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Abstract—Several range reencoding schemes have been pro-
posed to mitigate the effect of range expansion and the limitations
of small capacity, large power consumption, and high heat gen-
eration of TCAM-based packet classification systems. However,
they all disregard the semantics of classifiers and therefore miss
significant opportunities for space compression. In this paper,
we propose new approaches to range reencoding by taking into
account classifier semantics. Fundamentally different from prior
work, we view reencoding as a topological transformation process
from one colored hyperrectangle to another where the color is
the decision associated with a given packet. Stated another way,
we reencode the entire classifier by considering the classifier’s
decisions rather than reencode only ranges in the classifier
ignoring the classifier’s decisions as prior work does. We present
two orthogonal, yet composable, reencoding approaches, domain
compression and prefix alignment. Our techniques significantly
outperform all previous reencoding techniques. In comparison
with prior art, our experimental results show that our techniques
achieve at least 5 times more space reduction in terms of TCAM
space for an encoded classifier and at least 3 times more space
reduction in terms of TCAM space for a reencoded classifier and
its transformers. This, in turn, leads to improved throughput and
decreased power consumption.

Index Terms—Hardware-based Packet Classification, Ternary
Content Addressable Memory (TCAM), Range Encoding.

I. INTRODUCTION

Packet classification is the core mechanism that enables

many networking devices, such as routers and firewalls, to per-

form services such as packet filtering, virtual private networks

(VPNs), network address translation (NAT), quality of service

(QoS), load balancing, traffic accounting and monitoring,

differentiated services (Diffserv), etc. The basic classification

problem is to compare each packet with a list of predefined

rules and find the first (i.e., highest priority) rule that the packet

matches. Table I shows an example classifier of two rules. The

format of these rules is based upon the format used in Access

Control Lists on Cisco routers.

Packet classification is often a performance bottleneck for

routers as they need to classify every packet. Achieving

wire speed packet classification has long been a networking
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Rule Src. IP Dest. IP Src. Port Dest. Port Prot. Action

r1 1.2.3.0/24 192.168.0.1 [1,65534] [1,65534] TCP accept

r2 * * * * * discard

TABLE I
AN EXAMPLE PACKET CLASSIFIER

goal. Although software-based packet classification has been

extensively studied [27], using Ternary Content Addressable

Memories (TCAMs) to perform hardware-based packet clas-

sification has become the de facto industrial standard [13].

A traditional random access memory chip receives an ad-

dress and returns the content of the memory at that address. A

TCAM chip, however, works in a reverse manner: it receives

content and returns the address of the first entry where the

content lies in the TCAM in constant time (i.e., a few dozen

CPU cycles). Exploiting this hardware feature, TCAM-based

packet classifiers store a rule in each entry as an array of 0’s,

1’s, or *’s (don’t-care values). A packet header (i.e., a search

key) matches an entry if and only if their corresponding 0’s

and 1’s match. Given a search key to a TCAM, the hardware

circuits compare the key with all its occupied entries in parallel

and return the index (or sometimes the content, depending on

chip configuration,) of the first matching entry.

Unfortunately, TCAM-based solutions may not scale up to

meet the classification needs of the rapidly growing Internet

where classifiers are growing rapidly in size. First, current

TCAMs have limited capacity. The largest available TCAM

chip has a capacity of only 72 megabits (Mb). Furthermore,

the well known range expansion problem exacerbates the

problem of limited capacity. In a typical rule, the three fields

of source and destination IP addresses and protocol type are

specified as prefixes where all the *s are at the end of the

ternary string, so the fields can be directly stored in a TCAM.

However, the other two fields of source and destination port

numbers are specified in ranges (i.e., integer intervals), which

need to be mapped to often many prefixes before being stored

in a TCAM. This can lead to a large increase in the number

of TCAM entries needed to encode a rule. For example,

30 prefixes are needed to represent the range [1, 65534], so

30 × 30 = 900 TCAM entries are required to represent the

single rule r1 in Table I. Second, TCAM chip size growth

has been and will likely continue to be slow due to their

extremely high circuit density. Finally, even if larger TCAM

chips were available, their deployment may be limited due

to their high power consumption, large footprints, and high

cost. TCAM chips consume lots of power and generate lots of
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heat because every memory access searches the entire active

memory in parallel, and TCAM power consumption grows

linearly with the number of ternary bits searched in each

memory access [30]. Power constrains deployed TCAM chip

size when systems designers must obey a “power budget”,

e.g., TCAM components may use 10% of an entire board’s

power budget. Likewise, TCAM chips occupy 6 times (or

more) board space than an equivalent SRAM which leads to

TCAMs having high costs, even in large quantities. Due to

these issues, the most popular TCAM chips in 2004 were the

1Mb and 2Mb chips even though a 36Mb TCAM chip was

then available [1].

Range reencoding schemes have been proposed to improve

the scalability of TCAMs, primarily by mitigating the effect of

range expansion [5], [6], [13], [18], [21], [22], [29], [31]. The

basic idea is to first reencode a classifier into another classifier

that requires less TCAM space and then reencode each packet

correspondingly such that the decision made by the reencoded

classifier for the reencoded packet is the same as the decision

made by the original classifier for the original packet. Range

reencoding has two possible benefits: rule width compression

so that narrower TCAM entries can be used and rule number

compression so that fewer TCAM entries can be used.

We observe that all previous reencoding schemes suffer

from one fundamental limitation: they all ignore the decision

associated with each rule and thus the classifier’s decision

for each packet. Disregarding classifier semantics leads all

previous techniques to miss significant opportunities for space

compression. Fundamentally different from prior work, we

view reencoding as a topological transformation process from

one colored hyperrectangle to another where the color is

the decision associated with a given packet. Topological

transformation allows us to reencode the entire classifier as

opposed to reencoding only the ranges in a classifier. Fur-

thermore, we also view reencoding as a classification process

that can be implemented with small TCAM tables, which

enables fast packet reencoding. We present two orthogonal,

yet composable, reencoding approaches, domain compression

and prefix alignment. In domain compression, we transform a

given colored hyperrectangle, which represents the semantics

of a given classifier, to the smallest possible “equivalent”

colored hyperrectangle. This leads to both optimal rule width

compression as well as rule number compression. In prefix

alignment, on the other hand, we strive for rule number

compression only by transforming a colored hyperrectangle to

an equivalent “prefix-friendly” colored hyperrectangle where

the ranges align well with prefix boundaries, minimizing the

costs of range expansion.

Domain Compression: In most packet classifiers, many

coordinates (i.e., values) within a field domain are equivalent.

The idea of domain compression is to reencode the domain so

as to eliminate as many redundant coordinates as possible. This

leads to both rule width and rule number compression. From

a geometric perspective, domain compression “squeezes” a

colored hyperrectangle as much as possible. For example,

consider the colored rectangle in Figure 1(A) that represents

the classifier in Figure 1(H). In field F1 represented by the X-

axis, all values in [0, 7]∪[66, 99] are equivalent; that is, for any

y ∈ F2 and any x1, x2 ∈ [0, 7]∪ [66, 99] , packets (x1, y) and

(x2, y) have the same decision. Therefore, when reencoding

F1, we can map all values in [0, 7]∪ [66, 99] to a single value,

say 0. By identifying such equivalences along all dimensions,

the rectangle in Figure 1(A) is reencoded to the one in Figure

1(D), whose corresponding classifier is shown in Figure 1(I).

Figures 1(B) and (C) show the two transforming tables for F1

and F2, respectively. We use “a” as a shorthand for “accept”

and “d” as a shorthand for “discard”.
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Fig. 1. Example of topological transformations

Prefix Alignment: In prefix alignment, we “shift”, “shrink”,

or “stretch” ranges by transforming the domain of each field

to a new “prefix-friendly” domain so that the majority of

the reencoded ranges either are prefixes or can be expressed

by a small number of prefixes. This will reduce the costs

of range expansion and leads to rule number compression

with a potentially small loss in rule width compression. For

example, consider the packet classifier in Figure 1(I), whose

corresponding rectangle is in Figure 1(D). Range expansion

will yield 5 prefix rules because interval [1, 2] or [01, 10]
cannot be combined into one prefix. However, by transforming

the rectangle in Figure 1(D) to the one in Figure 1(G),

the range expansion of the resulting classifier, as shown in

Figure 1(J), will have 3 prefix rules because [2, 3] is expanded

to 1*. Figures 1(E) and (F) show the two transforming tables

for F1 and F2, respectively.

Our domain compression and prefix alignment techniques

have several nice properties. First, they are powerful in re-

ducing TCAM space. In our experiments on real-world and

synthetic classifiers, they achieved at least 5 times more space

reduction with transformers excluded and at least 3 times more

space reduction with transformers included in comparison with

current state-of-the-art reencoding techniques. Second, they

can be easily implemented on existing hardware by using

TCAM to perform reencoding. Third, not only are they com-

posable, they can also be composed with many other TCAM

optimization and reencoding schemes proposed in prior work

because the reencoded classifier produced by domain compres-

sion contains range rules and the prefix alignment technique

can take any prefix classifier as its input. Fourth, because

they allow the use of smaller TCAM chips, they can lead to

improved throughput and decreased power consumption even

though more TCAM searches are needed to classify a packet.

