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Abstract

A novel global optimization method based on an Augmented Lagrangian framework is
introduced for continuous constrained nonlinear optimization problems. At each outer iter-
ation k the method requires the εk-global minimization of the Augmented Lagrangian with
simple constraints, where εk → ε. Global convergence to an ε-global minimizer of the orig-
inal problem is proved. The subproblems are solved using the αBB method. Numerical
experiments are presented.
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1 Introduction

Global optimization has ubiquitous applications in all branches of engineering sciences and
applied sciences. During the last decade several textbooks addressed different facets of global
optimization theory and applications [10, 16, 19, 26, 47, 56, 57, 60]. Recent review papers have
also appeared [17, 36].

The Augmented Lagrangian methodology based on the Powell-Hestenes-Rockafellar [25, 39,
41] formula has been successfully used for defining practical nonlinear programming algorithms
[6, 7, 12, 14]. Convergence to KKT points was proved using the Constant Positive Linear
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sitária, 05508-090, São Paulo SP, Brazil. This author was supported by PRONEX-Optimization (PRONEX
- CNPq / FAPERJ E-26 / 171.164/2003 - APQ1), FAPESP (Grants 06/53768-0 and 06/51827-9) and CNPq
(PROSUL 490333/2004-4). e-mail: egbirgin@ime.usp.br

†Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA. This author was
supported by the National Science Foundation and the National Institute of Health (R01 GM52032). e-mail:
floudas@titan.princeton.edu

‡Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas, CP 6065, 13081-970
Campinas SP, Brazil. This author was supported by PRONEX-Optimization (PRONEX - CNPq / FAPERJ
E-26 / 171.164/2003 - APQ1), FAPESP (Grant 06/53768-0) and CNPq. e-mail: martinez@ime.unicamp.br

§Last update: July 17, 2008 (typos corrected on August 17, 2010).

1



Dependence constraint qualification [5], which strengthens the results based on the classical
regularity condition [11, 14].

In this work, we consider the Augmented Lagrangian method introduced in [6] and we modify
it in such a way that, at each outer iteration k, we find an εk-global minimizer of the subproblem.
In the definition of the subproblem we introduce an important modification with respect to [6]:
besides the lower level constraints we include constraints that incorporate information about the
global solution of the nonlinear programming problem. A theorem of convergence to ε-global
minimizers is presented.

In the implementation, we consider linear constraints on the lower-level set, and additional
valid linear constraints which result from outer approximations of the feasible region and hence
incorporate the global optimum information. This allows us to use the αBB [1, 2, 3, 9] method
and its convex underestimation techniques [33, 34] for the subproblems, in such a way that
the underestimation techniques are applied just to the Augmented Lagrangian function and
not to the constraints. The αBB global optimization approach has been applied to various
problems that include molecular conformations in protein folding, parameter estimation and
phase equilibrium. Mixed-integer nonlinear models arising in process synthesis, design and
operations problems represent additional important application areas. See [16] and the references
therein for details.

There exist many global optimization techniques for nonlinear programming problems, e.g.,
[2, 3, 4, 9, 18, 20, 21, 22, 23, 24, 28, 29, 31, 38, 43, 44, 48, 49, 50, 51, 52, 53, 58]. However,
up to our knowledge, the proposed approach is the first practical deterministic global optimiza-
tion method based on the Augmented Lagrangian framework. Moreover, as a consequence of
using the Augmented Lagrangian approach combined with the αBB method and its convex
α-underestimation techniques, the method introduced in this paper does not rely on the specific
form of the functions involved in the problem definition (objective function and constraints),
apart from their continuity and differentiability. Interval arithmetic is used to compute bounds
on the objective function and to compute the convex α-underestimators. Although the method
can take advantage of known underestimators and relaxations for several kinds of functional
forms, it can also deal with functional forms for which underestimators and relaxations have not
been developed yet. In this sense, the method does not depend on the analysis of expressions
involved in the problem definition to identify functional forms for which ad-hoc underestimators
are available.

This paper is organized as follows. In Section 2 we describe the Augmented Lagrangian
deterministic global optimization algorithm. The convergence to ε-global minimizers is proved
in Section 3. In Section 4 we describe the global optimization of the Augmented Lagrangian
subproblems. Numerical results are given in Section 5. In Section 6 we draw some conclusions.

Notation. If v ∈ IRn, v = (v1, . . . , vn), we denote v+ = (max{0, v1}, . . . ,max{0, vn}). If
K = (k1, k2, . . .) ⊂ IN (with kj < kj+1 for all j), we denote K ⊂

∞
IN . The symbol ‖ · ‖ will denote

the Euclidian norm.
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2 The overall algorithm

The problem to be addressed is:

Minimize f(x)
subject to h(x) = 0

g(x) ≤ 0
x ∈ Ω

(1)

where h : IRn → IRm, g : IRn → IRp, f : IRn → IR are continuous and Ω ⊂ IRn is closed. A
typical set Ω consists of “easy” constraints such as linear constraints and box constraints. By
easy we mean that a suitable algorithm for local minimization is available.

Assumption 1. From now on we will assume that there exists a global minimizer z of the
problem.

We define the following Augmented Lagrangian function [25, 39, 41]:

Lρ(x, λ, µ) = f(x) +
ρ

2

{ m
∑

i=1

[

hi(x) +
λi

ρ

]2

+

p
∑

i=1

[

max

(

0, gi(x) +
µi

ρ

)]2}

(2)

for all x ∈ Ω, ρ > 0, λ ∈ IRm, µ ∈ IRp
+.

