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Abstract. Sensornet protocols periodically broadcast beacons for neighborhood

information advertisement, but beacon transmissions are costly when power-saving

radio duty cycling mechanisms are used. We show that piggybacking multiple

beacons in a single transmission significantly reduces transmission costs and ar-

gue that this shows the need for a new layer in the sensornet stack—an announce-

ment layer—that coordinates beacons across upper layer protocols. An announce-

ment layer piggybacks beacons and coordinates their transmission so that the total

number of transmissions is reduced. With an announcement layer, new or mobile

nodes can quickly gather announcement information from all neighbors and all

protocols by issuing an announcement pull operation. Likewise, protocols can

quickly disseminate new announcement information to all neighbors by issuing

an announcement push operation. We have implemented an announcement layer

in the Contiki operating system and three data collection and dissemination pro-

tocols on top of the announcement layer. We show that beacon coordination both

improves protocol performance and reduces power consumption.

1 Introduction

Sensor network protocols use periodic beacons to advertise information to neighbors.

Examples include routing cost gradients in data collection protocols [11, 23, 24], ver-

sion or sequence numbers in data dissemination protocols [12, 15, 16], and presence

information in neighbor discovery protocols [8, 14]. Beacons are transmitted both pe-

riodically and when protocols detect potential inconsistencies. For example, a node in

a collection protocol that detects a loop repairs the network by asking its neighbors for

the latest routing cost gradient [11], and a node in a dissemination protocol that has an

older version than its neighbors achieves consistency by asking its neighbors for the

latest version [15].

Beacons are transmitted as broadcasts so that they reach all nodes in the neighbor-

hood of the transmitter. Broadcast are, however, costly in terms of power since low-

power networks duty cycle their radios. Many protocols therefore attempt to reduce the

amount of beacons they transmit. For example, the CTP data collection protocol uses

adaptive beaconing [11] and the Trickle and the RPL protocols uses beacon suppres-

sion [15, 23]. These solutions only work for one individual protocol, however. When

multiple protocols are used concurrently, each protocol will transmit their beacons in-

dependently of each other, increasing the power consumption.
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Fig. 1. The announcement layer coordinates beacons from multiple protocols. This allows the

number of beacon transmissions to be reduced and announcement operations to be coordinated

across protocols.

We argue that there are significant power savings to be made through coordinat-

ing and piggybacking beacons from multiple protocols. We present the announcement

layer, a beacon coordination layer for the sensornet stack that transmission of periodic

beacons from multiple protocols, piggyback multiple beacons into each transmission

to reduce the total amount of beacon transmissions, and provide operations for pushing

announcements to the neighborhood and for requesting announcements from neighbors.

Figure 1 shows how the announcement layer fit into the network stack.

The announcement layer defines two operations: push and pull. Push quickly trans-

mit an announcement to the neighborhood and pull requests announcements from all

neighbors. The push operation is used e.g. when a collection protocol finds a better

route and the pull operation is used e.g. when a collection protocol node detects a rout-

ing loop and the latest routing gradients are needed.

We argue that an announcement layer provide at least three benefits:

– Reduction of bandwidth usage and network congestion. Since multiple announce-

ments are collected in a single broadcast transmission, less bandwidth is occupied

by beacons, leading to less network congestion. We evaluate this in Section 5.1.

– Reduction of power consumption. Broadcast transmissions are expensive, but the

marginal cost of sending larger packets is low. Collecting multiple announcements

into a single packet therefore reduces power consumption. We quantify the power

consumption reduction throughout Section 5.

– Inter-protocol coordination. Announcements from multiple concurrent protocols

are collected at a single point in the network stack, making it possible to coordinate

push and pull operations across protocols. We quantify this in Section 5.2.

We make our case as follows. We demonstrate that beacon transmissions are costly

that multiple transmissions even more so (Section 2). This motivates the need for an an-

nouncement layer (Section 3). We have implemented an announcement layer in Contiki

(Section 4) and demonstrate that the use of an announcement layer reduces the num-

ber of beacon transmissions and the power consumption in a series of simulations and

testbed experiments (Section 5) and discuss how an announcement layer differs from

existing approaches (Section 6).



