations or the author can

incrementally update then witnesses inO(n) time and send them along with the update.

When a server receives a lookup request from a client for keykq in snapshotvq, the

server returns the accumulatorA(vq), bound to the version numbervq and signed by the

author, a tupleT = ([kj , kj+1), cj) with kq ∈ [kj , kj+1), prime representativepi, and a witness

for tuple i in snapshot (vq,Wi,vq). The client verifies that the prime representative corre-

sponds to the returned tuple,
⌊

pi

2t

⌋

= H(T), that the accumulator authenticates the tuple,

(Wi,vq)
pi = A(vq), and that the signature on the accumulator is valid.

Unlike standard accumulator schemes, this representationoffers super-efficient proofs

of non-membership. The tupleT = ([kj , kj+1), cj) attests that there is no key in the interval

(kj , kj+1) is in the set.

95

Speculation and witness computation. Accumulator-based tuple PADs can be com-

bined with speculation, as described in Section 4.3.3. Thisincreases the size of a lookup

proof toO(C) but reduces the costs of witness computation fromO(n logn) toO
(

(C + 1) C
√

n
)

exponentiations per update.

Rather than individually sign each generation’s accumulator A(G0, v),A(G1, v) and so

forth, we could instead collect these accumulators into a short hash chainB(v) = H(A(G0, v),

H(A(G1, v),H(A(G2, v) . . .))), and then bind the root of this hash chain,B(v), to its version

number and sign it. However, signing each generation individually only uses 1+ 1
C√n

times

more signatures than using a hash chain.

On each update to the PAD, the author performsO(C) amortized exponentiations, one

to update the accumulator forG0, and the remaining exponentiations account for the amor-

tized costs of updating the accumulators for the other generations. The author then trans-

mits the update and the new signedB(v+1) to the server, who can deterministically update

its copy of the PAD.

When using speculation, onlyG0, containingO(C
√

n) tuples, is updated on every snap-

shot. The amortized cost for computing witnesses over all generations using theO(eloge)

algorithm isO((C + 1) C
√

n ∗ logn). The server must store these witnesses at an amortized

cost ofO(C C
√

n) per update to the PAD.

Accumulators and tuple superseding. When we first discussed tuple superseding, in

Section 4.3.2, it was used to reduce the signature storage onthe server. This same principal

may be applied to witness storage on the server for accumulators.

We alter the tuples stored in the accumulator to include the version number when they

are created, e.g., (vq, [kj, kj+1), cj). If the accumulatorA(vq+δ) contains that tuple and is

signed by the author, we consider the tuple to be valid for allversionsv ∈ [vq, vq+δ]. Thus,

96

when a client queries for a keyk in snapshotvq′ (wherek ∈ [kj , kj+1)), the server may send as

a proof a signedA(vq), the tupleT = (vq, [kj , kj+1), cj) with k ∈ [kj , kj+1) andvq′ ∈ [vq, vq+δ],

and a witness proving thatT ∈ A(vq+δ). The same response can authenticate any version

vq′ ∈ [vq, vq+δ]. Instead of storing one witness for each snapshot, the server now can store

only one witness, the one inA(vq+δ) that authenticatesT.

As before, we assume a snapshot is taken after every update. Just as the situation de-

scribed in Section 4.3.2, each time a snapshot occurs the server must generate a full set

of witnesses. At most two of those witnesses will be for newlycreated tuples. The re-

maining witnesses are for refreshed tuples and can be superseded and replace the witnesses

previously stored. Computation cost is the same, but the per-update storage costs drop to

O(1).

Accumulators, tuple superseding, and speculation can be combined to form our penul-

timate PAD design, offering constant time on the author per update, constant communi-

cation per update, constant storage per update on the serverand constant lookup proof

size. Computing a new set of witnesses is sublinear in the numbern of keys in the pad at

O((C + 1) C
√

n) exponentiations per update. Unlike before, we individually sign each gen-

eration’s accumulator in order to independently choose witnesses from different snapshots

for each generation.

4.4 Scalability

We expect that the server may well be called upon to scale to run on large clusters and

support much higher insertion and query rates. This sectionconsiders scalability issues

for such environments and how our algorithms could be modified to run faster in such

environments.

97

Faster server insertion rates. Keys exist in a large key space. We can partition that key

space across a large cluster of machines, with each server responsible for only a fraction of

the key space (much as is standard practice in distributed hash table implementations). Each

server then maintains that fraction of the PAD. Assuming keys are uniformly distributed

across the key space, each server should see a uniform fraction of the load. To guarantee

this uniformity, keys could be hashed before being stored inthe PAD.

For any tuple PAD implementation, without RSA accumulators, this split is quite nat-

ural. Different servers can be responsible for different key ranges, allowing for excellent

scalability. For tree PADs, each server would be responsible for a different subtree, but

coordination would be required for changes to the shared toplevels of the tree.

Faster client query rates. Client queries require no mutation of state on the server. As

such, server state may be arbitrarily replicated to supportlarger client query rates. This

would require inbound mutation operations from authors to be distributed to each replica

responsible for any given key.

Lots of snapshots. While some measure of coordination is required, as above, tohandle

the most current version of a PAD, older versions are static.In a large server cluster, older

snapshots can be replicated onto dedicated machines. Any given range of keys from any

given snapshot can be stored on multiple, different servers, allowing for excellent scalabil-

ity both in terms of storage capacity and supported client query rates.

Faster authors. Presently, we assume that the “author” is running on a singlecomputer,

but we could imagine a large number of machines, sharing the author’s crypto key material,

concurrently authoring a PAD. Assuming the server is ready to support the higher insertion

rate, as above, the challenge is to coordinate all the authornodes. For modest scalability,

98

a single-threaded author can control the tree or tuple layout, delegating expensive crypto-

graphic computations to other nodes in its cluster. If DSA signatures are used, latency can

be further reduced by having author nodes partially precompute signatures [99].

For broader scaling, the author nodes could follow a partitioning strategy, similar to

that described for the server. Again, this partitioning is quite natural with tuple PADs and

will require coordination of the higher layers in the tree for tree PADs.

4.5 Future work, applications, and extensions

PADs are suitable for a variety of problems, such as in a public key infrastructure where

they can efficiently store a constantly-changing set of valid certificates. If a PAD supporting

a root authenticator is used, the root authenticator may be stored in a tamper-evident log

such as the one described in Chapter 3 and the author cannot later modify it without detec-

tion. Similarly, the root authenticator could be submittedto a time-stamping service [54,57]

every time a snapshot is taken to prove its existence. PADs can be used to implement many

forms of outsourced databases. Using Merkle aggregation, PADs can be used to implement

flexible query languages, or in the case of Pari-mutuel gambling, as used in horse racing,

to count wagers. With a canonical or history independent representation, PADs can make

distributed algorithms more robust.

In this work we developed several new ways of implementing PADs. We presented

designs offering constant-sized proofs and lower storage overheads. We also developed

speculation as a new technique for designing authenticateddata structures. Future work

in PAD designs could include creating fully persistent authenticated dictionaries based on

fully persistent data structures [86].

In the next chapter, we will perform an evaluation of each of our algorithms and of their

respective costs for each operation in order to guide which algorithm is right for which

99

situation. We will also compare our designs to alternative PAD algorithms [7] and evaluate

PADs based on RSA accumulators and other cryptographic techniques.

100

Chapter 5

Performance analysis of PADs

In this chapter, we describe our implementation of 21 different PAD algorithms, includ-

ing prior designs based on Merkle trees [7] and the designs described in Chapter 4. Our

evaluation includes both a big-O analysis and includes benchmarks of an implementation

of each algorithm. For each algorithm we measure the time, space and communication

overheads, determining real-world performance includingthe constant factors of digital

signature generation, modular exponentiation, primalitytesting, serialization, and so forth.

In this evaluation, for simplicity, we assume a snapshot is taken of the dictionary after every

update.

The PAD algorithms we built make different tradeoffs of CPU, bandwidth, and storage

requirements. The ideal algorithm for any given workload will thus depend on the relative

costs of these resources. Rather than guess at these tradeoffs, we instead normalize them

using contemporary costs, in U.S. Dollars, charged by Google and Amazon for bandwidth,

CPU time, and storage on their EC2 and AppEngine services. Ifwe assume that Google and

Amazon are offering these resources at their marginal cost, i.e., that their rates charged for

bandwidth, CPU time, and storage are close to the actual costs to any provider delivering

large quantities of these resources, then our evaluation strategy should generalize to other

vendors as well.

In Section 5.1, we compare the big-O times for the different algorithms against each

other. In Section 5.2, we describe our PAD implementations and evaluation methodology.

Section 5.3 presents benchmark results for our tree PAD implementations. Section 5.4

101

presents benchmark results for our tuple-based PAD implementations, including the RSA

accumulator variation. Section 5.5 presents realistic benchmark results against real-world

traces. Finally, conclusions and future work are discussedin Section 5.6. Appendix A

presents further detailed performance measurements on RSAaccumulators.

