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Abstract— This paper aims to present a survey of object
recognition/classification methods based on image moments. We
review various types of moments (geometric moments, complex
moments) and moment-based invariants with respect to various
image degradations and distortions (rotation, scaling, affine
transform, image blurring, etc.) which can be used as shape
descriptors for classification. We explain a general theory how to
construct these invariants and show also a few of them in explicit
forms. We review efficient numerical algorithms that can be used
for moment computation and demonstrate practical examples of
using moment invariants in real applications.
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moment invariants, geometric invariants, invariants to convolu-
tion, moment computation.

I. INTRODUCTION

ANALYSIS and interpretation of an image which was
acquired by a real (i.e. non-ideal) imaging system is the

key problem in many application areas such as remote sensing,
astronomy and medicine, among others. Since real imaging
systems as well as imaging conditions are usually imperfect,
the observed image represents only a degraded version of the
original scene. Various kinds of degradations (geometric as
well as radiometric) are introduced into the image during
the acquisition by such factors as imaging geometry, lens
aberration, wrong focus, motion of the scene, systematic and
random sensor errors, etc.

In the general case, the relation between the ideal image
f(x, y) and the observed image g(x, y) is described as g =
D(f), where D is a degradation operator. In the case of a
linear shift-invariant imaging system, D has a form of

g(τ(x, y)) = (f ∗ h)(x, y) + n(x, y), (1)

where h(x, y) is the point-spread function (PSF) of the system,
n(x, y) is an additive random noise, τ is a transform of spatial
coordinates due to projective imaging geometry and ∗ denotes
a 2-D convolution. Knowing the image g(x, y), our objective
is to analyze the unknown scene f(x, y).

By the term ”scene analysis” we usually understand a
complex process consisting of three basic stages. First, the
image is segmented in order to extract objects of potential
interest. Secondly, the extracted objects are ”recognized”,
which means they are classified as elements of one class from
the set of pre-defined object classes. Finally, spatial relations
among the objects can be analyzed. In this tutorial, we focus
on object recognition.
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Recognition of objects and patterns that are deformed in
various ways has been a goal of much recent research. There
are basically three major approaches to this problem – brute
force, image normalization, or invariant features. In brute
force approach we search the space of all possible image
degradations. That means the training set of each class should
consist not only all class representatives but also all their
rotated, scaled, blurred, and deformed versions. Clearly, this
approach would lead to extreme time complexity and is
practically inapplicable. In normalization approach, the objects
are transformed into some standard position before they are
classified. This could be very efficient in the classification
stage but the object normalization usually requires to solve
complex inverse problems which are often ill posed. The
approach using invariant features appears to be the most
promising. Its basic idea is to describe the objects by a set
of features which are not sensitive to particular deformations
and which provide enough discrimination power to distinguish
among objects from different classes. From mathematical point
of view, we have to find functional I defined on the space of
all admissible image functions (let’s imagine L1(R2) space
for instance) which are invariant with respect to degradation
operator D, i.e. which satisfies the condition I(f) = I(D(f))
for any image function f .

In this paper we present non-linear invariant functionals,
which are composed of various projections of f into the space
of polynomials. Such projections are known as image moments
and the respective functionals are called moment invariants.
We present several groups of moment invariants with respect
to the most common degradations – image rotation and scaling,
image affine transform, and image blurring (convolution with
an unknown filter). We explain a general theory how to
construct these functionals and show also a few of them in
explicit forms. Then we briefly discuss numerical algorithms
for efficient moment calculation. Numerous practical examples
of using moment invariants in real applications from the area
of computer vision, remote sensing, and medical imaging will
be demonstrated during the lecture at the conference.

II. BRIEF HISTORY

The history of moment invariants begun many years before
the appearance of first computers, in the 19th century under the
framework of the theory of algebraic invariants. The theory of
algebraic invariants probably originates from famous German
mathematician David Hilbert [1] and was thoroughly studied
also in [2], [3].