2 Motivation: Beacon Transmissions are Costly

The background to the announcements programming abstraction stems from the peri-

odic broadcast beacons used by sensor network protocols to do one-hop neighborhood

information advertisement, and the observation that radio duty cycling makes broadcast

expensive.

2.1 Sensornet Protocols use Beacons

Sensor network protocols use periodic beacon transmissions to advertise information

to the one-hop neighborhood. Examples include route metrics in data collection proto-

cols [11] and version numbers in data dissemination protocols [12].

Information advertisement within the physical neighborhood of sensor nodes may

also serve functionality reaching up to the application level, e.g., to coordinate sensors

and actuators in a control application [5]. Programming systems for such application-

level information sharing exist, such as Hood [22] and TeenyLime [4].

Beacons are typically transmitted periodically, but the period often changes over

time. Many protocols exponentially increase their beacon rate when the information in

the beacons has been transmitted several times and is no longer new. Examples include

the Trickle single-packet data dissemination protocol [15], the multi-packet data dis-

semination protocol Deluge [12], the CTP data collection protocol [11], and the RPL

low-power IPv6 routing protocol [23].

2.2 Duty Cycling makes Beacon Transmissions Costly

Beacons need to reach all nodes in the neighborhood of the transmitting node. Beacons

are therefore sent as broadcast messages, but since radio duty cycling must be used to

maintain a low power consumption, broadcast messages become comparatively expen-

sive in terms of power consumption.

In traditional wireless networks, broadcast has been regarded as an inexpensive op-

eration due to the broadcast nature of the radio medium: the physical radio signal nat-

urally reaches all neighboring nodes. But when radios are duty cycled, one physical

transmission is not enough to reach all neighbors, since neighbors have their radios

switched off most of the time. To send a broadcast transmission, the sender must make

sure that all its neighbors are awake to receive the broadcast transmission.

Ensuring that all neighbors are awake to receive the transmission can be done in

two ways: either by having all nodes agree on scheduled rendez-vous when all nodes

are simultaneously awake, or by having the sender explicitly wake up all its neighbors.

Scheduled rendez-vous are costly since nodes must wake up for every rendez-vous,

even if no data is to be transmitted. Explicit wake-ups are expensive since the sender

must make sure that all nodes receive the message, thus typically needs to transmit the

message multiple times. In contrast, for a unicast transmission, it is enough that only

one node—the receiver—is awake to receive the message. Thus unicast transmissions

are fundamentally less expensive.
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Fig. 3. A broadcast transmission must wake up all neighbors. The sender therefore extends the

packet train for a full channel sampling period.

We perform a set of experiments to quantify the power cost of broadcast trans-

missions. We use Contiki 2.5 with the ContikiMAC duty cycling protocol, the de-

fault duty cycling protocol in Contiki 2.5. ContikiMAC is a low-power-listening MAC

protocol that builds on mechanisms from many existing state-of-the-art duty cycling

protocols [2, 10, 17, 19] but adds a very power-efficient channel sampling mechanism.

From B-MAC [19], ContikiMAC lends the basic idea of low-power listening. From X-

MAC [2], ContikiMAC uses the idea of a packetized preamble. From WiseMAC [10],

ContikiMAC uses the phase-lock mechanism, which we describe below. From BoX-

MAC [17], ContikiMAC uses the idea of using the data packet as the wake-up signal.

Figure 2 shows the basic operation of ContikiMAC. Nodes wake up periodically

to sample the radio medium for transmissions. This is performed in a power-efficient

way: a node turns the radio on for only 192 microseconds to measure the received

signal strength. If this indicates a transmission from a neighbor, the node keeps the

radio on. To avoid missing transmissions, the node samples the radio medium twice

within 0.5 ms. A sender triggers a transmission by sending a train of data packets, until

one packet finds the receiver’s radio on. Upon receiving a packet, the receiver answers

with a link-layer acknowledgment and the sender stops transmitting the packet train. In

ContikiMAC, unicast transmissions are power-efficient because senders phase-lock to

the wake-up interval of its neighbors [10]. A sender synchronizes to the wake-up phase

after the successful transmission, as shown in Figure 2. For broadcasts, the sender needs

to send its packet train for a full channel sampling period to ensure that all neighbors

have heard the transmission, as shown in Figure 3.

