
EFFICACY OF A CONSTANTLY ADAPTIVE LANGUAGE MODELING TECHNIQUE FOR

WEB-SCALE APPLICATIONS

Kuansan Wang and Xiaolong Li

Internet Service Research Center (ISRC), Microsoft Research

Microsoft Corporation

Redmond, WA 98052, USA

ABSTRACT

In this paper, we describe CALM, a method for building

statistical language models for the Web. CALM addresses

several unique challenges dealing with the Web contents.

First, CALM does not rely on the whole corpus to be availa-

ble to build the language model. Instead, we design CALM

to progressively adapt itself as Web chunks are made avail-

able by the crawler. Second, given the dynamic and dramat-

ic changes in the Web contents, CALM is designed to

quickly enrich its lexicon and N-grams as new vocabulary

and phrases are discovered. To reduce the amount of heuris-

tics and human interventions typically needed for model

adaptation, we derive an information theoretical formula for

CALM to facilitate the optimal adaptation in the maximum

a posteriori (MAP) sense. Testing against a collection of

Web chunks where new vocabulary and phrases are domi-

nant, we show CALM can achieve comparable and satisfac-

tory model measured in perplexity. We also show CALM is

robust against over training and the initial condition, sug-

gesting that any assumptions made in obtaining the initial

model can gradually see their impacts diminished as CALM

runs its full course and adapt to more data.

Index Terms— N-gram, Statistical language model,

MAP adaptation, CALM, Web applications

1. INTRODUCTION

Ever since appearing in Shannon’s original work on infor-

mation theory [1], statistical language models (SLM), often

in the form of N-grams, have successfully found many natu-

ral language applications, ranging from unsupervised lin-

guistic unit acquisition, speech recognition, information

retrieval, to more recently machine translation [2]. All these

applications share an amazing characteristic that the SLM

takes little advantage of the fact that what is being modeled

is a human language. The impoverished use of linguistic

knowledge seems largely compensated by the large amount

of training data and rigorous statistical techniques. Over the

decades, many of these techniques have been widely vali-

dated and made available as freely available software tool-

kits [3, 4, 5].

The massive data available on the Web make it an en-

ticing source for building large scale SLMs. The sheer size

of the Web, however, also poses new challenges that have

reinvigorated a close look at the well accepted modeling

techniques and engineering strategies. Researchers, for ex-

ample, recently proposed an approach called Stupid Backoff

that is tailored to Google Inc.’s Map-Reduce infrastructure

[6]. Recognizing that faithfully implementing conventional

smoothing methods [7] is a taxing feat, the designers made a

radical design choice in forgoing the basic probabilistic

properties that all the probabilities of possible events must

sum up to 1. By adopting a “probability-like” scoring me-

chanism, Stupid Backoff uses a single backoff weight whose

value is determined manually. Stupid Backoff is technically

no longer a statistical model for which various useful prop-

erties are applicable. Nevertheless, it is reported that such a

tradeoff enables Stupid Backoff to scale up to a size 60

times larger than otherwise possible [7].

In contrast, MSRLM [8] achieves large scale capability

by introducing an ingenious data structure to store N-gram

in backorder trees. The new data structure, similar to those

employed in [5], enables MSRLM to contain the memory

use and provides an efficient way in computing backoff. As

a result, MSRLM can implement widely known algorithms.

Models based on either Stupid Backoff or MSRLM have

yielded respectable outcomes in NIST MT evaluations.

In this paper, we describe a technique called constantly

adaptive language modeling (CALM) for building SLMs.

Although CALM can be applied to unified language model

[9] as well, we focus our discussion on N-grams in this pa-

per. Our applications, mostly aiming at Web search related

tasks, are different from speech recognition or machine

translation such that issues deemed minor in these applica-

tions become more prominent and impactful to ours. Specif-

ically, the issues CALM is designed to address include the

following. First, our applications need to rely on a properly

normalized scoring mechanism to compare various hypo-

theses, for which probabilistic measures remain an ideal

choice and “probability-like” scoring is just not sufficient.

Secondly, many of our applications need to be able to quick-

ly reflect the dynamic changes on the Web. As a result, our

method needs to be able to keep our SLM as fresh as possi-

ble. Third, typically the Web documents are not available to

us all at once. Instead, they often arrive in chunks based on

the Web crawler’s schedule. Accordingly, smoothing tech-

niques that require the raw statistics of the entire corpus to

be available, as in MSRLM for example, no longer apply.