The rest of the paper proceeds as follows. We start by

reviewing previous work in Section II and formally defin-

ing relevant terms in Section III. In Section IV, we give

an overview of our topological transformation approaches.

In Sections V and VI, we present the technical details of
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the two topological transformation approaches. We discuss

implementation issues in Section VII. Experimental results are

presented in Section VIII and performance modeling results

are presented in Section IX. We draw conclusions in Section

X.

II. RELATED WORK

Prior work in optimizing TCAM-based packet classification

systems fall into three broad categories: circuit modification,

classifier compression, and range reencoding.

Circuit Modification: Spitznagel et al. proposed adding

comparators at each entry level to better accommodate range

matching [24]. While this research direction is important, such

solutions are hard to deploy due to high cost [13].

Classifier Compression: These optimizations convert a given

packet classifier to another semantically equivalent classifier

that requires fewer TCAM entries. The schemes in [3], [8],

[26] focus on one-dimensional and two dimensional packet

classifiers. The redundancy removal algorithms in [15]–[17]

can reduce TCAM usage by eliminating all the redundant rules

in a packet classifier. In [7], Dong et al. proposed schemes to

reduce range expansion by repeatedly expanding or trimming

ranges to prefix boundaries without changing the number of

bits used to represent each dimension. They ensure correctness

by using core effective region algorithms in [15]. In essence,

they insert the new rule before the rule being modified and

check if the new rule is redundant. In contrast, our prefix

alignment algorithm mitigates range expansion by intelligently

adding bits to a given dimension to increase the number of

prefix boundaries. In [19] Meiners, et al. proposed a greedy

algorithm that finds locally minimal solutions along each field

and combines these solutions into a smaller equivalent packet

classifier. In [20], Meiners et al. proposed the first algorithm

that can compress a given classifier into a non-prefix ternary

classifier.

Range Reencoding: Previous range reencoding schemes fall

into two categories: those that only consider rule set size,

often at the expense of rule width [5], [6], [13], [18], [31]

and those that attempt to both compress rule set size and rule

width [4], [21], [22], [29]. In [18], Liu proposed a scheme that

allocates specific TCAM column bits to represent ranges in a

manner similar to Lakshman and Stiliadis’ software bitmap

classification method [12]. Lakshminarayan et al. [13] pro-

posed a scheme called fence encoding, which encodes interval

ranges as a range of unary numbers. Fence encoding has an

expansion factor of one, meaning all ranges can be encoded

with one string, but the number of unary bits required for each

rule is prohibitive. To reduce rule width, Lakshminarayan et

al. proposed DIRPE, which compresses the width of fence

encodings at the expense of a larger expansion factor. Bremler-

Barr and Hendler [5] proposed SRGE, which utilizes the

structural properties of binary reflected gray codes to reduce

range expansion without increasing rule width. Lunteren and

Engbersen proposed a hierarchy of three methods, P 2C, that

can be used to compress both rule number and rule width [29].

Two methods guarantee an expansion factor of one but have

potentially larger rule widths. The third method has the best

rule width compression at the cost of expansion factors greater

than one. Bremmel-Bar et al. [4] purpose concrete algorithms

for the P 2C hierarchy. Pao et al. proposed a prefix inclusion

method (PIC) that achieves better rule width compression than

P 2C [21], [22]. Che et al. [6], [31] and Pao et al. [21], [22]

propose using TCAMs to reencode packets.

Reencoding has been used in software based packet classi-

fication. Lakshman and Stiliadis proposed to reencode each

field’s value into a bitmap that specifies the containment

relationship among values and rules [12]. Given a reencoded

packet, this method uses customized parallel AND gates to

perform an intersection of these bitmaps and ultimately find

the first matching rule. Srinivasan et al. proposed an encoding

method called cross-producting that assigns a unique number

to each disjoint range within a classifier field and constructs a

lookup table for the cross product of the numbers associated

with each field [25]. Gupta and McKeown proposed Recursive

Flow Classification (RFC) [10], an optimized version of the

cross-producting scheme that uses recursive cross-producting

tables to reduce the space requirements of regular cross

producting tables. Furthermore, they map disjoint ranges that

are contained by the same set of rules into a single value.

RFC’s mapping tables use a weaker equivalence relation than

our domain compression technique, so they do not achieve

as much compression as we do. Unfortunately, these software

based reencoding methods are difficult to deploy because the

required RAM to perform the reencoding is extremely large.

By using TCAMs to perform reencoding, we overcome this

memory issue.

III. FORMAL DEFINITIONS

We now formally define the concepts of fields, packets,

and packet classifiers. A field Fi is a variable of finite length

(i.e., of a finite number of bits). The domain of field Fi of

w bits, denoted D(Fi), is [0, 2w − 1]. A packet over the

d fields F1, · · · , Fd is a d-tuple (p1, · · · , pd) where each pi
(1 ≤ i ≤ d) is an element of D(Fi). Packet classifiers usually

check the following five fields: source IP address, destination

IP address, source port number, destination port number, and

protocol type. The lengths of these packet fields are 32, 32,

16, 16, and 8, respectively. We use Σ to denote the set of all

packets over fields F1, · · · , Fd. It follows that Σ is a finite set

and |Σ| = |D(F1)| × · · · × |D(Fd)|, where |Σ| denotes the

number of elements in set Σ and |D(Fi)| denotes the number

of elements in set D(Fi).
A rule has the form 〈predicate〉 → 〈decision〉. A

〈predicate〉 defines a set of packets over the fields F1 through

Fd, and is specified as F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd where each

Si is a subset of D(Fi) and is specified as either a prefix

or a nonnegative integer interval. A prefix {0, 1}k{∗}w−k

with k leading 0s or 1s for a packet field of length w
denotes the integer interval [{0, 1}k{0}w−k, {0, 1}k {1}w−k].
For example, prefix 01** denotes the interval [0100, 0111]. A

rule F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → 〈decision〉 is a prefix rule if

and only if each Si is represented as a prefix.

A packet matches a rule if and only if the packet matches

the predicate of the rule. A packet (p1, · · · , pd) matches a

predicate F1 ∈ S1 ∧ · · · ∧Fd ∈ Sd if and only if the condition

p1 ∈ S1 ∧ · · · ∧ pd ∈ Sd holds. We use DS to denote the set
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of possible values that 〈decision〉 can be. Typical elements of

DS include accept, discard, accept with logging, and discard

with logging.

A sequence of rules 〈r1, · · · , rn〉 is complete if and only

if for any packet p, there is at least one rule in the sequence

that p matches. To ensure that a sequence of rules is complete

and thus a packet classifier, the predicate of the last rule is

usually specified as F1 ∈ D(F1)∧· · ·Fd ∈ ∧D(Fd). A packet

classifier C is a sequence of rules that is complete. The size of

C, denoted |C|, is the number of rules in C. A packet classifier

C is a prefix packet classifier if and only if every rule in C is

a prefix rule.

Two rules in a packet classifier may overlap; that is, a single

packet may match both rules. Furthermore, two rules in a

packet classifier may conflict; that is, the two rules not only

overlap but also have different decisions. Packet classifiers

typically resolve such conflicts by employing a first-match

resolution strategy where the decision for a packet p is the

decision of the first (i.e., highest priority) rule that p matches

in C. The decision that packet classifier C makes for packet

p is denoted C(p).
We can think of a packet classifier C as defining a many-to-

one mapping function from Σ to DS. Two packet classifiers

C1 and C2 are equivalent, denoted C1 ≡ C2, if and only if

they define the same mapping function from Σ to DS; that

is, for any packet p ∈ Σ, we have C1(p) = C2(p). A rule is

redundant in a classifier if and only if removing the rule does

not change the semantics of the classifier.

In a typical packet classifier rule, the fields of source

IP, destination IP, and protocol type are specified in prefix

format, which can be directly stored in TCAMs; however,

the remaining two fields of source port and destination port

are specified as ranges (i.e., non-negative integer intervals),

which are typically converted to prefixes before being stored

in TCAMs. This leads to range expansion, the process of

converting a non-prefix rule to prefix rules. In range expansion,

each field of a rule is first expanded separately. The goal is

to find a minimum set of prefixes such that the union of the

prefixes corresponds to the range. For example, if one 3-bit

field of a rule is the range [1, 6], a corresponding minimum set

of prefixes would be 001, 01∗, 10∗, 110. The worst-case range

expansion of a w−bit range results in a set containing 2w− 2
prefixes [11]. The next step is to compute the cross product

of the set of prefixes for each field, resulting in a potentially

large number of prefix rules.