Moment invariants were firstly introduced to the pattern
recognition community in 1962 by Hu [4], who employed
the results of the theory of algebraic invariants and derived
his seven famous invariants to rotation of 2-D objects. Since
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that time, numerous works have been devoted to various
improvements and generalizations of Hu’s invariants and also
to its use in many application areas.

Dudani [5] and Belkasim [6] described their application to
aircraft silhouette recognition, Wong and Hall [7], Goshtasby
[8] and Flusser and Suk [9] employed moment invariants in
template matching and registration of satellite images, and
many other authors used moment invariants for character
recognition [6], [10]. Maitra [11] and Hupkens [12] made them
invariant also to contrast changes, Wang [13] proposed illumi-
nation invariants particularly suitable for texture classification.
Li [14] and Wong [15] presented the systems of invariants
up to the orders nine and five, respectively. Unfortunately, no
one of them paid attention to mutual dependence/independence
of the invariants. The invariant sets presented in their papers
are algebraically dependent. Most recently, Flusser [16], [17]
has proposed a method how to derive independent sets of
invariants of any orders.

There is also a group of papers [18], [19] that use Zernike
moments to construct rotation invariants. Their motivation
comes from the fact that Zernike polynomials are orthogonal
on a unit circle. Thus, Zernike moments do not contain any
redundant information and are more convenient for image
reconstruction. However, Teague [18] showed that Zernike
invariants of 2nd and 3rd orders are equivalent to Hu’s ones
when expressing them in terms of geometric moments. He
presented the invariants up to eight order in explicit form
but no general rule how to derive them is given. Wallin [19]
described an algorithm for a formation of moment invariants
of any order. Since Teague [18] as well as Wallin [19]
were particularly interested in reconstruction abilities of the
invariants, they didn’t pay much attention to the question of
independence.

Flusser and Suk [20] and Reiss [21] contributed signifi-
cantly to the theory of moment invariants by correcting the
Fundamental Theorem and deriving invariants to general affine
transform.

Several papers studied recognitive and reconstruction as-
pects, noise tolerance and other numerical properties of various
kinds of moment invariants and compared their performance
experimentally [6], [22], [23], [24], [25], [26], [27]. Moment
invariants were shown to be also a useful tool for geometric
normalization of an image [28], [29]. Large amount of effort
has been spent to find effective algorithms for moment calcu-
lation (see [30] for a survey).

All the above mentioned invariants deal with geometric
distortion of the objects. Much less attention has been paid
to invariants with respect to changes of the image intensity
function (we call them radiometric invariants) and to combined
radiometric-geometric invariants. In fact, just the invariants
both to radiometric and geometric image degradations are
necessary to resolve practical object recognition tasks because
usually both types of degradations are present in input images.

Van Gool et al. introduced so-called affine-photometric
invariants of graylevel [31] and color [32] images. These
features are invariant to the affine transform and to the change
of contrast and brightness of the image simultaneously. A
pioneer work on this field was done by Flusser and Suk

[33] who derived invariants to convolution with an arbitrary
centrosymmetric PSF. From the geometric point of view,
their descriptors were invariant to translation only. Despite
of this, the invariants have found successful applications
in face recognition on out-of-focused photographs [34], in
normalizing blurred images into the canonical forms [35],
[36], in template-to-scene matching of satellite images [33], in
blurred digit and character recognition [37], [13], in registra-
tion of images obtained by digital subtraction angiography [38]
and in focus/defocus quantitative measurement [39]. Other
sets of blur invariants (but still only shift-invariant) were
proposed for some particular kinds of PSF -– axisymmetric
blur invariants [40] and motion blur invariants [41], [42]. A
significant improvement motivated by a problem of registration
of blurred images was made by Flusser et al. They introduced
so-called combined blur-rotation invariants [43] and combined
blur-affine invariants [44] and reported their successful usage
in satellite image registration [45] and in camera motion
estimation [46].

III. BASIC TERMS

First we define basic terms which will be then used in the
construction of the invariants.

Definition 1: By image function (or image) we understand any
real function f(x, y) having a bounded support and a finite
nonzero integral.

