
Parallel Programmability and the Chapel Language∗

Bradford L. Chamberlain∗, David Callahan†, Hans P. Zima‡

∗Cray Inc., Seattle WA, USA, bradc@cray.com
†Microsoft Corporation, Redmond WA, USA, d.callahan@microsoft.com

‡JPL, Pasadena CA, USA, and University of Vienna, Austria, zima@jpl.nasa.gov

1 Introduction

It is an increasingly common belief that the programmability of parallel machines is lacking, and that the high-end

computing (HEC) community is suffering as a result of it. The population of users who can effectively program parallel

machines comprises only a small fraction of those who can effectively program traditional sequential computers, and

this gap seems only to be widening as time passes. The parallel computing community’s inability to tap the skills

of mainstream programmers prevents parallel programming from becoming more than an arcane skill, best avoided

if possible. This has an unfortunate feedback effect, since our small community tends not to have the resources to

nurture new languages and tools that might attract a larger community—a community that could then improve those

languages and tools in a manner that is taken for granted by the open-source C and Java communities.

This gap between sequential and parallel programming is highlighted by frequent comments in the high-end user

community along the lines of “Why isn’t programming this machine more like Java/Matlab/my favorite sequential

language?” Such comments cut to the heart of the parallel programmability problem. Current parallel programming

languages are significantly different from those that a modern sequential programmer is accustomed to, and this makes

parallel machines difficult to use and unattractive for many traditional programmers. To this end, developers of new

parallel languages should ask what features from modern sequential languages they might effectively incorporate in

their language design.

At the same time, one must concede that programming parallel machines is inherently different from sequential

programming, in that the user must express parallelism, data distribution, and typically synchronization and commu-

nication. To this end, parallel language developers should attempt to develop features that ease the burdens of parallel

programming by providing abstractions for these concepts and optimizing for common cases.

This article explores these two challenges by considering language features and characteristics that would make

parallel programming easier while also bringing it closer to broad-market sequential computing. It surveys parallel

languages that currently enjoy some degree of popularity in the HEC community and attempts to characterize them

with respect to these features. And finally, it provides an introduction to the Chapel programming language, which

is being developed as part of DARPA’s High Productivity Computing Systems (HPCS) program in order to try and

improve the programmability and overall productivity of next-generation parallel machines. Productivity is defined

by HPCS as a combination of performance, programmability, portability, and robustness. Chapel strives to positively

impact all of these areas, focusing most heavily on programmability.

∗This material is based upon work supported by the Defense Advanced Research Projects Agency under its Contract No. NBCH3039003. The

research described in this paper was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with

the National Aeronautics and Space Administration.

1

2 Principles for Productive Parallel Language Design

2.1 Programmer Responsibilities

Before describing the features that we believe productive parallel programming languages ought to provide, we begin

by listing the responsibilities that we consider to be the programmer’s rather than the compiler’s. There are many

research projects that take a different stance on these issues, and we list our assumptions here not to contradict those

approaches, but rather to bound the space of languages that we consider in this paper and to clarify our starting

assumptions in these matters.

Identification of Parallelism While a holy grail of parallel computing has historically been to automatically trans-

form good sequential codes into good parallel codes, our faith in compilers and runtime systems does not extend this

far given present-day technology. As a result, we believe that it should be the programmer’s responsibility to explicitly

identify the subcomputations within their code that can and/or should execute in parallel. We also believe that a good

language design can greatly help the programmer in this respect by including abstractions that make common forms of

parallel computation simpler to express and less prone to simple errors. Such concepts should make the expression of

parallel computation natural for the programmer and shift the compiler’s efforts away from the detection of parallelism

and towards its efficient implementation.

Synchronization To the extent that a language’s abstractions for parallelism do not obviate the need for synchro-

nization, the programmer will need to specify it explicitly. While it is possible to create abstractions for data parallel

computation that require little or no user-level synchronization [9, 34], support for task parallelism tends to necessitate

synchronization of some form. As with parallelism, good language design should result in high-level abstractions for

synchronization rather than simply providing low-level locks and mutual exclusion.

Data Distribution and Locality As with detection of parallelism, we have little faith that compilers and runtime

systems will automatically do a good job of allocating and distributing data to suit a user’s computation and minimize

communication. For this reason, we expect that the performance-minded programmer will ultimately need to specify

how data aggregates should be distributed across the machine and to control the locality of interacting variables.

Once again, it would seem that languages could provide abstractions and distribution libraries to ease the burden of

specifying such distributions. Depending on the language semantics, one might also want a means of specifying where

on the machine a specific subcomputation should be performed, potentially in a data-driven manner.

2.2 Productive Parallel Language Desiderata

In this section, we enumerate a number of qualities that we believe to be worth consideration in the design of a

productivity-oriented parallel language. Since different programmers have differing goals and tastes, it is likely that

readers will find some of these characteristics more crucial and others less so. Along these same lines, this list

clearly reflects the preferences and biases of the authors, and may neglect characteristics that other language design

philosophies might consider crucial. For these reasons, this section should be considered an exploration of themes and

characteristics rather than a definitive list of requirements.

2.2.1 A Global View of Computation

We call a programming model fragmented if it requires programmers to express their algorithms on a task-by-task

basis, explicitly decomposing data structures and control flow into per-task chunks. One of the most prevalent frag-

mented programming models is the Single Program, Multiple Data (SPMD) model, in which a program is written

with the assumption that multiple instances of it will be executed simultaneously. In contrast to fragmented models, a

global-view programming model is one in which programmers express their algorithms and data structures as a whole,

mapping them to the processor set in orthogonal sections of code, if at all. These models execute the program’s entry

point with a single logical thread, and the programmer introduces additional parallelism through language constructs.

2

1 var n : i n t = 1000 ;

2 var A, B : [1 . . n] f l o a t ;

3 f o r a l l i in 2 . . n−1

4 B(i) = (A(i −1) + A(i + 1)) / 2 ;

1 var n : i n t = 1000 ;

2 var locN : i n t = n / numTasks ;

3 var A, B : [0 . . locN +1] f l o a t ;

4 var myItLo : i n t = 1 ;

5 var myItHi : i n t = locN ;

6 i f (i H a v e L e f t N e i g h b o r) then

7 send (l e f t , A (1)) ;

8 e l s e

9 myItLo = 2 ;

10 i f (i H a v e R i g h t N e i g h b o r) {
11 send (r i g h t , A(locN)) ;

12 recv (r i g h t , A(locN + 1)) ;

13 } e l s e

14 myItHi = locN −1;

15 i f (i H a v e L e f t N e i g h b o r) then

16 recv (l e f t , A (0)) ;

17 f o r a l l i in myItLo . . myItHi do

18 B(i) = (A(i −1) + A(i + 1)) / 2 ;

(a) (b)

Figure 1: Pseudocode fragments illustrating a data parallel three-point stencil written in (a) global-view and (b) frag-

mented styles. The global-view code starts with a single logical thread and introduces additional parallelism via the

forall statement. It also allocates and accesses its arrays holistically. In contrast, the fragmented code assumes that

numTasks threads are executing the code concurrently, and requires the programmer to divide data into per-processor

chunks and manage communication explicitly (illustrated here using message passing, though other communication

schemes could also be substituted).

As a simple data-parallel example, consider the expression of a three-point stencil on a vector of values. Figure 1

shows pseudocode for how this computation might appear in both global-view and fragmented programming models.

In the global-view version, the problem size is defined on line 1 and used to declare two vectors on line 2. Lines 3–4

express the computation itself, using the global problem size to express the loop bounds and indices.

In the fragmented version, the global problem size (defined on line 1) is divided into a per-task problem size on

line 2. This local problem size is then used to allocate the vectors, including extra elements to cache values owned by

neighboring tasks (line 3). Lines 4–5 set up default local bounds for the iteration space. The conditionals in lines 6, 10,

and 15 express the communication required to exchange boundary values with neighbors. They also modify the local

iteration bounds for tasks without neighbors. The computation itself is expressed on lines 17–18 using the local view

of the problem size for looping and indices. Note that as written, this code is only correct when the global problem

size divides evenly between the number of tasks—more effort would be required to write a general implementation of

the algorithm that relaxes this assumption.

As a second example of global-view and fragmented models, consider a task-parallel divide-and-conquer algorithm

like Quicksort. Figure 2 shows this computation as it might appear in each programming model. In the global-view

version, the code computes the pivot in line 1 and then uses a cobegin statement in line 2 to indicate that the two

“conquer” steps in lines 3 and 4 can be executed in parallel.

In contrast, the fragmented expression of the algorithm describes Quicksort from a single task’s point of view,

overlaying the virtual tree of recursive calls onto the available tasks. Thus, each task begins on line 2 by receiving the

portion of the data for which it is responsible from its parent in the task tree, if it has one. If it has a child at this level

of the task tree, it computes the pivot (line 4), and sends half of the work to the child (line 5). It then makes a recursive

call to sort the second half of the data (line 6) and receives the sorted data from its child task for the initial half (line 7).

If, on the other hand, it has no child at this level of the task tree, it simply sorts the data locally (line 9). In either case,

if it has a parent task, it sends the sorted result back to it (line 11).

Note that while the pseudocode presented in these two examples uses a 2-sided message passing style, other

fragmented models might use alternative communication paradigms such as 1-sided puts and gets, co-arrays, shared

memory, synchronization, etc. For this discussion the important point is not what style of communication is used, but

3

1 var p i v o t = c o m p u t e P i v o t (lo , h i , d a t a) ;

2 cobeg in {
3 Q u i c k s o r t (lo , p i v o t , d a t a) ;

4 Q u i c k s o r t (p i v o t , h i , d a t a) ;

5 }

1 i f (i H a v e P a r e n t) then

2 recv (p a r e n t , lo , h i , d a t a) ;

3 i f (i H a v e C h i l d) {
4 var p i v o t = c o m p u t e P i v o t (lo , h i , d a t a) ;

5 send (c h i l d , lo , p i v o t , d a t a) ;

6 Q u i c k s o r t (p i v o t , h i , d a t a) ;

7 recv (c h i l d , d a t a) ;

8 } e l s e

9 L o c a l S o r t (lo , h i , d a t a) ;

10 i f (i H a v e P a r e n t) then

11 send (p a r e n t , d a t a) ;

(a) (b)

Figure 2: Pseudocode fragments illustrating a task parallel Quicksort algorithm written in (a) global-view and (b) frag-

mented styles. As before, the global-view code starts with a single logical thread, and introduces parallelism using

the cobegin statement. It operates on its data array as a whole. In contrast, the fragmented code again assumes that

numTasks threads are executing the code, and requires the user to explicitly embed the divide and conquer task tree

into the multiple program images.

rather that any fragmented model will require the programmer to explicitly specify and manage communication and

synchronization due to its focus on coding at a task-by-task level.