To quantify the relative cost of broadcast and unicast, we perform an experiment

using two TMote Sky motes running Contiki and ContikiMAC. We use a channel sam-

pling rate of 16 Hz. We run two experiments, one where we send broadcast traffic and

one where we send unicast traffic, and vary the send rate. We measure the radio duty
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Fig. 4. The power consumption of broadcast is significantly higher than for unicast because broad-

cast transmissions (Figure 3) are longer than unicast transmissions (Figure 2).
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Fig. 5. Multiple, small broadcast transmissions are significantly more costly than a single broad-

cast transmission, for the same amount of data.

cycle using Contiki’s built-in software-based power profiler [6]. Figure 4 shows the re-

sults. We observe that the cost of broadcast is significantly higher than that of unicast,

and that the marginal increase in power consumption with increasing send rate is higher

for broadcast. Therefore, there is much larger room for improvement in optimizing

broadcast transmissions rather than unicast transmissions.

2.3 Multiple Transmissions are More Costly

We perform another experiment, using the setup as above, where we transmit a fixed

amount of data split into one, two, three, or four broadcast transmissions. The total

amount of data is the same in all four cases, and we vary the amount of data across

experiments. The purpose is to study the power consumption of multiple transmissions

versus that of a single transmission, containing the same amount of data.

The result is shown in Figure 5 and shows that multiple transmissions are signifi-

cantly more costly than a single transmission, with the same amount of data. Also, the

marginal cost of transmitting additional bytes in a single broadcast is significantly lower

than the cost of transmitting the data as multiple transmissions. This demonstrates that

there is a strong incentive to reduce the number of broadcast transmissions by collecting

multiple beacons into a single, larger packet.



3 The Announcement Layer

The announcement layer provides beacon coordination for upper layer protocols. Proto-

cols register announcements with the announcement layer and the announcement layer

takes care of the periodic transmission of the announcements. An announcement is the

information that a protocol would otherwise periodically transmit as beacons.

The announcement layer piggybacks announcements from multiple protocols in

each beacon transmission and coordinates the transmissions so that the total amount

of transmissions is reduced. Since the information sent in each announcement is typi-

cally small [11, 15, 16], several announcements often fit in a single beacon.

In addition to beacon coordination, the announcement layer provide a small but

powerful set of operations that give protocols the ability to push announcements to

neighbors and to pull announcements from neighbors.

An announcement is a key-value pair. The key is an integer that uniquely identifies

the announcement. The value is a data array. The semantics of the value in an announce-

ment is application-specific and opaque to the announcement mechanism.

Each announcement has a minimum rate for its periodic transmissions. The rate is

set by the protocol that registered the announcement, and can be different for different

announcements. From the minimum rates set for each announcement, the announce-

ment layer computes a schedule that ensures that one and only one beacon is transmit-

ted for every beacon interval. Since multiple announcements are consolidated into each

beacon transmission, it is enough to send one beacon for each interval, thus reducing

the total amount of beacon transmissions. This also means that an announcement may

be transmitted more often than its minimum rate, which is allowed by the semantics

of the announcements layer because protocols specify only the minimum transmission

rate, not the maximum rate.

Each announcement has a scope that is either node scope or network scope. Node-

scope announcements have a value that is bound to the node, whereas network-scope

announcements have a value that is shared across the network. An example of a node-

scope announcement is a hops-to-sink metric in a data collection protocol, which is

specific to the node that registered the announcement. An example of a network-scope

announcement is a global version number in a data dissemination protocol, which is the

same for all nodes in the network.

3.1 Beacon Coordination

The announcement layer coordinates beacon transmissions for all registered announce-

ments. The values from multiple beacons is collected into a single broadcast transmis-

sion. The beacon intervals from all protocols are coordinated to reduce the total amount

of beacon transmissions.

Each protocol registers its maximal beacon interval with the announcement layer.

The announcement layer ensures that at least one beacon is transmitted within this time

interval. If two or more protocols need to transmit a beacon within a given time in-

terval, beacon coordination will see to it that only the first beacon is sent. Since each

beacon contains all announcements, the first transmission is enough to ensure that both

announcements are transmitted within their respective intervals.
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push(key) Pushes an announcement to neighbors.

pull(key) Pulls an announcement from neighbors.

register(key, scope, callback) Registers an announcement and set its scope.

setValue(key, value) Sets the value of an announcement.

setMinRate(key, rate) Sets the min periodic transmission rate.