Finally, the Web documents are very noisy and often full of

ill-formed contents. Techniques that use held-out data to

fine tune parameters are therefore not robust as they are very

sensitive to the quality of the held-out data. In many dep-

loyments, we have found that parameters fine-tuned in a lab

environment can lead to very brittle outcomes in deploy-

ments because data from the field are drastically different

from the lab data. CALM is designed to avoid as much as

possible any empirical heuristics that may appear engineer-

ing appealing but eventually hurt the application perfor-

mance.

2. ITERATIVE A POSTERIORI ADAPTATION

The central idea of CALM is to constantly adapt the SLM

whenever a new Web data chunk becomes available using

maximum a posteriori (MAP) adaptation, a technique that

has been widely studied [10-13]. Because CALM is building

the SLM without seeing the entire corpus, we first address

how CALM assimilates new vocabulary and N-grams in this

section. Also, a critical issue in MAP adaptation is how to

determine the prior probability for adaptation. A key contri-

bution of CALM is to propose a formula to acquire this

prior easily.

2.1. Annexation of new vocabulary and N-grams

Let 𝑃(𝑖) 𝑤 ℎ denote a smoothed model at time i for a given

history h. When a new data chunk is available, CALM up-

dates the smoothed model using

𝑃 𝑖+1 𝑤 ℎ = 𝜋(𝑖)𝑃(𝑖) 𝑤 ℎ + (1 − 𝜋(𝑖))𝑃𝑀𝐿
(𝑖)

(𝑤|ℎ) (1)

Here, 𝑃𝑀𝐿
 𝑖 𝑤 ℎ denotes the maximum likelihood (ML) es-

timation purely based on the raw counts of the new data

chunk at time i. 𝑃𝑀𝐿
 𝑖 𝑤 ℎ is therefore not a smoothed mod-

el but nevertheless contains all the information in the data

chunk, including the statistics of the new vocabulary (spe-

cial case of N-grams where N=1) and phrases that are ab-

sorbed into the adapted model in the manner of (1). In our

implementation, CALM stores N-gram probabilities in a

large hash table that allows efficient additions of new voca-

bulary and N-grams. Note that we do not employ conven-

tional cutoff and discount strategies in CALM. To ensure

the quality of parameter estimation and manageable model

size, CALM uses a compression algorithm (Sec. 2.3) that

can be incorporated into the iterations described by (1). We

note that the interpolation technique is actually a mixture

distribution concept as expanding the recursion in (1) leads

to

𝑃 ∞ 𝑤 ℎ = (1 − 𝜋(𝑖))𝑃𝑀𝐿
(𝑖)

(𝑤|ℎ)∞
𝑖=−∞ (2)

The choice of the mixture weights is MAP optimal if each

mixture weight is the prior probability of the individual

component 𝑃𝑀𝐿
 𝑖 𝑤 ℎ . A MAP optimal choice of 𝜋(𝑖) in (1)

should therefore reflect how 𝑃(𝑖) 𝑤 ℎ is close to the even-

tual model 𝑃 ∞ 𝑤 ℎ , or how well 𝑃(𝑖) 𝑤 ℎ can already

predict the statistics of the new data. This insight underlies

the CALM’s approach to the prior estimation.

2.2. Prior estimation and Stirling’s approximation

Let 𝑛𝑘 denotes the count of the k
th

 N-gram token (h, w),

𝑀 = 𝑛𝑘 𝑘 be the total token counts in the data chunk,

and 𝑝𝑘 = 𝑃 𝑖 𝑤 ℎ 𝑃 𝑖 ℎ be the N-gram probability pre-

dicted by the smoothed model. Given the fundamental as-

sumption of N-gram is that non-overlapping tokens are sta-

tistically independent from one another, we can compute

how well the smoothed model can already explain the data

as

Pr =
𝑀!

 𝑛𝑘 !𝑘

 𝑝𝑘
𝑛𝑘

𝑘

Applying Stirling’s approximation ln 𝑀! ≈ 𝑀 ln 𝑀 − 𝑀,
one can show that

ln Pr = 𝑛𝑘 ln
𝑝𝑘

𝑛𝑘 𝑀 𝑘
= 𝑀

𝑛𝑘

𝑀
ln

𝑝𝑘

𝑛𝑘 𝑀
𝑘

Since 𝑃𝑀𝐿
(𝑖) 𝑤 ℎ = 𝑛𝑘 𝑀, we obtain

ln Pr ≈ −𝑀𝐷𝐾𝐿(𝑃𝑀𝐿
 𝑖 𝑃(𝑖)) (3)

where 𝐷𝐾𝐿 𝑃 𝑄 denotes Kullback-Leibler (KL) divergence

between the distributions P and Q. In terms of information

theory, KL divergence describes the per-token differences of

the information in the two distributions. A succinct way to

interpret (3) is how well the smoothed model can account

for the new data can be computed by how much new infor-

mation is discovered over all the M tokens in the newly ob-

served data. We note that the adaptation in (1) is conducted

on a per-token basis while (3) computes the probability for

all M statistically independent tokens. As a result, the per-

token interpolation weight can be obtained by

ln 𝜋(𝑖) =
1

𝑀
ln Pr ≈ − 𝐷𝐾𝐿(𝑃𝑀𝐿

 𝑖 𝑃(𝑖)) (4)