IV. TOPOLOGICAL TRANSFORMATION

Given a d-dimensional classifier C over fields F1, · · ·, Fd,

a topological transformation process produces two separate

components. The first component is a set of transformers T =
{Ti | 1 ≤ i ≤ d} where transformer Ti transforms D(Fi)
into a new domain D′(Fi). Together, the set of transformers T

transforms the original packet space Σ into a new packet space

Σ′. The second component is a transformed d-dimensional

classifier C′ over packet space Σ′ such that for any packet

(p1, · · · , pd) ∈ Σ, the following condition holds:

C(p1, · · · , pd) = C
′(T1(p1), · · · ,Td(pd))

Each of the d transformers Ti and the transformed packet

classifier C′ are implemented in TCAM.

The TCAM space needed by our transformation approach

is measured by the total TCAM space needed by the d + 1
tables: C

′, T1, · · ·, Td. We define the space used by a

classifier or transformer in a TCAM as the number of entries

(i.e., rules) multiplied by the width of the TCAM in bits:

space = # of entries × TCAM width . Although TCAMs

can be configured with varying widths, they do not allow

arbitrary widths. The width of a TCAM typically can be set

at 40, 80, 160, and 320 bits (per entry). The primary goal of

the transformation approach is to produce C′,T1, · · · ,Td such

that the TCAM space needed by these d+ 1 TCAM tables is

much smaller than the TCAM space needed by the original

classifier C. Most previous reencoding approaches ignore the

space required by the transformers and only focus on the space

required by the transformed classifier C′. Note that we can

implement the table for the protocol field using SRAM if

desired since the field has only 8 bits.

There are two natural architectures for storing the d + 1
TCAM tables C′,T1, · · · ,Td: the multi-lookup architecture

and the pipelined-lookup architecture.

In the multi-lookup architecture, we store all the d+1 tables

in one TCAM chip. For each table, we prepend a ⌈log(d+1)⌉
table ID bit string to every entry. Figure 2 illustrates the packet

classification process using the multi-lookup architecture when

d = 2. Suppose we use the table IDs 00, 01, and 10 for

the three tables C′, T1, and T2, respectively. Given a packet

(p1, p2), we first concatenate T1’s table ID 01 with p1 and use

the resulting bit string 01|p1 as the search key for the TCAM.

Let p1
′ denote the search result. Second, we concatenate T2’s

table ID 10 with p2 and use the resulting bit string 10|p2 as

the search key for the TCAM. Let p2
′ denote the search result.

Third, we concatenate the table ID 00 of C′ with p1
′ and p2

′

and use the resulting bit string 00|p1′|p2′ as the search key

for the TCAM. The search result is the final decision for the

given packet (p1, p2).

Fig. 2. Multi-lookup
There are two natural pipelined-lookup architectures: paral-

lel pipelined-lookup and chained pipelined-lookup. In both, we

store the d+1 tables in d+1 separate TCAMs, so table IDs are

no longer needed. In the parallel pipelined-lookup architecture,

the d transformer tables T, laid out in parallel, form a two-

element pipeline with the transformed classifier C′. Figure 3

illustrates the packet classification process using the parallel

pipelined-lookup architecture when d = 2. Given a packet

(p1, p2), we send p1 and p2, in parallel over separate buses,

to T1 and T2, respectively. Then, the search result p1
′|p2′

is used as a key to search on C
′. This second search result

is the final decision for the given packet (p1, p2). Figure 4
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illustrates the packet classification process using the chained

pipelined-lookup architecture when d = 2. We focus primarily

on the parallel pipelined-lookup architecture as this allows us

to minimize latency.

T1
C’

P1|P2 decision

T2

P1

P2

P’1

P’2

P’1|P’2

Fig. 3. Parallel pipelined-lookup

Fig. 4. Chained pipelined-lookup

The main advantage of the multi-lookup architecture is that

it can be easily deployed since it requires minimal modification

of existing TCAM-based packet processing systems. Its main

drawback is a modest slowdown in packet processing through-

put because d + 1 TCAM searches are required to process a

d-dimensional packet. In contrast, the main advantage of the

two pipelined-lookup architectures is high packet processing

throughput. Their main drawback is that the hardware needs

to be modified to accommodate d + 1 TCAM chips (or d
chips if SRAM is used for the protocol field). We present

a performance modeling analysis of the parallel pipelined-

lookup and multi-lookup architectures in Section IX.

V. DOMAIN COMPRESSION

We now describe our domain compression technique. The

basic idea is to simplify the logical structure of a classifier

by mapping the domain of each field D(Fi) to the smallest

possible domain D′(Fi). We implement domain compression

by exploiting the equivalence classes that any classifier C

defines on the domain of each of its fields. Domain com-

pression is especially powerful because it contributes to both

rule width compression, which allows us to use 40 bit TCAM

entries instead of 160 bit TCAM entries, and rule number

compression because each transformed rule r′ in classifier

C′ will contain fewer equivalence classes than the original

rule r did in classifier C. Through domain compression and

redundancy removal, C′ typically has far fewer rules than C

did, something no other reencoding scheme can achieve.

Our domain compression algorithm consists of three steps:

(1) computing equivalence classes, (2) constructing trans-

former Ti for each field Fi, and (3) constructing the trans-

formed classifier C′.

A. Step 1: Compute Equivalence Classes

We first formally define the equivalence relation that clas-

sifier C defines on each field domain and the resulting

equivalence classes. We use the notation Σ−i to denote the

set of all (d − 1)-tuple packets over the fields (F1, · · ·,
Fi−1, Fi+1, · · ·, Fd) and p−i to denote an element of Σ−i.

Then we use C(pi, p−i) to denote the decision that packet

classifier C makes for the packet p that is formed by combining

pi ∈ D(Fi) and p−i.
Definition 5.1 (Equivalence Class): Given a packet classi-

fier C over fields F1, · · · , Fd, we say that x, y ∈ D(Fi) for

1 ≤ i ≤ d are equivalent with respect to C if and only if

C(x, p−i) = C(y, p−i) for any p−i ∈ Σ−i. It follows that C

partitions D(Fi) into equivalence classes. We use the notation

C{x} to denote the equivalence class that x belongs to as

defined by classifier C.

In domain compression, we compress every equivalence

class in each domain D(Fi) to a single point in D′(Fi).
The crucial tool of our domain compression algorithm is the

Firewall Decision Diagram (FDD) [9]. A Firewall Decision

Diagram (FDD) with a decision set DS and over fields

F1, · · · , Fd is an acyclic and directed graph that has the

following five properties: (1) There is exactly one node that has

no incoming edges. This node is called the root. The nodes

that have no outgoing edges are called terminal nodes. (2)

Each node v has a label, denoted F (v), such that

F (v) ∈

{

{F1, · · · , Fd} if v is a nonterminal node,

DS if v is a terminal node.

(3) Each edge e:u → v is labeled with a nonempty set of

integers, denoted I(e), where I(e) is a subset of the domain

of u’s label (i.e., I(e) ⊆ D(F (u))). (4) A directed path from

the root to a terminal node is called a decision path. No two

nodes on a decision path have the same label. (5) The set

of all outgoing edges of a node v, denoted E(v), satisfies the

following two conditions: (i) Consistency: I(e)∩I(e′) = ∅ for

any two distinct edges e and e′ in E(v). (ii) Completeness:
⋃

e∈E(v) I(e) = D(F (v)). Two nodes v and v′ in an FDD are

isomorphic if and only if v and v′ satisfy one of the following

two conditions: (1) both v and v′ are terminal nodes with

identical labels; (2) both v and v′ are nonterminal nodes and

there is a one-to-one correspondence between the outgoing

edges of v and the outgoing edges of v′ such that every pair

of corresponding edges have identical labels and they both

point to the same node.

We define a full-length ordered FDD as an FDD where

in each decision path all fields appear in the same order.

For simplicity, we use the term “FDD” to mean “full-length

ordered FDD” if not otherwise specified. Given a classifier C,

the FDD construction algorithm in [14] can convert it to an

equivalent full-length ordered FDD f .

After an FDD f is constructed, we can reduce f ’s size

by merging isomorphic subgraphs. A full-length ordered FDD

f is reduced if and only if it satisfies the following two

conditions: (1) no two nodes in f are isomorphic; (2) no two

nodes have more than one edge between them. A reduced FDD

is essentially a canonical representation for packet classifiers.

The first step of our domain compression algorithm is

to convert a given d-dimensional packet classifier C to d
equivalent reduced FDDs f1 through fd where the root of FDD

fi is labeled by field Fi. Figure 5(a) shows an example packet

classifier over two fields F1 and F2 where the domain of each

field is [0,63]. Figures 5(b) and (c) show the two FDDs f1
and f2, respectively. The FDDs f1 and f2 are almost reduced

except that the terminal nodes are not merged together for

illustration purposes.