Fig. 7. Announcement layer operations.

The beacon coordination concept is illustrated in Figure 6. In the illustration, three

protocols have registered three announcements. Each announcement has a different bea-

con interval. A beacon is to be sent randomly within each interval. Without beacon co-

ordination and beacon consolidation, each protocol would send their own beacon mes-

sages without coordinating with the other protocols and the system in Figure 6 would

transmit 22 beacons. By contrast, with beacon coordination and beacon consolidation,

the system sends only 12 beacons.

The beacon coordination algorithm is simple. For each new announcement, a timer

fires randomly within each interval. When the timer fires, it checks if a beacon has

already been transmitted within its interval. Unless the protocol has updated the value

of its announcement since the last beacon transmission, there is no need to send a new

beacon and the transmission is consequently cancelled.

3.2 Announcement Operations

The announcement layer defines two primary operations, push and pull. In addition,

the announcements layer provides functions for registering announcement, to set the

value of an announcement, and to set the minimum rate for the periodic transmission of

announcements. Figure 7 shows the operations and functions.

Protocols that use announcements first register the announcement with the register

function. The registration is a simple procedure that binds a key to the announcement



and sets its scope. After registering the announcement, the protocol will begin receiving

notifications when neighbors transmit their announcements. This is handled via a call-

back function that is given as an argument to the register function. The protocol gives

the announcement its value with the setValue function. The minimum transmission rate

of the announcement is set with the setMinRate function.

The push and pull operations are used for pushing announcements to the neighbor-

hood and to request announcements from neighbors, respectively. A push causes the

transmission of an announcement to all neighbors. Protocols can use this operation to

send new information to neighbors quickly. For example, a node in a data collection

protocol that learns a significantly better route may want to quickly let its neighbors

know of this new route. The node would set a new value for its announcement with the

setValue function, and then call the push operation to push the changed routing metric

to its neighbors.

The pull operation requests announcements from neighbors. The operation causes

one or more neighbors to send their announcements to the node that issued the pull. This

operation is used by protocols that are able to discover when a node needs information

from its neighbors. For example, when a mobile node moves into a new environment

it needs to gather information about its network environment, such as routing metrics.

It then issues a pull, which causes its neighbors to send their announcements to the

requesting node.

Although both the push and pull operations are defined to operate only on a single

announcement, the beacon consolidation will collect all a node’s announcements the

beacon transmission. This means that a single push operation will push all announce-

ments to neighbors. Likewise, a single pull operation will pull all announcements from

neighbors.

The push and pull operations are based on the observed behavior of existing proto-

cols:

Data collection with CTP. The CTP data collection protocol [11] defines an im-

plicit push operation and an explicit pull operation. When the routing metric of a node

changes significantly, CTP quickly transmits a beacon message with the new routing

metric, which constitutes an implicit push operation. This makes the new information

propagate faster than with the usual periodic dissemination. If a node detects that its

routing metric is out of date, e.g., if a loop is detected or if the node has just started,

CTP sends a beacon with a pull-bit set, to which neighbors respond by sending a bea-

con. This is an explicit pull operation.

Single-packet data dissemination with Trickle. The Trickle single-packet dissemina-

tion protocol [15] defines implicit push and pull operations. When Trickle starts sending

a new version of the data to be disseminated, Trickle nodes issue an implicit push to

rapidly propagate the new version through the network. Also, if a node notices that a

neighbor has an older version than the current global version, the node performs an im-

plicit push by directly broadcasting a beacon with the latest version. When a node boots

up, it performs an implicit pull operation by sending a beacon with version number

zero, which causes neighbors to broadcast the latest version.

Low-power IPv6 routing with RPL. The RPL IPv6 routing protocol defines explicit

push and pull operations [21, 23]. Nodes periodically transmit DODAG Information



collectInit() {

register(COLLECT_KEY, NODE_SCOPE)

pull(COLLECT_KEY)

}

receivedAnnouncement(fromAddress, etx) {

addNeighbor(fromAddress, etx)

updateLocalETX()

setValue(COLLECT_KEY, localETX)

if (newParent) {

push(COLLECT_KEY)

setMinRate(COLLECT_KEY, lowestRate)

}

}

sendDataPacket() {

if (parent == nil) {

pull(COLLECT_KEY)

} else {

sendto(parent)

}

}

Fig. 8. The relevant parts of the data collection protocol with announcements, in pseudo code.