Algorithm 2.1

Let λmin < λmax, µmax > 0, γ > 1, 0 < τ < 1. Let {εk} be a sequence of nonnegative numbers
such that limk→∞ εk = ε ≥ 0. Let λ1

i ∈ [λmin, λmax], i = 1, . . . , m, µ1
i ∈ [0, µmax], i = 1, . . . , p,

and ρ1 > 0. Initialize k ← 1.

Step 1. Let Pk ⊂ IRn be a closed set such that a global minimizer z (the same for all k) belongs
to Pk. Find an εk-global minimizer xk of the problem Min Lρk

(x, λk, µk) subject to x ∈
Ω ∩ Pk. That is xk ∈ Ω ∩ Pk is such that:

Lρk
(xk, λk, µk) ≤ Lρk

(x, λk, µk) + εk (3)

for all x ∈ Ω ∩ Pk. The εk-global minimum can be obtained using a deterministic global
optimization approach, such as the αBB method.

Step 2. Define

V k
i = max

{

gi(x
k),−µk

i

ρk

}

, i = 1, . . . , p.

If k = 1 or
max{‖h(xk)‖∞, ‖V k‖∞} ≤ τ max{‖h(xk−1)‖∞, ‖V k−1‖∞}, (4)

define ρk+1 = ρk. Otherwise, define ρk+1 = γρk.
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Step 3. Compute λk+1
i ∈ [λmin, λmax], i = 1, . . . , m and µk+1

i ∈ [0, µmax], i = 1, . . . , p. Set
k ← k + 1 and go to Step 1.

Remark. In the implementation, we will compute λk+1
i = min{max{λmin, λ

k
i + ρhi(x

k)}, λmax}
and µk+1

i = min{max{0, µk + ρgi(x
k)}, µmax}. These definitions correspond to safeguarded

choices of first-order Lagrange multiplier estimates. After the resolution of each subproblem,
the vectors λk/ρk and µk/ρk represent shifts of the origin with respect to which infeasibility is
penalized. The intutitive idea is that these shifts “correct” the previous decision on the best
possible origin and enhance the possibility of achieving feasibility at the present iteration. The
theoretical consequence is that, under suitable assumptions, one is able to prove that the penalty
parameter does not need to go to infinity [6]. In practice, this implies that the subproblems
tend to remain well conditioned.

We emphasize that the deterministic global optimization method αBB will not use the point
xk−1 as “initial approximation” as most local optimization solvers do. In fact, the concept of
“initial point” has no meaning at all in this case. The information used by the outer iteration k
is the set of approximate Lagrange multipliers computed after iteration k− 1, and nothing else.

3 Convergence to an ε-global minimum

In the theorems that follow, we assume that the sequence {xk} is well defined. In other words,
the εk-global minimizer of the Augmented Lagrangian can always be found. A sufficient con-
dition on the problem that guarantees that this assumption holds is the compactness of Ω. In
practical Optimization it is usual to add box constraints to the feasible set of the problem that
reflect some previous knowledge on the localization of the solution. Clearly, after intersection
with a box, the feasible set becomes compact.

Theorem 1. Assume that the sequence {xk} is well defined and admits a limit point x∗. Then,
x∗ is feasible.

Proof. Since Ω is closed and xk ∈ Ω, we have that x∗ ∈ Ω. We consider two cases: {ρk} bounded
and ρk → ∞. If {ρk} is bounded, there exists k0 such that ρk = ρk0

for all k ≥ k0. Therefore,
for all k ≥ k0, (4) holds. This implies that ‖h(xk)‖ → 0 and ‖V k‖ → 0. So, gi(x

k)+ → 0 for all
i = 1, . . . , p. So, the limit point is feasible.

Now, assume that ρk → ∞. Let z be as in Step 1. Therefore, z is feasible. So, ‖h(z)‖ =
‖g(z)+‖ = 0. Suppose, by contradiction, that x∗ is not feasible. Therefore,

‖h(x∗)‖2 + ‖g(x∗)+‖2 > ‖h(z)‖2 + ‖g(z)+‖2.

Let K be an infinite sequence of indices such that limk∈K xk = x∗. Since h and g are continuous,
λk, µk are bounded and ρk →∞, there exists c > 0 such that for k ∈ K large enough:

∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2

>

∥

∥

∥

∥

h(z) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z) +
µk

ρk

)

+

∥

∥

∥

∥

2

+ c.
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Therefore,

f(xk) +
ρk

2

[
∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2]

> f(z) +
ρk

2

[
∥

∥

∥

∥

h(z) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z) +
µk

ρk

)

+

∥

∥

∥

∥

2]

+
ρkc

2
+ f(xk)− f(z).

Since limk∈K xk = x∗ and f is continuous, for k ∈ K large enough

ρkc

2
+ f(xk)− f(z) > εk.

Therefore,

f(xk)+
ρk

2

[
∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

> f(z)+
ρk

2

[
∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+εk.

Now, since z is a global minimizer, we have that z ∈ Ω ∩ Pk for all k. Therefore, the inequality
above contradicts the definition of xk. �

Theorem 2. Under the same assumptions of Theorem 1, every limit point x∗ of a sequence
{xk} generated by Algorithm 2.1 is an ε-global minimizer of the problem.

Proof. Let K ⊂
∞

IN be such that limk∈K xk = x∗. By Theorem 1, x∗ is feasible. Let z ∈ Ω as as

in Step 1. Then, z ∈ Pk for all k.
We consider two cases: ρk →∞ and {ρk} bounded.