5.1 Big-O evaluation of the different PAD designs

In Chapter 4, we presented a variety of algorithms for implementing a PAD. In this sec-

tion, we do a big-O comparison across the different algorithms. In Table 5.1 we compare

our designs to the existing related work and present a comparison of the space usage and

amortized expected running time of each algorithm in terms of the number of keysn and

number of snapshotsv. We assume that a snapshot is taken after every update. For tree-

based PADs, query times include theO(logv) cost to binary search in the authenticator

cache. For tuple-based PADs, query times include searchingthe persistent tree for the

tuple.

A modular exponentation, used in signatures, is much more expensive than many cryp-

tographic hashes. A standard big-O bound would not capture these effects. To enable a

more accurate comparison, we account for exponentiations used in verifying signatures by

usingβ to denote its cost. Table 5.1 then describes:

1. Server storage (per-update).Storage, per update, on the server.

2. Lookup proof size. Size of a lookup proof sent to a client.

3. Query time (historical). Time to make a lookup proof for old snapshots.

4. Query time (current). Time to make a lookup proof for the current snapshot.

5. Verify time. Time to verify a lookup proof by a client.

102

6. Update info. The size of an update, sent to the server.

7. Author update time. Time on the author required to generate an update.

8. Server update time.Time on the server required to process an update.

5.2 Implementation and methodology

5.2.1 Implementation

Our implementation is a hybrid of C++ and Python, connected with SWIG-generated inter-

face wrappers. Because of the complexity of implementing all 21 different configurations,

our initial implementation was in Python. Python made it much easier to design correct

algorithms, debug our implementation, and cleanly modularize the code. We could then

progressively and quickly port the debugged algorithms to C++, function by function and

module by module while fully preserving both the original Python implementation, and the

equivalence between the C++ and Python implementations, applying our Python test cases

against our C++ implementation. In this paper, we present the results afterporting many

of the slowest modules to C++.

We ported persistent search trees first, because of their usein tree-based PADs, and

their use for storing the tuple repository. We achieved a 10x-20x speed up from converting

the code. We used profile-based analysis for our porting effort, only porting modules and

functions that were not bottlenecked in cryptographic or existing C++ code. To guide these

choices, we separately measured the time spent in signatures, serialization, and modular

exponentiations.

As public-key cryptographic operations like RSA can be donewith variable key lengths,

trading off speed for cryptographic strength, we selected parameters at the “112-bit security

1
0

3

Reference Storage Query Query Proof Verify Update Update Update
Size Time Time Size Time Time Time Size

(historical) (current) (author) (server)

Tree PAD (Path Copy) [7] O(logn) O(logn) O(logn) O(logn) β +O(logn) β +O(logn) O(logn) O(1)
Tree PAD (Versioned Node)
(No Cache)

O(1) O(n) O(logn) O(logn) β +O(logn) β +O(logn) O(logn) O(1)

Tree PAD (Versioned Node)
(Cache Everywhere)

O(logn) O(logv · logn) O(logn) O(logn) β +O(logn) β +O(logn) O(logn) O(1)

Tree PAD (Versioned Node)
(Median Cache)

O(1) O(
√

n logv) O(logn) O(logn) β +O(logn) β +O(logn) O(logn) O(1)

Tuple PAD O(n) O(logn) O(logn) O(1) β +O(1) O(βn) O(n) O(n)
Tuple PAD (Speculating) O(C C

√
n) O(C logn) O(C logn) O(C) βC O(βC · C

√
n) O(C C

√
n) O(C C

√
n)

Tuple PAD (Speculating)
(+Superseding)

O(C) O(C logn) O(C logn) O(C) βC O(βC · C
√

n) O(C C
√

n) O(C C
√

n)

Tuple PAD (Speculating)
(+Superseding+IterHash)

O(C) O(C logn) O(C logn) O(C) (β + D)C O(C C
√

n
(βD + D))

O(C C
√

n) O(C C
√

n)

Accum PAD (Author
precomputes witnesses)

O(n) O(logn) O(logn) O(1) 2β O(βn) O(n) O(n)

Accum PAD O(n) O(logn) O(logn) O(1) 2β O(β) O(βn logn) O(1)
Accum PAD
(Speculating)

O(C C
√

n) O(C logn) O(C logn) O(C) (C + 1)β O(βC) O(β(C + 1)
C
√

n logn)
O(C)

Accum PAD
(Speculating+Superseding)

O(C) O(C logn) O(C logn) O(C) 2Cβ O(βC) O(β(C + 1)
C
√

n logn)
O(C)

Table 5.1 : Persistent authenticated dictionaries, comparing techniques assuming a snapshot is taken after every update. Storage
sizes are measured per-update.β denotes the cost of an exponentiation used during signaturegeneration.C denotes the number of
generations in a speculative PAD andD denotes the maximum hash-chain length. In this table, we report the amortized expected
time or space usage. “Accum PAD” refers to tuple PADs based around accumulators. Except when stated otherwise, tuple PADs
using accumulators are assumed to precompute witnesses on the server.

104

level” [104]. Keys and values are assumed to be 28-byte hashes and modular operations

are done with a 2048-bit modulus.

All of our benchmarks were run on an Intel Core 2 Duo 2.4 GHz Linux machine with

4GB of RAM running in 64-bit mode. We used Python version 2.5.4 and compiled our

C++ code with Gcc 4.3.4.

5.2.2 Serialization

For completeness, our evaluation includes the actual sizesof messages used in our PAD

system. To this end, we serialized each update from the author, each request from clients,

and each reply from the server. Rather than error-prone manual construction of mutually

compatible serialization code in both C++ and Python, we used the Google protocol-buffer

library to automatically generate interoperable serialization code. Protocol buffers support

nested message types and very low space overhead. In our messages, each message field

has a field header of one byte. Integers use a variable-lengthencoding. Blobs and encapsu-

lated messages require a field header, length, and the binarycontents.

Protocol buffers generate very fast C++ code. Unfortunately, the current Python im-

plementation is unoptimized, often dominating the CPU time. The not-yet-released next

version of protocol buffers for Python is reported to be significantly faster.

5.2.3 Tree-based PADs

There are many types of balanced tree-like data-structuresfrom which Merkle trees can be

built. We implemented treaps [91], red-black trees [93], and skiplists [79].

When implementing a PAD, the author only needs to manage one search tree, that

of the latest snapshot. On the server, each snapshot is a logically distinct Merkle tree

with a different signed root hash. Rather than storing each snapshot asa distinct tree,

105

Caching strategies Storage Lookup proof
(per update) (time)

No cache O(1) O(n)
Cache everywhere O(logn) O(logn)
Median layer O(1) O(

√
n)

Table 5.2 : Caching strategies for subtree authenticators in a Sarnak-Tarjan tree.

we can exploit the similarity between trees across snapshots to implement a more space-

efficient repository on the server. The classic approach for this ispath copying, which uses

a standard applicative tree to avoid the redundant storage of subtrees that are unchanged

across snapshots. Under our assumption that we take a snapshot after every update, path

copying will requireO(logn) storage per update and lookup proofs can be generated in

logarithmic time.

For the server’s repository of persistent trees, we implement path copying and the three

variations of storing/recomputing subtree authenticators for Sarnak-Tarjan trees discussed

in Section 4.2.6 and summarized in Table 5.2. We implemented12 different tree-based PAD

variations in Python and C++ consisting of 3 kinds of tree data structures and 4 different

repository designs. We only present performance data for our C++ implementations. PADs

based on two of these 12 variations were proposed by Anagnostopoulos et al. [7], red-black

trees and skiplists both using path copying.

Because we are supporting different types of applicative representations, our red-black,

skiplist and treap implementations areonly allowed to “mutate” the children of a node

through an abstract interface which, given a node and a pair of new left and right children,

returns a node representing the result of applying those changes. The result depends on the

underlying repository implementation. With path copying,it will always be a clone. With

Sarnak-Tarjan trees, it may or may not be a clone. This requires that the implementations

of these algorithms bebottom-upandmutation-free. In addition, because nodes store keys

106

and values, we must preserve node identity during rotationsand other operations, reusing

nodes that already store the needed key and value, updating their children through our

abstract interface, rather than needlessly cloning those nodes.

5.2.4 Tuple-based PADs

Tuple PADs offer a more complex parameterized set of design choices, including several

optimizations described in Section 4.3. Apart from signingeach tuple individually, tuple-

superseding may be used alone, or in combination with lightweight signatures. Any of

these three designs may be combined with speculation. In addition to this, there are the

three RSA accumulator-based designs described in Section 4.3.4.

Except for lightweight signatures, our implementation is purely in Python. Despite the

overheads of the Python interpreter, many of the design variations bottleneck in unavoid-

able cryptographic operations that already run at native speed.