Definition 2: Geometric moment mpq of image f(x, y), where
p, q are non-negative integers and (p + q) is called the order
of the moment, is defined as

mpq =

∞∫
−∞

∞∫
−∞

xpyqf(x, y)dxdy. (2)

Corresponding central moment μpq and normalized moment
νpq are defined as

μpq =

∞∫
−∞

∞∫
−∞

(x − xc)p(y − yc)qf(x, y)dxdy, (3)

νpq =
μpq

μω
00

, (4)

respectively, where the coordinates (xc, yc) denote the centroid
of f(x, y), and ω = (p + q + 2)/2.

Definition 3: Complex moment cpq of image f(x, y) is defined
as

cpq =
∫ ∞

−∞

∫ ∞

−∞
(x + iy)p(x − iy)qf(x, y)dxdy (5)

where i denotes imaginary unit. Definitions of central and
normalized complex moments are analogous to (3) and (4).

Geometric moments and complex moments carry the same
amount of information. Each complex moment can be ex-
pressed in terms of geometric moments as

cpq =
p∑

k=0

q∑
j=0

(
p

k

)(
q

j

)
(−1)q−j · ip+q−k−j · mk+j,p+q−k−j

(6)
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and vice versa:

mpq =
1

2p+qiq

p∑
k=0

q∑
j=0

(
p

k

)(
q

j

)
(−1)q−j · ck+j,p+q−k−j .

(7)
The reason for introducing complex moments is in their
favorable behavior under image rotation, as will be shown
later.

IV. INVARIANTS TO ROTATION, TRANSLATION, AND
SCALING

Invariants to similarity transformation group were the first
invariants that appeared in pattern recognition literature. It
was caused partly because of their simplicity, partly because
of great demand for invariant features that could be used
in position-independent object classification. In this problem
formulation, degradation operator D is supposed to act solely
in spatial domain and to have a form of similarity transform.
Eq (1) then reduces to

g(τ(x, y)) = f(x, y), (8)

where τ(x, y) denotes arbitrary rotation, translation, and scal-
ing.

Invariants to translation and scaling are trivial – central and
normalized moments themselves can play this role. As early
as in 1962, M.K. Hu [4] published seven rotation invariants,
consisting of second and third order moments (we present first
four of them):

φ1 = μ20 + μ02,

φ2 = (μ20 − μ02)2 + 4μ2
11, (9)

φ3 = (μ30 − 3μ12)2 + (3μ21 − μ03)2,
φ4 = (μ30 + μ12)2 + (μ21 + μ03)2.

The Hu’s invariants became classical and, despite of their
drawbacks, they have found numerous successful applications
in various areas. Major weakness of the Hu’s theory is that
it does not provide for a possibility of any generalization.
By means of it, we could not derive invariants from higher-
order moments and invariants to more general transformations.
These limitations were overcome thirty years later.

After Hu, there have been published various approaches to
the theoretical derivation of moment-based rotation invariants.
Li [14] used Fourier-Mellin transform, Teague [18] and Wallin
[19] proposed to use Zernike moments, Wong [15] used com-
plex monomials which originate from the theory of algebraic
invariants, and Mostafa and Psaltis [24] employed complex
moments. Here, we present a scheme introduced by Flusser
[16], [17], which is based on the complex moments.

In polar coordinates, (5) becomes the form

cpq =
∫ ∞

0

∫ 2π

0

rp+q+1ei(p−q)θf(r, θ)drdθ. (10)

It follows from the definition that cpq = c∗qp (the asterisk
denotes complex conjugate). Furthermore, it follows imme-
diately from (10) that the moment magnitude |cpq| is invariant
to rotation of the image while the phase is shifted by (p−q)α,

where α is the angle of rotation. More precisely, it holds for
the moment of the rotated image

c′pq = e−i(p−q)α · cpq. (11)

Any approach to the construction of rotation invariants is
based on a proper kind of phase cancellation. The simplest
method proposed by many authors is to use the moment
magnitudes themselves as the invariants. However, they do
not generate a complete set of invariants. In the following
Theorem, phase cancellation is achieved by multiplication of
appropriate moment powers.