While these examples are merely pseudocode, intended to introduce the concepts of global-view and fragmented

programming models, they capture some of the differences that exist in real languages which implement these models:

global-view codes tend to be shorter and tend to express the overall parallel algorithm more clearly. Fragmented codes

are typically longer and tend to be cluttered with the management of per-task details such as local bounds and indices,

communication, and synchronization.

The global view is not without some cost, however. Typically, compilers and runtimes for global-view languages

must be more sophisticated, since they are ultimately responsible for breaking the algorithm into the per-processor

pieces that will allow it to be implemented on a parallel machine. In contrast, compilers for fragmented languages pri-

marily need to be good sequential compilers, although building an understanding of the specific fragmented program-

ming language into the compiler can lead to additional optimization opportunities such as communication pipelining.

The observation that fragmented languages tend to impose less of a burden on their compilers is almost certainly the

reason that today’s most prevalent parallel languages1— MPI, SHMEM, Co-array Fortran, Unified Parallel C (UPC),

and Titanium—are based on fragmented or SPMD programming models. In contrast, global-view languages such

as High Performance Fortran (HPF), Sisal, NESL, and ZPL have typically not found a solid foothold outside of the

academic arena2. One exception to this generalization is OpenMP, which provides a global-view approach in its

typical usage. However, it also provides a shared-memory abstract machine model, which tends to present challenges

to optimizing for locality and scaling to large numbers of processors on current architectures.

We believe that the dominance of the fragmented programming model is the primary inhibitor of parallel pro-

grammability today, and therefore recommend that new productivity-oriented languages focus on supporting a global

view of parallel programming. Note that support for a global view does not necessarily prevent a programmer from

coding on a task-by-task basis; however, it does save them the trouble of doing so in sections of their code that do not

require such low-level detail management.

1Note that we use the term “parallel language” loosely in this paper, since approaches like MPI and SHMEM are actually library-based ap-

proaches. In defense of our laxness, consider the impact of such libraries on the execution models of the base languages with which they are

used—particularly the assumption that multiple program instances will be executing simultaneously. Compared to the relative unobtrusiveness of

traditional libraries on a language’s programming model, our casual use of the term “language” is not completely unwarranted. If it helps, think of

“language” in terms of “a means of expressing something” rather than strictly as a “programming language.”
2Note that a language or library may support a global view of computation and yet be implemented using SPMD or fragmented techniques.

Here, we use the terms to characterize the programmer’s model of writing computation, not the program’s execution model.

4

1 var n : i n t ;

2 var M: [1 . . n , 1 . . n] f l o a t ;

3 var V, S : [1 . . n] f l o a t ;

4 f o r i in 1 . . n {
5 S (i) = 0 . 0 ;

6 f o r j in 1 . . n do

7 S (i) += M(i , j)∗V(j) ;

8 }

1 var n , nnz : i n t ;

2 var Mvals : [1 . . nnz] f l o a t ;

3 var c o l : [1 . . nnz] i n t ;

4 var r p t r : [1 . . n +1] i n t ;

5 var V, S : [1 . . n] f l o a t ;

6 f o r i in 1 . . n {
7 S (i) = 0 . 0 ;

8 f o r j in r p t r (i) . . r p t r (i +1)−1 do

9 S (i) += Mvals (j) ∗ V(c o l (j)) ;

10 }

(a) (b)

Figure 3: Pseudocode fragments illustrating how sensitive algorithms in most languages are to data layout—in this

case (a) a dense matrix layout versus (b) a sparse compressed row layout. While the two codes express the same logical

matrix-vector multiplication operation, the lack of separation between algorithms and data structures causes the codes

to be expressed very differently.

2.2.2 Support for General Parallelism

Parallel algorithms are likely to contain opportunities for parallel execution at arbitrary points within the program. Yet

today’s parallel languages tend to support only a single level of parallelism cleanly, after which additional parallelism

must either be ignored and expressed sequentially or expressed by resorting to a secondary parallel language. The

most common example of this in current practice is the use of MPI to express a coarse level of algorithmic parallelism,

combined with OpenMP to specify a second, finer level of parallelism within each MPI task. To a certain extent, this

“single level of parallelism” characteristic is due to the prevalence of the SPMD model in the programming models,

execution models, and implementation strategies of today’s parallel languages. Parallelism in the SPMD model is only

expressed through the cooperating program instances, making it difficult to express additional, nested parallelism.

In addition, algorithms tend to contain sub-computations that are both data- and task-parallel by nature. Yet most

of today’s parallel programming languages cleanly support only a single type of parallelism, essentially ignoring the

other. Again, due to the prevalence of the SPMD model, data parallelism tends to be the more common model. In

order for a parallel language to be general, it should cleanly support both data and task parallelism.

We believe that when languages make it difficult to express nested instances of data and task parallelism, they limit

their general applicability within the space of parallel computations and will eventually leave the programmer stuck

and frustrated. To this end, we recommend that productivity-oriented parallel languages focus on supporting general

forms of parallelism—both data and task parallelism, as well as the composition of parallel code sections.

2.2.3 Separation of Algorithm and Implementation

A great majority of today’s languages—sequential as well as parallel—do a poor job of expressing algorithms in a

manner that is independent of their data structures’ implementation in memory. For example, consider the changes

required to convert a typical sequential matrix-vector multiplication algorithm from a dense array to a sparse array

using a compressed row storage (CRS) format, as illustrated in Figure 3. To perform the conversion, a new scalar, nnz
is added to describe the number of non-zeroes in the array, while the 2D array M is converted into three 1D arrays of

varying sizes: Mvals, col, and rowptr. In addition, the inner loop and accesses to M and V have changed to the point

that they are virtually unrecognizable as matrix-vector multiplication to anyone but the experienced CRS programmer.

As a result, we have failed in our goal of writing the algorithm independently of data structure. In contrast, languages

such as Matlab which do a better job of separating data representation issues from the expression of computation result

in codes that are less sensitive to their data structures’ implementation details [29].

Note that one need not rely on an example as advanced as converting a dense algorithm into a sparse one to

run afoul of such sensitivities. Even when dealing with simple dense arrays, the loop nests in most HEC codes are

influenced by factors such as whether a matrix is stored in row- or column-major order, what the architecture’s cache-

line size is, or whether the processor is a vector or scalar processor. Yet, the algorithm being expressed is semantically

5

independent of these factors. Most novice programmers are taught that algorithms and data structures ought to be

orthogonal to one another, yet few of our languages support such separation cleanly without sacrificing performance.

In the realm of parallel computing, these problems are compounded since a computation’s expression is sensitive

not only to the traditional sequential concerns, but also to the distribution of data aggregates between multiple proces-

sors and the communication that may be required to fetch non-local elements to a processor’s local memory. Consider

how sensitive today’s fragmented parallel codes tend to be to such decisions as: whether they use a block or block-

cyclic distribution; whether the distribution is applied to a single dimension or multiple dimensions; or whether or not

the problem sizes divide evenly between the processors. Altering these decisions tends to affect so much code that

making such changes occurs only when absolutely necessary, rather than as part of the normal experimentation that

ought to take place while developing new codes. And yet, much of it is orthogonal to the numerical computation that

is being expressed. Unfortunately, fragmented programming models have limited means for addressing this problem

since data is allocated by each program instance, limiting the user’s ability to express computation over a distributed

data structure in a manner that is orthogonal to its distribution.

In order to support such a separation between algorithm and data structure implementation, it would seem that

parallel languages would minimally need to support a means for defining a data aggregate’s distribution, local storage,

and iteration methods independently of the computations that operate on the data structure. In such an approach, the

compiler’s job would be to convert the global-view expression of an algorithm into the appropriate local allocations,

iterations, and communication to efficiently implement the code. In order to achieve ideal performance, it seems likely

that the language and compiler would need to have knowledge about the mechanisms used for expressing storage and

iteration.

2.2.4 Broad-Market Language Features

The gap between parallel languages and popular broad-market languages is wide and growing every year. Consider

the newly-trained programmer emerging from college with experience using Java, Matlab, or Perl in a sequential

computing setting and being asked to implement parallel code in Fortran/C + MPI. In addition to the general challenge

of writing correct parallel programs, these programmers are forced to contend with languages that seem primitive

compared to those in which they have been trained, containing features whose characteristics were determined by

compiler technology that is now decades old.

In order to bring new programmers into the parallel computing community, we believe that new parallel languages

need to bridge this gap by providing broad-market features that do not undermine the goals of parallel computing.

These features might include: object-oriented programming; function and operator overloading; garbage collection;

generic programming (the ability to apply a piece of code to a variety of types for which it is suitable without explicitly

rewriting it); latent types (the ability to elide a variable’s type when it can be determined by the compiler); support for

programming in-the-large (composing large bodies of code in modular ways); and a rich set of support routines in the

form of standardized libraries.

2.2.5 Data Abstractions

Scientific programmers write algorithms that tend to call for a wide variety of data structures, such as multidimensional

arrays, strided arrays, hierarchical arrays, sparse arrays, sets, graphs, or hash tables. Yet current parallel languages tend

to support only a minimal set of data structures, typically limited to traditional dense arrays (and C-based languages

fail to even support much in the way of a flexible multidimensional array). To the extent that these languages fail to

support objects, more complex data structures tend to be implemented in terms of simpler arrays, as exhibited by the

sparse CRS example of Figure 3b.