5.2.5 Accumulators

We used the GMP library for all modular operations. Our accumulators use 184-bit prime

representatives∗. The prime representative of a tuple must be found deterministically. The

SHA-1 hash of a tuple is concatenated with 24 zero bits and treated as an integer. The prime

representative is chosen as the numerically smallest primenumber greater than that integer,

found by performing 82 Miller-Rabin [105] primality tests (as advised by NIST [104]) to

confirm a candidate representative. Due to the expense of finding a prime representative,

∗Implementing the 112-bit security level would properly require 248-bit prime representatives based

around SHA-224. Our current crypto library limited us to SHA-1 hashes. Our results therefore underes-

timate the costs of RSA accumulators.

107

Amazon Google
CPU time (cents/hour) 8.5 10

Storage (cents/GB*month) 15 15
Bandwidth (cents/GB) 10–17 10-12

Table 5.3 : Costs charged by Amazon EC2 and Google AppEngine for cloud-computing
and storage.

the author sends the offset to the prime representative along as a hint. In our implementa-

tion, we perform all witness computation on the server.

5.2.6 Cloud provider economics

In Table 5.3 we present the current costs of two cloud providers: Amazon EC2 and Google

AppEngine. While the absolute prices we measure may vary in the future, what matters

in our evaluation is the relative prices between storage, bandwidth, and CPU cycles. We

observe that both providers charge very similar prices. In our analysis, we will assume that

the relative costs in this table indicate tradeoffs that apply with any large service provider;

we will also assume that the author is spending the money, andwill attempt to minimize

the total costs for the author and server. For simplicity in our evaluation of algorithms we

will assume that cloud providers charge by CPU time, while the task is executing. Or, if a

cloud provider charges by wall-clock time, the CPU utilization is 100%.

We observe that transmitting an extra kilobyte of data costsjust as much as computing

for 1/200th of a second. This defines theprovider equilibrium rate, measured in KB/sec.

An algorithm need not be perfectly balanced to be optimal, ofcourse, but this demonstrates

that an optimal algorithm may well trade-off somewhat more communication for a greater

savings in computation or vice versa.

108

5.2.7 Methodology

Our analysis has too many algorithms for us to directly compare. We reduce the complexity

of our evaluation by first performing microbenchmarks to determine optimal parameters for

each algorithm. We then make comparisons across algorithmswith longer traces.

In our growing microbenchmark, we evaluate the performance when inserting one key

in each snapshot, then performing random queries against each snapshot. In Section 5.5,

we present our results of running a macro-benchmark of the different PAD algorithms’

performance when used to store a constantly changing set of values taken from a trace of

e-commerce prices.

For each benchmark we evaluate its raw performance on the author, publisher and

client. We then evaluate the algorithms’ effectiveness in the context of a cloud-computing

environment, based on the charges made by Amazon and Google for their online services.

For each algorithm, we can evaluate the relative contribution of bandwidth or CPU time

to the monetary costs of an update or a lookup. We define theupdate bandwidth ratioas

the result of the dividing the update size (in kilobytes) by the time to perform an update, in

seconds†. We define thelookup bandwidth ratiosimilarly. Both are measured in kilobytes

per second. For updates, we include time spent on the author and server. For lookup proofs,

we only count costs on the server.

We can compare the bandwidth ratio of an algorithm to the provider equilibrium rate to

determine whether bandwidth or CPU time is responsible for the majority of the monetary

costs of an algorithm. When the bandwidth ratio of an algorithm exceeds the provider

equilibrium rate, the bandwidth is responsible for the majority of the costs.

†Equivalently, we could multiply the size of a message by the rate (in messages/sec) at which the algorithm

generates updates.

109

While bandwidth ratios for updates and lookups are a useful mechanism for comparing

the relative contribution of bandwidth or CPU time to the costs of an update or lookup,

the absolute costs, both per update, and totaled over all updates are also important. Some

of the algorithms we present differ in cost by less than a millionth of a dollar per lookup.

Optimizing algorithms to this degree is only important whenthere are billions or trillions

of lookups. In addition, we assume that costs on the author and server are equal and the

goal is to minimize the total monetary cost of the implementation. For systems under other

constraints, or built under a different pricing structure, the analysis would be different.

This evaluation methodology also measures the update costs, verification costs, and

proof sizes of dynamic authenticated dictionaries based onthese designs. Recall that the

only difference between a PAD and DAD is that the server for a DAD will purge data from

older versions‡.

5.3 Tree PAD microbenchmarks

We first consider the relative performance of treaps, red-black trees, and skiplists against

microbenchmark loads. We also consider how efficiently these tree-like structures reuse

state across versions, comparing path copying and three Sarnak-Tarjan variations.

5.3.1 Comparing tree structures

Our first evaluation considers which type of tree-like data structure runs fastest. We per-

formed a growing microbenchmark with 100,000 keys. In general, all three tree algorithms

performed similarly with 730-750 inserts per second, and 480-600 lookup proof verifica-

tions per second. All three tree algorithms spent 80%-90% oftheir time computing cryp-

‡It might be tempting to remove version numbers entirely, particularly the version number ranges from

tuple PADs. This could enable version rollback attacks, so we leave this information in the DAD.

110

Proof Lookup rate RAM used
size (kB) (keys/sec) (MB)

Treap 1.98 7649 1079
Red-black 1.53 7756 843
Skiplist 2.67 4346 1587

Table 5.4 : Performance across different tree types, inserting 100k keys, and using path-
copying to implement the repository.

Queries RAM used
(per sec) (MB)

Path Copying 7756. 843
Cache Nowhere 1.5 182
Cache Everywhere 7423. 358
Cache Median 196. 205

Table 5.5 : Memory usage and lookup proof performance acrossdifferent persistency ap-
proaches storing red-black trees containing 100k keys.

tographic signatures, implying that additional performance tuning on our part would yield

limited gains. All three algorithms had an update size of 150bytes.

There are differences between the algorithms that can be seen in Table 5.4.Red-black

generates the shallowest trees, causing it to have the smallest lookup proofs, the fastest

performance, and the least RAM usage. Although red-black trees make the most efficient

trees to use for authenticated dictionaries, they are the most complex; their implementation

requires 38 distinct rules§. Treaps and our skiplists are much simpler, requiring 13 rules. In

addition they arehistory independent[88,89], meaning that the root hash does not depend

on the insertion order. For some uses of a PAD, history independence may be desirable.

§The authors wish to thank Stefan Kahrs at the University of Kent for making a Haskell implementation

of red-black trees that correctly handles deletion available on the Internet. We ported his code to Python and

then C++.

111

5.3.2 Comparing tree PAD repositories

Our second evaluation of tree PADs considers the different strategies for representing the

repository for their efficiency at storing the forest of trees that represents the individual

snapshots. In our implementation, each Sarnak-Tarjan nodealways caches the subtree au-

thenticator for the latest snapshot, and lookup proof generation performance on that snap-

shot is between 4,300-7,600 proofs per second, depending onthe tree used, as discussed in

Section 5.3.1.

In Table 5.5 we present the RAM usage and the lookup rate for the four type of repos-

itories when querying for historical snapshots. As expected, the Sarnak-Tarjan trees use

much less memory than path copying trees and the different caching strategies follow the

asymptotic memory usage and performance that we would have expected (see Table 5.2).

Even though Sarnak-Tarjan trees that cache everywhere havethe same logarithmic space

and CPU costs as path copying trees, they use less memory because adding to the authen-

ticator cache is much cheaper than cloning nodes.

To better understand the scaling behavior of tree PADs, we ran a steady-state mi-

crobenchmark. We fill the PAD to some capacity, and then add one key and remove one

key in each snapshot. Figure 5.1 show how the performance of ared-black tree varies for

different keycounts in the dictionary with all four of our tree repository strategies. As ex-

pected, the penalty for cache-nowhere and cache-median layer increases as the dictionary

gets more keys, with cache-median degrading more slowly.

5.3.3 Tree PADs in a cloud-computing environment

In this section we will evaluate the tradeoffs between the two tree versioning strategies in

the last section with the best time/space tradeoffs, cache everywhere and cache median, in

a cloud computing environment. We will evaluate red-black trees containing 10k and 100k

112

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

R
at

e
of

 g
en

er
at

in
g

lo
ok

up
 p

ro
of

s
(p

er
 s

ec
on

d)

Number of keys in dictionary

Path copying
Cache nowhere

Cache everwhere
Cache median

Figure 5.1 : Steady-state lookup proof generation performance for red-black trees.

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 1 10 100 1000 10000 100000 1e+06

C
os

t p
er

 lo
ok

up
 (

ce
nt

s)

Lookups per update

100k, Cache median
100k, Cache everywhere

10k, Cache median
10k, Cache everywhere

Figure 5.2 : Amortized cost per lookup for red-black tree PADs with two different hash
caching strategies.

113

Bandwidth Ratio
Updates Lookups

Cache everywhere, 10k keys 109 13190
Cache median, 10k keys 109 562
Cache everywhere, 100k keys 90 11357
Cache median, 100k keys 102 300

Table 5.6 : Bandwidth ratios for each red-black tree PAD algorithms summarizing the rel-
ative monetary costs of bandwidth and CPU time. For ratios over the provider equilibrium
ratio (200kB/sec), proof size dominates the monetary costs. For smaller ratios, computation
time dominates.

keys.