Theorem 1: Let n ≥ 1 and let ki, pi, and qi (i = 1, · · · , n)
be non-negative integers such that

n∑
i=1

ki(pi − qi) = 0.

Then

I =
n∏

i=1

cki
piqi

(12)

is invariant to rotation.

Theorem 1 allows us to construct an infinite number of the
invariants for any order of moments, but only few of them are
mutually independent. The knowledge of their basis is a crucial
point because dependent features do not contribute to the
discrimination power of the system at all and may even cause
object misclassifications due to the ”curse of dimensionality”.

Fundamental theorem on how to construct an invariant basis
for a given set of moments was firstly formulated and proven
in [16] and later in more general form (which is shown below)
in [17].

Theorem 2: Let us consider complex moments up to the order
r ≥ 2. Let a set of rotation invariants B be constructed as
follows:

B = {Φ(p, q) ≡ cpqc
p−q
q0p0

|p ≥ q ∧ p + q ≤ r},
where p0 and q0 are arbitrary indices such that p0 + q0 ≤ r,
p0 − q0 = 1 and cp0q0 �= 0 for all images involved. Then B
is a basis of a set of all rotation invariants created from the
moments up to the order r.

Theorem 2 has a very surprising consequence. We can prove
that, contrary to common belief, the Hu’s system is dependent
and incomplete, so in fact it does not form a good feature set.
The same is true for invariant sets proposed by Li [14] and
Wong [15]. This result firstly appeared in [16] and has a deep
practical impact.

V. INVARIANTS TO AFFINE TRANSFORM

In practice we often face object deformations that are
beyond the rotation-translation-scaling model. An exact model
of photographing a planar scene by a pin-hole camera whose
optical axis is not perpendicular to the scene is projective
transform of spatial coordinates. Since the projective transform
is not linear, its Jacobian is a function of spatial coordinates
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and projective moment invariants from a finite number of
moments cannot exist [49], [50].

For small objects and large camera-to-scene distance is the
perspective effect negligible and the projective transform can
be well approximated by affine transform

x′ = a0 + a1x + a2y,
y′ = b0 + b1x + b2y.

(13)

Thus, having powerful affine moment invariants for object
description and recognition is in great demand.

A pioneer work on this field was done independently by
Reiss [21] and Flusser and Suk [20], [48], who introduced
affine moment invariants (AMI’s) and proved their applica-
bility in simple recognition tasks. They derived only few
invariants in explicit forms and they did not study the problem
of their mutual independence.

Here we present a new general method how to systemat-
ically derive arbitrary number of the AMI’s of any weights
and any orders, This method is based on representation of the
AMI’s by graphs.

Let us consider an image f and two arbitrary points (x1, y1),
(x2, y2) from its support. Let us denote the ”cross-product” of
these points as T12:

T12 = x1y2 − x2y1.

After an affine transform it holds T ′
12 = J ·T12, where J is

the Jacobian of the transform. The basic idea of the AMI’s
generating is the following. We consider various numbers
of points and we integrate their cross-products (or some
powers of their cross-products) on the support of f . These
integrals can be expressed in terms of moments and, after
eliminating the Jacobian by proper normalization, they yield
affine invariants.

More precisely, having N points (N ≥ 2) we define
functional I depending on N and on non-negative integers
nkj as

I(f) =

∞∫
−∞

N∏
k,j=1

T
nkj

kj ·
N∏

i=1

f(xi, yi)dxidyi. (14)

Note that it is meaningful to consider only j > k, because
Tkj = −Tjk and Tkk = 0. After an affine transform, I
becomes

I ′ = Jw|J |N · I,

where w =
∑

k,j nkj is called the weight of the invariant and
N is called the degree of the invariant.