Despite the fact that HEC computations almost always operate on large data sets by definition, parallel languages

typically fail to provide a richer set of built-in data structures from which the programmer can select. Having such

data structures available by default, whether through a library or the language definition itself, not only saves the

programmer the task of creating them manually, it also improves code readability by encouraging programmers to use

a standard and familiar set of data structures. Such support can also create opportunities for compiler optimizations that

hand-coded data structures tend to obscure. As a specific example, the accesses to array V in the CRS matrix-vector

multiplication of Figure 3b are an example of indirect indexing, which tends to thwart compiler optimization. Yet in

6

the context of CRS, this indexing has specific semantics that would have been valuable to the compiler if the language

had supported a CRS sparse matrix format directly. In past work, we have demonstrated how compiler familiarity with

a distributed sparse data structure can improve code clarity and provide opportunities for optimization [12, 9, 52]. We

believe that doing the same for other common data structures would benefit parallel productivity.

2.2.6 Performance

Since performance is typically the bottom line in high-performance computing, it stands to reason that support for the

previous features should not ultimately prevent users from achieving the performance they require. Yet, this represents

a serious challenge since there tends to be an unavoidable tension between performance and programmability that

typically complicates programming language design.

Our guiding philosophy here is that languages should provide a spectrum of features at various levels so that code

which is less performance-oriented can be written more easily, potentially resulting in less-than-optimal performance.

As additional performance is required for a section of code, programmers should be able to rewrite it using increasingly

low-level performance-oriented features until they are able to obtain their target performance. This philosophy follows

the 90/10 rule: if 90% of the program’s time is spent in 10% of the code, the remaining code can afford to be relatively

simple to write, read, and maintain, even if it impacts performance. Meanwhile, the crucial 10% should be expressible

using a separation of concerns so that distributions, data structures, and communication algorithms can be modified

with minimal impact on the original computation. Such a separation should ideally result in increased readability,

writability, and maintainability of the performance-oriented code as compared to current approaches.

2.2.7 Execution Model Transparency

A quality that has made languages like C popular is the ability for architecture-savvy programmers to understand

roughly how their source code will map down to the target architecture. This gives programmers the ability to make

informed choices between different implementation approaches by considering and estimating the performance im-

pacts that they will have on the execution. While such mental mappings are typically imperfect given the complexity

of modern architectures and compiler optimizations, having even a coarse model of the code’s execution is far better

than working in a language which is so abstract that the mapping to the hardware is a mystery.

This would seem to be an important quality for parallel languages to have as well. While sequential program-

mers will typically be most interested in memory accesses, caches, and registers, parallel programmers will also be

concerned with how parallelism is implemented, where code is executed, which data accesses are local and remote,

and where communication takes place. A secondary benefit for creating parallel languages with transparent execution

models is that it often makes writing compilers for such languages easier by narrowing the space of implementation

options. This can result in making code perform more portably since different compilers will need to obey similar

implementation strategies at a coarse level, even if their optimizations and implementation details vary.

2.2.8 Portability

Given the evolution and diversity of parallel architectures during the past several decades, it seems crucial to make sure

that new parallel languages are portable to a diverse set of architectures. This represents a unique challenge since the

simplest way to achieve this is to have languages target a machine model that represents a lowest common denominator

for the union of parallel architectures—for example, one with a single thread per processor and distributed memory.

Yet making such a choice can limit the expressiveness of a language, as exhibited by many current parallel languages.

It can also limit the language’s ability to take advantage of architectures that offer a richer set of features. Another

approach, and the one we espouse, is to target a more sophisticated machine model that can be emulated in software on

architectures that fail to support it. For example, a language that assumes each processor can execute multiple threads

may be implemented on a single-threaded processor by managing the threads in software. In addition, we believe that

languages should be usable in a mode that is simpler and more compatible with a less-capable architecture when the

best performance is required. Continuing our example, programmers of a single-threaded architecture ought to be able

to restrict their code to use a single thread per processor in order to avoid the overhead of software multithreading.

7

2.2.9 Interoperability with Existing Codes

When designing a new parallel language, it is often tempting to fantasize about how much cleaner everyone’s existing

codes would be if they were rewritten in your language. However, the reality of the situation is that there is so much

code in existence, so much of which is obfuscated by struggling with many of the challenges listed above, that it is

simply unrealistic to believe that this will happen in most cases. For this reason, making new languages interoperate

with existing languages seems crucial.

For our purposes, interoperation has two main goals. The first is to deal with the mechanics of invoking functions

from an existing language to the new language and back again, passing arguments of various standard types. The

second is to have the two languages interoperate on each others’ data structures in-place, in order to avoid making

redundant copies of large distributed data structures, or redistributing them across the machine. While such approaches

may be reasonable for exploratory programming, if production codes switch between the two languages during their

core computations, such overheads are likely to impact performance too much. It is unrealistic to assume that any two

languages will be able to compute on shared data structures of arbitrary types without problems, but new languages

should strive to achieve this for common data structures and their implementations within HEC codes.

2.2.10 Bells and Whistles

There are a number of other features that one may want in a language that have less to do with the language and

more to do with its implementation, libraries, and associated tools. For example, attractive features might include

built-in support for visualizations, interpreters to support interactive exploratory programming, good debuggers and

performance monitors, and clear error messages. While these features are not as “deep” from a language-design

perspective as many of the others that have been covered in this section, one only needs to interact with a few users

(or reflect on their own experiences) to realize how valuable such ancillary features can be for productivity.

3 Parallel Language Survey

In this section, we give a brief overview of several parallel languages and describe how they meet or fall short of the

design principles in the previous section. Given the large number of parallel languages that have been developed in

recent decades, we focus primarily on languages that are in current use and that have influenced our design.

Observations on SPMD Languages Since many of the languages described in this section provide the programmer

with an SPMD view of computation, we begin by making some general observations about the SPMD programming

model. As described in the previous section, SPMD programming gives the user a fairly blunt mechanism for spec-

ifying parallel computation and distributed data structures: parallelism is only available via the multiple cooperating

instances of the program while distributed data aggregates must be created manually by having each program instance

allocate its local piece of the data structure independently. Operations on remote chunks of the data structure typically

require some form of communication or synchronization to keep the cooperating program instances in step.

The main benefits of languages supporting an SPMD programming model relate to their simplicity. The restricted

execution model of these languages tends to make them fairly simple to understand and reason about, resulting in a

high degree of transparency in their execution model. This simplicity can also result in a high degree of portability

due to the lack of reliance on sophisticated architectural features or compilers. Yet the simplicity of this model also

requires the user to shoulder a greater burden by managing all of the details related to manually fragmenting data

structures as well as communicating and synchronizing between program instances. This explicit detail management

obfuscates algorithms and creates rich opportunities for introducing bugs that are notoriously difficult to track down.

3.1 Communication Libraries

MPI MPI (Message Passing Interface) [40, 48] is the most prevalent HEC programming paradigm, designed by a

broad consortium effort between dozens of organizations. MPI supports a fragmented programming model in which

multiple program instances execute simultaneously, communicating by making calls to the MPI library. These routines

8

support various communication paradigms including two-sided communication, broadcasts, reductions, and all-to-all

data transfers. MPI-2 is an extension to the original MPI standard that introduces a form of single-sided communication

as well as dynamic task creation which allows programs to be spawned at arbitrary program points rather than just at

load-time [41, 30].

MPI has been a great success in the HEC community due to the fact that it has a well-specified standard, freely

available implementations, and a high degree of portability and performance consistency between architectures. As a

result, MPI has become the de facto standard for parallel programming.

MPI is most often used in an SPMD style because of its simplicity, yet it does not force the user into an SPMD

programming model since instances of distinct programs can be run cooperatively. However, even when used in this

mode, MPI shares the general characteristics of SPMD languages as described above, due to the fact that its parallelism

is expressed at the granularity of a program rather than a function, statement, or expression.

The MPI interface is supported for C and Fortran, and MPI-2 adds support for C++. To a large extent, MPI’s

ability to support the separation of an algorithm from its implementation, broad-market features, data abstractions,

and interoperability with existing codes is strongly tied to the base languages with which it is used, as impacted by

the introduction of a fragmented programming model. MPI tends to serve as a favorite target of criticism in the HEC

community, due in part to its failure to satisfy many of the design principles from Section 2.2. However, the fact that so

many sophisticated parallel codes have been written using MPI is testament to its success in spite of its shortcomings.

PVM PVM (Parallel Virtual Machine) [27, 28] is another two-sided message passing interface that was developed

during the same period as MPI, but which has not enjoyed the same degree of adoption in the community. PVM’s

interface is somewhat simpler than MPI’s, and supports the ability to dynamically spawn new parallel tasks at the

program level, as in MPI-2. PVM is supported for C, C++, and Fortran. Despite numerous differences between PVM

and MPI, our analysis of PVM with respect to our desiderata is much the same: ultimately its fragmented programming

model stands in the way of making it a highly productive parallel language.

SHMEM SHMEM [4] is a single-sided communication interface that was developed by Cray in the 1990’s to support

a single processor’s ability to put data into, and get data from, another processor’s memory without that processor’s

code being involved. Such an interface maps well to Cray architectures and supports faster data transfers by removing

much of the synchronization and buffering that is necessitated by the semantics of two-sided message passing. This

one-sided communication style is arguably easier to use since programmers do not have to write their program in-

stances to know about the communication that the other is performing, yet in practice some amount of synchronization

between the programs tends to be required to know when remote values are ready to be read or written. Since its

initial development, a portable version of SHMEM has been implemented named GPSHMEM (Generalized Portable

SHMEM) and is designed to support portability of the interface to a broader range of platforms [46].

Programmers debate over whether two-sided or single-sided communication is easier due to the tradeoff between

having both program instances involved in the communication versus the subtle race conditions that can occur due to

incorrect synchronization in the one-sided model. However, from our perspective, the SHMEM interface still relies on

an SPMD programming model, and as such does little to address our wishlist for a productive language.

ARMCI and GASNet Two other single-sided communication libraries that have recently grown in popularity are

ARMCI (Aggregate Remote Memory Copy Interface) [43] and GASNet (Global Address Space Networking) [6]. Both

of these interfaces seek to support portable single-sided communication by generalizing the concepts established by

the SHMEM library. ARMCI was developed at Pacific Northwest National Laboratory and is built on native network

communication interfaces and system resources. It has been used to implement GPSHMEM, Co-array Fortran [23],

and the Global Arrays library. GASNet was developed at Berkeley. It is constructed around a core API that is based

on Active Messages [53] and is implemented on native network communication interfaces. GASNet has been used to

implement UPC [15, 16] and Titanium [50]. Both ARMCI and GASNet are primarily used as implementation layers

for libraries and languages. Their use as a stand-alone parallel programming language has similar productivity limiters

as the previous communication libraries described in this section.