In Table 5.6 we present our results. Surprisingly, even though cache median has lookups

almost 40 timesslower than cache everywhere, both algorithms are fast enough thatthe

bandwidth of the reply message is the majority of the monetary cost of deployment.

The average per-lookup monetary cost of a PAD algorithm can vary depending on the

ratio between lookups and updates. In Figure 5.2 we plot the costs per update across differ-

ent lookup to update ratios for the different configurations of red-black tree PADs. Cache

median is only 50% more expensive than cache everywhere, butrequired 40% less memory

usage.

5.3.4 Summary of results

We conclude that tree-based PADs should use Sarnak-Tarjan nodes with the cache-everywhere

versioning strategy. In the case where very few queries are made for historical snapshots

or where available memory is low, caching on the median layermay have sufficient query

throughput. We also conclude that red-black trees dominatetreaps and skiplists, running

faster, having smaller lookup-proof sizes, and using less storage. Treaps enable other use-

ful semantics which we have not discussed in this paper (see Crosby and Wallach [8] for

details), but there is no reason to ever use a skiplist.

114

Base+SS No speculation. Optimized with superseding.
Base+LW No speculation. Optimized with lightweight signatures.
Spec+SS Speculation with 2 generations. Optimized with superseding.
Spec+LW Speculation with 2 generations. Optimized with lightweight sig-

natures.
Accumulators Speculation with 2 generations. Uses accumulators.
Chain Accum. Speculation with 2 generations. Uses accumulators in a hash

chain.

Table 5.7 : Abbreviations used to denote the different tuple-based algorithms.

5.4 Tuple PAD microbenchmarks

In this section, we will evaluate the various tuple PAD designs described in Section 4.3.

Table 5.7 describes the abbreviations we will use for the different algorithms. We only

present results with tuple superseding; not using superseding has a trivial impact on CPU

time, update sizes, and lookup proof sizes. Superseding only saves storage on the server.

For comparison, we also report results for red-black trees using the cache-everywhere strat-

egy. Because of the slower performance of tuple PADs, we onlybenchmarked 10,000 keys.

5.4.1 Tuple PAD author costs

In Table 5.8, we present the performance of each tuple PAD algorithm we analyzed. We

also present red-black results for comparison. Note that due to poor insert performance,

we only ran Base+Supersede for 2915 inserts, instead of 10,000. If we extrapolated its

performance at 10,000 inserts, we would expect .10 updates per second and a 250kB update

size.

Table 5.8 demonstrates several of the tradeoffs between the PAD algorithms. It shows

the benefits of speculation increasing performance by a factor of 30 and reducing update

sizes by a factor of 50. Lightweight signatures have a similarly strong impact on perfor-

mance. We also observe that lightweight signatures are sufficiently cheap that crypto costs

115

are no longer the dominant limiting factor in PAD insertion performance. Since much of

the remaining code, in these cases, is written in Python, we expect that significant speedups

could still be available from performance tuning. Lightweight signatures have a small neg-

ative performance interaction with speculation. Wheneverthe length of an epoch changes,

every tuple must be re-signed with a public key signature.

This table also shows the poor update performance of tuple PAD algorithms. Even if we

assume non-crypto overheads on the author are zero, the fastest tuple PAD is still four times

slower than a simple red-black tree PAD. The network communication needed for updating

the red-black tree PAD is similarly as small as the very best accumulator-enhanced tuple

PAD.

We implemented the hash chain optimiziation described in Section 4.3.4 and observe

the essentially identical CPU performance as signing each generation’s accumulator indi-

vidually because because primality computation and exponentiation operations dominate,

compared to computing 1+ 1√
n

times as many signatures. Unexpectedly, accumulators, al-

though being “constant size,” are surprisingly large and generate lookup proofs no smaller

than red-black trees storing 10k keys.

Accumulator tuple PAD costs In Table 5.9 we break down the unavoidable crypto-

graphic costs of accumulator operations on the author and server. These results show that

99% of CPU time spent on the publisher handling accumulator updates is in the underlying

costs of the accumulator. In addition, of the 67% of the CPU time spent on cryptography by

the author, 91% is spent on underlying costs of the accumulator. We discuss accumulator

overheads more extensively in Appendix A.

116

Inserts Size (kB) Number
(per sec) % in crypto Update Proof Inserted

Base+SS .35 61% 86.95 .15 2915
Base+LW .94 5% 156.72 .21 10000
Spec+SS 4.5 59% 6.42 .30 10000
Spec+LW 30. 24% 3.76 .42 10000
Chain Accum. 54.7 67% .14 1.23 10000
Accumulators 53.9 67% .14 1.29 10000
Red-black 776. 92% .15 1.24 10000

Table 5.8 : Comparing author performance, update sizes and proof sizes across differ-
ent PAD designs. Crypto costs include digital signatures, finding prime representatives,
lightweight signatures, and exponentiations. Except for “Base+Supersede,” where 2915
keys were inserted, we ran each algorithm with 10,000 keys.

Author
Update RSA accumulator 13%
Find prime representative 48%
Digital signature 6%

Server receiving update
Compute witnesses 91%
Find accumulator value 8%

Server generating reply
–

Client verifying proof
Verify signature 44%
Verify accumulator 34%

Table 5.9 : Breakdown of accumulator update and witness computation and verification
costs for tuple PADs using non-hash-chain accumulators with 10,000 keys.

Updates Server response Client response verification
(per sec) % in crypto generation (per sec) (per sec) % in crypto

Base+SS 1.7 — 1182 486 68
Base+LW 1.03 — 1088 441 65
Spec+SS 20.8 — 620 240 67
Spec+LW 45.4 — 571 227 64
Chain Accum. .92 99% 522 201 62
Accumulators .92 99% 480 157 70
Red-black 10869. — 10992 642 90

Table 5.10 : Comparing server and client performance acrossdifferent PAD designs. Cryp-
tographic costs include digital signatures, finding prime representatives, lightweight signa-
tures, and exponentiations.

117

5.4.2 Tuple PAD server costs

In Table 5.10, we present the server’s costs for the different PAD algorithms. On each

update, most algorithms do nothing other than store tuples and signatures into the repos-

itory, taking time proportional to the update size. Accumulator algorithms, however, also

have to compute witnesses for each tuple and are extremely slow. (See Appendix A for

performance details on this.) In this table we can see the extreme benefits of speculation,

which improves performance on the server by reducing the number of tuples the server

must process for each snapshot fromO(n) to O(
√

n).

Except for witness computation overheads in tuple PADs using accumulators, servers

do not perform any cryptography when handling an update. Servers also never perform

cryptography when generating replies to clients. From our experience with optimizing tree

PADs in C++, this non-crypto code is significantly slowed down due to Python overheads.

We expect that the non-crypto server performance would improve by a factor of 10-50 if

the tuple PAD code was rewritten in C++.

The time for a client to verify a lookup proof varies across the different algorithms.

Except for tuple PADs using accumulators, the cost of verifying is dominated by signature

verification. Designs using speculation usually require verifying two signatures, one in

each generation, and thus take twice as long.

Accumulator PADs using hash chains do not have an appreciably smaller lookup proof.

The size of a lookup proof is dominated by the 2048 bit accumulator value and the 2048-

bit witness, required for each generation. These overheadsare large compared to the 240-

bit cost of an extra signature. Hash chains somewhat improvelookup proof verification

performance. When a hash chain is used, only one signature need be checked. This can be

seen in Table 5.10 in the increased performance verifying a hash chain accumulator lookup

proof.

118

Bandwidth Ratio
Updates Lookups

Base+SS 25. 177
Base+LW 77. 228
Spec+SS 24. 186
Spec+LW 68. 240
Chain Accum. .126 624
Accumulators .126 619
Red-black 109. 13630

Table 5.11 : Bandwidth ratios for each PAD algorithm summarizing the relative mon-
etary costs of bandwidth and CPU time. For ratios over the provider equilibrium ratio
(200kB/sec), proof size dominates the monetary costs. For smaller ratios, computation
time dominates.

5.4.3 Tuple PADs in a cloud-computing environment

In this section, we will evaluate the tradeoffs between the various PAD designs in the con-

text of a cloud-computing environment and perform the analysis described in Section 5.2.7.

In Table 5.11 we present the bandwidth ratio for each algorithm. Whenever the ratio ex-

ceeds 200 kB/sec, the monetary cost of transmitting the message exceeds the monetary

cost of computing the message. Every implementation has a bandwidth ratio over 177 for

lookups, meaning that at least 45% of the monetary costs of these algorithms will come

from bandwidth of the reply, not the CPU time, despite slow Python implementations.

The overall monetary cost of each algorithm depends on the relative ratio between up-

dates and lookups. In Figure 5.3 we plot the costs per lookup across different lookup to

update ratios for several algorithms. This plot concisely illustrates the tradeoffs between

the different algorithms. Except for the algorithms using accumulators, eachother algo-

rithm is the cheapest at some ratio of lookups to updates. This plot also demonstrates that

accumulators are more expensive than red-black trees at allratios when the PAD contains

10k keys.