Objects (DIO) messages to let nodes in their one-hop neighborhood discover and main-

tain routes. The DIOs are transmitted at adaptive intervals and RPL also uses suppres-

sion to reduce the amount of transmissions. The combined effect of adaptive intervals

and suppression may cause a node that has just started or moved into a new neighbor-

hood to wait for a long time before getting a DIO. An RPL node may therefore send a

DODAG Information Solicitation (DIS) message, to which neighbors reply with DIO

messages. This constitutes an explicit pull.

Neighbor discovery. Many neighbor discovery protocols for mobile sensor net-

works [8, 9, 13, 25] define both push and pull operations, which may be triggered by

physical mobility. Nodes transmit beacons to announce their presence, constituting an

explicit push, and may request information from their neighborhood to gather the iden-

tity of surrounding devices when the connectivity may change because of a changing

physical location.

3.3 Protocol Implementations with an Announcement Layer

To demonstrate the feasibility of the announcement layer as a programming primitive

for network protocols, we have rewritten three of the most common sensor network

protocols to use announcements: data collection, single-packet data dissemination, and

multi-packet data dissemination. All three protocol implementations are based on the

original implementations in Contiki [7]. The data collection protocol is Contiki collect,

an address-free, tree-based collection protocol similar to the TinyOS Collection Tree

Protocol [11]. The single-packet data dissemination protocol is based on the Trickle pro-

tocol by Levis et al [15]. The multi-packet data dissemination protocol is Deluge [12].

We describe the implementation of the data collection protocol in detail below.

The starting point for our announcements-based data collection protocol is the Con-

tiki collect protocol in Contiki 2.5. Contiki collect builds a tree, rooted at the sink, by

letting each node estimate the expected number of transmissions (ETX) to reach the



sink. Nodes outside the neighborhood of the sink select the neighbor with the lowest

ETX routing cost as their parent in the tree. Each node announces its ETX value to its

neighbors through periodic beacons. The beacons are transmitted with an increasing

interval, but when a node finds a significantly better parent, the beacon interval is reset

to a low value.

The original Contiki collect module [7] uses periodic beacons to advertise rout-

ing cost. In our rewritten variant, the protocol instead uses announcements to advertise

its routing cost. An excerpt of the rewritten version is shown as pseudo code in Fig-

ure 8. When the collection protocol is initiated, it registers an announcement with a

pre-defined key and with the node scope. This announcement is used for advertising

route metrics. When the node starts, it does not have any route information and there-

fore issues a pull to get route information from neighbors.

When the node receives an announcement from a neighbor, the receivedAnnounce-

ment function is invoked. This function registers the ETX value of the neighbor in the

neighbor list and recomputes the local ETX, which may have changed if the incoming

announcement had a better ETX value than those of previous neighbors. The announce-

ment is then updated with the new ETX value. If the incoming announcement triggered

the local node to chose a new parent, this information is pushed to neighbors, and the

lowest beacon rate is set.

The beacon rate is periodically increased through repeated calls to setMinRate, but

this code is not included in Figure 8 due to space constraints.

When sending a packet, the sendDataPacket function searches the list of neighbors

to find the best one. If there are no neighbors that have a route, the outbound packet is

queued, and the announcement layer is instructed to pull announcements from neigh-

bors with the pull operation.

4 Implementation

We have implemented an announcement layer in the Contiki operating system and the

Rime network stack [7]. The announcement layer is implemented as a separate Rime

module that uses a Rime broadcast channel to send and receive its beacon messages.

Beacon coordination consolidates all announcements into each beacon packet, but

technology-specific limitations on radio packet size may restrict the amount of an-

nouncements that can be consolidated into each packet. For example, the popular 802.15.4-

2006 standard defines a maximum packet size of 127 bytes1. Our announcement layer

implementation handles this by breaking up large beacons into multiple broadcast trans-

missions.

To avoid instantaneous congestion caused by network synchronization, our imple-

mentations of the push and pull operations incur a random wait period before the bea-

cons are transmitted. In our implementation, we set the waiting period to a random time

between 0 and 8 seconds.