9

3.2 PGAS Languages

A group of parallel programming languages that are currently receiving a great deal of attention are the Partitioned

Global Address Space (PGAS) languages [7]. These languages are designed around a memory model in which a

global address space is logically partitioned such that a portion of it is local to each processor. PGAS languages are

typically implemented on distributed memory machines by implementing this virtual address space using one-sided

communication libraries like ARMCI or GASNet.

PGAS languages are a welcome improvement over one-sided and two-sided message passing libraries in that

they provide abstractions for building distributed data structures and communicating between cooperating program

instances. In spite of these improvements, however, users still program with the SPMD model in mind, writing code

with the understanding that multiple instances of it will be executing cooperatively. Thus, while the PGAS languages

improve productivity, they continue to fall short of our goals of providing a global view of parallel computation and

general parallelism.

The three main PGAS languages are Co-array Fortran, UPC, and Titanium. While these are often characterized as

Fortran, C, and Java dialects of the same programming model, this is an over-generalization. In the paragraphs below,

we highlight some of their features and differences.

Co-Array Fortran Co-array Fortran (CAF) (formerly known as F−−) is an elegant extension to Fortran to support

SPMD programming [44]. Its success has been such that its features will be included in the next Fortran standard [45].

CAF supports the ability to refer to the multiple cooperating instances of an SPMD program (known as images)

through a new type of array dimension called a co-array. By declaring a variable with a co-array dimension, the user

specifies that each program image will allocate a copy of the variable. Each image can then access remote instances

of the variable by indexing into the co-array dimensions using indices that refer to the logical image space. Co-arrays

are expressed using square brackets which make them stand out syntactically from traditional Fortran arrays and array

references. Synchronization routines are also provided to coordinate between the cooperating images.

While PGAS languages like CAF tend to provide a more coherent view of distributed data structures than message-

passing libraries, they still require users to fragment arrays into per-processor chunks. For example, in Co-array

Fortran an n-element array would typically be allocated as a co-array of size n/numImages, causing the user to deal

with many of the same data structure fragmentation details as in MPI programming. The greatest programmability

improvement comes in the area of simplifying communication, since co-arrays provide a truly elegant abstraction for

data transfer as compared to one-sided and two-sided communication. Moreover, the syntactic use of square brackets

provides the user with good insight into the program’s execution model.

UPC UPC is similar to Co-array Fortran in that it extends C to support PGAS-style computation [8, 51, 24]. How-

ever, UPC supports a very different model for distributing arrays in which declaring an array variable with the shared

keyword causes the linearly-ordered array elements to be distributed between the program instances (or threads) in a

cyclic or block-cyclic manner. This mechanism provides a more global view of the user’s arrays, yet it is restricted

enough that locality-minded programmers will still tend to break arrays into THREADS arrays of n/THREADS
elements each. The biggest downside to UPC’s distributed arrays is that since they are based on C arrays, they inherit

many of the same limitations. In particular, performing a 2D blocked decomposition of a 2D array is non-trivial, even

if the problem size and number of threads are statically known.

UPC also supports a slightly more global view of control by introducing a new loop structure, the upc forall loop,

in which global iterations of a C-style “for loop” are assigned to threads using an affinity expression. While this support

for a global iteration space is useful, it also tends to be somewhat at odds with the general UPC execution model which

is SPMD by nature until a upc forall loop is encountered.

UPC’s most useful feature is perhaps its support for pointers into the partitioned global shared address space.

Pointers may be declared to be private (local to a thread) or shared, and may point to data that is also either private or

shared. This results in a rich abstraction for shared address space programming that successfully maintains a notion of

affinity since a symbol’s shared/private characteristic is part of the type system and therefore visible to the programmer

and compiler.

10

Titanium Titanium is a PGAS language that was developed at Berkeley as an SPMD dialect of Java [54, 36]. Tita-

nium adds several features to Java in order to make it more suited for HEC, including: multidimensional arrays sup-

porting iterators, subarrays, and copying; immutable “value” classes; operator overloading; and regions that support

safe, performance-oriented memory management as an alternative to garbage collection. To support coordination be-

tween the SPMD program instances, Titanium supports: a number of synchronization and communication primitives;

single methods and variables which give the compiler and programmer the ability to reason about synchronization in

a type-safe manner; and a notion of private/shared references and data similar to that of UPC.

In many respects, Titanium is the most promising of the PGAS languages in terms of our productivity wishlist.

It has the most support for broad-market features that current sequential programmers—particularly those from the

Java community—would come to expect. The fact that it is an object-oriented language gives it better capabilities for

separating algorithms from implementations and providing mechanisms for creating data abstractions. Its support for

single annotations and private/shared distinctions help it achieve performance and to expose its execution model to

the user. The chief disadvantage to Titanium is that, like other PGAS languages, it supports an SPMD programming

model which thwarts its ability to support a global view of data structures and control, as well as to express general

parallelism.

3.3 OpenMP

OpenMP is a set of directives and library routines that are used to specify parallel computation in a shared memory

style for C, C++, and Fortran [18, 13]. OpenMP is a drastic departure from the communication libraries and PGAS

languages described above in that it is the first programming model described in this survey that can be used in a

non-fragmented manner. OpenMP is typically used to annotate instances of parallelism within a sequential program—

most notably, by identifying loops in which parallel computation should occur. The OpenMP compiler and runtime

implement this parallelism using a team of cooperating threads. While OpenMP can be used in a fragmented manner,

querying the identity of a thread within a parallel region and taking actions based on that identity, it is more often

used in a global-view manner, identifying the opportunity for parallelism and letting the the compiler and runtime

manage the thread-level details. This ability to inject parallelism incrementally into a sequential program is considered

OpenMP’s greatest strength and productivity gain.

While the OpenMP standard supports nested parallelism, most implementations only handle a single level of

parallelism at a time. OpenMP is currently not suited for task parallelism, though there is interest in evolving it to

handle such problems. The biggest downside to OpenMP is its reliance on a shared-memory programming model,

which has generally not proven to be scalable to large numbers of processors. For this reason, OpenMP is typically

used within shared memory portions of a larger distributed memory machine—for example, to express thread level

parallelism within an MPI program running on a cluster of SMPs. OpenMP’s other downside is that, like MPI, it

is used in combination with C, C++, and Fortran, limiting its ability to support higher-level data abstractions and

broad-market features from more modern languages.

3.4 HPF

High Performance Fortran (HPF) [34, 38, 35] is a parallel extension to Fortran 90 that was developed by the High

Performance Fortran Forum, a coalition of academic and industrial language experts. HPF is an evolution of earlier

parallel Fortran dialects such as Fortran-D [25], Vienna Fortran [14, 55], and Connection Machine Fortran [2]. HPF is

a global-view language supporting distributed arrays and a single logical thread of computation. It supports a number

of directives that allow users to provide hints for array distribution and alignment, loop scheduling, and other details

relevant to parallel computation. HPF compilers implement the user’s code by generating an SPMD program in which

the compiler-generated code and runtime manage the details of implementing distributed arrays and interprocessor

communication.

HPF meets our productivity goals by providing a global view of computation, but does not provide for general

parallelism. Because of its SPMD execution model and single logical thread of execution, it is good at expressing a

single level of data parallelism cleanly, but not at expressing task or nested parallelism. HPF also suffers from a lack of

transparency in its execution model—it is difficult for both users and compilers to reason about how a code will/should

be implemented [42]. Depending on who you talk to, HPF’s lack of success is attributed to some combination of: this

11

lack of a transparent execution model; its inability to achieve good performance quickly enough (alternatively, the

impatience of its user community); its lack of support for higher-level data abstractions such as distributed sparse

arrays, graphs, and hash tables; and a number of other theories. In our work on Chapel, we build on HPF’s general

approach for global-view programming on distributed arrays while adding richer support for general parallelism and

data structures.

3.5 ZPL

ZPL is an array-based parallel language developed at the University of Washington [9, 20, 49]. Like HPF, ZPL supports

global-view parallel computation on distributed arrays where the management details are implemented by the compiler

and runtime using an SPMD implementation. As with HPF, ZPL’s execution model only supports programs with a

single level of data parallelism at a time, making it similarly limited in terms of generality.

ZPL is unique among global-view languages in that it supports execution model transparency in its syntax via a

concept known as the WYSIWYG performance model [10]. Traditional operations are semantically restricted in ZPL

to only be applicable to array expressions that are distributed in an aligned manner. To operate on arrays that are not

aligned, a series of array operators are used to express different access patterns including translations, broadcasts,

reductions, parallel prefix operations, and gathers/scatters. These stylized operators show up clearly in the syntax and

can be used to reason about where programs require communication and what type it is. In this way, programmers

are able to make coarse algorithmic tradeoffs by inspecting the syntax of their programs. In practice, ZPL achieves

performance that is competitive with hand-coded Fortran+MPI, and is portable to most platforms that support MPI.

ZPL supports array computations using a language concept known as a region3 to represent distributed index sets,

including sparse arrays [11, 12, 9]. In our Chapel work, we expand upon the region concept to support distributed sets,

graphs, and hash tables. We also strive to implement the general parallelism and broad-market features that ZPL fails

to provide.

3.6 Cilk

Cilk is a global-view parallel language that supports a multithreaded execution model [31, 47]. To the programmer,

Cilk codes look like C programs that have been annotated with operations to spawn and synchronize threads. Moreover,

the elision of Cilk’s keywords result in a C program that validly implements Cilk’s semantics. Cilk’s runtime system is

in charge of scheduling the parallel computation so that it will run efficiently on a platform, and it utilizes aggressive

work sharing and stealing techniques to balance the computational load and avoid swamping the system with too much

parallelism.

Cilk is attractive with respect to our productivity desiderata in that it provides a global view of nestable parallelism.

While Cilk threads can be used to implement data parallelism, the language provides little in the way of abstractions to

make operating on distributed arrays trivial—the user would have to manage such data structures manually. As a result,

Cilk seems best-suited for nested task parallelism—an important area since so few languages support it. The current

version of Cilk is also limited to shared memory platforms, resulting in potential scaling and portability problems as

in OpenMP. While previous versions of Cilk ran on clusters of workstations [37], this capability has not been carried

forward. A final point of interest about Cilk is that while its execution model is not transparent, it does have an analytic

performance model that allows users to predict asymptotic program performance.