119

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 1 10 100 1000 10000 100000 1e+06

C
os

t p
er

 lo
ok

up
 (

ce
nt

s)

Lookups per update

Base+LW
Spec+SS
Spec+LW

Accum
Red-black 10k

Figure 5.3 : Amortized cost per lookup for different PAD algorithms.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 1 10 100 1000 10000 100000 1e+06

C
os

t p
er

 lo
ok

up
 (

ce
nt

s)

Lookups per update

Base+LW
Spec+SS
Spec+LW

Accum
Red-black 10k

Figure 5.4 : Amortized cost per lookup for different PAD algorithms, correcting for Python
overheads.

120

Correcting for Python overheads In this analysis, so far, we used our measured CPU

performance, despite the tuple PAD algorithms not having anoptimized C++ implementa-

tion. We correct for these performance anomalies by assuming that a C++ implementation

of Spec+LW will have an update performance on the author three times faster and that

Base+LW will also have its performance increase by a factor of 10. We will also assume

that C++ versions of the non-accumulator tuple PAD algorithms can process updates ten

times faster.

Finally, we will assume that the tuple repository can returnthe tuple matching a lookup

query in .1ms. When the server responds to a lookup request, it only needs to find the

matching tuple in the repository, implemented using a persistent red-black tree, and seri-

alize it. In Table 5.10, we benchmarked our C++ red-black tree PAD at generating over

10,000 lookups proofs per second, with each proof requiringserializing the entire search

path to the lookup key, clearly a more expensive operation.For tuple PADs that use specula-

tion, multiple tuples are required in a proof and we multiplythe lookup time by the number

of generations.

Under these assumptions, Figure 5.4 presents the cost per lookup for the different PAD

algorithms. The cost per lookup across the algorithms does not change much. From the

bandwidth ratios reported in Table 5.11, bandwidth costs were already responsible for 50%-

75% of the monetary costs of most of the PAD algorithms and reducing the CPU consump-

tion has a small effect on the total cost. The bandwidth ratios in Table 5.11 do show that

66%-99.9% of the monetary costs of updates for are from CPU consumption, which are

affected by our assumed performance increases of a C++ implementation.

121

5.4.4 Summary of results

Whether we use the corrected or uncorrected performance numbers, we can reach several

conclusions. RSA accumulators are so expensive, from a CPU and bandwidth perspective,

that we will never recover these costs for any realistic problem set. For PADs which are

updated very frequently, red-black tree PADs clearly win. However, for more stable PADs

with higher query rates, the tuple-based PAD structures, sans the RSA accumulator, become

the preferable strategy. For workloads where a widely varying range of lookups per update

might be expected, the full set of optimizations, includingspeculation, lightweight signa-

tures, and superseding, seems to be an excellent strategy. For workloads where over 1000

lookups might be expected per update, the non-speculative tuple PAD, but with lightweight

signatures, would seem to be the appropriate algorithm.

5.5 Macrobenchmark

Now that we have done many microbenchmarks of the different PAD designs, we now

analzye the performance and monetary costs of the different PAD algorithms when used to

store a constantly changing set of values taken from a trace of e-commerce prices.

Our data set represents the selling prices of different products for three brands of high-

end luxury goods as offered by a number of vendors on the Internet. All price observations

were made between January 1, 2009 and June 30, 2009 inclusive, representing 27 distinct

dates. In total, 1,272 different luxury items were found online for the three brands, ona

total of 544 different web sites. In total, there are 38,391 different observations in the data

set. Our data tracked the price of each good on each web site, forming 14,374 distinct keys

in the PAD.¶

¶Data provided by Glenn Kramer Consulting, LLC, representing actual brands and products monitored

122

Insert All Process All Size (kb) Lookups
Keys (sec) Updates (sec)Update Proof (per sec)

Base+SS 565. 154. 711 .18 1067
Base+LW 281. 135. 550 .24 710
Spec+LW 215. 101. 460 .42 614
Red-black 1.75 1.48 149 1.59 10012

Table 5.12 : Performance of different PAD algorithms on the macrobenchmark, including
the total time on the author and server to insert six months ofprice data, the average size
of an update and lookup proof, and the lookup rate.

Table 5.12 presents the performance of the different algorithms on this benchmark. This

dataset is very different than our microbenchmarks. It has a course granularity. 38k updates

are contained in only 27 snapshots leading to large update messages. Lookup performance

is as fast as we saw in our earlier microbenchmarks.

This dataset also demonstrates that the strengths of speculation occur when there are

many snapshots and relatively few keys are modified in any onesnapshot. In this dataset,

with the default epoch size, speculation only reduces the number of signatures needed by

7%. However, when we reduced the epoch-size to 6, the ideal epoch size for this data set,

speculation reduced the needed signatures by 48%. We present results with an epoch size

of 6. Lightweight signatures were also very beneficial, reducing the number of public-key

signatures by over 80%.

We also performed a cloud-computing analysis of the monetary costs of different PAD

algorithms over this data set. Bandwidth ratios are reported in Table 5.13 and the band-

width ratios for lookup messages are within 20% of what we observed earlier in Ta-

bles 5.6 and 5.11 when running the growing benchmark. The update message bandwidth

ratio for red-black trees is much larger than we saw in Table 5.6 because the message size

has grown to include all of the updated keys, while the numberof CPU-time-expensive

for an anonymous client, blinded and provided with client’spermission.

123

Bandwidth Ratio
Updates Lookups

Base+SS 27 192
Base+LW 36 170
Spec+LW 45 261
Red-black 1244 15919

Table 5.13 : Bandwidth ratios for each algorithm, processing the luxury-goods mac-
robenchmark, summarizing the relative monetary costs of bandwidth and CPU time. For
ratios over the provider equilibrium ratio (200kB/sec), proof size dominates the monetary
costs. For smaller ratios, computation time dominates.

digital signatures remains at one per snapshot.

In Figure 5.5 we plot the cost per lookup. In this dataset, thelarge number of changes

per snapshot results in large per-update monetary costs which must be amortized over many

messages before the smaller response sizes of tuple PADs reduces the overall costs.

From this, we can conclude that the red-black tree PAD (Sarnak-Tarjan, cache-everywhere)

is the preferred PAD algorithm until the query rate exceeds roughly 5000 lookups per up-

date. Only then do the tuple PAD structures become more cost effective, with the simpler

“Base+SS” strategy (no speculation or lightweight signatures; just superseding) ultimately

winning only when the query rate exceeds 25k lookups/update.

5.6 Summary of PAD performance results

Our analysis considered two very different structures for implementing persistent authen-

ticated dictionaries: those based on Merkle tree-like datastructures and those based on

independently signed “tuples.” We implemented Merkle trees based on skiplists, treaps,

and red-black trees, along with four different strategies for how to share related state across

different versions of the trees. We implemented several tuple-based PAD designs, both

using accumulators and including a variety of optimizations.

124

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000 10000 100000 1e+06

C
os

t p
er

 lo
ok

up
 (

ce
nt

s)

Lookups per update

Base+SS
Base+LW
Spec+LW
Red-black

Figure 5.5 : Amortized cost per lookup for different PAD algorithms processing the luxury-
goods macrobenchmark.

These algorithms make a variety of different tradeoffs between computation, band-

width, and storage. Our strategy of converting all of these units into monetary currency,

based on commodity pricing from Amazon and Google, offered us a very useful insight

into which algorithms are preferable under which conditions. Most notably, we conclude

that the fixed costs of RSA accumulators dwarf their asymptotic benefits, making them

unsuitable for production use. We conclude that red-black trees, implemented with Sarnak

and Tarjan’s versioning strategy, and caching subtree authenticators at every node for every

version, is the optimal strategy for PADs experiencing frequent updates. However, when

the query rate grows much larger than the update rate, our tuple PAD strategies, with the

full suite of optimizations, seem to be the preferable strategy.

125

Chapter 6

Conclusions and future work

In this thesis I have presented two classes of tamper-evident data structures, tamper-evident

logs and persistent authenticated dictionaries. These data structures are designed to run on

untrusted servers. As an untrusted machine can nominally doanything, tamper-evidence is

the strongest guarantee that can be offered. To this end, we have presented the history tree,

several persistent authenticated dictionary algorithms,and an evaluation of these designs

including both big-O and the measured performance of working implementations.

The essence of our history tree is its ability to detect unauthorized changes between

different versions, without sending intermediate events. I would like to extend this property

to data structures more complex than an append-only log.

There are several avenues of future work in persistent authenticated dictionaries. There

are a number of properties I would like to formally prove, including big-O bounds on the

storage costs and tighter bounds on lookup time, as well as formally proving that my PAD

designs always detect failure or return the correct answer for various threat models. Future

work includes expanding our trust model for PADs to better support multiple, mutually-

untrusting authors, offer stronger privacy features, as well as extending our tuplePAD

designs to support out-sourced storage where a trusted device uses a small amount of trusted

storage to detect faults in a larger untrusted storage [106,107].