In the extreme case where 𝑃(𝑖) can fully predict the statistics

of the new data, the KL divergence in (4) is 0 and 𝜋(𝑖) = 1,

leading to the expected outcome that the model does not

need to be updated.

Since KL divergence is non-commutative, it is worth

noting that (4) is evaluating how the model at hand is differ-

ent from the newly observed data, rather than how the data

is different from the existing N-gram model. In other words,

the prior estimated in (4) is indeed a posterior statistics.

2.3 Model compression using tied N-grams

Engineering realities dictate that a model’s complexity has

to be regulated with practical concerns and principled ap-

proaches, even though (1) appears to suggest CALM can

grow the model indefinitely. Conventional approaches

[3,4,7] typically control the model size by excluding N-

grams from the model that, in our experience, can lead to

undesirable results (Sec. 1). To compress the model, CALM

uses a source coding approach in which similar N-grams are

identified and forced to share a single distribution. In other

words, CALM uses a “tied” distribution instead of an N-

grams removal approach. Through CALM iterations, tied N-

grams can be untied and vice versa, totally driven by data.

The compression algorithm in CALM bears strong resem-

blance to that described in [14] and will be omitted here.

3. EXPERIMENTAL RESULTS

We evaluate the proposed method by comparing the uncom-

pressed SLMs obtained using CALM and MSRLM toolkit

that implements modern language modeling techniques. In

this article, we report the results for N-gram of order 3 and

use perplexity as the general metric for comparison since the

models are used in a wide variety of applications.

3.1 Corpus description

As observed in [6] that conventional SLM techniques can

still run into formidable obstacles in handling large corpus,

we limit for this study to the corpus of Microsoft Support

US English web sites that consist of 179,904 documents,

11.2 million sentences and 105.2 million words in 9 web

chunks crawled on May 22, 2008. We use the first 8 chunks

for training and the last chunk for testing. Both the baseline

language model and the eventual CALM model have

1,160,961 unigrams, 5,955,511 bigrams, and 15,643,795

trigrams, i.e., the model complexities are controlled. Based

on this corpus, the perplexity measurements for the baseline

model with Kneser-Ney smoothing are 486.13, 73.88, and

42.13 for unigram, bigram, and trigram, respectively.

The rationale behind choosing this corpus is that, though

being very small by the Web standards, it highlights the

challenge in building language models for the Web. Figure 1

depicts how the model grows under CALM (Sec. 2.1) as

more data chunks are included in the adaptation. As can be

seen, the portion of new N-grams encountered in each chunk

is high. Among all the trigrams in the last training chunk

(Chunk 8), for example, 54% of them are new. This high

ratio is especially worth noting as all these data chunks,

which are all in-domain data, can often be misclassified as

out-of-domain by techniques that use Web documents for

language modeling [15]. We note that a major source of the

new N-grams is from the diverse Microsoft product or ser-

vice names as well as the specific technical terminologies

and resource locators that describe the product features and

solutions to various end user issues.

3.2 Perplexity measurement against the baseline

Figure 2 shows the perplexity measurements of the CALM

models relative to the baseline. Here, we first use MSRLM

on Chunk 1 to obtain the initial smoothed model 𝑃(0). The

priors 𝜋(𝑖) computed using (4) for the following adaptation

chunks are also shown in Figure 2. As can be seen, CALM

progressively reduces the perplexity as more data are used

to adapt the model. At the end of the first pass, i.e., when all

the training chunks are encountered, the CALM model

reaches a comparable, if not a better, perplexity than the

baseline. The model perplexity remains roughly unchanged

going into the second pass where all the training data have

been seen before, suggesting CALM is robust against over

training. This desirable outcome can be attributed to (4) that

shows the model will not be changed much if a high prior

estimation indicates the statistics of the data chunk can al-

ready be predicted by the model.

Fig.1. Percentage of new N-grams in each incoming chunk.

Fig.2. CALM model perplexities, relative to the baseline in percen-

tage, after adapting each data chunk. The second pass results sug-

gest CALM model does not change much after repeated chunk

exposure. Also shown is the adaptation prior computed using (4).