If I is normalized by μw+N
00 we get a desirable affine

invariant
(

I

μw+N
00

)′ = (
I

μw+N
00

)

(if w is odd and J < 0 there is an additional factor −1).
We illustrate the general formula (14) on two simple invari-

ants. First, let N = 2 and n12 = 2. Then

I(f) =

∞∫
−∞

(x1y2 − x2y1)2f(x1, y1)f(x2, y2)dx1dy1dx2dy2

= 2(m20m02 − m2
11). (15)

Similarly, for N = 3 and n12 = 2, n13 = 2, n23 = 0 we get

I(f) =

∞∫
−∞

(x1y2 − x2y1)2(x1y3 − x3y1)2f(x1, y1)

f(x2, y2)f(x3, y3)dx1dy1dx2dy2dx3dy3

= m2
20m04 − 4m20m11m13 + 2m20m02m22

+4m2
11m22 − 4m11m02m31 + m2

02m40. (16)

The above idea has an analogy in graph theory. Each
invariant generated by formula (14) can be represented by a
graph, where each point (xk, yk) corresponds to one node and
each cross-product Tkj corresponds to one edge of the graph.
If nkj > 1, the respective term T

nkj

kj corresponds to nkj edges
connecting k-th and j-th nodes. Thus, the number of nodes
equals the degree of the invariant and the total number of the
graph edges equals the weight w of the invariant. From the
graph one can also learn about the orders of the moments
the invariant is composed of and about its structure. The
number of edges originating from each node equals the order
of the moments involved. Each invariant of the form (14) is
in fact a sum where each term is a product of certain number
of moments. This number is constant for all terms of one
invariant and is equal to the total number of the graph nodes.
Particularly, for the invariants (15) and (16) the corresponding
graphs are shown in Fig. 1.

Fig. 1. The graphs corresponding to the invariants (15) (left) and (16) (right)

Now one can see that the problem of derivation of the
AMI’s up to the given weight w is equivalent to generating all
graphs with at least two nodes and at most w edges. This is a
combinatorial task with exponential complexity but formally
easy to implement. Unfortunately, most resulting graphs are
useless because they generate invariants, which are dependent.
Identifying and discarding them is very important but very
complicated task.

There might be various kinds of dependencies in the set
of all AMI’s (i.e. in the set of all graphs). The invariant
which equals to linear combinations of other invariants or of
products of other invariants is called reducible invariant. Other
invariants than reducible are called irreducible invariants.
Unfortunately, ”irreducible” does not mean ”independent” –
there may be higher-order polynomial dependencies among ir-
reducible invariants. Current methods [51] perfectly eliminate
reducible invariants but identification of dependencies among
irreducible invariants has not been resolved yet.

For illustration, let us consider AMI’s up to the weight 10.
Using the graph method we got, after discarding isomorphic
graphs, 1519 AMI’s in explicit forms. Then we applied the
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algorithms eliminating reducible invariants, which led to 362
irreducible invariants.

VI. INVARIANTS TO CONVOLUTION

Two previous sections were devoted to the invariants with
respect to transformation of spatial coordinates only. Now
let us consider an imaging system with ideal geometry,
i.e. τ(x, y) = (x, y), but suffering from non-ideal opti-
cal/radiometrical properties. Assuming the system is shift
invariant, degradation operator D has a form of

g(x, y) = (f ∗ h)(x, y), (17)

where h(x, y) is the point-spread function (PSF) of the system.
This is a simple but realistic model of degradations introduced
by out-of-focused camera (h(x, y) has then a cylindrical
shape), by camera and/or scene motion (h(x, y) has a form
of rectangular pulse), and by photographing through turbulent
medium (h(x, y) is then a Gaussian), to name a few. However,
in real applications the PSF has more complex form because it
use to be a composition of several degradation factors. Neither
the shape nor the parameters of the PSF use to be known. This
high-level uncertainty prevents us from solving eq. (17) as an
inverse problem. Although such attempts were published (see
[52] or [53] for a basic survey), they did not yield satisfactory
results.