My algorithms and my evaluation generalize to the case of a dynamic authenticated

dictionary, when persistence is unnecessary, but tamper-evidence is, by simplifying the

techniques to only preserve the data necessary to authenticate the latest snapshot. I plan to

126

adapt speculation and lightweight signatures to create a dynamic super-efficient authenti-

cated dictionary.

Given my flexible software implementation of so many different PAD variations, I in-

tend to pursue applications of my data structures toward more concrete problems, such as

building robust file storage above potentially untrusted storage like Amazon’s S3 service. I

also intend to release my code under a suitable open-source license.

6.1 Contributions

My research makes the following contributions:

• Recognizing that auditing is a critical and frequent operation in designing tamper-

evident data structures.

• Designing, implementing, and evaluating the history tree tamper-evident log.

• Merkle aggregation, a generic technique of aggregating annotations up a Merkle tree.

• Improvements on existing tree-based persistent authenticated dictionaries and pre-

senting tuple PADs, a new paradigm for PADs, offering constant sized lookup results.

• A new way of evaluating algorithms that use network bandwidth and CPU time

in terms of their monetary costs by using the prices charged by cloud-computing

providers.

• An implementation and evaluation of all current PAD algorithms that generalizes to

non-persistent authenticated dictionaries.

Tamper-evident data structures are widely applicable. They can detect malicious in-

siders and increase the trust in software services and “cloud computing”. Along with pre-

senting and evaluating specific designs for new and improveddesigns for tamper-evident

127

logs and dictionaries, this thesis also presents design principals for designing new tamper-

evident data structures along with several optimizations usable by tamper-evident systems.

128

Appendix A

Accumulators in practice

Our research showed that RSA accumulators, when applied to tuple PADs, introduced

significant overheads both in terms of CPU and bandwidth costs, leading us to conclude

that RSA accumulators, despite their asymptotic benefits, were unsuitable for production

use in PADs.

In this appendix, we take a closer look at RSA accumulators asa stand-alone entity,

and their costs on the author, server, and clients. This performance evaluation assumes

the “112 bit security level,” requiring 224-bit hashes, 240-bit prime representatives, and

2048-bit modulus operations.

In Figure A.1, we graph the cost of updating an accumulator asa function of the number

of keys in the accumulator. For each accumulator set size, weestimate the runtime by

combining microbenchmarks of the costs of primality tests and exponentiations of different

sizes, and by counting the exact number of exponentiations and primality tests required to

update that accumulator.

Generating a prime representative takes 7.68ms if 120 Miller-Rabin primality tests are

performed. 120 primality tests are needed to attain a mathematical security factor of 2−120.

A less conservative design could test a tentative prime representative with 5 Miller-Rabin

tests, taking 1.50ms. The author, knowing the factorization of n can incrementally update

precomputed witnesses for the next snapshot at a cost ofO(n) 2048-bit exponentiations per

snapshot, each costing 2.42 ms by using the Chinese remainder theorem. Alternatively the

publisher may batch compute all witnesses withO(n logn) 240-bit exponentiations, each

129

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

M
ill

is
ec

on
ds

 p
re

 s
na

ps
ho

t

Number of items in the accumulator

1 update per snap
10 updates per snap

100 updates per snap
Witnesses on server
Witnesses on author

Figure A.1 : Calculated CPU time per-update for accumulators.

requiring .99ms. Verifying an accumulator requires one 2048-bit exponentiation, costing

8.59ms.

A membership proof in an RSA accumulator requires 2048 bits to send the accumulator

value and 2048 bits to send the witness. In addition, the signature over the accumulator and

the item in the accumulator must also be included.

The advantage of RSA accumulators is in saving the bandwidthrequired for an update.

If witnesses are computed on the author and sent, no bandwidth is saved unless witnesses

are smaller than signatures. If witnesses are computed on the server, then an accumulator

only makes sense when the cost of the time to compute witnesses is cheaper than the cost

of the time required to sign each item, as in the tuple PAD designs, and the cost of the band-

width to send the signatures to the server. With Amazon and Google’s prices for bandwidth

and computation, it is far cheaper to simply use a tuple PAD and avoid accumulators.

130

Future accumulator designs may solve these problems. Alternative accumulator designs

have been proposed around elliptic curve cryptography, potentially offering smaller accu-

mulator sizes. However, the designs we examined require a fixed bound on the number of

keys in the accumulator [108] or have quadratic overhead forcomputing witnesses [109].

131

Bibliography

[1] D. Dolev and A. C. Yao, “On the security of public key protocols,” Annual IEEE

Symposium on Foundations of Computer Science, vol. 0, pp. 350–357, 1981.

[2] B. Cohen, “Incentives build robustness in BitTorrent,”tech. rep., bittorrent.org,

2003.

[3] P. A. Gerr, B. Babineau, and P. C. Gordon, “Compliance: The effect on in-

formation management and the storage industry.” The Enterprise Storage Group,

May 2003. http://searchstorage.techtarget.com/tip/0,289483,sid5_

gci906152,00.html.

[4] R. Sion, “Strong WORM,” inInternational Conference on Distributed Computing

Systems, (Beijing, China), pp. 69–76, May 2008.

[5] M. Naor and K. Nissim, “Certificate revocation and certificate update,” inUSENIX

Security Symposium, (San Antonio, TX), Jan. 1998.

[6] P. C. Kocher, “On certificate revocation and validation,” in International Conference

on Financial Cryptography (FC ’98), (Anguilla, British West Indies), pp. 172–177,

Feb. 1998.

[7] A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia, “Persistent authenticated

dictionaries and their applications,” inInternational Conference on Information Se-

curity (ISC), (Seoul, Korea), pp. 379–393, Dec. 2001.

132

[8] S. A. Crosby and D. S. Wallach, “Super-efficient aggregating history-independent

persistent authenticated dictionaries,” inProceedings of ESORICS 2009, (Saint

Malo, France), pp. 671–688, Sept. 2009.

[9] J. S. Shapiro and J. Vanderburgh, “Access and integrity control in a public-access,

high-assurance configuration management system,” inUSENIX Security Sympo-

sium, (San Francisco, CA), pp. 109–120, Aug. 2002.

[10] N. Sarnak and R. E. Tarjan, “Planar point location usingpersistent search trees,”

Communications of the ACM, vol. 29, no. 7, pp. 669–679, 1986.

[11] R. C. Merkle, “A digital signature based on a conventional encryption function,” in

CRYPTO ’88, pp. 369–378, 1988.

[12] M. Goodrich, R. Tamassia, and A. Schwerin, “Implementation of an authenticated

dictionary with skip lists and commutative hashing,” inDARPA Information Surviv-

ability Conference& Exposition II (DISCEX II), (Anaheim, CA), pp. 68–82, June

2001.

[13] B. Gassend, G. Suh, D. Clarke, M. Dijk, and S. Devadas, “Caches and hash trees

for efficient memory integrity verification,” inThe 9th International Symposium on

High Performance Computer Architecture (HPCA), (Anaheim, CA), Feb. 2003.

[14] P. Williams, R. Sion, and D. Shasha, “The blind stone tablet: Outsourcing dura-

bility,” in Sixteenth Annual Network and Distributed Systems SecuritySymposium

(NDSS), (San Diego, CA), Feb. 2009.

[15] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen, “Ivy:A read/write peer-to-peer

file system,” inUSENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI ’02), (Boston, MA), Dec. 2002.

133

[16] J. Li, M. Krohn, D. Mazières, and D. Shasha, “Secure untrusted data repository

(SUNDR),” inOperating Systems Design& Implementation (OSDI), (San Francisco,

CA), Dec. 2004.

[17] Z. N. J. Peterson, R. Burns, G. Ateniese, and S. Bono, “Design and implementation

of verifiable audit trails for a versioning file system,” inUSENIX Conference on File

and Storage Technologies, (San Jose, CA), Feb. 2007.

[18] K. Fu, M. F. Kaashoek, and D. Mazières, “Fast and securedistributed read-only file

system,”ACM Transactions on Compututer Systems, vol. 20, no. 1, pp. 1–24, 2002.

[19] M. T. Goodrich, R. Tamassia, N. Triandopoulos, and R. F.Cohen, “Authenticated

data structures for graph and geometric searching,” inTopics in Cryptology, The

Cryptographers’ Track at the RSA Conference (CT-RSA), (San Francisco, CA),

pp. 295–313, Apr. 2003.

[20] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S. G. Stubblebine,

“Flexible authentication of XML documents,”Journal of Computer Security, vol. 12,

no. 6, pp. 841–864, 2004.

[21] S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-evident log-

ging,” in Proceedings of the 18th USENIX Security Symposium, (Montreal, Canada),

Aug. 2009.

[22] D. Davis, F. Monrose, and M. K. Reiter, “Time-scoped searching of encrypted audit

logs,” in Information and Communications Security Conference, (Malaga, Spain),

pp. 532–545, Oct. 2004.