Case 1 (ρk →∞): By the definition of the algorithm:

f(xk)+
ρk

2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f(z)+
ρk

2

[∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+εk

(5)
for all k ∈ IN .

Since h(z) = 0 and g(z) ≤ 0, we have:

∥

∥

∥

∥

h(z) +
λk

ρk

∥

∥

∥

∥

2

=

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

and

∥

∥

∥

∥

(

g(z) +
µk

ρk

)

+

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2

.

Therefore, by (5),

f(xk) ≤ f(xk) +
ρk

2

[∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f(z) +
‖λk‖2
2ρk

+
‖µk‖2
2ρk

+ εk.

Taking limits for k ∈ K and using that limk∈K ‖λk‖/ρk = limk∈K ‖µk‖/ρk = 0 and limk∈K εk =
ε, by the continuity of f and the convergence of xk, we get:

f(x∗) ≤ f(z) + ε.
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Since z is a global minimizer, it turns out that x∗ is an ε-global minimizer, as we wanted to prove.

Case 2 ({ρk} bounded): In this case, we have that ρk = ρk0
for all k ≥ k0. Therefore, by the

definition of Algorithm 2.1, we have:

f(xk)+
ρk0

2

[∥

∥

∥

∥

h(xk)+
λk

ρk0

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk0

)

+

∥

∥

∥

∥

2]

≤ f(z)+
ρk0

2

[∥

∥

∥

∥

h(z)+
λk

ρk0

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk0

)

+

∥

∥

∥

∥

2]

+εk

for all k ≥ k0. Since g(z) ≤ 0 and µk/ρk0
≥ 0,

∥

∥

∥

∥

(

g(z) +
µk

ρk0

)

+

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

µk

ρk0

∥

∥

∥

∥

2

.

Thus, since h(z) = 0,

f(xk) +
ρk0

2

[∥

∥

∥

∥

h(xk) +
λk

ρk0

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk0

)

+

∥

∥

∥

∥

2]

≤ f(z) +
ρk0

2

[∥

∥

∥

∥

λk

ρk0

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk0

∥

∥

∥

∥

2]

+ εk

for all k ≥ k0. Let K1⊂
∞

K be such that

lim
k∈K1

λk = λ∗, lim
k∈K1

µk = µ∗.

By the feasibility of x∗, taking limits in the inequality above for k ∈ K1, we get:

f(x∗) +
ρk0

2

[
∥

∥

∥

∥

λ∗

ρk0

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(x∗) +
µ∗

ρk0

)

+

∥

∥

∥

∥

2]

≤ f(z) +
ρk0

2

[
∥

∥

∥

∥

λ∗

ρk0

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µ∗

ρk0

∥

∥

∥

∥

2]

+ ε.

Therefore,

f(x∗) +
ρk0

2

∥

∥

∥

∥

(

g(x∗) +
µ∗

ρk0

)

+

∥

∥

∥

∥

2

≤ f(z) +
ρk0

2

∥

∥

∥

∥

µ∗

ρk0

∥

∥

∥

∥

2

+ ε.

Thus,

f(x∗) +
ρk0

2

p
∑

i=1

(

gi(x
∗) +

µ∗
i

ρk0

)2

+

≤ f(z) +
ρk0

2

p
∑

i=1

(

µ∗
i

ρk0

)2

+ ε. (6)

Now, if gi(x
∗) = 0, since µ∗

i /ρk0
≥ 0, we have that
(

gi(x
∗) +

µ∗
i

ρk0

)

+

=
µ∗

i

ρk0

.

Therefore, by (6),

f(x∗) +
ρk0

2

∑

gi(x∗)<0

(

gi(x
∗) +

µ∗
i

ρk0

)2

+

≤ f(z) +
ρk0

2

∑

gi(x∗)<0

(

µ∗
i

ρk0

)2

+ ε. (7)

But, by Step 2 of Algorithm 2.1 , limk→∞ max{gi(x
k),−µk

i /ρk0
} = 0. Therefore, if gi(x

∗) < 0
we necessarily have that µ∗

i = 0. Therefore, (7) implies that f(x∗) ≤ f(z)+ε. Since z is a global
minimizer, the proof is complete. �
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4 Global optimization of subproblems

In this section, we address the problem of finding xk ∈ Ω ∩ Pk satisfying (3) and we restrict
ourselves to the case in which Ω is defined by linear constraints. This problem is equivalent to
the problem of finding an εk-global solution of the problem:

Minimize Lρk
(x, λk, µk) subject to x ∈ Ω ∩ Pk, (8)

where Ω = {x ∈ IRn | Ax = b, Cx ≤ d, l ≤ x ≤ u} and Ax = b, Cx ≤ d and l ≤ x ≤ u represent
the linear equality, linear inequality and bound constraints of problem (1), respectively. The
remaining constraints of problem (1) will be h(x) = 0, g(x) ≤ 0. The role of Pk will be elucidated
soon.

To solve problem (8), we introduced and implemented the αBB algorithm [2, 3] for the
particular case of linear constraints and bounds. The αBB method is a deterministic global
optimization method for nonlinear programming problems based on Branch & Bound. For
bounding purposes, it uses the convex α-underestimator of the function being minimized that
coincides with the function at the bounds of the box and whose maximum separation (distance
to the objective function) is proportional to the box dimensions. Therefore, the smaller the box,
the tighter the convex α-underestimator.