The crucial observation is that each edge out of reduced

FDD fi’s root node corresponds to one equivalence class of

domain D(Fi). For example, consider the classifier in Figure

5(a) and the corresponding FDD f1 in Figure 5(b). Obviously,
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F1 F2 Decision

[12, 15] [7, 60] Discard
[41, 42] [7, 60] Discard
[20, 38] [0, 63] Accept
[0, 63] [20, 38] Accept
[7, 60] [10, 58] Discard
[1, 63] [0, 62] Accept
[0, 62] [1, 63] Accept
[0, 63] [0, 63] Discard

(a)

⇓ Step 1: FDD Construction and Reduction

(b)

(c)

⇓ Step 2: Transformer Ti Construction

F1 Decision

[0, 0] 0
[1, 6] ∪ [20, 38] ∪ [61, 62] 1

[7, 11] ∪ [16, 19] ∪ [39, 40] ∪ [43, 60] 2
[12, 15] ∪ [41, 42] 3

[63, 63] 4

(d)

F2 Decision

[0, 0] 0
[1, 6] ∪ [61, 62] 1

[7, 9] ∪ [20, 38] ∪ [59, 60] 2
[10, 19] ∪ [39, 58] 3

[63, 63] 4

(e)

⇓ Step 3: Classifier C
′ Construction

F1 F2 Decision

[3, 3] [2, 3] Discard
∅ [2, 3] Discard
∅ [0, 4] Accept

[0, 4] ∅ Accept
[2, 3] [3, 3] Discard
[1, 4] [0, 3] Accept
[0, 3] [1, 4] Accept
[0, 4] [0, 4] Discard

(f)

⇓
F1 F2 Decision

[3, 3] [2, 3] Discard
[2, 3] [3, 3] Discard
[1, 4] [0, 3] Accept
[0, 3] [1, 4] Accept
[0, 4] [0, 4] Discard

(g)

Fig. 5. Example of domain compression

for any p1 and p1
′ in [7, 11]∪ [16, 19]∪ [39, 40]∪ [43, 60], we

have C(p1, p2) = C(p1
′, p2) for any p2 in [0,63], so it follows

that C{p1} = C{p1′}.

Theorem 5.1 (Equivalence Class Theorem): For any

packet classifier C over fields F1, · · · , Fd and an equivalent

reduced FDD fi rooted at an Fi node v, the labels of v’s

outgoing edges are all the equivalence classes over field Fi

as defined by C.

B. Step 2: Construct Transformers

Given a packet classifier C over fields F1, · · · , Fd and the

d equivalent reduced FDDs f1, · · · , fd where the root node of

fi is labeled Fi, we compute transformer Ti as follows. Let

v be the root of fi with m outgoing edges e1, · · · , em. First,

for each edge ej out of v, we choose one of the ranges in ej’s

label to be a representative label, which we call the landmark.

By Theorem 5.1, all the ranges in ej’s label belong to the

same equivalence class, so any one of them can be chosen as

the landmark. For each equivalence class, we choose the range

that intersects the fewest number of rules in C as the landmark

breaking ties arbitrarily. We then sort edges in the increasing

order of their landmarks. We use Lj and ej to denote the

landmark range and the corresponding edge in sorted order

where edge e1 has the smallest valued landmark L1 and edge

em has the largest valued landmark Lm. Our transformer Ti

then maps all values in ej’s label to value j where 1 ≤ j ≤ m.

For example, in Figures 5(b) and (c), the greyed ranges are

chosen as the landmarks of their corresponding equivalence

classes, and Figures 5(d) and (e) show transformers T1 and

T2 that result from choosing those landmarks.

C. Step 3: Construct Transformed Classifier

We now construct transformed classifier C′ from classifier

C using transformers Ti for 1 ≤ i ≤ d as follows. Let F1 ∈
S1∧· · ·∧Fd ∈ Sd → 〈decision〉 be an original rule in C. The

domain compression algorithm converts Fi ∈ Si to Fi
′ ∈ Si

′

such that S′
i = {j|0 ≤ j ≤ m − 1 ∧ Lj ∩ Si 6= ∅}. Stated

another way, we replace range Si with range [a, b] ⊆ D′(Fi)
where a is the smallest number in [0,m−1] such that La∩Si 6=
∅ and b is the largest number in [0,m−1] such that Lb∩Si 6= ∅.

Note, it is possible no landmark ranges intersect range Si; in

this case a and b are undefined and Si
′ = ∅. For a converted

rule r′ = F1
′ ∈ S1

′ ∧ · · · ∧ Fd
′ ∈ Sd

′ → 〈decision〉 in C′,

if there exists 1 ≤ i ≤ d such that Si
′ = ∅, we delete this

converted rule r′ from C′.

Consider the rule F1 ∈ [7, 60] ∧ F2 ∈ [10, 58] → discard

in the example classifier in Figure 5(a). For field F1, the

five landmarks are the five greyed intervals in 5(b), namely

[0,0], [1,6], [7,11], [12,15], and [63, 63]. Among these five

landmarks, [7,60] overlaps with [7,11] and [12,15], which are

mapped to 2 and 3 respectively by transformer T1. Thus,

F1 ∈ [7, 60] is converted to F1
′ ∈ [2, 3]. Similarly, for

field F2, [10,58] overlaps with only one of F2’s landmarks,

[10, 19], which is mapped to 3 by F2’s mapping table. Thus,

F2 ∈ [10, 58] is converted to F2
′ ∈ [3, 3].

We now prove that C
′ together with T is semantically

equivalent to C.
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Theorem 5.2: Consider any classifier C and the resulting

transformers T and transformed classifier C′. For any packet

p = (p1, · · · , pd), we have

C(p1, · · · , pd) = C′(T1(p1), · · · ,Td(pd)).
Proof: For each field Fi for 1 ≤ i ≤ d, consider p’s

field value pi. Let L(pi) be the landmark range for C{pi}.

We set xi = min(L(pi)). We now consider the packet x =
(x1, · · ·xd) and the packets x(j) = (x1, . . . xj−1, pj , . . . , pd)
for 0 ≤ j ≤ d; that is, in packet x(j), the first j fields are

identical to packet x and the last d− j fields are identical to

packet p. Note x(0) = p and x(d) = x. We now show that

C(p) = C(x). This follows from C(x(0)) = C(x(1)) = · · · =
C(x(d)). Each equality follows from the fact that xj and pj
belong to the same equivalence class within D(Fj).

Let r be the first rule in C that packet x matches. We argue

that p′ will match the transformed rule r′ ∈ C′. Consider the

conjunction Fi ∈ Si of rule r. Since x matches rule r, it

must be the case that xi ∈ Si. This implies that L(pi)∩ Si 6=
∅. Thus, by our construction pi

′ = Ti(pi) = Ti(xi) ∈ Si
′.

Since this holds for all fields Fi, packet p′ matches rule r′.
We also argue that packet p′ will not match any rule before

transformed rule r′ ∈ C′. Suppose packet p′ matches some

rule r1
′ ∈ C′ that occurs before rule r′. This implies that for

each conjunction Fi ∈ Si of the corresponding rule r1 ∈ C

that L(pi) ∩ Si 6= ∅. However, this implies that xi ∈ Si since

if any point in L(pi) is in Si, then all points in L(pi) are

in Si. It follows that x matches rule r1 ∈ C, contradicting

our assumption that rule r was the first rule that x matches

in C. Thus, it follows that p′ cannot match rule r1
′. It then

follows that r′ will be the first rule in C that p′ matches and

the theorem follows.

VI. PREFIX ALIGNMENT

We now describe our prefix alignment approach. The basic

idea is to “shift”, “shrink”, or “stretch” ranges by transforming

the domain of each field to a new “prefix-friendly” domain so

that the majority of the reencoded ranges either are prefixes

or can be expressed by a small number of prefixes. This will

reduce the costs of range expansion with perhaps a small

penalty in rule width.

We first solve the special case where C has only one field F .

We develop an optimal solution using dynamic programming

techniques. We then use this solution as a building block

to perform prefix alignment on multi-dimensional classifiers.

Finally, we compose domain compression and prefix alignment

together.

A. Prefix Alignment Overview

The one-dimensional prefix alignment problem is equivalent

to the following “cut” problem. Consider the three ranges

[0, 12], [5, 15], and [0, 15] over domain D(F1) = [0, 15] in

classifier C in Figure 6(A), and suppose the transformed

domain D′(F1) = [00, 11] in binary format. Because D′(F1)
has a total of 4 elements, we want to identify three cut points

0 ≤ x1 < x2 < x3 ≤ 15 such that if [0, x1] ∈ D(F1)
transforms to 00 ∈ D′(F1), [x1+1, x2] ∈ D(F1) transforms to

01 ∈ D′(F1), [x2+1, x3] ∈ D(F1) transforms to 10 ∈ D′(F1),

and [x3 + 1, 15] ∈ D(F1) transforms to 11 ∈ D′(F1), the

range expansion of the transformed ranges will have as few

rules as possible. For this simple example, there are two

families of optimal solutions: those with x1 anywhere in [0, 3],
x2 = 4, and x3 = 12, and those with x1 = 4, x2 = 12,

and x3 anywhere in [13, 15]. For the first family of solutions,

range [0, 12] is transformed to [00, 10] = 0∗ ∪ 10, range

[5, 15] is transformed to [10, 11] = 1∗, and range [0, 15] is

transformed to [00, 11] = ∗∗. In the second family of solutions,

range [0, 12] is transformed to [00, 01] = 0∗, range [5, 15]
is transformed to [01, 11] = 01 ∪ 1∗, and range [0, 15]
is transformed to [00, 11] = ∗∗. The classifier C′ in Figure

6(A) shows the three transformed ranges using the first family

of solutions. In both examples, the range expansion of the

transformed ranges only has 4 prefix rules while the range

expansion of the original ranges has 7 prefix rules.