[23] B. Schneier and J. Kelsey, “Secure audit logs to supportcomputer forensics,”ACM

Transactions on Information and System Security, vol. 1, no. 3, 1999.

134

[24] R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-based encryption with non-

monotonic access structures,” inACM Conference on Computer and Communica-

tions Security (CCS ’07), (Alexandria, VA), pp. 195–203, Oct. 2007.

[25] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-

grained access control of encrypted data,” inACM Conference on Computer and

Communications Security (CCS ’06), (Alexandria, VA), pp. 89–98, Oct. 2006.

[26] A. Sahai and B. Waters, “Fuzzy identity based encryption,” in Workshop on the

Theory and Application of Cryptographic Techniques on Advances in Cryptology

(EuroCrypt ’05), vol. 3494, pp. 457 – 473, May 2005.

[27] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information re-

trieval,” in Annual Symposium on Foundations of Computer Science, (Milwaukee,

WI), pp. 41–50, Oct. 1995.

[28] P. Williams and R. Sion, “Usable PIR,” inNetwork and Distributed System Security

Symposium (NDSS), (San Diego, CA), The Internet Society, Feb. 2008.

[29] I. Goldberg, “Improving the robustness of private information retrieval,” inIEEE

Symposium on Security and Privacy, (Oakland, CA), May 2007.

[30] B. Chor and N. Gilboa, “Computationally private information retrieval,” inACM

symposium on Theory of computing (STOC97), (El Paso, Texas, United States),

pp. 304–313, May 1997.

[31] O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious

RAMs,” Journal of the ACM, vol. 43, no. 3, pp. 431–473, 1996.

135

[32] P. Williams, R. Sion, and B. Carbunar, “Building castles out of mud: Practical ac-

cess pattern privacy and correctness on untrusted storage,” in ACM Conference on

Computer and Communications Security (CCS ’08), (Alexandria, VA), pp. 139–148,

Oct. 2008.

[33] H. Weatherspoon, C. Wells, and J. Kubiatowicz, “Namingand integrity: Self-

verifying data in peer-to-peer systems.,” inFuture Directions in Distributed Comput-

ing (FuDiCo), Lecture Notes in Computer Science, (Bologna, Italy), pp. 142–147,

June 2002.

[34] P. Maniatis and M. Baker, “Enabling the archival storage of signed documents,” in

FAST ’02: Proceedings of the 1st USENIX Conference on File and Storage Tech-

nologies, (Monterey, CA), 2002.

[35] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine, “Authentic data publication

over the Internet,”Journal Computer Security, vol. 11, no. 3, pp. 291–314, 2003.

[36] J. Benaloh and M. de Mare, “One-way accumulators: A decentralized alterna-

tive to digital signatures,” inWorkshop on the Theory and Application of Crypto-

graphic Techniques on Advances in Cryptology (EuroCrypt ’93), (Lofthus, Norway),

pp. 274–285, May 1993.

[37] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and application to effi-

cient revocation of anonymous credentials,” inCRYPTO ’02, (Santa Barbara, CA),

pp. 61–76, Aug. 2002.

[38] M. T. Goodrich, R. Tamassia, and J. Hasic, “An efficient dynamic and distributed

cryptographic accumulator,” inProceedings of the 5th International Conference on

Information Security (ISC), (Sao Paulo, Brazil), pp. 372–388, Sept. 2002.

136

[39] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Authenticated hash tables,” in

ACM Conference on Computer and Communications Security (CCS ’08), (Alexan-

dria, VA), pp. 437–448, Oct. 2008.

[40] K. Pavlou and R. T. Snodgrass, “Forensic analysis of database tampering,” in

ACM SIGMOD International Conference on Management of Data, (Chicago, IL),

pp. 109–120, June 2006.

[41] Q. Zhu and W. W. Hsu, “Fossilized index: The linchpin of trustworthy non-alterable

electronic records,” inACM SIGMOD International Conference on Management of

Data, (Baltimore, MD), pp. 395–406, June 2005.

[42] S. Mitra, W. W. Hsu, and M. Winslett, “Trustworthy keyword search for regulatory-

compliant records retention,” inInternational Conference on Very Large Databases

(VLDB), (Seoul, Korea), pp. 1001–1012, Sept. 2006.

[43] M. Bellare and S. K. Miner, “A forward-secure digital signature scheme,” in

CRYPTO ’99, (Santa Barbara, CA), pp. 431–448, Aug. 1999.

[44] R. Gennaro and P. Rohatgi, “How to sign digital streams,” in CRYPTO ’97, (Santa

Barbara, CA), pp. 180–197, Aug. 1997.

[45] J. E. Holt, “Logcrypt: Forward security and public verification for secure audit logs,”

in Australasian Workshops on Grid Computing and E-research, (Hobart, Tasmania,

Australia), 2006.

[46] D. Ma and G. Tsudik, “A new approach to secure logging,”Transactions on Storage,

vol. 5, no. 1, pp. 1–21, 2009.

137

[47] D. Ma, “Practical forward secure sequential aggregatesignatures,” inProceedings of

the 2008 ACM symposium on Information, computer and communications security

(ASIACCS’08), (Tokyo, Japan), pp. 341–352, Mar. 2008.

[48] D. Ma and G. Tsudik, “Forward-secure sequential aggregate authentication,” inPro-

ceedings of the 2007 IEEE Symposium on Security and Privacy, (Oakland, CA),

pp. 86–91, IEEE Computer Society, May 2007.

[49] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on en-

crypted data,” inIEEE Symposium on Security and Privacy, (Berkeley, CA), pp. 44–

55, May 2000.

[50] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters, “Building an encrypted

and searchable audit log,” inNetwork and Distributed System Security Symposium

(NDSS), (San Diego, CA), Feb. 2004.

[51] E. Kiltz, A. Mityagin, S. Panjwani, and B. Raghavan, “Append-only signatures,”

in International Colloquium on Automata, Languages and Programming, (Lisboa,

Portugal), July 2005.

[52] J. Bethencourt, D. Boneh, and B. Waters, “Cryptographic methods for storing bal-

lots on a voting machine,” inNetwork and Distributed System Security Symposium

(NDSS), (San Diego, CA), Feb. 2007.

[53] D. Molnar, T. Kohno, N. Sastry, and D. Wagner, “Tamper-evident, history-

independent, subliminal-free data structures on PROM storage -or- How to store

ballots on a voting machine (extended abstract),” inIEEE Symposium on Security

and Privacy, (Oakland, CA), May 2006.

138

[54] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,” inCRYPTO

’98, (Santa Barbara, CA), pp. 437–455, 1990.

[55] K. Blibech and A. Gabillon, “CHRONOS: An authenticateddictionary based on skip

lists for timestamping systems,” inWorkshop on Secure Web Services, (Fairfax, VA),

pp. 84–90, Nov. 2005.

[56] A. Buldas, P. Laud, H. Lipmaa, and J. Willemson, “Time-stamping with binary link-

ing schemes,” inCRYPTO ’98, (Santa Barbara, CA), pp. 486–501, Aug. 1998.

[57] A. Buldas, H. Lipmaa, and B. Schoenmakers, “Optimally efficient accountable time-

stamping,” inInternational Workshop on Practice and Theory in Public KeyCryp-

tography (PKC), (Melbourne, Victoria, Australia), pp. 293–305, Jan. 2000.

[58] H. Lipmaa, “On optimal hash tree traversal for intervaltime-stamping,” inProceed-

ings of the 5th International Conference on Information Security (ISC02), (Seoul,

Korea), pp. 357–371, Nov. 2002.

[59] P. Maniatis and M. Baker, “Secure history preservationthrough timeline entangle-

ment,” inUSENIX Security Symposium, (San Francisco, CA), Aug. 2002.

[60] D. Sandler and D. S. Wallach, “Casting votes in the Auditorium,” in

USENIX/ACCURATE Electronic Voting Technology Workshop (EVT’07), (Boston,

MA), Aug. 2007.

[61] H. Chan, A. Perrig, B. Przydatek, and D. Song, “SIA: Secure information aggre-

gation in sensor networks,”Journal Computer Security, vol. 15, no. 1, pp. 69–102,

2007.

139

[62] L. Hu and D. Evans, “Secure aggregation for wireless networks,” in Symposium on

Applications and the Internet Workshops (SAINT), (Orlando, FL), p. 384, July 2003.

[63] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network aggregation in

sensor networks,” inACM Conference on Computer and Communications Security

(CCS ’06), (Alexandria, VA), pp. 278–287, Oct. 2006.

[64] M. Manulis and J. Schwenk, “Provably secure framework for information aggrega-

tion in sensor networks,” inComputational Science and Its Applications (ICCSA),

(Kuala Lumpur, Malaysia), pp. 603–621, Aug. 2007.

[65] R. T. Snodgrass, S. S. Yao, and C. Collberg, “Tamper detection in audit logs,” in

Conference on Very Large Data Bases (VLDB), (Toronto, Canada), pp. 504–515,

Aug. 2004.