Based on the last observation, the αBB method consists of splitting the box-constraints
domain into smaller subdomains in order to reduce the gap between an upper and a lower bound
on the minimum of the problem. The upper bound is given by the smallest functional value
obtained through local minimizations within the subdomains, while the lower bound comes from
the global minimization of the convex α-underestimators subject to the problem constraints. If,
within a subdomain, the lower bound plus the prescribed tolerance εk is above the upper bound,
the subdomain can be discarded as it clearly does not contain the solution of the problem
(considering the tolerance εk). The same argument applies if, via interval analysis, it is shown
the subdomain does not contain any promising point.

The constraints of the problem, or any other valid constraint, can also be used to substitute
a subdomain [l̄, ū] for any other proper subdomain [l̂, û]. In our implementation, we considered
just linear constraints in the process of reducing a subdomain [l̄, ū]. Three sources of linear
constraints were used, namely (a) linear constraints of the original problem; (b) linear relaxations
(valid within the subdomain [l̄, ū]) of the nonlinear penalized constraints; and (c) linear “cuts” of
the form LU

ρk
(x, λk, µk) ≤ Lub, where LU

ρk
(·, λk, µk) is a linear relaxation of Lρk

(·, λk, µk) within
[l̄, ū]. Constraints of type (a) and (b) can be used to discard regions that do not contain feasible
points of problem (1) and play a role in the definition of Pk. Constraints of type (c) eliminate
regions that do not contain the global solution of (8).

Let us call B the original box of the problem and L the original polytope defined by the
linear constraints. As a result of the αBB process, the original box is covered by t “small”
boxes B1, . . . , Bt. For each small box Bi a polytope Qi (defined by the relaxations) is given
(perhaps Qi = IRn) and a new small box B̂i such that (Qi ∩ Bi) ⊂ B̂i ⊂ Bi is constructed. By
construction, the set Pk = ∪t

i=1B̂i contains the feasible set of the problem. So, Pk contains the
global minimizers of the problem. The αBB algorithm guarantees an εk-global minimizer on
L ∩ Pk, as required by the theory.
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The algorithm starts with a list S of unexplored subdomains that initially has as unique
element the original box domain of the problem. Then, for each subdomain in the list it does
the following tasks: (i) reduce the subdomain; (ii) try to discard the subdomain via interval
analysis or computing the global solution of the underestimating problem; (iii) if the subdomain
cannot be discarded; perform a local minimization within the subdomain; (iv) finally, split the
subdomain and add the new subdomains to S. The method stops when the list S is empty.

The description of the αBB algorithm, that follows very closely the algorithm introduced in
[3], is as follows.

Algorithm 4.1: αBB

Step 1. Initialization

Set S = {[l, u]} and Lub = +∞.

Step 2. Stopping criterion

If S is empty, stop.

Step 3. Choose a subdomain

Choose [l̄, ū] ∈ S and set S ← S \ [l̄, ū].

Step 4. Subdomain reduction and possible discarding

Let W[l̄,ū] be a set of linear constraints valid within the subdomain [l̄, ū] plus linear con-

straints satisfied by the global solution of (8). For i = 1, . . . , n, compute l̂i and ûi as

arg min±xi subject to Ax = b, Cx ≤ d, l̄ ≤ x ≤ ū, x ∈W[l̄,ū], (9)

respectively. If the feasible set of (9) is empty, discard the subdomain [l̄, ū] and go to
Step 2.

Step 5. Reduced subdomain discarding

Step 5.1 Via interval analysis

Step 5.1.1 Using interval analysis, compute [Lmin, Lmax] such that

Lmin ≤ Lρk
(x, λk, µk) ≤ Lmax, ∀ x ∈ [l̂, û].

If Lmin + εk ≥ Lub then discard the reduced subdomain [l̂, û] and go to Step 2.

Step 5.1.2 For each equality constraint hi(x) = 0, compute [hmin
i , hmax

i ] such that

hmin
i ≤ hi(x) ≤ hmax

i , ∀ x ∈ [l̂, û].

If 0 /∈ [hmin
i , hmax

i ] then discard the reduced subdomain [l̂, û] and go to Step 2. The same
reasoning applies to each inequality constraint gi(x) ≤ 0 if [−∞, 0] ∩ [gmin

i , gmax
i ] = ∅.
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Step 5.2. Via minimization of a convex underestimator

Compute a convex underestimator U[l̂,û](x) of Lρk
(x, λk, µk) and find

y1 ← arg minU[l̂,û](x) subject to Ax = b, Cx ≤ d, l̂ ≤ x ≤ û.

If U[l̂,û](y1) + εk ≥ Lub then discard the reduced subdomain [l̂, û] and go to Step 2.

Step 6. Local optimization within subdomain

Using y1 as initial guess, compute

y2 ← arg minLρk
(x, λk, µk) subject to Ax = b, Cx ≤ d, l̂ ≤ x ≤ û.

If Lρk
(y2, λ

k, ρk) < Lub then set Lub ← Lρk
(y2, λ

k, ρk) and xub ← y2.

Step 7. Split subdomain

Split [l̂, û] in at least 2 proper subdomains. Add the new subdomains to S and go to
Step 3.

Remarks.

1. The set S is implemented as a queue (see Steps 3 and 7). It is a very simple and problem-
independent strategy that, in contrast to the possibility of using a stack, provides to the
method a diversification that could result in fast improvements of Lub.