3.3 Sensitivity to initial conditions

CALM being an iterative algorithm, a key question to ask is

whether the proposed method is sensitive to the choice of

the initial condition. Using different chunks as the starting

point, we show in Figure 3 that the eventual model perplexi-

ties do not vary much, demonstrating that CALM is not sen-

sitive to the initial conditions.

Fig.3. Relative perplexities of CALM models with various initial

conditions. After a full pass of adaptation, all reach similar results.

Fig.4. Perplexity comparison of dynamically computed and fixed

priors (from 0.4 to 0.9). Dynamically computed prior reaches the

lowest perplexity.

3.4 Effects of fixed priors

A key step of CALM is to estimate for each new data chunk

the interpolation prior using (4) without using any held-out

data. We studied the importance of the dynamically esti-

mated priors by comparing the results from models adapted

with fixed priors whose values range from 0.4 to 0.9. As

shown in Figure 4, all fixed prior cases result in inferior

models, and only when values close to the dynamically

computed 𝜋(𝑖)are used can the final model reach the compa-

rable perplexity.

4. SUMMARY

In this paper we describe CALM, a novel approach for

building SLMs for Web-scale corpus. CALM is designed to

iteratively adapt to partial data without needing the entire

corpus and some held-out data to be available. The iterative-

ly adapting nature of CALM is highly desirable for Web

applications that require the SLMs to reflect the fresh con-

tents available on the Web. Even though CALM builds the

model without having the global lexicon and N-gram statis-

tics, we show CALM yields comparable model quality as

obtained from the state-of-the-art techniques. In addition,

we show CALM is resilient to over training and insensitive

to initial condition. Finally, we show the method used in

CALM to dynamically compute the adaptation priors plays a

key role in the model quality.

 5. ACKNOWLEDGEMENTS

The authors would like to thank Patrick Nguyen, Jianfeng

Gao, and Alex Acero for their invaluable feedback and help-

ful discussion.

6. REFERENCES

[1] C. E. Shannon, A mathematical theory of communication. Bell

Systems Technical Journal, Vol. 27, 1948.

[2] R. Rosenfeld, Two decades of statistical language modeling:

where do we go from here? In Proc. IEEE, Vol. 88(8), 2000.

[3] P. Clarkson and R. Rosenfeld, Statistical language modeling

using the CMU-Cambridge toolkit. In Proc. EuroSpeech-97, Vol.

1, Rhodes, Greece, 1997.

[4] A. Stockle, SRILM: the SRI language modeling toolkit. In

Proc. ICSLP-2002, Vol. 2, Denver CO, 2002.

[5] B.-J Hsu and J. Glass, Iterative language model estimation:

efficient data structure and algorithms, in Proc. InterSpeech-2008,

Brisbane, Australia, September 2008.

[6] T. Brants, A. C. Popat, P. Xu, F. Och, and J. Dean, Large lan-

guage models in machine translation, In Proc. EMNLP-2007, pp.

858-867, Prague, June 2007.

[7] S. Chen and J. T. Goodman, An empirical study of smoothing

techniques for language modeling. Technical Report TR-10-98,

Computer Science Group, Harvard University, 1998.

[8] P. Nguyen, J. Gao, and M. Mahajan, MSRLM: a scalable lan-

guage modeling toolkit. MSR Technical Report TR-2007-144, Mi-

crosoft Corporation, Redmond, WA, 2007.

[9] K. Wang, Semantic synchronous understanding for robust spo-

ken language applications. In Proc. ASRU-2003, pp. 640-645, Vir-

gin Island, December 2003.

[10] J. R. Bellegarda, Statistical language model adaptation: review

and perspective. Speech Communications, vol. 42, 2004.

[11] H. Suzuki and J. Gao, A comparative study on language mod-

el adaptation techniques using new evaluation metrics. In Proc.

HLT/EMNLP 2005, Vancouver, BC, October 2005.

[12] G. Tur and A. Stolcke, Unsupervised language model adapta-

tion for meeting recognition. In Proc. ICASSP-2007, Honolulu HI,

April 2007.

[13] X. Liu, M. Gales, and P. C. Woodland, Context dependent

language model adaptation. In Proc. InterSpeech-2008, Brisbane,

Australia, September 2008.

[14] J. Goodman and J. Gao, Language model size reduction by

pruning and clustering, in Proc. ICSLP-2000, pp. 110-113, Beijing,

China, October 2000.

[15] I. Bulyko, M. Ostendorf, M. Siu, T. Ng, A. Stolcke, O. Cetin,

Web resources for language modeling in conversational speech

recognition. ACM Trans. Speech and Language Processing, 5(1),

pp. 1-25, December 2007.