1 Upcoming versions of the standard increase the maximum packet size to 2047 bytes.



5 Evaluation

We evaluate three aspects of the announcement layer. First, we quantify the beacon

coordination mechanism and the resulting reduction in power consumption. Second,

we quantify the cost of the announcement operation in terms of power consumption

and the number of packet transmissions. Third, we use a testbed experiment to study a

sensor network with concurrent protocols.

We use both simulation and testbed experiments. All simulations and experiments

are carried out with Tmote Sky motes. For our simulations, we use the Contiki Cooja

network simulator and the MSPsim Tmote Sky emulator [20]. Cooja and MSPsim pro-

vides a cycle-level accurate emulation of the MSP430 microcontroller and a bit-level

accurate emulation of the CC2420 radio transceiver, which makes it possible to cor-

rectly emulate low-level protocols such as radio duty cycling mechanisms. For our

testbed experiments, we use a 24-node Tmote Sky testbed in an office environment

with a wired backchannel through which we obtain logging information. Throughout

our experiments, we use Contiki 2.5 and the ContikiMAC low-power listening duty cy-

cling mechanism with a channel check rate of 8 Hz, which results in an idle duty cycle

of 0.5%.

We use the radio duty cycle as a proxy for energy consumption because the radio

transceiver is the most power consuming component. We use Contiki’s power profiler

to measure the radio duty cycle [6], both the amount of time that the radio spends in

listen mode and in transmit mode.

5.1 Beacon Coordination

The purpose of beacon coordination is to reduce the number of beacon transmissions by

consolidating all announcements into every beacon and by suppressing the transmission

of redundant beacons.

To evaluate the effectiveness of the beacon coordination mechanism, we set up a

system with a variable number of announcements and set a fixed minimum rate of ten

seconds for each announcement. We vary the number of announcements and measure

the number of beacons that get transmitted as well as the total power consumption of

the system. We run the system both with and without beacon coordination.

Figure 9 shows the result. We see that without beacon coordination, the number

of beacons per interval increases with the increasing number of announcements. With

beacon coordination, however, the number of beacons remains at one per interval. Sim-

ilarly, without beacon coordination, the power consumption grows with the number of

announcements, but with beacon coordination the power consumption stays almost con-

stant, even though there is a slight increase in power consumption due to the additional

size of each beacon.

5.2 The Cost of Announcement Operations

The push and pull announcement operations involve the transmission and reception of

network traffic, incurring power consumption in the involved nodes. We quantify the

effect of these operations on the power consumption by conducting three experiments.
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Fig. 9. The number of beacon transmissions with and without beacon coordination (left). The

power consumption with and without beacon coordination (right).
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Fig. 10. The cost of the push and pull operations in a 40 node network where all nodes are in

range of each other.

First, we measure the effect on power consumption caused by the push operation in a

dense network with a varying number of nodes that issue a push operation. Second, we

measure the effect of the pull operation in the same situation. Third, we quantify the

marginal cost of an increasing number of announcements being pushed in a single push

operation.

To quantify the cost of the push operation, we set up a simulated network with 40

nodes. A push operation results in a broadcast transmission, which reaches all nodes in

range. To create a situation in which the push operation was as expensive as possible,

we set up our network so that all nodes are transmission range of each other. The nodes

issue a push every ten seconds and we vary the amount of nodes that issue a push from

one to all nodes. We measure the radio duty cycle of the nodes over the ten seconds

between each push operation.

The result is shown in the left graph in Figure 10. As expected, we see that the cost

grows linearly with the amount of nodes issuing a push.

We use the same simulation setup to quantify the cost of the pull operation. For the

pull operation, all nodes in range of a node that issues a pull will respond with a push.

Thus we expect the duty cycle to be higher than for the push operation.
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The right graph in Figure 10 shows the result. We see that the cost is higher than

for the push operation, but that it is relatively constant regardless of the number of

nodes that issue a pull operation. This is due to the delay between the reception of a

pull request and the corresponding push response: with many pull requests, nodes will

receive several requests before eventually responding with a push. Thus the resulting

power consumption is not significantly affected by the number of simultaneous pull

operations.