2. At Step 7, we divide the subdomain in two subdomains splitting the range of the variable
selected by the least reduced axis rule [3] in its middle point. Namely, we choose xi such
that i = arg minj{(ûj − l̂j)/(uj − lj)}. If a variable appears linearly in the objective
function of the subproblem (8) then its range does not need to be split at all and it
is excluded from the least reduced axis rule. The variables that appear linearly in the
Augmented Lagrangian are the ones that appear linearly in the objective function of the
original problem (1) and do not appear in the penalized nonlinear constraints.

3. Set W[l̄,ū] at Step 4 is composed by linear relaxations (valid within the subdomain [l̄, ū])
of the penalized nonlinear constraints. We considered the convex and concave envelopes
for bilinear terms and the convex envelope for concave functions [16], as well as tangent
hyperplanes to the convex constraints.

4. By the definition of the Augmented Lagrangian function (2), it is easy to see that f(x) ≤
Lρ(x, λ, µ) ∀x. So, any linear relaxation of the objective function f(x) is also a linear
relaxation of the Augmented Lagrangian function Lρ(x, λ, µ). Therefore, a constraint of
the form fU (x) ≤ Lub, where fU (·) is a linear relaxation of f(·) for all x ∈ [l̄, ū] was also
included in the definition of W[l̄,ū] at Step 4.

5. As a consequence of the definition of Ω in (8) (associated to the choice of the lower-level
constraints), the optimization subproblems at Steps 5.2 and 6 are linearly constrained op-
timization problems. Moreover, by the definition of Ω and the fact that W[l̄,ū] at Step 4
is described by linear constraints, the 2n optimization problems at Step 4 are linear pro-
gramming problems.
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6. At Step 5.2, it is not necessary to complete the minimization process. It would be enough
to find z such that U[l̂,û](z)+εk < Lub to realize that the subdomain can not be discarded.

There is an alternative that represents a trade-off between effectiveness and efficiency. Step 4
can be repeated, substituting l̄ and ū by l̂ and û in (9), respectively, while l̂ 6= l̄ or û 6= ū.
Moreover, within the same loop, l̄i and ūi can be replaced by l̂i and ûi as soon as they are
computed. Doing that, the order in which the new bounds are computed might influence the
final result, and a strategy to select the optimal sequence of bounds updates might be developed.

The computation of the convex underestimator U[l̂,û](x) uses the convex α-underestimator

for general nonconvex terms introduced in [33] and defined as follows:

U[l̂,û](x) = Lρk
(x, λk, µk)−

n
∑

i=1

αi(ûi − xi)(xi − l̂i), (10)

where αi, i = 1, . . . , n, are positive scalars large enough to ensure the convexity of U[l̂,û](x). It is
worth mentioning that, although the theory of the convex α-underestimator was developed for
twice-continuously differentiable functions, the continuity of the second derivatives, which does
not hold in the Augmented Lagrangian (2), is not necessary. A detailed explanation follows.

The gradient of the Augmented Lagrangian, ∇xLρk
(x, λk, µk), is continuous. The Hessian

of the Augmented Lagrangian, which exists and is continuous at any point x such that µk
i +

ρk gi(x) 6= 0 for i ∈ {1, . . . , p}, is given by

∇xxLρk
(x, λk, µk) = Hρk

(x, λk, µk) + ρk

∑

i∈I(x)

∇gi(x)∇gi(x)T ,

where I(x) = {i ∈ {1, . . . , p} | µk
i + ρkgi(x) > 0} and Hρk

(x, λk, µk) is defined by

Hρk
(x, λk, µk) = ∇2f(x) +

m
∑

i=1

[λk
i + ρkhi(x)]∇2hi(x) +

p
∑

i=1

[µk
i + ρkgi(x)]+∇2gi(x) +

ρk

m
∑

i=1

∇hi(x)∇hi(x)T .

(11)
We used the Scaled Gerschgorin method [2, 3] to compute the α’s in (10). However, instead

of applying it to the interval Hessian of Lρk
(x, λk, µk), we apply it to [H[l̂,û]], the interval matrix

for x ∈ [l̂, û] associated to Hρk
(x, λk, µk), as defined in (11), that is a continuous function of x.

So, given d ∈ IR++ we have

αi = max {0,−1

2
(hmin

ii −
∑

j 6=i

|h|ij
dj

di
)}, i = 1, . . . , n, (12)

where |h|ij = max{|hmin
ij |, |hmax

ij |} and (hmin
ij , hmax

ij ) denotes element at position (i, j) of [H[l̂,û]].

As suggested in [2], we choose d = û− l̂.
It remains to prove the convexity of the underestimator U[l̂,û](x) defined in (10), that inherits

the second-derivative discontinuity from Lρk
(x, λk, µk) and for which the α’s in (12) were com-

puted applying the Scaled Gerschgorin method to Hρk
(x, λk, ρk) instead of to ∇xxLρk

(x, λk, ρk).
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Given x ∈ [l̂, û] and w ∈ IRn, let us define

ϕ(t) = Lρk
(x + tw, λk, µk). (13)

By the continuity of ∇Lρk
(x, λk, ρk),

ϕ′(t) = ∇Lρk
(x + tw, λk, ρk)T w

always exists and is continuous. The second derivative ϕ′′(t) also exists and is continuous when,
for all i = 1, . . . , p, one of the following three posssibilities hold:

• gi(x + tw) < 0;

• gi(x + tw) > 0;

• gi(x + tw) = 0 and ∇gi(x + tw)T w = 0.