1*

10 110*

1*

10

**

0*

[0,15]

[0,4] [5, 15]

[5,12] [13,15]

0 1

0 10 1 2 43 5 10 11 12 1413 156 87 9

map to map to map to 

(A) (B)

0*

10 11

C

C’

Fig. 6. Example of 1-D prefix alignment

We now illustrate how to compute an optimal solution using

a divide and conquer strategy. We first observe that we can

divide the original problem into two subproblems by choosing

the middle cut point. We next observe that a cut point should

be the starting or ending point of a range, if possible, in order

to reduce range expansion. Suppose the target domain D′(F1)
is [0, 2b − 1]. We first need to choose the middle cut point

x2b−1 , which will divide the problem into two subproblems

with target domains [0, 2b−1 − 1] = 0{∗}b−1 and [2b−1, 2b −
1] = 1{∗}b−1 respectively. Consider the example in Figure

6(A), the x2 cut point partitions [0, 15] into [0, x2], which

transforms to prefix 0∗, and [x2 + 1, 15], which transforms to

prefix 1∗. The second observation implies either x2 = 4 or

x2 = 12. Suppose we choose x2 = 4; that is, we choose the

dashed line in Figure 6(A). This produces two subproblems

where we need to identify the x1 cut point in the range [0, 4]
and the x3 cut point in [5, 15]. In the two subproblems, we

include each range trimmed to fit the restricted domain. For

example, ranges [0, 12] and [0, 15] are trimmed to [0, 4] in the

first subproblem. In the second subproblem, ranges [5, 15] and

[0, 15] are trimmed to [5, 15] while range [0, 12] is trimmed to

[5, 12]. We must maintain each trimmed range even if there

may be duplicates. In the first subproblem, the choice of x1 is

immaterial since both trimmed ranges span the entire restricted

domain. In the second subproblem, the range [5, 12] dictates

that x3 = 12 is the right choice.

We represent this divide and conquer process of computing

cut points as a binary cut tree. Figure 6(B) depicts the tree
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where we select x2 = 4 and x3 = 12. This tree also encodes

the transformation from the original domain to the target

domain: all the values in a terminal node are mapped to the

prefix represented by the path from the root to the terminal

node. For example, as the path from the root to the terminal

node of [0, 4] is 0, all values in [0, 4] ∈ D(F1) are transformed

to 0∗.

In domain compression, we considered transformers that

mapped points in D(Fi) to points in D′(Fi). In prefix align-

ment, we consider transformers that map points in D(Fi) to

prefix ranges in D′(Fi). If this is confusing, we can also

work with transformers that map points in D(Fi) to points

in D′(Fi) with no change in results; however, transformers

that map to prefixes more accurately represent the idea of

prefix alignment than transformers that map to points. Because

we will perform range expansion on C′ before performing

any further optimizations including redundancy removal, we

can ignore rule order. We can then view a one-dimensional

classifier C as a multiset of ranges S in D(F1).

B. One-dimensional Prefix Alignment

We next present the technical details of our dynamic

programming solution to the prefix alignment problem by

addressing four issues.

1) Correctness of Prefix Alignment: We prove that prefix

alignment preserves the semantics of the original classifier

by first defining the concept of prefix transformers and then

showing that prefix alignment must be correct when prefix

transformers are used.

Given a prefix P , we use minP and maxP to denote the

smallest and the largest values in P , respectively.

Definition 6.1 (Prefix transformers): A transformer Ti is

an order-preserving prefix transformer from D(Fi) to D′(Fi)
for a packet classifier C if Ti satisfies the following three

properties. (1) (prefix property) ∀x ∈ D(Fi), Ti(x) = P
where P is a prefix in domain D′(Fi); (2) (order-preserving

property) ∀x, y ∈ D(Fi), x < y implies either Ti(x) = Ti(y)
or maxTi(x) < minTi(y); (3) (consistency property) ∀x, y ∈
D(Fi), Ti(x) = Ti(y) implies C{x} = C{y}.

The following Lemma 6.1 and Theorem 6.1 easily follow

from the definition of prefix transformers.

Lemma 6.1: Given any prefix transformer Ti for a field Fi,

for any a, b, x ∈ D(Fi), x ∈ [a, b] if and only if Ti(x) ⊆
[minTi(a),maxTi(b)].

Theorem 6.1 (Prefix Alignment Theorem): Given a packet

classifier C over fields F1, · · · , Fd, and d prefix transformers

T = {Ti | 1 ≤ i ≤ d}, and the classifier C′ constructed by

replacing any range [a, b] over field Fi (1 ≤ i ≤ d) by the

range [minTi(a),maxTi(b)], the condition C(p1, · · · , pd) =
C′(T1(p1), · · ·, Td(pd)) holds.

2) Find Candidate Cut Points: We next identify candidate

cut points using the concept of atomic ranges. For any multiset

of ranges S (a multiset may have duplicate entries) and any

range x over domain D(F1), we use S@x to denote the set

of ranges in S that contain x.

Definition 6.2 (Atomic Range Set): Given a multiset S of

ranges, the union of which constitute a range denoted
⋃

S,

and a set of ranges S′, S′ is the atomic range set of S if

and only if the following four conditions hold: (1) (coverage

property)
⋃

S =
⋃

S′; (2) (disjoint property) ∀x, y ∈ S′,

x ∩ y = ∅; (3) (atomicity property) ∀x ∈ S and ∀y ∈ S′,

x∩y 6= ∅ implies y ⊆ x; (4) (maximality property) ∀x, y ∈ S′

and maxx+ 1 = min y implies S@x 6= S@y.

For any multiset of ranges S, there is a unique atomic

range set of S, which we denote as AR(S). Because of the

maximality property of atomic range set, the candidate cut

points correspond to the end points of ranges in AR(S). We

now show how to compute S-start points and S-end points.

For any range [x, y] ∈ S, define the points x− 1 and y to be

S-end points, and define the points x and y + 1 to be S-start

points. Note that we ignore x−1 if x is the minimum element

of
⋃

S and y + 1 if y is the maximum element of
⋃

S. Let

(s1, · · · , sm) and (e1, · · · , em) be the ordered list of S-start

points and S-end points. It follows that for 1 ≤ i ≤ m−1 that

si ≤ ei = si+1 − 1. Thus, AR(S) = {[s1, e1], · · · , [sm, em]}.

For example, if we consider the three ranges in classifier C

in example Figure 6(A), range [0, 12] creates S-start point 13

and S-end point 12, range [5, 15] creates S-end point 4 and

S-start point 5, and range [0, 15] creates no S-start points or

S-end points. Finally, 0 is an S-start point and 15 is an S-end

point. This leads to AR(S) = {[0, 4], [5, 12], [13, 15]}.

3) Choose Target Domain Size: We next choose the

number of bits b used to encode domain D′(F1). This

value b imposes constraints on legal prefix transformers.

Consider S = {[0, 4], [0, 7], [0, 12], [0, 15]} with AR(S) =
{[0, 4], [5, 7], [8, 12], [13, 15]}. If b = 2, then the only legal

prefix transformer maps [0, 4] to 00, [5, 7] to 01, [8, 12] to

10, and [13, 15] to 11. If b = 3, there are many more legal

prefix transformers including one that maps [0, 4] to 000, [5, 7]
to 001, [8, 12] to 01∗, and [13, 15] to 1 ∗ ∗. In this case,

the second prefix transformer is superior to this first prefix

transformer.

We include b as an input parameter to our prefix alignment

problem. We initialize b as ⌈log2 |AR(S)|⌉, the smallest

possible value, and compute an optimal prefix alignment for

this value of b. We then increment b and repeat until no

improvement is seen. We choose a linear search as opposed

to a binary search because computing the optimal solution for

b bits requires an optimal solution for b− 1 bits.

4) Choose Optimal Cut Points: We now show how to

compute the optimal cut points given b bits. We view a one-

dimensional classifier C as a multiset of ranges S in D(F1)
and formulate the prefix alignment problem as follows: Given

a multiset of ranges S over field F1 and a number of bits b,
find prefix transformer T1 such that the range expansion of the

transformed multiset of ranges S′ has the minimum number

of prefix rules and D′(F1) can be encoded using only b bits.