[66] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva: Speculative

byzantine fault tolerance,” inSOSP ’07, (Stevenson, WA), pp. 45–58, Oct. 2007.

[67] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested append-only

memory: Making adversaries stick to their word,” inSOSP ’07, (Stevenson, WA),

pp. 189–204, Oct. 2007.

[68] A. Haeberlen, P. Kouznetsov, and P. Druschel, “PeerReview: Practical accountability

for distributed systems,” inSOSP ’07, (Stevenson, WA), Oct. 2007.

[69] J. D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B.J. Walker, E. Walton,

J. M. Chow, D. Edwards, S. Kiser, and C. Kline, “Detection of mutual inconsistency

in distributed systems,”IEEE Transactions on Software Engineering, vol. 9, no. 3,

pp. 240–247, 1983.

140

[70] B. Schneier and J. Kelsey, “Automatic event-stream notarization using digital signa-

tures,” inSecurity Protocols Workshop, (Cambridge, UK), pp. 155–169, Apr. 1996.

[71] A. R. Yumerefendi and J. S. Chase, “Strong accountability for network storage,”

ACM Transactions on Storage, vol. 3, no. 3, 2007.

[72] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosenthal, and M. Baker, “The

LOCKSS peer-to-peer digital preservation system,”ACM Transactions on Computer

Systems, vol. 23, no. 1, pp. 2–50, 2005.

[73] New York Times,HORSE RACING; 3 Sentenced in Breeders’ Cup Betting Plot,

Mar. 21 2003. p. S-3.

[74] J. Drape, “Horse racing; Ways to keep schemers from beating the system,” inNew

York Times, pp. D–8, Oct. 22 2003.

[75] Office of the Kansas Secretary of State, “Voting system securitypolicy,” Mar. 2004.

http://www.kssos.org/other/voting_security_policy.html.

[76] M. Bellare and B. S. Yee, “Forward integrity for secure audit logs,” tech. rep., Uni-

versity of California at San Diego, Nov. 1997.

[77] G. Itkis, “Cryptographic tamper evidence,” inACM Conference on Computer and

Communications Security (CCS ’03), (Washington D.C.), pp. 355–364, Oct. 2003.

[78] R. Accorsi and A. Hohl, “Delegating secure logging in pervasive computing sys-

tems,” inSecurity in Pervasive Computing, (York, UK), pp. 58–72, Apr. 2006.

[79] W. Pugh, “Skip lists: A probabilistic alternative to balanced trees,”Communications

of the ACM, vol. 33, pp. 668–676, June 1990.

141

[80] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”Commu-

nications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[81] E.-J. Goh, “Secure indexes.” Cryptology ePrint Archive, Report 2003/216,

2003.http://eprint.iacr.org/2003/216/ See alsohttp://eujingoh.com/

papers/secureindex/.

[82] C. Lonvick, “The BSD Syslog protocol.” RFC 3164, Aug. 2001. http://www.

ietf.org/rfc/rfc3164.txt.

[83] S. D. S. Monteiro and R. F. Erbacher, “Exemplifying attack identification and anal-

ysis in a novel forensically viable Syslog model,” inWorkshop on Systematic Ap-

proaches to Digital Forensic Engineering, (Oakland, CA), pp. 57–68, May 2008.

[84] J. Kelsey, J. Callas, and A. Clemm, “Signed Syslog messages.” http://tools.

ietf.org/id/draft-ietf-syslog-sign-23.txt (work in progress), Sept.

2007.

[85] P. Deutsch, “Gzip file format specification version 4.3.” RFC 1952, May 1996.

http://www.ietf.org/rfc/rfc1952.txt.

[86] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making data structures

persistent,” inProceedings of the Eighteenth Annual ACM Symposium on Theory of

Computing (STOC), (Berkeley, CA), pp. 109–121, May 1986.

[87] A. Fiat and H. Kaplan, “Making data structures confluently persistent,”Journal of

Algorithms, vol. 48, no. 1, pp. 16–58, 2003.

[88] D. Micciancio, “Oblivious data structures: Applications to cryptography,” inPro-

ceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC), (El

142

Paso, Texas), pp. 456–464, May 1997.

[89] M. Naor and V. Teague, “Anti-presistence: History independent data structures,” in

Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing

(STOC), (Heraklion, Crete, Greece), pp. 492–501, July 2001.

[90] A. Anderson and T. Ottmann, “Faster uniquely represented dictionaries,” inProceed-

ings of the 32nd Annual Symposium on Foundations of ComputerScience (SFCS),

(San Juan, Puerto Rico), pp. 642–649, Oct. 1991.

[91] C. R. Aragon and R. G. Seidel, “Randomized search trees,” in Proceedings of the

30th Annual Symposium on Foundations of Computer Science (SFCS), pp. 540–545,

Oct. 1989.

[92] G. E. Blelloch and M. Reid-Miller, “Fast set operationsusing treaps,” inProceed-

ings of the Tenth Annual ACM Symposium on Parallel Algorithms and Architectures

(SPAA), (Puerto Vallarta, Mexico), pp. 16–26, June 1998.

[93] L. J. Guibas and R. Sedgewick, “A dichromatic frameworkfor balanced trees,” in

Proceedings of the 19th Annual Symposium on Foundations of Computer Science

(SFCS), pp. 8–21, Oct. 1978.

[94] G. S. Brodal, “Partially persistent data structures ofbounded degree with constant

update time,”Nordic Journal of Computing, vol. 3, no. 3, pp. 238–255, 1996.

[95] H. Kaplan, “Persistent data structures,” inHandbook on Data Structures and Appli-

cations(D. Mehta and S. Sahni, eds.), CRC Press, 2001.

[96] C. Okasaki,Purely Functional Data Structures. Cambridge University Press, 1999.

143

[97] P. Bagwell, “Fast functional lists, hash-lists, deques and variable length arrays,” in

In Implementation of Functional Languages, 14th International Workshop, (Madrid,

Spain), p. 34, Sept. 2002.

[98] S. Micali, “Efficient certificate revocation,” Tech. Rep. TM-542b, Massachusetts

Institute of Technology, Cambridge, MA, 1996.http://www.ncstrl.org:

8900/ncstrl/servlet/search?formname=detail\&id=oai%3Ancstrlh%

3Amitai%3AMIT-LCS%2F%2FMIT%2FLCS%2FTM-542b.

[99] D. Naccache, D. M’Raihi, S. Vaudenay, and D. Raphaeli, “Can DSA be improved?

Complexity trade-offs with the digital signature standard,” inEuroCrypt, (Perugia,

Italy), pp. 77 – 85, May 1994.

[100] J. Li, N. Li, and R. Xue, “Universal accumulators with efficient nonmembership

proofs,” in Proceedings of the 5th International Conference on AppliedCryptogra-

phy and Network Security (ACNS), (Zhuhai, China), pp. 253–269, June 2007.

[101] P. Wang, H. Wang, and J. Pieprzyk, “A new dynamic accumulator for batch updates,”

in Information and Communications Security, 9th International Conference (ICICS

2007), (Zhengzhou, China), pp. 98–112, Dec. 2007.

[102] P. Wang, H. Wang, and J. Pieprzyk, “Improvement of a dynamic accumulator at

ICICS 07 and its application in multi-user keyword-based retrieval on encrypted

data,” inAsia-Pacific Services Computing Conference, (Yilan, Taiwan), pp. 1381–

1386, Dec. 2008.

[103] N. Bari and B. Pfitzmann, “Collision-free accumulators and fail-stop signature

schemes without trees,” inEuroCrypt, (Konstanz, Germany), pp. 480–494, May

1997.

144

[104] NIST Special Publication 800-57,Recommendation for Key Management — Part 1:

general. National Institute for Standards and Technology, Mar. 2007.

[105] M. O. Rabin, “Probabilistic algorithm for testing primality,” Journal of Number The-

ory, vol. 12, no. 1, pp. 128–138, 1980.

[106] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor, “Checking the correct-

ness of memories,” inProceedings of the 32nd annual symposium on Foundations

of computer science (SFCS), (San Juan, Puerto Rico), pp. 90–99, Oct. 1991.

[107] C. Dwork, M. Naor, G. N. Rothblum, and V. Vaikuntanathan, “How efficient can

memory checking be?,” inProceedings of the Theory of Cryptography Conference

(TCC), (San Francisco, CA), pp. 503–520, Mar. 2009.

[108] L. Nguyen, “Accumulators from bilinear pairings and applications,” inCryptogra-

phers’ Track at the RSA Conference (CT-RSA), (San Francisco, CA), pp. 275–292,

Feb. 2005.

[109] J. Camenisch, M. Kohlweiss, and C. Soriente, “An accumulator based on bilinear

maps and efficient revocation for anonymous credentials,” in12th International Con-

ference on Practice and Theory in Public Key Cryptography (PKC2009), (Irvine,

CA), pp. 481–500, Mar. 2009.