Moreover, when ϕ′′(t) exists, it is given by

ϕ′′(t) = wT Hρk
(x + tw, λk, µk)w + ρk

∑

i∈I(x)

(∇gi(x + tw)T w)2. (14)

In order to verify that U[l̂,û](x) is convex we will use a mild sufficient assumption: for all

x, y ∈ [l̂, û] and t ∈ [0, 1], the function ϕ defined by (13) has only a finite number of second-
derivative discontinuities. (Since second-derivative discontinuities are related with changes of
sign of the functions gi, the above assumption holds except in very pathological situations.)
Assume that t1 < . . . < tq are the discontinuity points of ϕ′′(t) in [0, 1]. Let x, y ∈ [l̂, û] and
define w = y − x. By the continuity of ϕ′,

ϕ′(1)− ϕ′(0) =

∫ t1

0
ϕ′′(t)dt + . . . +

∫ ti+1

ti

ϕ′′(t)dt + . . . +

∫ 1

tq

ϕ′′(t)dt.

Then, by (14),

ϕ′(1)− ϕ′(0) ≥
∫ 1

0
wT Hρk

(x + tw, λk, µk)w dt.

Therefore, by (10), (13) and the definition of the α’s, we have:

[∇U[l̂,û](y)−∇U[l̂,û](x)]T w ≥
∫ 1

0
wT Hρk

(x + tw, λk, µk)w dt−
n

∑

i=1

αiw
2
i

=

∫ 1

0
wT [Hρk

(x + tw, λk, µk)− diag(α1, . . . , αn)]w dt ≥ 0.

This implies that the underestimator U[l̂,û] is convex.

The piecewise convex α-underestimator [34] can also be used instead of the convex α-
underestimator to compute the Augmented Lagrangian underestimator at Step 5.2. The lat-
ter one may be significantly tighter than the α-underestimator, while its computation is more
time consuming. Its computation deserves further explanations. Considering, for each interval
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[l̂i, ûi], i = 1, . . . , n, a partitioning in Ni subintervals with endpoints l̂i ≡ v̂0
i , v̂

1
i , . . . , v̂

Ni

i ≡ ûi,
a definition of the piecewise convex α-underestimator, equivalent to the one introduced in [34],
follows:

Φ[l̂,û](x) = Lρk
(x, λk, µk)−∑n

i=1 qi(x),

qi(x) = qj
i (x), if x ∈ [v̂j−1

i , v̂j
i ], i = 1, . . . , n, j = 1, . . . , Ni,

qj
i (x) = αj

i (v̂
j
i − xi)(xi − v̂j−1

i ) + βj
i xi + γj

i , i = 1, . . . , n, j = 1, . . . , Ni.

In the definition above, α’s, β’s and γ’s are such that qi(x), i = 1, . . . , n, are continuous and
smooth and Φ[l̂,û](x) is a convex underestimator of Lρk

(x, λk, µk) within the box [l̂, û].

One way to compute the α’s is to compute one α ∈ IRn for each one of the
∏n

i=1 Ni subdo-

mains and set αj
i , i = 1, . . . , n, j = 1, . . . , Ni, as the maximum over all the [α]i’s of the subdo-

mains included in the “slice” [(l̂1, . . . , l̂i−1, v̂
j−1
i , l̂i+1, . . . , l̂n), (û1, . . . , ûi−1, v̂

j
i , ûi+1, . . . , ûn)]. In

this way,
∏n

i=1 Ni α’s must be computed.

After having computed the α’s, and considering that each interval [l̂i, ûi] is partitioned in Ni

identical subintervals of size si = (ûi − l̂i)/Ni, β’s and γ’s can be computed as follows: for each
i = 1, . . . , n,

β1
i = − si

Ni

∑Ni

j=2(Ni − j + 1)(αj−1
i + αj

i ),

γ1
i = −β1

i l̂i,

βj
i = βj−1

i − si(α
j−1
i + αj

i ), j = 2, . . . , Ni,

γj
i = γj−1

i + (l̂i + (j − 1)si)si(α
j−1
i + αj

i ), j = 2, . . . , Ni.

Note that all the β’s and γ’s can be computed in O(
∑n

i=1 Ni) operations using the formulae
above, while the direct application of formulae present in [34] would imply in O(

∑n
i=1 N2

i )
operations.

5 Numerical experiments

The method requires from the user subroutines to compute the objective function, the constraints
and their first and second derivatives. In addition, it also requires subroutines to compute the
interval objective function and the interval Hessian of the objective function, as well as the
interval constraints and the interval Jacobian and interval Hessians of the constraints. (For
interval analysis calculations we use the Intlib library [27].) Finally, the user must also provide
two extra subroutines: (i) a first subroutine to indicate which variables appear nonlinearly in the
objective function or appear in a nonlinear constraint; and (ii) a second subroutine that computes
the linear relaxations of the nonlinear constraints. This second subroutine is not mandatory and
even an empty subroutine is a valid option. Note that the implemented method does not perform
any kind of algebraic manipulation on the problems, which are solved as stated by the user. On
the other hand, the implemented algorithm provides several subroutines to empirically verify
the correctness of the derivatives, the interval calculations and the relaxations of the constraints.
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For the practical implementation of Algorithms 2.1 and 4.1, we set τ = 0.5, γ = 10, λmin =
−1020, µmax = λmax = 1020, λ1 = 0, µ1 = 0 and

ρ1 = max

{

10−6, min

{

10,
2|f(x0)|

‖h(x0)‖2 + ‖g(x0)+‖2
}}

,

where x0 is an arbitrary initial point. As stopping criterion we used max(‖h(xk)‖∞, ‖V k‖∞) ≤
10−4. The choice of the optimality gaps εk for the εk-global solution of the subproblems and ε
for the ε-global solution of the original problem will be detailed below.