We present an optimal solution using dynamic program-

ming. Given a multiset of ranges S, we first compute AR(S).
Suppose there are m atomic ranges R1, · · · , Rm with S-start

points s1 through sm and S-end points e1 through em sorted in

increasing order. For any S-start point sx and S-end point sy
where 1 ≤ x ≤ y ≤ m, we define S ⋓ [x, y] to be the multiset

of ranges from S that intersect range [sx, sy]; furthermore,

we assume that each range in S ⋓ [x, y] is trimmed so that
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its start point is at least sx and its end point is at most sy.

We then define a collection of subproblems as follows. For

every 1 ≤ x ≤ y ≤ m, we define a prefix alignment problem

PA(x, y, b) where the problem is to find a prefix transformer

T1 for [sx, ey] ⊆ D(F1) such that the range expansion of

(S ⋓ [x, y])
′

has the smallest possible number of prefix rules

and the transformed domain D′(F1) can be encoded in b bits.

We use cost(x, y, b) to denote the number of prefix rules in

the range expansion of the optimal (S ⋓ [x, y])′. The original

prefix alignment problem then corresponds to PA(1,m, b)
where b can be arbitrarily large.

The prefix alignment problem obeys the optimal substruc-

ture property. For example, consider PA(1, m, b). As we

employ the divide and conquer strategy to locate a middle

cut point that will establish what the prefixes 0{∗}b−1 and

1{∗}b−1 correspond to, there are m− 1 choices of cut points

to consider: namely e1 through em−1. Suppose the optimal cut

point is ek where 1 ≤ k ≤ m− 1. Then the optimal solution

to PA(1,m, b) will build upon the optimal solutions to sub-

problems PA(1, k, b − 1) and PA(k + 1,m, b − 1). That is,

the optimal transformer for PA(1,m, b) will simply append

a 0 to the start of all prefixes in the optimal transformer

for PA(1, k, b − 1) and a 1 to the start of all prefixes in

the optimal transformer for PA(k + 1,m, b− 1). Moreover,

cost(1,m, b) = cost(1, k, b − 1) + cost(k + 1,m, b − 1) −
|S@[1,m]|. We subtract |S@[1,m]| in the above cost equation

because ranges that include all of [s1, em] are counted twice,

once in cost(1, k, b − 1) and once in cost(k + 1,m, b − 1).
However, as [s1, ek] transforms to 0{∗}b−1 and [sk+1, em]
transforms to 1{∗}b−1, the range [s1, em] can be expressed

by one prefix {∗}b = 0{∗}b−1 ∪ 1{∗}b−1.

Based on this analysis, Theorem 6.2 shows how to compute

the optimal cuts and binary cut tree. As stated earlier, the

optimal prefix transformer T1 can then be computed from the

binary cut tree.

Theorem 6.2: Given a multiset of ranges S with |AR(S)|
= m, cost(l, r, b) for any b ≥ 0, 1 ≤ l ≤ r ≤ m can be

computed as follows. For any 1 ≤ l < r ≤ m, and b ≥ 0:

cost(l, r, b) =















































∞ when b = 0 and l 6= r
|S@[l, r]| when l = r
otherwise,

mink∈{l,...,r−1}













cost(l, k, b− 1)
+

cost(k + 1, r, b− 1)
−

|S@[l, r]|













Note that we set cost(k, k, 0) to |S@[k, k]| for the conve-

nience of the recursive case. The interpretation is that with a

0-bit domain, we can allow only a single value in D′(F1); this

single value is sufficient to encode the transformation of an

atomic interval.

C. Multi-Dimensional Prefix Alignment

We now consider multi-dimensional prefix alignment. Un-

fortunately, while we can optimally solve the one-dimensional

problem, there are complex interactions between the dimen-

sions that complicate the multi-dimensional problem. In par-

ticular, the total range expansion required for each rule is

the product of the range expansion required for each field.

Thus, there may be complex tradeoffs where we sacrifice one

field of a rule but align another field so that the costs do

not multiply. The complexity of the multi-dimensional prefix

alignment problem is currently unknown.

We present a hill-climbing solution where we iteratively

apply our one-dimensional prefix alignment algorithm one

field at a time. Because the range expansion of one field

affects the numbers of ranges that appear in the other fields,

we run prefix alignment for each field more than once. We

stop when running prefix alignment in each field fails to

improve the solution. More precisely, for a classifier C over

fields F1, . . . , Fd, we first create d identity prefix transformers

T0
1, . . . ,T

0
d. We define a multi-field prefix alignment iteration

k as follows. For i from 1 to d, generate the optimal prefix

transformer Tk
i assuming the prefix transformers for the other

fields are {Tk−1
1 , . . ., Tk−1

i−1 , T k−1
i+1 , . . ., T k−1

d }. Our iterative

solution starts at k = 1 and preforms successive multi-field

prefix alignment iterations until no improvement is found for

any field.

D. Composing with Domain Compression

While domain compression and prefix alignment can be

used individually, they can be easily combined to achieve supe-

rior compression. Given a classifier C over fields F1, . . . , Fd,

we first perform domain compression resulting in a trans-

formed classifier C′ and d transformers Tdc
1 , . . . ,Tdc

d ; then,

we perform prefix alignment on the classifier C′ resulting in a

transformed classifier C′′ and d transformers T
pa
1 , . . . ,Tpa

d . To

combine the two transformation processes into one, we merge

each pair of transformers Tdc
i and T

pa
i into one transformer

Ti for 1 ≤ i ≤ d. We apply the optimal algorithm in

[26] to compute the minimum possible transformers Ti for

1 ≤ i ≤ d. When running prefix alignment after domain

compression, computing the atomic ranges and candidate cut

points is unnecessary because each point x ∈ D′(Fi) for

1 ≤ i ≤ d belongs to its own equivalence class in D′(Fi)
which implies [x, x] is an atomic range.

VII. DISCUSSION

A. TCAM Update

We now discuss strategies for handling the TCAM updates.

In most applications, such as router ACLs and firewalls, the

rule sets are relatively static. Therefore, we propose using

the bank mechanism in TCAMs to handle rule list updates.

TCAMs are commonly configured into a series of row banks.

Each bank can be individually enabled or disabled to deter-

mine whether or not its entries will be included in the TCAM

search. We propose storing the compressed transformers and

classifier before update in the active banks and the ones after
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A Range encoding scheme Direct direct range expansion

C packet classifier A(C) reencoded classifier

W (A(C)) width of rules in A(C) |A(C)| # rules in A(C)
TW (A(C)) minimum TCAM entry width for A(C) B(A(C)) TW (A(C))× |A(C)|, i.e., total bits of A(C)

Fig. 7. Summary of notation

update in the disabled banks. Once the writing is finished,

we activate the banks containing the new transformers and

compressed classifier and deactivate the banks containing the

old ones. This technique takes advantage of the fact that

each TCAM in the pipeline has uniform capacity that should

be able to hold all the encoders and the encoded TCAM

table. Therefore, there normally is adequate free space within

the pipeline to store the original classifier and the updated

classifier across each stage.

In some applications, there may be more frequent updates

of the rule set. Fortunately, such updates are typically the

insertion of new rules to the top or front of the classifier

or the deletion of recently added rules. We are not aware

of any applications that require frequent updates involving

rules at arbitrary locations in a classifier. We can support this

update pattern by chaining the TCAM chips in our proposed

architecture after a small TCAM chip of normal width (160

bits), which we call the “hot” TCAM chip. When a new rule

comes, we add the rule to the top of the hot TCAM chip.

When a packet comes, we first use the packet as the key to

search in the hot chip. If the packet has a match in the hot chip,

then the decision of the first matching rule is the decision of

the packet. Otherwise, we feed the packet to the TCAM chips

in our architecture described as above to find the decision for

the packet. Note that this method can support insertions of

rules before the default rule by giving the default rule a unique

decision and using the hot chip’s match only if the default rule

is matched.

Although the lookup on the hot TCAM chip adds a constant

delay to per packet latency, throughput will not be affected

because we use pipelining. Using batch updating, we only need

to run our topological transformation algorithms to recompute

the TCAM lookup tables when the hot chip is about to fill

up. Note, we may not include specific rules when running

topological transformation if they are likely to be deleted in

the near future. Instead, we run topological transformation on

the remainder of the classifier and retain these likely to be

deleted rules in the hot TCAM chip.

B. Rule Logging

Packet classifiers sometimes allow rule logging; that is,

recording the packets that match some particular rules. Our

algorithm handles rule logging by assigning each rule that is

logged a unique decision. Our experiments show that even

when all rules in a classifier have unique decisions, our

algorithm still achieves significant TCAM space reduction.

VIII. EXPERIMENTAL RESULTS

We evaluate the effectiveness and efficiency of our topolog-

ical transformation approaches on both real-world and syn-

thetic packet classifiers. Although our two approaches can be

used independently, they are much more effective when used

together. We primarily report results for both techniques used

together. When a distinction is needed, we use the label DC

+ PA when reporting results obtained using both techniques

combined and the label DC when reporting results obtained

using only domain compression. In all cases, we preprocess

each classifier by running the redundancy removal algorithm

in [17].