4 Chapel Overview

In this section, we describe a number of key Chapel language features, relating them to the goals that we established in

Section 2.2. Due to the space limitations of this paper, we provide a brief introduction to a number of Chapel concepts

without covering them in exhaustive detail. For a more complete introduction to the language, the reader is referred to

the Chapel Language Specification [17].

3Note that this is a a completely distinct concept from Titanium’s region, mentioned earlier.

12

4.1 Base Language Concepts in Chapel

Chapel is a global-view parallel language that supports a block-imperative programming style. In fact, the “pseu-

docode” fragments presented in Figures 1a, 2a, and 3 are written in Chapel. Syntactically, Chapel diverges from other

block-imperative HEC languages like C and Fortran. At times, this is due to our differing goals (e.g., support for

generic programming and a better separation of algorithm and data structures), and at times due to differing sensi-

bilities. The decision to avoid building directly on C or Fortran also reflects our belief that looking too similar to

an existing language can cause users to fall back on their sequential programming styles and assumptions rather than

considering their algorithm afresh, as is often necessary when writing parallel programs. We believe that interoperabil-

ity with existing languages is far more important than extending an existing syntax. That said, elements of Chapel’s

syntax will be familiar to users of C, Fortran, Java, Modula, and Ada.

Basic Types and Variables Chapel supports a number of built-in types that are standard for HEC: floating point and

integer types of varying widths, complex values, boolean values, and strings. Variable declarations in Chapel take the

general form:

var <name> [: <definition>] [= <initializer>] ;

where name gives the name of the variable, definition indicates its type and structural properties, and initializer supplies

its initial value. For code robustness reasons, each type in Chapel has a default initial value used for uninitialized

variable declarations, though these may be overridden or suppressed by the user. Chapel’s declaration syntax differs

from the more common “type first” style used in C and Fortran primarily due to our goal of supporting generic

programming by eliding a variable’s type (described below). In addition, we have a preference for variable definitions

that can be read left-to-right, and for array specifications that can define multiple variables and that need not be split

by a variable’s name.

Locales In Chapel, we use the term locale to refer to the unit of a parallel architecture that is capable of performing

computation and has uniform access to the machine’s memory. For example, on a cluster architecture, each node and

its associated local memory would be considered a locale. Chapel supports a locale type and provides every program

with a built-in array of locales to represent the portion of the machine on which the program is executing. Effectively,

the following variables are provided by the system:

c o n s t numLocales : i n t = . . . ;

c o n s t L o c a l e s : [1 . . numLocales] l o c a l e = . . . ;

Programmers may reshape or partition this array of locales in order to logically represent the locale set as their algo-

rithm prefers. Locales are used for specifying the mapping of Chapel data and computation to the physical machine

using features described below.

Other Basic Types Chapel supports tuples of homogeneous and heterogeneous types as a means of bundling several

values together in a lightweight fashion. It also supports a sequence type that is used to represent ordered homogeneous

collections in cases where richer data aggregates like arrays are overkill. Chapel’s semantics for operations on arrays

are defined in terms of sequence semantics.

Chapel also supports type unions which are similar to C’s union types, except that they must be used in a type-safe

manner. For example, having written to a union variable via member x, the variable cannot then be accessed via

member y.

Control Flow and Functions Chapel supports a variety of standard control flow statements as in most block-

imperative languages—loops, conditionals, select statements (like “switch” or “case” statements), breaks, continues,

gotos, and returns. Chapel supports function definitions that support default argument values, argument matching by

name, and argument intents. Functions can be overloaded, as can most of the standard operators. Function resolution

is performed in a multiple-dispatch manner.

13

4.2 Parallelism in Chapel

Chapel is designed around a multithreaded execution model in which parallelism is not described using a processor- or

task-based model, but in terms of independent computations implemented using threads. Rather than giving the pro-

grammer access to threads via low-level fork/join mechanisms and naming, Chapel provides higher-level abstractions

for parallelism using anonymous threads that are implemented by the compiler and runtime system. We choose this

model both to relieve users of the burden of thread management and due to its generality. Although most architectures

do not currently have hardware support for multithreading, we believe that the benefits gained in programmability

and generality will outweigh the potential performance impacts of managing these threads in software. Moreover, as

multicore processors become more readily available, we anticipate that support for multithreading will become more

commonplace.

4.2.1 Data Parallelism

Domains and Arrays Chapel supports data parallelism using a language construct known as a domain—a named,

first-class set of indices that is used to define the size and shape of arrays and to support parallel iteration. Note that we

use the term array in Chapel to represent a general mapping from an index set of arbitrary type to a set of variables.

This results in a richer array concept than the rectilinear blocks of data supported by most HEC languages. Chapel’s

domains are an evolution of the region concept that was developed in ZPL, generalized here to support sets, graphs,

and associative arrays. Chapel has three main classes of domains, described in the following paragraphs.

Arithmetic domains are those in which indices are represented using multidimensional integer coordinates, to

support rectilinear index sets as in traditional array languages. Arithmetic domains may have dynamic sizes and

bounds, and they may be dense, strided, or sparse in each dimension. The following declarations create a simple 2D

arithmetic domain and array:

var D: domain (2) = [1 . . m, 1 . . n] ; / / a 2D a r i t h m e t i c domain s t o r i n g i n d i c e s (1 , 1) . . . (m, n)

var A: [D] f l o a t ; / / an m × n a r r a y o f f l o a t i n g p o i n t v a l u e s

Indefinite domains represent an index set of arbitrary type, as specified by the user. For example, a programmer

might choose to use floating point values, strings, or object references as an indefinite domain’s index type. Indef-

inite domains are used to implement sets or associative arrays, and can be thought of as providing hash table-like

functionality. The following example creates an array of integers indexed using strings:

var P e o p l e : domain (s t r i n g) ; / / a domain s t o r i n g s t r i n g i n d i c e s , i n i t i a l l y empty

var Age : [P e o p l e] i n t ; / / an a r r a y o f i n t e g e r s i n d e x e d v i a s t r i n g s i n t h e Peop le domain

P e o p l e += ” John ” ; / / add s t r i n g ”John” t o t h e Peop le domain

Age (” John ”) = 6 2 ; / / s e t John ’ s age

Opaque domains are those in which the indices have no values or algebra in relation to one another—they are

simply anonymous indices, each of which is unique. Opaque domains can be used to represent graphs or link-based

data structures in which there is no requirement to impose an index value or ordering on the nodes that comprise the

data structure. Opaque domains and arrays are declared as follows:

var P o i n t s : domain (opaque) ; / / a domain s t o r i n g opaque i n d i c e s

var Weight : [P o i n t s] i n t ; / / an i n t e g e r a r r a y i n d e x e d v i a ” P o i n t s ” i n d i c e s

var a P o i n t : index (opaque) = P o i n t s . new () ; / / c r e a t e and s t o r e a new anonymous i n d e x

As shown above, Chapel arrays are declared by specifying the domain(s) that define the array’s size and shape in

combination with an element type that is to be stored for each element within the array. In general, domains may be

dynamically modified to add or subtract indices from the set that they describe. When this occurs, any arrays defined

using the domain are reallocated to reflect the changes to the domain’s index set. Thus, the declaration of an array over

a domain establishes an invariant relationship between the two concepts that is maintained dynamically throughout the

array’s lifetime.

Index Types and Subdomains Chapel supports an index type that is parameterized by a domain value. A variable of

a given index type may store any of the indices that its domain describes. The following code declares and initializes

an index variable for each of the three domains declared above:

14

f o r a l l i j in D {
A(i j) = . . . ;

. . .

}

. . . [i j in D] A(i j) . . .

(a)

f o r a l l i in P e o p l e {
Age (i) = . . . ;

. . .

}

. . . [i in P e o p l e] Age (i) . . .

(b)

f o r a l l p t in P o i n t s {
Weight (p t) = . . . ;

. . .

}

. . . [p t in P o i n t s] Weight (p t) . . .

(c)

Figure 4: Forall loops in statement and expression form for the three domains declared at the beginning of Sec-

tion 4.2.1. The loop variables are declared implicitly to be the domain’s index type, and are scoped by the loop body.

More specifically, ij is an index(D)—a 2-tuple of integers from domain D; i is an index(People)—a string from

the People domain; and p is an index(Point)—an opaque index from the Point domain.

var c e n t e r D : index (D) = (m/ 2 , n / 2) ; / / t h e c e n t e r o f domain D

var name : index (P e o p l e) = ” John ” ; / / a name from domain Peop le

var a n o t h e r P o i n t : index (P o i n t s) = P o i n t s . new () ; / / a new p o i n t from t h e P o i n t s domain

A domain variable may be declared as a subdomain of another domain, constraining its indices to be a subset of

those described by its parent. For example, the following code creates a subdomain for each of the three domains

declared above:

var i nne rD : subdomain (D) = [2 . . m−1, 2 . . n−1]; / / t h e i n n e r i n d i c e s o f domain D

var A d u l t s : subdomain (P e o p l e) = . . . ; / / t h e a d u l t s i n t h e Peop le domain

var HeavyPo in t s : subdomain (P o i n t s) = . . . ; / / t h e heavy p o i n t s from t h e P o i n t s domain

Index types and subdomains are beneficial because the compiler can often reason about them to eliminate bounds

checks. For example, if an index value from innerD is used to access array A, no bounds check is required since

innerD is a subdomain of A’s domain D. Index types and subdomains also provide readers of Chapel code with

additional semantic information about a variable’s value. In contrast, code can be difficult to understand when every

variable used to access an arithmetic array is declared as an integer.

Iteration, Slicing, and Promotion Parallel iteration is specified in Chapel using forall loops in either statement or

expression form. Forall loops iterate over domains, arrays, or other expressions that evaluate to a sequence of values.

Forall loops may optionally define loop variables that take on the values described by the collection being traversed.

For example, a forall loop over a domain will create loop variables of that domain’s index type that will take on the

index values described by the domain. Loop variables are only defined for the body of the forall loop. Figure 4

illustrates forall loops for our running domain examples.