In this section, we present functionals invariant to convolu-
tion with arbitrary centrosymmetric PSF (in image analysis lit-
erature they are often called ”blur invariants” because common
PSF’s have a character of a low-pass filter). Blur invariants
were firstly introduced by Flusser and Suk [33]. They have
found successful applications in face recognition on out-of-
focused photographs [34], in normalizing blurred images into
the canonical forms [35], [36], in template-to-scene matching
of satellite images [33], in blurred digit and character recog-
nition [37], [13], in registration of images obtained by digital
subtraction angiography [38] and in focus/defocus quantitative
measurement [39].

The assumption of centrosymmetry is not a significant
limitation of practical utilization of the method. Most real
sensors and imaging systems, both optical and non-optical
ones, have the PSF with certain degree of symmetry. In many
cases they have even higher symmetry than the central one,
such as axial or radial symmetry.

Principal theorem on convolution invariants is the following.

Theorem 3: Let functional C : L1(R2) ×N0 ×N0 → R be
defined as follows:
If (p + q) is even then

C(p, q)(f) = 0.

If (p + q) is odd then

C(p, q)(f) = μ(f)
pq −

1

μ
(f)
00

p∑
n=0

q∑
m=0

0<n+m<p+q

(
p

n

)(
q

m

)
C(p − n, q − m)(f) · μ(f)

nm.

Then
C(p, q)(f∗h) = C(p, q)(f)

for any image function f , any non-negative integers p and q,
and for any centrosymmetric PSF h.

Theorem 3 tells that blur invariants are recursively defined
functionals consisting mainly from odd-order moments. Al-
though they do not have straightforward ”physical” interpre-
tation, let us make a few notes to provide a better insight
into their meaning. Any invariant (even different from those
presented here) to convolution with a centrosymmetric PSF
must give a constant response on centrosymmetric images.
This is because any centrosymmetric image can be considered
as a blurring PSF acting on delta-function. It can be proven
that if f is centrosymmetric then C(p, q)(f) = 0 for any
p and q. The opposite implication is valid as well. Thus,
what image properties are reflected by the C(p, q)’s? Let us
consider a Fourier-based decomposition f = fc+fa where fc,
fa are centrosymmetric and antisymmetric components of f ,
respectively. Function fa can be exactly recovered from odd-
order moments of f (while even-order moments of fa equal
zero) and vice versa. A similar relation holds for the invariants
C(p, q). Thus, all C(p, q)’s reflect mainly properties of the
antisymmetric component of the image, while all symmetric
images are in their null-space.

VII. ALGORITHMS FOR MOMENT COMPUTATION

Since computing complexity of all moment invariants de-
pends almost solely on the computing complexity of geometric
moments themselves, we review efficient algorithms for mo-
ment calculation in a discrete space. Most of the methods are
focused on binary images but there are also a few methods for
graylevel images. Basically, moment computation algorithms
can be categorized into two groups: decomposition methods
and boundary-based methods. The former methods decompose
the object into simple areas (squares, rectangles, rows, etc.)
whose moments can be calculated easily in O(1) time. The
object moment is then given as a sum of moments of all
regions. The latter methods calculate object moments just from
the boundary, employing Green’s theorem or similar technique.

In the discrete case, the integral in the moment definition
must be replaced by a summation. The most common way (but
not the only one) how to do that is to employ the rectangular
(i.e. zero-order) method of numeric integration. Then (2) turns
to the well-known form

mpq =
N∑

x=1

N∑
y=1

xpyqfij , (18)

where N is the size of the image and fij are the grey levels
of individual pixels.

VIII. CONCLUSION

This paper presented a review of moment-based invariant
functionals, their history, basic principles, and methods how
to construct them. We demonstrated that invariant functionals
can be used in image analysis as features for description and
recognition of objects in degraded images.

Invariant-based approach is a significant step towards robust
and reliable object recognition methods. It has a deep practical
impact because many pattern recognition problems would

World Academy of Science, Engineering and Technology 11 2005

380



not be solvable otherwise. In practice, image acquisition is
always degraded by unrecoverable errors and the knowledge
of invariants with respect to these errors is a crucial point.
This observation should influence future research directions
and should be also incorporated in the education.
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