A. Effectiveness

1) Evaluation Methodology: Given a TCAM range encod-

ing algorithm A and a classifier C, let A(C) denote the

reencoded classifier, W (A(C)) denote the number of bits to

represent each rule in A(C), TW (A(C)) denote the minimum

TCAM entry width for storing A(C) given choices 40, 80,

160, or 320, |A(C)| denote the number of rules in A(C), and

B(A(C)) = TW (A(C)) ×|A(C)|, which represents the total

number of TCAM bits required to store A(C). The main goal

of TCAM optimization algorithms is to minimize B(A(C)).
We use Direct to denote the direct range expansion algo-

rithm, so B(Direct(C)) represents the baseline we compare

against, W (Direct(C)) = 104, TW (Direct(C)) = 160, and

B(Direct(C)) = 160×|Direct(C)|. Figure 7 summarizes our

notation.

For any A and C, we measure overall effectiveness by the

compression ratio CR(A(C)) = B(A(C))
B(Direct(C)) . To isolate the

factors that contribute to the success of our approaches at

compressing classifiers, we define the Rule Number Ratio of

A on C to be RNR(A(C)) = |A(C)|
|C| , which is often referred

to as expansion ratio, and the Rule Width Ratio of A on C

to be RWR(A(C)) = W (A(C))
104 . When we consider a set of

classifiers S where |S| denotes the number of classifiers in

S, we generalize our metrics as follows. Average compression

ratio of A for S is CR(A(S)) =
∑

C∈S
CR(A(C))

|S| , average rule

number ratio of A for S is RNR(A(S)) =
∑

C∈S
RNR(A(C))

|S| ,

and average rule width ratio of A for S is RWR(A(S) =∑
C∈S

RWR(A(C))

|S| .

We use RL to denote a set of 40 real-world packet

classifiers that we performed experiments on. RL is chosen

from a larger set of real-world classifiers obtained from

various network service providers, where the classifiers range

in size from a handful of rules to thousands of rules. We

eliminated structurally similar classifiers from RL because

similar classifiers exhibited similar results. We created RL
by randomly choosing a single classifier from each set of

structurally similar classifiers. We then split RL into two

groups, RLa and RLb where RNR(Direct(C)) ≤ 4 for all

C ∈ RLa and RNR(Direct(C)) > 40 for all C ∈ RLb.
We have no classifiers where 4 < RNR(Direct(C)) ≤ 40.

It turns out |RLa| = 26 and |RLb| = 14. By separating

these classifiers into two groups, we can determine how well
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our techniques work on classifiers that do suffer significantly

from range expansion as well as those that do not. Figure 8

shows the accumulated percentage graph of atomic intervals

for each field for the classifiers in RL, and Figure 9 shows

the accumulated percentage graphs of classifier sizes in RL
before and after direct range expansion.

Because packet classifiers are considered confidential due to

security concerns making it difficult to acquire a large number

of real-world classifiers, we generated a set of synthetic

classifiers SY N with the number of rules ranging from 250 to

8000 using Singh et al.’s [23] model of synthetic rules. The

predicate of each rule has five fields: source IP, destination

IP, source port, destination port, and protocol. We also per-

formed experiments on TRS, a set of 490 classifiers produced

by Taylor&Turner’s Classbench [28]. These classifiers were

generated using the parameter files downloaded from Taylor’s

web site http://www.arl.wustl.edu/∼det3/ClassBench/index.htm. To

represent a wide range of classifiers, we chose a uniform sam-

pling of the allowed values for the parameters of smoothness,

address scope, and application scope.

To stress test the sensitivity of our algorithms to the number

of decisions in a classifier, we created a set of classifiers

RLU (and thus RLaU and RLbU ) by replacing the decision

of every rule in each classifier by a unique decision. Similarly,

we created the set SY NU . Thus, each classifier in RLU

(or SYNU ) has the maximum possible number of distinct

decisions. Such classifiers might arise in the context of rule

logging where the system monitors the frequency that each

rule is the first matching rule for a packet.

2) Results on real-world and synthetic classifiers: Table II

shows the average compression ratio, rule size ratio, and

rule number ratio for our algorithm on all eight data sets.

Figure 10 shows the accumulated percentage graphs for the

compression ratios of our combined techniques for both RL
and RLU with and without transformers, and Figure 11 shows

the accumulated percentage graphs for the compressions ratios

of our combined techniques for each field in RL. Note that the

data with transformers depicts the true space savings of our

methods, but most previous range encoding papers focus only

on the data without transformers. Figure 12 and Figure 13

show the accumulated percentrage graphs of our combined

techniques on RL and RLU for rule number ratio and rule

width ratio, respectively.

compression rule size rule number

DC w.o. T with T w.o. T with T

RL 11.8% 4.5% 13.8% 15.9% 36.1% 126.0%

RLU 29.6% 9.8% 20.8% 19.2% 77.0% 183.0%

RLa 17.8% 6.8% 20.7% 20.4% 38.7% 105.2%

RLaU 44.6% 14.9% 31.3% 23.6% 82.7% 161.7%

RLb 0.6% 0.1% 0.9% 7.5% 31.2% 164.7%

RLbU 1.7% 0.4% 1.1% 11.0% 66.4% 222.6%

SY N 0.7% 0.6% 2.5% 10.4% 2.7% 11.8%

SY NU 13.4% 9.3% 12.4% 16.0% 43.9% 58.9%

TRS 6.2% 1.0% 2.7% 15.7% 9.7% 23.3%

TABLE II
AVERAGE COMPRESSION RATIO, RULE WIDTH RATIO, AND RULE NUMBER

RATIO FOR OUR ALGORITHM ON 9 DATA SETS. AVERAGE COMPRESSION

RATIO AND RULE NUMBER RATIOS ARE REPORTED WITH TRANSFORMERS

INCLUDED AND EXCLUDED.

Our algorithm achieves significant compression on both
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real-world and synthetic classifiers. On RL, our algorithm

achieves an average compression ratio of 13.8% if we count

TCAM space for transformers and 4.5% if we do not. These

savings are attributable to both rule width and rule number

compression. The average rule width compression ratio is

15.9%, which means that a typical encoded classifier only

requires 17 bits, instead of 104 bits, to store a rule. However,

the actual savings that rule width compression contributes to

average compression ratio is only 25% because the encoded

classifiers will use 40 bit wide TCAM entries, the smallest

possible TCAM widths (two classifiers in RLU require an 80

bit wide TCAM entry). In comparison, direct range expansion

would use 160 bit wide TCAM entries. That is, TW (A(C)) =
40 for all but two classifiers in RLU . The remaining savings

is due to rule number compression. Note that the average rule

number compression ratio without transformers is 36.1%; that

is, domain compression and redundancy removal eliminate an

average of 63.9% of the rules from our real-life classifier sets.

In comparison, the goal of all other reencoding schemes is an

average rule number compression ratio without transformers

of 100%. Our algorithm performs well on all of our other data

sets too. For example, for Taylor’s rule set TRS, we achieve

an average compression ratio of 2.7% with transformers in-

cluded and 1.0% with transformers excluded. Note that prefix

alignment is an important component of our algorithm because

it reduces the average compression ratio without transformers

for RL from 11.8% to 4.5%.

3) Sensitivity to classifier efficiency: Our algorithm is ef-

fective for both efficiently specified classifiers and inefficiently

specified classifiers. The efficiently specified classifiers in RLa
experience relatively little range expansion; the inefficiently

specified classifiers in RLb experience significant range ex-

pansion. Not surprisingly, our algorithm provides roughly 20

times better compression for RLb than for RLa with average
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compression ratios of 0.9% and 20.7%, respectively. In both

sets, TCAM width compression contributes approximately

25% savings. The difference is rule number compression.

Whereas our algorithm achieves relatively similar average rule

number ratios of 38.7% and 31.2% without transformers for

RLa and RLb, respectively, these rule number ratios have

significantly different impacts on the final compression ratios

given that all the efficiently specified classifiers in RLa have

modest range expansion while all the inefficiently specified

classifiers in RLb have tremendous range expansion.

4) Sensitivity to number of unique decisions: Our algo-

rithm’s effectiveness is only slightly diminished as we increase

the number of unique decisions in a classifier. In the extreme

case where we assign each rule a unique decision in RLU ,

our algorithm achieves an average compression ratio of 20.8%
with transformers included and 9.8% with transformers ex-

cluded; and on SY NU , our algorithm achieves an average

compression ratio of 12.4% with transformers included and

9.3% with transformers excluded. In particular, the TCAM

width used by each classifier is unaffected. Rule number ratio

compression is worse for RLU , but the rule number ratio

without transformers is still less than 100% for all our data

sets with unique decisions.