Chapel users can index into arrays an element at a time using individual index values, such as those resulting from

a forall loop over a domain. Alternatively, they may index into arrays in an aggregate manner by using a domain

expression to specify an arbitrary subset of the array’s values. This provides an array slicing mechanism similar to

that of Fortran 90, yet with richer semantics since Chapel domains can describe arbitrary index sets. For example, the

following expressions use our previous subdomain declarations to slice into arrays declared over their parent domains:

. . . A(innerD) . . .

. . . Age (A d u l t s) . . .

. . . Weight (H eavyPo in t s) . . .

Promotion, Reductions, and Scans Chapel supports the promotion of scalar operators and functions over data

aggregates such as whole array references or array slices. Whole-array assignment is a trivial example involving the

promotion of the scalar assignment operator. The semantics of such promotions are defined using sequence-based

interpretations of the array expressions. Promoted operators take sequence expressions of compatible rank and shape.

Chapel also supports a cross-product style of promotion. Promotions over aggregates are implicitly parallel.

Chapel also supports other specialized forms of data parallel computation such as reductions and parallel prefix

computations (scans). These operators can be invoked using built-in operations like sum or min, or users can specify

their own operations that define the component functions of a scan or reduction [21].

15

As example uses of promotion and reductions, consider the following Chapel statements which compute approx-

imate norms for a 3D n × n × n array, A. These promote the standard exponentiation operator and absolute value

function across A’s elements, using sum and max reductions to collapse the resulting values to a scalar:

var rnm2 = s q r t ((sum reduce A∗∗2) / n ∗∗3) ;

var rnmu = max reduce abs (A) ;

Domain Distributions A domain’s indices may be decomposed between multiple locales, resulting in a distributed

allocation for each array defined using that domain. Domain distributions also provide a default work location for

threads implementing parallel computation over a domain’s indices or an array’s values. Because of the constrained

relationship between an array and its defining domain, two arrays declared using the same domain are guaranteed

to have the same size, shape, and distribution throughout their lifetimes, allowing the compiler to reason about the

distribution of aligned arrays. Subdomains also inherit their parent domain’s distribution unless explicitly over-ridden,

providing additional alignment information.

Chapel will support a number of traditional distributions (e.g., block, cyclic, recursive bisection, graph partitioning

algorithms) as part of its standard library. However, a primary goal of the language is to allow users to implement

their own distributions when they have application-specific knowledge for how an array should be distributed that is

not captured by the standard distributions.

Support for these user-defined distributions is one of our most aggressive research areas in the Chapel project, and

a rich enough topic to warrant a paper of its own [22]. For this discussion, it suffices to say that a distribution specifies

how a domain’s indices are mapped to a set of target locales, as well as how domain indices and array elements should

be stored within each locale’s memory. Our current framework requires distribution authors to create five classes that

represent: the distribution; a domain declared using the distribution; a single locale’s portion of such a domain; an

array declared using the domain; and a single locale’s portion of such an array. These classes will be expected to

support a standard interface of accessors, iterators, query functions, and data transfer methods which the compiler will

target during its rewrites of the user’s global-view code. Domain distributions are a key part of Chapel’s separation of

concerns, allowing users to define data structures independently of the computations that operate on them.

4.2.2 Task Parallelism

Chapel supports task parallelism using stylized forms of specifying parallel statements and synchronizing between

them. The primary way to launch a series of parallel tasks is to use the cobegin statement, a compound statement

which asserts that each of its component statements can be executed in parallel. A variation on the cobegin statement

is the begin statement which identifies a statement that can execute in parallel with the statements that follow it.

Parallel tasks can also be specified symmetrically using the forall loops described in the previous section.

Chapel’s parallel tasks can coordinate with one another using synchronization variables that support full/empty

semantics in addition to their normal data values. By default, reads to a synchronization variable only complete when

the variable is “full” and leave it “empty”, while writes do the opposite. The user may explicitly specify alternate

semantics such as writing to the variable and leaving it full regardless of the initial state. Synchronization variables

support a structured form of producer/consumer semantics on arbitrary variables. Begin statements can store their

results to synchronization variables as a means of expressing futures in Chapel.

Chapel also supports atomic sections to indicate that a group of statements should be executed as though they

occurred atomically from the point of view of any other thread. Atomic sections have been of recent interest to the

software transactional memory community due to their intuitiveness and ability to replace explicit lock management

in user code [33, 32, 1, 26]. By specifying intent rather than mechanism, atomic sections result in a higher-level

abstraction for users than locks. We also value them due to their role in allowing code from different authors to

compose cleanly.

4.2.3 Composition of Parallelism

Because of its multithreaded execution model, Chapel does not restrict parallel code from appearing within the body

of a forall loop or a cobegin statement. As a result, each statement body can contain statements of either type, resulting

16

in arbitrarily nested parallelism and general support for composition of parallel tasks. The key to achieving this in a

scalable manner is to realize that specifying that work may execute in parallel does not imply that the runtime must

spawn a new thread for each parallel computation. Instead, we anticipate using work sharing and stealing techniques

combined with a certain degree of laziness in evaluation to throttle the creation of parallel threads and avoid swamping

the system, as in Cilk and the Cray MTA [5, 3].

Parallelism Summary Many of the desirable language characteristics laid out in Section 2.2 are fulfilled in Chapel

by the concepts described in this section. Chapel’s multithreaded execution model and support for domains, arrays,

forall loops, and cobegin statements support its global view of computation. Combining these concepts with synchro-

nization variables and atomic sections fulfills our requirements for supporting general parallel computation. Domains,

arrays, and index types help support our need for rich data abstractions, and the ability to change a domain’s distri-

bution and implementation at its declaration point without touching the rest of the code supports Chapel’s goal of

separating algorithms from their implementing data structures. Similarly, in many codes a domain may be changed

from dense to sparse without altering the code that operates on it. As an example, the following loop can be used to

perform a matrix-vector multiplication in Chapel without specifying whether the matrix A is sparse or dense, how it

is distributed between locales, or how the indices and array elements are stored in each locale’s memory.

s = sum reduce (dim =2) [i , j in A. domain] A(i , j) ∗ v (j) ;

4.3 Locality Control in Chapel

Chapel’s goals include allowing the programmer to control where data is stored and where computation takes place on

the machine, and to allow this information to be added to a program incrementally as additional performance tuning

is required. Domain distribution is one example of locality control that has been described here, and it supports this

principle: a domain can initially be declared without distributing it, and later, a distribution can be added without

changing any of the code that refers to the domain or its arrays. Similarly, users may initially wish to use a distribution

from the standard library, and later write their own custom distribution once performance concerns become more

critical.

When iterating over a domain, each iteration will typically execute on the locale that owns that index, as speci-

fied by the domain’s distribution. Users can override this behavior—or control the locality of any other executable

statement—using an on clause which references a locale and specifies that the given computation should take place

there. An extreme example of an on clause can be used to revert to a fragmented programming style:

f o r a l l l o c in L o c a l e s do

on l o c do f r a g m e n t e d F u n c t i o n () ;

On clauses can also be used in a data-driven manner by naming a variable rather than a locale. This causes the

computation to take place on the locale that owns the variable in question. For example, in the following forall loop,

the loop body will be executed on the locale that owns element Aj/2,2·i.

f o r a l l (i , j) in D do

on A(j / 2 , 2∗ i) do A(i , j) = foo (A(j / 2 , 2∗ i)) ;

On clauses can also be applied to variable declarations to cause variables to be allocated on a specific locale. Typically,

variables that are not explicitly managed in this way are allocated in the locale on which the thread is executing.

The locality-oriented features of this section are designed to help Chapel programmers tune their program for

performance, since so much parallel performance is determined by the relative placement of threads and the data

that they access. These features also provide an execution model for Chapel programmers, albeit one that is fairly

low-level.

4.4 Object-Oriented Programming in Chapel

Object-oriented programming (OOP) has proven to be a very useful concept in mainstream programming languages,

providing a foundation for separating interfaces from implementations, enabling code reuse, and generally helping

17

f u n c t i o n addem (x , y) : {
var r e s u l t = x + y ;

re turn r e s u l t ;

}

. . .addem (1 , 2) . . . ;

. . .addem (” h i ” , ” ya ”) . . . ;

f u n c t i o n addem (type t , x : t ,

y : t) : t {

var r e s u l t : t = x + y ;

re turn r e s u l t ;

}

. . .addem (i n t , 1 , 2) . . . ;

. . .addem (s t r i n g , ” h i ” , ” ya ”) . . . ;

f u n c t i o n addem (x : ? t , y : t)

: t {
var r e s u l t : t = x + y ;

re turn r e s u l t ;

}

. . .addem (1 , 2) . . . ;

. . .addem (” h i ” , ” ya ”) . . . ;

(a) (b) (c)

Figure 5: Chapel functions showing a generic addition function in which (a) the types are elided, (b) a type variable t
is used, (c) a type t is set using the query syntax (?t) and then used.

programmers reason about their code using data structures whose composition reflects the systems they are striving to

model. Chapel supports object-oriented features in order to leverage this productivity boost in a parallel setting.

Chapel provides two basic flavors of classes: traditional classes and value classes. Traditional classes are assigned

and passed by reference, mimicking the semantics of traditional object-oriented languages (Java being a notable recent

example). Value classes are assigned and passed by value, making them similar to structures or records in traditional

languages, yet ones that support method invocation (making them similar to C++ classes). Chapel also supports

garbage collection due to its productivity benefit in eliminating common memory management errors in modern OOP

languages.

We have decided against making Chapel a pure object-oriented language, both to reflect the necessity of operating

on value types efficiently in the HEC market, and due to the fact that a large fraction of the HEC community has not

been trained to think and program in the object-oriented paradigm since Fortran and C have been the dominant HEC

languages for decades. As a result, though Chapel supports OOP features, it typically does not require users to adopt

them unless they want to. In practice, Fortran and C programmers are free to ignore Chapel’s classes and program in

a traditional block-imperative style while Java and C++ programmers are likely to utilize a more object-based style in

their code.

The one exception to this rule is in the specification of advanced Chapel concepts such as user-defined reductions,

scans, and domain distributions. In these cases, the OOP framework provides a very natural means of specifying a re-

quired interface, as well as a mechanism for specializing existing implementations without redefining each component

manually. For this reason, we have chosen to express such concepts using a class library. Note that even if Fortran and

C programmers need to utilize these advanced concepts in their codes, the bulk of their programs can still be written

in a non-OOP style.