Codes are written in Fortran 77 (double precision) and they are free for download in http:
//www.ime.usp.br/∼egbirgin/. All the experiments were run on a 3.2 GHz Intel(R) Pentium(R)
with 4 processors, 1Gb of RAM and Linux Operating System. Compiler option “-O” was
adopted.

5.1 Choice of the optimality gaps

Several tests were done in order to analyze the behavior of the method in relation to the choice
of the optimality gaps εk and ε for the solution of the k-th Augmented Lagrangian subproblem
and the original problem, respectively. For this purpose, we selected a set of 16 small problems
from the literature (see Appendix). All the problems were taken from [16] and their common
characteristic is that the task of coding all the required subroutines mentioned at the beginning
of the present section was not very hard.

As the selected problems were small, we choose two dense solvers for linear programming
and linearly constrainted nonlinear programming problems. For solving linear programming
problems we use subroutine simplx from the Numerical Recipes in Fortran [40]. To solve the
linearly constrained optimization problems, we use Genlin [8], an active-set method for linearly
constrained optimization based on a relaxed form of Spectral Projected Gradient iterations
intercalated with internal iterations restricted to faces of the polytope. Genlin modifies and
generalizes recently introduced box-constraint optimization algorithms [13].

In this first experiment, we solved the problems using the convex α-underestimator and
using a variable εk = max{ε, 10−k} and a fixed εk = ε. In both cases we considered ε ∈
{10−1, 10−2, 10−3, 10−4}. Table 1 shows the results. In Table 1, n is the number of variables
and m is the number of constraints. The number within parentheses is the number of linear
constraints. “It” is the number of iterations of Algorithm 2.1 (outer iterations) which is equal to
the number of subproblems (8) that are solved to εk-global optimality using the αBB approach,
and “#Nodes” is the total number of iterations of Algorithm 4.1 (inner iterations).

The method with the eight combinations of εk and ε found the same global minimum in all
the problems. In all the cases, the total CPU time, proportional to #Nodes, was very small.
As expected, tighter gaps require more computations. However, the effort increase is not the
same in all the problems, as it strongly depends on the tightness of the convex α-underestimator
in relation to the Augmented Lagrangian function and the difficulty in closing that gap for
each particular problem. On the other hand, the number of outer iterations of the Augmented
Lagrangian method does not necessarily increase when the required gap is tightened. The reason
why in the second part of Table 1 the number of outer iterations is the same, independently of the
value of ε is the following: The number of iterations is, in this cases, determined exclusively by
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the necessity of getting feasibility on the penalized constraints (always with the same tolerance).
The reason why in the first part of Table 1 the number of outer iterations sometimes increases
when we reduce ε is related, not to the variation of ε but to the fact of using a variable εk gap
for the subproblems, and can be better understood when we compare the ε = 0.1 column with
the ε = 10−4 column. In the first we require optimality gap εk = 0.1 in all the subproblems. On
the other hand in the ε = 10−4 column we require gaps εk = 10−1, 10−2, 10−3, 10−4 in the first
four subproblems, Since the gap required for declaring final convergence is ε = 10−4 in this case,
it turns out that, except in very lucky situations, at least four outer iterations will be needed
for completing the process. Of course, in the ε = 0.1 column convergence with only one outer
iteration is possible, since ε = ε1 = 0.1 are the gap tolerances for the original problem as well
as for the first subproblem.

Figure 1 illustrates the numerical results on Table 1 using performance profiles [15]. As in
[37], the number of nodes was used as a performance measurement. Figures 1(a–b) correspond to
variable and fixed gaps for the Augmented Lagrangian subproblems, respectively. Both graphics
compare the performance of the methods for tightening values of the required optimality gap.
As expected, looser gaps allow the method to prune nodes faster and to solve a smaller total
number of nodes. Figures 1(c–e) correspond to ε = 10−2, 10−3, 10−4, respectively. Each graphic
compares the version that uses εk = ε ∀ k with the version that uses a dynamic choice of εk.
(For ε = 10−1 both versions coincide.) As already mentioned, looser gaps reduce the effort to
solve the subproblems while it may increase the number of subproblems that need to be solved
to achieve the required gap for the original problem. The performance profiles show that there
is no clear advantage on using one or the other strategy.

5.2 Convex α-underestimator versus piecewise convex α-underestimator

In a second set of experiments, we set εk = max{ε, 10−k} and ε = 10−4 (which provides the
tightest global optimality certification) and compare the performance of the method using the
convex α-underestimator and the piecewise convex α-underestimator with Ni ≡ N ≡ 2 ∀i.
Table 2 shows the results. In Table 2, f(x∗) is the global minimum. As expected, both versions of
the method found the global minimum reported in the literature up to the prescribed tolerances.
The version that uses the convex α-underestimator required less CPU time while the version
that used the piecewise convex α-underestimator used a smaller number of inner iterations.