5) Comparison with state-of-the-art results: Our algorithm

outperforms all existing reencoding schemes by at least a

factor of 3.11 including transformers and by at least a factor

of 5.54 excluding transformers. We first consider the width of

TCAM entries. Our algorithm uses 40 bit wide TCAM entries

for all but 2 classifiers in RLU whereas the smallest TCAM

width achieved by prior work is 80 bits [21], [22]. Therefore,

on TCAM entry width, our algorithm is 2 times better than the

best known result. Next, we consider the number of TCAM

entries. Excluding TCAM entries for transformers, the best

rule number ratio that any other method can achieve on RL
is 100% whereas we achieve 36.1%. Therefore, excluding

TCAM entries for transformers, our algorithm is at least

5.54 (= 2 × 100%/36.1%) times better than the optimal

TCAM reencoding algorithm that does not consider classifier

semantics. In comparison with PIC [21], [22], the best previous

TCAM-based reencoding algorithm, the transformers in PIC

use at least the same number of TCAM entries as our algorithm

because our domain compression technique may map multiple

intervals to one decision whereas PIC maps each interval to a

unique decision. Thus, including TCAM entries for transform-

ers, the best average rule number ratio that PIC can achieve

on RL is 195.7%(= 123.3% − 27.6% + 100%). Therefore,

including TCAM entries for transformers, our algorithm is at

least 3.11 (= 2× 195.7%/126.0%) times better than PIC.

B. Efficiency

We implemented our algorithms on the Microsoft .Net

framework 2.0 and performed our experiments on a desktop

PC running Windows XP with 3G memory and a single 3.4
GHz Pentium D processor. On RL, the minimum, mean,

median, and maximum running time is 0.003, 37.642, 0.079,

and 1093.308 seconds; on RLU , the minimum, mean, median,

and maximum running time is 0.006, 1540.934, 0.203, and

54604.311 seconds. Table III shows running time of some

representative classifiers in RL and RLU . The last two

classifiers in the table run slower due to the overhead of

building the FDDs. This overhead can be alleviated by caching

the FDDs for reuse during updates.

Size Time (seconds) Time (seconds) Unique Decisions

511 0.40 1.92

1308 1.00 6.59

1365 14.51 80.91

1794 26.85 273.35

2331 42.33 355.52

3928 0.64 4.86

4004 117.01 3234.90

7652 1093.31 54604.31

TABLE III
RUNNING TIME ON 5 CLASSIFIERS IN RL AND RLU

IX. PERFORMANCE MODELING

We now assess the impact that our two topological trans-

formation schemes (parallel pipelined-lookup using 6 TCAM

chips and multi-lookup using 1 TCAM chip) will have on

power, latency, and throughput. We compare our topological

transformation schemes against direct range expansion. Be-

cause we cannot build actual devices, we use Agrawal and

Sherwood’s power, latency, and throughput models for TCAM

chips [2]. To our best knowledge, Agrawal and Sherwood’s

TCAM models are the only publicly available models and

have become widely adopted. To derive meaningful power

results, we need much larger classifiers than the largest

available classifier in RL. Rather than make large synthetic

classifiers, we consider hypothetical classifiers whose direct

range expansion fits exactly within standard TCAM chip sizes

ranging from 1Mbit to 72bit. We further assume that when

topological transformation is applied to these hypothetical

classifiers, the resulting compression ratio will be 15%. To

account for updates and because we do not know how the bits

will be allocated to each of the 5 transformers and reencoded

classifier, we conservatively assume that each transformer and

the reencoded classifier will have a size that is 15% of the

direct expansion classifier.

A. Model

For power and latency, we use Agrawal and Sherwood’s

TCAM modeling tool which takes as input a TCAM config-

uration (size in bits, row width, fabrication size, number of

banks, and number of row dividers) and produces as output

the power consumed for each access as well as the latency

of each access. We compute throughput using the resulting

latency. With respect to latency, the dominant factor is the

priority encoder. Specifically, the depth of the priority encoder

circuit increases as the number of banks searched increases.

Thus, it is possible to perform searches on two small TCAMs

with shallow priority encoder circuits in much less than double

the time required to perform one search on a much larger

TCAM. In summary, our modeling results demonstrate that

the 6 chip configuration significantly improves throughput and

power and is essentially neutral on latency whereas the 1 chip

configuration significantly improves power while suffering

some loss in latency and throughput.
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Power per packet Latency per packet Throughput

(a) (b) (c)
Fig. 14. Power, latency, and throughput by size for 0.18 µm technology with 16 banks and 4 row dividers

Average
Power Latency Throughput

6 Chip 1 Chip 6 Chip 1 Chip 6 Chip 1 Chip

1 Mb 122.0 % 20.6 % 100.7 % 304.6 % 200.4 % 32.8 %

2 Mb 91.7 % 15.6 % 92.0 % 300.0 % 238.1 % 33.3 %

4.5 Mb 66.8 % 11.5 % 100.0 % 342.9 % 233.3 % 29.2 %

9 Mb 50.3 % 8.8 % 112.5 % 375.0 % 200.0 % 26.7 %

18 Mb 40.5 % 7.2 % 97.0 % 317.4 % 226.8 % 31.5 %

36 Mb 34.8 % 6.3 % 63.5 % 205.2 % 341.1 % 48.7 %

72 Mb 31.8 % 5.8 % 32.3 % 103.4 % 662.9 % 96.7 %

TABLE IV
POWER, LATENCY, AND THROUGHPUT RATIOS

B. Power

For any classifier C, let P(A(C)) represent the nanojoules

needed to classify one packet using the given scheme. For the

two topological transformation schemes, we include the power

consumed by the transformers. For one classifier C, we define

the power ratio of algorithm A as
P(A(C))

P(Direct(C)) . For a set of

classifiers S, we define the average power ratio of algorithm A

over S to be
ΣC∈S

P(A(C))
P(Direct(C))

|S| . The extrapolated average power

ratios are displayed in Table IV and Figure 14 (a).

The modeling results clearly demonstrate that topological

transformation results in a significant improvement in power

usage per search. The reason for the savings is that even

though we perform more searches, each search is performed

on a much smaller TCAM chip.

C. Latency

For any classifier C, let L(A(C)) represent the total number

of nanoseconds required to classify a packet using the given

scheme. For topological transformation with 6 chips, this is

the time required to perform 5 lookups in parallel for the

transformer tables plus the final lookup on the reencoded

classifier. For topological transformation with one chip, it is

the time time required to perform all 6 lookups sequentially.

For one classifier C, we define the latency ratio of algorithm A

as
L(A(C))

L(Direct(C)) . For a set of classifiers S, we define the average

latency ratio for algorithm A over S to be
ΣC∈S

L(A(C))
L(Direct(C))

|S| . The

extrapolated average latencies are included in Figure 14 (b)

and Table IV.

The modeling results demonstrate that topological transfor-

mation does not significantly increase latency, particularly if

we use the 6 chip configuration. In fact, this configuration can

even reduce latency. As we discussed earlier, the reason is that

even though we must perform some searches sequentially, each

search is faster because it is performed on a much smaller

TCAM chip with a much shallower priority encoder. As a

result, even the 1 chip configuration is only 2-4 times slower

than direct range expansion.

D. Throughput

For any classifier C, let T(A(C)) represent the number

of packets per second that can be classified using the given

scheme. For topological transformation with 6 chips, this

is the minimum throughput of any of the 6 TCAM chips.

For topological transformation with 1 TCAM chip, this is

essentially the inverse of latency because there is no pipelin-

ing. For one classifier C, we define the throughput ratio of

algorithm A as
T(A(C))

T(Direct(C)) . For a set of classifiers S, we

define the average throughput ratio for algorithm A over S to

be
ΣC∈S

T(A(C))
T(Direct(C))

|S| . The extrapolated average throughputs are

included in Figure 14 (c) and Table IV.

The modeling results demonstrate that topological transfor-

mation significantly improves throughput if we use the 6 chip

configuration. The reason for the throughput increase is the

use of the pipeline and the use of smaller and thus faster

TCAM chips. The throughput of the 1 chip configuration is

significantly reduced because there is no pipeline; however, the

throughput is better than 16.6% because it again uses smaller,

faster TCAM chips.

X. CONCLUSIONS AND FUTURE WORK

We make three major contributions in this paper. First, we

propose a novel topological view of the TCAM reencoding

process where we consider the semantics of the packet classi-

fier. Second, we present two techniques, domain compression

and prefix alignment, for realizing such a view. These tech-

niques are not only composable, they can be composed with

other TCAM optimization and reencoding schemes. Third, we

implemented our algorithms and conducted extensive exper-

iments on both real-life and synthetic packet classifiers. The

experimental results show that our techniques achieve at least

5.54 times more space reduction with transformers excluded

and at least 3.11 times more space reduction with transformers

included.
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Our work opens up new problems for future research. One

problem is to find an optimal choice of landmarks for each

equivalence class in the domain compression technique that

leads to the smallest final classifier. Another is to find an

optimal solution to the multi-dimensional prefix alignment

problem or prove it is NP-hard. We also plan to study more

potential combinations of our techniques with other TCAM

optimization and reencoding schemes.
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