The features described in this section are supported in Chapel to provide broad-market language concepts in a par-

allel programming language, and to leverage the productivity improvements that mainstream computing has enjoyed

through their use. Support for classes also provides us with a strong foundation for building higher-level language

features such as domains and user-defined distributions.

4.5 Generic Programming in Chapel

Chapel supports language features that enable generic programming, which we define as the ability to write a subcom-

putation that is flexible with respect to the variable types to which it is applied. We implement this flexibility in the

source code by aggressive program analysis and cloning, potentially creating multiple statically-typed instances of the

generic code to satisfy the cases that the user’s program requires. In particular, these generic programming features

are implemented to avoid introducing unnecessary runtime overhead.

Latent Types In most cases, the declared type of a variable or argument can be elided, in which case the compiler

will infer the type from the program’s context. If a variable’s type is elided, it is typically inferred by inspecting its

initializing expression. If it is a class member, its initialization within the class constructor is analyzed to determine

18

its type. Function argument types are inferred by examining the actual arguments at the callsites for that function. If

the inferred type of a variable or argument is unclear, the compiler will declare an ambiguity and request additional

information from the user rather than making an arbitrary choice that may be surprising. This is a performance-

motivated policy, in order to avoid storing dynamically tagged values to perform semantic checks and dispatches at

run-time.

As an example, consider the code in Figure 5a in which a function is written to return the result of the + operator

applied to its two arguments. Note that the formal arguments, the function’s return type, and the type of the local

variable are all elided. In this case, the available callsites will be analyzed to determine the types of the arguments,

while the result value of the + operator will determine the type of the local variable, and therefore the function’s return

value. Since the function is invoked using integers and strings, two versions of the function will be created by the

compiler, one that adds integers and the second which concatenates strings.

Type Variables For programmers who prefer a more structured approach to generic programming, function argu-

ments and classes may contain type variables that can be used to explicitly parameterize variable types. For example,

Figure 5b contains the same function as before, but with an initial type variable argument describing a type t. This

type is then used to declare the types of arguments x and y, as well as the function’s return type and local variable.

Note that this code differs slightly from the previous version since it constrains x and y to have the same type, whereas

the previous version permitted them to have different types (so long as the + operator supported them). Apart from

this distinction, the two versions would generate identical code.

Type variables may also be defined using a stylized declaration syntax, using the “?” operator to mnemonically

query the type of an argument and bind it to a type variable. Using this syntax, our generic function would appear as

in Figure 5c and is semantically identical to the previous case.

Users have the ability to express additional constraints on the relationships between type variables via a where

clause which can follow a type variable’s declaration. We refer the reader to the language specification for more

information on this feature [17].

The features in this section are designed to help with Chapel’s separation of algorithms from data structures. They

are also designed to narrow the gap between parallel languages and mainstream languages. In particular, Chapel’s type

variables support generic programming in a manner similar to C++, Java, and C#, yet using a more intuitive syntax.

Chapel’s latent types are designed to emulate mainstream scripting languages that tend to support untyped variables.

Our approach differs from most scripting languages in that Chapel’s latently-typed variables must be declared and will

only have a single static type during their lifetime. These choices were made to prevent common errors and to ensure

that performance is not compromised by dynamic changes to a variable’s type.

4.6 Other Chapel Language Features

Chapel has several other features that are not covered in this article due to lack of space. Primary among these is its

support for iterators, similar to those in CLU [39]; curried function calls; and modules for namespace management.

4.7 Chapel’s Execution Model Transparency

In any language design, there exists a tension between programmability and execution model transparency. A simple

example of this in parallel language design can be seen in specifying assignments between distributed arrays.

In a language geared towards programmability, two arrays would likely be assigned using a single mechanism

regardless of whether or not they shared the same distribution. In such a model, the simplicity of performing array

assignment is favored over the desire to make the anticipated differences in performance visible in the source text. The

programmer would therefore need to rely on feedback from the compiler or performance analysis tools (or their own

comprehension of the execution model) to understand the difference in performance between the two cases.

In a language geared toward execution model transparency, the assignment between two aligned arrays would

likely take a different—and simpler— form than the assignment between two arrays with different distributions. Here,

the programmer must do more work, and potentially clone code manually to handle multiple cases. The advantage is

that the program’s syntax keeps the execution model clear to the programmer and compiler.

19

In Chapel’s design, we have chosen to emphasize programmability over execution model transparency, in part to

maximize genericity of the user’s code and in part due to a belief that the 90/10 rule suggests that most of the time you

want to do what’s easiest and not worry about performance.

As the project has evolved, we have considered whether it might be useful and possible to statically switch between

two semantic models in order to support different degrees of execution transparency. For example, one could imagine

that for the 10% of a code where programmers really care about performance, they might use a special scoping

mechanism or keyword to switch into a stricter semantic model (such as ZPL’s WYSIWYG model), allowing them

to keep a better grasp on the execution model. Such a mechanism would also support Chapel’s goal of allowing

programmers to write code quickly and then tune it incrementally. This idea is still under study.

4.8 Chapel Portability

Chapel was designed with an idealized, productive parallel architecture in mind—in particular, one with a global shared

address space, hardware support for multithreading, a high-bandwidth, low-latency network, and latency tolerant

processors. This choice was made believing that to best improve productivity in a parallel language, one should not

assume a virtual architecture that represents an unproductive least-common denominator for existing machines.

One obvious result of this decision is that when compiling Chapel for a less-ideal architecture, certain features are

likely not to work as well. For example, on an architecture that lacks hardware support for a shared address space or

multithreading, one would expect there to be greater overheads in software to make up for these deficiencies. Similarly,

on an architecture with a lesser network or with no latency tolerance, one would expect the impact of communication

on a program’s performance to be greater.

Our guiding principle here has been to design Chapel features such that they can be implemented on various

architectures, though possibly at some cost. We are working on implementing Chapel so that when programmers write

code that matches their current programming model on such architectures, the performance is comparable to what they

would achieve today with that model. If, on the other hand, they use more advanced features on such architectures for

the sake of programmability, they should expect to take a performance hit due to the paradigm mismatch.

4.9 Chapel Interoperability with Other Languages

Chapel’s plan for interoperability with other languages is to implement support for calling between Chapel and C. We

then intend to use the Babel tool for scientific language interoperation [19] in order to interface with Fortran, C++,

Python, Java, and any other languages that it supports at that time. In this way we should be able to interoperate with

most standard languages that are used by the HEC community.

With respect to the second aspect of interoperability—that of operating on another parallel language’s data in-

place—our plan is to use Chapel’s domain distribution capabilities to address this challenge. As an example, to

interoperate with an existing MPI code, the user would need to use a Chapel distribution to describe the layout of their

MPI program’s data in memory in order to access that data in-place. This could either be a custom distribution written

by the user, or for simple decompositions (e.g., a simple blocked array in MPI) it could be a distribution from Chapel’s

standard library. As with Chapel distributions in general, this remains an area of active research.

5 Summary

Figure 6 displays a table that lists our ten design principles for productive parallel languages from Section 2.2 and

summarizes the discussion from Section 4 to describe how Chapel addresses each area. Since we created both the

wishlist of features and the Chapel language itself, it should come as no surprise that Chapel addresses most of our

areas of concern fairly well. The weakest area is in the realm of execution model transparency, where we have chosen

to emphasize programmability over performance transparency. We also have some work to do in constructing a proof-

of-concept portable implementation of Chapel, and to flesh out our language interoperability story, particularly in the

area of domain distributions. This is work that is currently in progress.

In the coming years, Chapel will be evaluated by the HPCS funding agencies, academics, other HPCS vendors,

and members of the HEC user community. The goal is to work towards constructing a common set of features that the

20

Desiderata Chapel Response

Global view of parallelism supported via: distributed domains and arrays;

cobegin/begin statements; forall loops; iterators

General parallelism data and task parallelism supported;

cobegin statements and forall loops support composability;

synchronization variables and atomic sections for task cooperation

Separation of algorithm and implementation supported via: domains; user-defined distributions;

multidimensional iterators; OOP features

Broad-market language features support for: OOP; function and operator overloading;

garbage collection; latent types; modules; generic programming

Data abstractions support for: sequences; arithmetic (dense, strided, sparse) arrays;

indefinite and opaque arrays; OOP

Performance achieved by locality tuning via: domain distributions; “on” clause

Execution model transparency currently only supported in the program text via “on” clauses;

may add support for switching to stricter semantic models in

the future

Portability assumes abstract machine model supporting multithreading and

single-sided communication; if not supported by hardware, will

have to simulate in software at some cost

Interoperability anticipate supporting via Babel and domain distributions

Bells and Whistles implementation-dependent/TBD

Figure 6: The ten design principles that we identified in Section 2.2 and a summary of how Chapel addresses them as

described in Section 4.

HEC vendors and community would be interested in supporting as a consortium language effort. During this period of

evaluation and experimentation, it will be interesting to see how our design goals and preferences compare to those of

the broader community once users have the chance to investigate Chapel more closely. We encourage anyone who is

interested in parallel language design to explore chapel at our website (http://chapel.cs.washington.edu) and to send us

feedback on where you believe we have made better and worse decisions (chapel info@cray.com). Language design

clearly involves making tradeoffs according to priorities and taste, and we are interested in hearing how your tastes

compare with ours.

Acknowledgments The authors would like to acknowledge John Plevyak, Steven Deitz, Roxana Diaconescu, Shan-

non Hoffswell, Mark James, Mackale Joyner, and Wayne Wong for their many contributions to the Chapel language

and its ongoing implementation. Thanks also to Robert Bocchino, Paul Cassella, and Greg Titus for reading and

providing valuable feedback on drafts of this article.

References

[1] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murhpy, Bratin Saha, and Tatiana Shpeisman. Compiler

and runtime support for efficient software transactional memory. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN

conference on programming language design and implementation, pages 26–37. ACM Press, 2006.

[2] Eugene Albert, Kathleen Knobe, Joan D. Lukas, and Guy L. Steele, Jr. Compiling Fortran 8x array features for the Connec-

tion Machine computer system. In PPEALS ’88: Proceedings of the ACM/SIGPLAN conference on Parallel Programming:

experience with applications, languages, and systems, pages 42–56. ACM Press, 1988.