Finally, we quantify the marginal cost of pushing additional announcements. With

an increasing amount of announcements, we would expect the cost of a push operation

to increase because beacons get larger. We devise a simple experiment where one node

issues push operations with an increasing number of announcements. Each announce-

ment has 10 bytes of data. We focus here on a single node and measure only the cost of

transmitting the announcement beacons.

To push the envelope, we deliberately chose to send more announcements than any

current application would need, and vary the number of announcements from one to

20. Figure 11 shows the result. We see that the cost increases with the number of an-

nouncements and that there is a staircase effect. The staircase effect is caused by the

push operation having to be transmitted as an increasing number of packets.

5.3 Case Study: Collection and Dissemination

To study the aggregate effects of announcements on a real-world scenario, we perform a

data collection testbed experiment. We use the Contiki shell to collect sensor data from

a 24 node office testbed. The Contiki shell has one command for setting up a sink node,

collect, which forms a collection tree with the Contiki collect protocol, and one

command for sending data through the collection tree, send. To start the commands on

the nodes in the network, the Contiki shell provides a mechanism for starting commands

on other nodes in the network, netcmd. The netcmd command uses reliable data

dissemination with Trickle to disseminate the commands through the network. Both

the data collection protocol and the data dissemination protocols use beacons and we

expect to see a reduction in the number of beacons in the network.

We run two versions of the experiment, one with announcement-based implemen-

tations of the protocols and one without. In both experiments we use ContikiMAC with
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Fig. 12. Activity breakdown of the data collection and dissemination testbed experiment.

a channel check rate of 8 Hz. We run the network for one hour for each experiment.

With both experiments, we receive an average of 54 packets per node. Two nodes have

poor connectivity and only reported 1 and 3 packets respectively in one experiment, and

1 and 7 packets in the other experiment, whereas the others reported 60 packets. The

longest path was 5 hops long.

We measure the power consumption per Rime channel using Contiki’s power pro-

filer [6]. We see the resulting breakdown in Figure 12. The boxes show the amount of

transmission and reception power spent on beacons and data packets, respectively. The

results show that the announcement-based implementation is able to reduce the num-

ber of beacons. The reduction is due to the suppression of data dissemination beacons,

which account for 9% of the total number of beacons in the non-announcement-based

implementation.

6 Related Work

The idea of inserting a new layer in the network stack to coordinate data from multiple

upper-layer protocols has been used in many contexts. Balakrishnan et al. [1] intro-

duced an explicit congestion management layer for Internet hosts. Choi et al. [3] add

an isolation layer that shields different sensor network protocols from each other. The

announcement layer is different because it focuses on a specific traffic type: broadcast

beacons. Furthermore, since the announcement layer do not shield protocols from each

other, there is no performance penalty as for the isolation layer by Choi et al [3].

There are many examples where information from multiple packets are combined

into a single transmission to improve performance. Lin and Levis [16] observe that

packing multiple pieces of information into the same physical packet aids in reducing

the performance penalty due to broadcast transmissions. However, their scope is limited

to information belonging to a single protocol (DIP), and comes hardwired with the pro-

tocol implementation itself. By contrast, the announcement layer provide a re-usable,

generic mechanism that can be used across different protocols.

The push and pull operations of the announcement layer are similar to the oper-

ations used in sensor network neighborhood abstractions [18, 22]. However, the latter

aim at redefining the notion of physical neighborhood mostly based on application-level



requirements. Announcements, instead, target network-level functionality that typically

leverage communication in the physical neighborhood. In addition, some of the afore-

mentioned systems [18, 22] inherently provide a push-only communication paradigm,

whereas announcements also provide a pull operation.

7 Conclusions

We present the announcement layer that piggybacks announcements from multiple pro-

tocols and coordinates their transmission to reduce the total amount of beacons. The

background to the announcement layer is the observation that beacon transmissions are

costly, and multiple transmissions even more so. In addition to beacon coordination, the

announcement layer provides inter-protocol coordination through two operations: push

and pull. We have implemented an announcement layer in Contiki and rewritten three

staple sensornet protocols on top of it: data collection, single-packet data dissemination,

and multi-packet data dissemination. We demonstrate that beacon coordination reduces

the amount of beacons and that the cost of the push and pull operations is low.
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