[3] Gail Alverson, Simon Kahan, Richard Korry, Cathy McCann, and Burton Smith. Scheduling on the Tera MTA. In D. G.

Feitelson and L. Rudolph, editors, Job Scheduling Strategies for Parallel Processing, volume 949 of LNCS, pages 19–44.

Springer Verlag, April 1995.

21

[4] Ray Barriuso and Allan Knies. SHMEM user’s guide for C. Technical report, Cray Research Inc., June 1994.

[5] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work stealing. In Proceedings of the

35th Annual Symposium on Foundations of Computer Science (FOCS ‘94), pages 356–368, New Mexico, November 1994.

[6] Dan Bonachea. GASNet specification v1.1. Technical Report UCB/CSD-02-1207, U.C. Berkeley, 2002. (newer versions also

available at http://gasnet.cs.berkeley.edu).

[7] Bill Carlson, Tarek El-Ghazawi, Robert Numerich, and Kathy Yelick. Programming in the partitioned global address space

model. Tutorial at Supercomputing 2003, November 2003. (notes available at http://upc.gwu.edu).

[8] William W. Carlson, Jesse M. Draper, David E. Culler, Kathy Yelick, Eugene Brooks, and Karen Warren. Introduction to

UPC and language specification. Technical Report CCS-TR-99-157, Center for Computing Sciences, Bowie, MD, May 1999.

[9] Bradford L. Chamberlain. The Design and Implementation of a Region-Based Parallel Language. PhD thesis, University of

Washington, November 2001.

[10] Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Lewis, Calvin Lin, Lawrence Snyder, and W. Derrick Weathersby.

ZPL’s WYSIWYG performance model. In Proceedings of the Third International Workshop on High-Level Programming

Models and Supportive Environments, pages 50–61. IEEE Computer Society Press, March 1998.

[11] Bradford L. Chamberlain, E Christopher Lewis, Calvin Lin, and Lawrence Snyder. Regions: An abstraction for expressing

array computation. In ACM/SIGAPL International Conference on Array Programming Languages, pages 41–49, August

1999.

[12] Bradford L. Chamberlain and Lawrence Snyder. Array language support for parallel sparse computation. In Proceedings of

the 2001 International Conference on Supercomputing, pages 133–145. ACM SIGARCH, June 2001.

[13] Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror Maydan, and Jeff McDonald. Parallel Programming in

OpenMP. Morgan Kaufmann, October 2000.

[14] Barbara M. Chapman, Piyush Mehrotra, and Hans P. Zima. Programming in Vienna Fortran. Scientific Programming, 1(1):31–

50, 1992.

[15] Wei-Yu Chen, Dan Bonachea, Jason Duell, Parry Husbands, Costin Iancu, and Katherine Yelick. A performance analysis of

the Berkeley UPC compiler. In Proceedings of the International Conference of Supercomputing (ICS), 2003.

[16] Wei-Yu Chen, Costin Iancu, and Katherine Yelick. Communication optimizations for fine-grained UPC applications. In 14th

International Conference on Parallel Architectures and Compilation Techniques (PACT), St. Louis, MO, September 2005.

[17] Cray Inc., Seattle, WA. Chapel Specification, 0.4 edition, February 2005. (http://chapel.cs.washington.edu).

[18] Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for shared-memory programming. IEEE Compu-

tational Science and Engineering, 5(1):46–55, January–March 1998.

[19] Tamara Dahlgren, Thomas Epperly, Gary Kumfert, and James Leek. Babel Users’ Guide. Lawrence Livermore National

Laboratory, 0.11.0 edition.

[20] Steven J. Deitz. High-Level Programming Language Abstractions for Advanced and Dynamic Parallel Computations. PhD

thesis, University of Washington, 2005.

[21] Steven J. Deitz, David Callahan, Bradford L. Chamberlain, and Lawrence Snyder. Global-view abstractions for user-defined

reductions and scans. In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on principles and practice of

parallel programming, pages 40–47. ACM Press, 2006.

[22] Roxana Diaconescu and Hans P. Zima. An approach to data distributions in Chapel. to appear in this same special issue

on High Productivity Programming Languages and Models of the International Journal of High Performance Computing

Applications, 2007.

[23] Yuri Dotsenko, Cristian Coarfa, and John Mellor-Crummey. A multi-platform Co-Array Fortran compiler. In Proceedings of

the 13th Internaional Conference of Parallel Architectures and Compilation Techniques (PACT 2004), Antibes Juan-les-Pins,

France, September 2004.

[24] Tarek El-Ghazawi, William Carlson, Thomas Sterling, and Katherine Yelick. UPC: Distributed Shared-Memory Program-

ming. Wiley-Interscience, June 2005.

[25] Geoffrey Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Ulrich Kremer, Chau-Wen Tseng, and Min-You Wu.

Fortran D language specification. Technical Report CRPC-TR 90079, Rice University, Center for Research on Parallel Com-

putation, December 1990.

[26] Keir Fraser. Practical Lock-Freedom. PhD thesis, King’s College, University of Cambridge, September 2003.

22

[27] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sunderam. PVM 3 user’s guide and

reference manual. Technical Report ORNL/TM-12187, Oak Ridge National Laboratory, September 1994.

[28] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy Sunderam. PVM: Parallel Virtual

Machine, A User’s Guide and Tutorial for Networked Parallel Computing. Scientific and Engineering Computation. MIT

Press, November 1994.

[29] John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in MATLAB: Design and implementation. SIMAX,

13(1):333–356, January 1992.

[30] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir.

MPI: The Complete Reference, volume 2. Scientific and Engineering Computation. MIT Press, September 1998.

[31] Supercomputing Technologies Group. Cilk 5.3.2 Reference Manual. MIT Laboratory for Computer Science, November 2001.

[32] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable memory transactions. In ACM SIGPLAN

Symposium on Principles and Practices of Parallel Programming, June 2005.

[33] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing memory transactions. In PLDI ’06: Proceedings

of the 2006 ACM SIGPLAN conference on programming language design and implementation, pages 14–25. ACM Press,

2006.

[34] High Performance Fortran Forum. High Performance Fortran language specification. Scientific Programming, 2(1–2):1–170,

Spring–Summer 1993.

[35] High Performance Fortran Forum. High Performance Fortran Language Specification Version 2.0, January 1997.

[36] Paul N. Hilfinger, Dan Oscar Bonachea, Kaushik Datta, David Gay, Susan L. Graham, Benjamin Robert Liblit, Geoffrey Pike,

Jimmy Zhigang Su, and Katherine A. Yelick. Titanium language reference manual. Technical Report UCB/EECS-2005-15,

Electrical Engineering and Computer Sciences, University of California at Berkeley, November 2005.

[37] Christopher F. Joerg. The Cilk System for Parallel Multithreaded Computing. PhD thesis, MIT Department of Electrical

Engineering and Computer Science, January 1996.

[38] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele, Jr., and Mary E. Zosel. The High Performance

Fortran Handbook. Scientific and Engineering Computation. MIT Press, September 1996.

[39] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert. Abstraction mechanisms in CLU. ACM SIGPLAN, 12(7):75–81, July

1977.

[40] Message Passing Interface Forum. MPI: A message passing interface standard. International Journal of Supercomputing

Applications, 8(3/4):169–416, 1994.

[41] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface, July 1997.

[42] Ton A. Ngo, Lawrence Snyder, and Bradford L. Chamberlain. Portable performance of data parallel languages. In Proceedings

of SC97: High Performance Networking and Computing, November 1997.

[43] Jarek Nieplocha and Bryan Carpenter. ARMCI: A portable remote memory copy library for distributed array libraries and

compiler run-time systems. In J. Rolim et al., editor, Proceedings of the 3rd Workshop on Runtime Systems for Parallel

Programming, LNCS 1586, pages 533–546, San Juan, Puerto Rico, April 1999. Springer Verlag.

[44] Robert W. Numerich and John Reid. Co-array fortran for parallel programming. SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[45] Robert W. Numerich and John Reid. Co-arrays in the next fortran standard. SIGPLAN Fortran Forum, 24(2):4–17, 2005.

[46] Krzysztof Parzyszek, Jarek Nieplocha, and Ricky A. Kendall. A generalized portable SHMEM library for high performance

computing. In M. Guizani and Z. Shen, editors, the Twelfth IASTED International Conference on Parallel and Distributed

Computing and Systems, pages 401–406, Las Vegas, Nevada, November 2000.

[47] Keith H. Randall. Cilk: Efficient Multithreaded Computing. PhD thesis, MIT Department of Electrical Engineering and

Computer Science, June 1998.

[48] Marc Snir, Steve Otto, Steve Huss-Lederman, David Walker, and Jack Dongarra. MPI: The Complete Reference, volume 1.

Scientific and Engineering Computation. MIT Press, 2nd edition, September 1998.

[49] Lawrence Snyder. The ZPL Programmer’s Guide. Scientific and Engineering Computation. MIT Press, March 1999.

[50] Jimmy Su and Katherine Yelick. Automatic support for irregular computations in a high-level language. In 19th International

Parallel and Distributed Processing Symposium (IPDPS), 2005.

[51] The UPC Consortium. UPC Language Specification (v 1.2), June 2005. (available at http://upc.gwu.edu).

23

[52] Manuel Ujaldon, Emilio L. Zapata, Barbara M. Chapman, and Hans P. Zima. Vienna-Fortran/HPF extensions for sparse and

irregular problems and their compilation. IEEE Transactions on Parallel and Distributed Systems, 8(10), October 1997.

[53] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Active Messages: A mechanism

for integrated communication and computation. In 19th Internaional Symposium on Computer Architecture, pages 256–266,

1992.

[54] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamato, Ben Liblit, Arvind Krishnamurthy, Paul Hilfinger, Susan

Graham, David Gay, Phil Colella, and Alex Aiken. Titanium: A high-performance Java dialect. Concurrency: Practice and

Experience, 10(11–13):825–836, September 1998.

[55] Hans Zima, Peter Brezany, Barbara Chapman, Piyush Mehrotra, and Andreas Schwald. Vienna Fortran — a language speci-

fication version 1.1. Technical Report NASA-CR-189629/ICASE-IR-21, Institute for Computer Applications in Science and

Engineering, March 1992.

24