A remarkable situation happens for problem 2(a): the fact of the piecewise convex α-
underestimator being tighter than the convex α-underestimator provides a neglegible reduction
in the number of nodes from 104 to 102. On the other hand, for this particular problem, the
piecewise convex α-underestimator requires much more time to be computed than the convex
α-underestimator (see the discussion at the end of Section 4), making its usage counterproduc-
tive for the overall performance of the method. A similar behavior can be observed for other
problems in Table 2. However, the piecewise convex α-underestimator results in a reduction of
nodes in problems 3(a), 3(b) and 5, among others. Moreover, its usage may be profitable in
critical situations in which memory (for saving the list of open nodes) may be a limited resource.
The number of outer iterations employed by the methods remains the same, independently of the
convex underestimator used in the αBB for solving the subproblems. This is not surprising, since
the number of outer iterations depends only on the quality of the solution of the subproblems
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Variable εk = max{ε, 10−k}

Problem n m
ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

It #Nodes It #Nodes It #Nodes It #Nodes
1 5 3 9 59861 9 82167 9 103919 9 124897

2(a) 11 8(6) 8 78 8 88 8 100 8 104
2(b) 11 8(6) 13 563 13 613 13 651 13 671
2(c) 11 8(6) 8 60 8 72 8 84 8 88
2(d) 12 9(7) 2 20 2 28 3 63 4 110
3(a) 6 5 6 1476 6 5078 6 12688 6 20366
3(b) 2 1 2 1294 2 3046 3 8719 4 18016

4 2 1 2 22 2 24 3 41 4 60
5 3 3 7 765 7 797 7 817 7 817
6 2 1 5 343 5 427 5 467 5 493
7 2 4(2) 3 149 3 247 3 283 4 446
8 2 2(1) 6 2340 6 3032 6 3496 6 3918
9 6 6(6) 1 3 1 3 1 3 1 5
10 2 2 3 95 3 123 3 139 4 206
11 2 1 2 22 2 38 3 105 4 194
12 2 1 8 240 8 314 8 334 8 370
13 3 2(1) 8 866 8 2048 8 3750 8 4178
14 4 3(3) 1 1 1 1 1 1 1 1
15 3 3(1) 1 99 2 266 3 565 4 1080
16 5 3(1) 6 116 6 362 6 698 6 902

Fixed εk = ε

Problem n m
ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

It #Nodes It #Nodes It #Nodes It #Nodes
1 5 3 9 59861 9 82167 9 103919 9 124897

2(a) 11 8(6) 8 78 8 88 8 100 8 104
2(b) 11 8(6) 13 563 13 613 13 651 13 671
2(c) 11 8(6) 8 60 8 72 8 84 8 88
2(d) 12 9(7) 2 20 2 28 2 38 2 50
3(a) 6 5 6 1476 6 5078 6 12694 6 20598
3(b) 2 1 2 1294 2 4382 2 9580 2 14012

4 2 1 2 22 2 26 2 34 2 38
5 3 3 7 765 7 797 7 819 7 825
6 2 1 5 343 5 443 5 515 5 557
7 2 4(2) 3 149 3 293 3 403 3 493
8 2 2(1) 6 2340 6 3100 6 3692 6 4304
9 6 6(6) 1 5 1 5 1 5 1 5
10 2 2 3 95 3 137 3 181 3 201
11 2 1 2 22 2 38 2 78 2 102
12 2 1 8 240 8 322 8 342 8 386
13 3 2(1) 8 866 8 3250 8 10608 8 15992
14 4 3(3) 1 1 1 1 1 1 1 1
15 3 3(1) 1 99 1 167 1 299 1 515
16 5 3(1) 6 116 6 362 6 698 6 934

Table 1: Performance of the global Augmented Lagrangian algorithm using different gaps for
the global optimality of the subproblems and the original problem. In all the cases the method
found the same global minimum.

15



0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

eps=0.1
eps=0.01

eps=0.001
eps=0.0001

(a)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

eps=0.1
eps=0.01

eps=0.001
eps=0.0001

(b)

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5 5

Fixed gap
Variable gap

(c)

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5 5

Fixed gap
Variable gap

(d)

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5 5

Fixed gap
Variable gap

(e)

Figure 1: Performance profile comparing the different choices for the gap tolerances of the
Augmented Lagrangian subproblems and the original problem.
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Problem n m
αBB Piecewise αBB (N=2)

f(x∗)
Time It #Nodes Time It #Nodes

1 5 3 18.86 9 124897 42.57 9 117679 2.9313E−02
2(a) 11 8(6) 0.13 8 104 1.30 8 102 −4.0000E+02
2(b) 11 8(6) 0.76 13 671 2.23 13 671 −6.0000E+02
2(c) 11 8(6) 0.16 8 88 1.09 8 88 −7.5000E+02
2(d) 12 9(7) 0.23 4 110 3.44 4 110 −4.0000E+02
3(a) 6 5 12.07 6 20366 72.83 6 15264 −3.8880E−01
3(b) 2 1 2.90 4 18016 5.62 4 13954 −3.8881E−01

4 2 1 0.00 4 60 0.00 4 58 −6.6666E+00
5 3 3 0.04 7 817 0.04 7 561 2.0116E+02
6 2 1 0.01 5 493 0.02 5 443 3.7629E+02
7 2 4(2) 0.02 4 446 0.02 4 372 −2.8284E+00
8 2 2(1) 0.15 6 3918 0.17 6 3522 −1.1870E+02
9 6 6(6) 0.00 1 5 0.01 1 5 −1.3402E+01
10 2 2 0.01 4 206 0.01 4 170 7.4178E−01
11 2 1 0.01 4 194 0.01 4 160 −5.0000E−01
12 2 1 0.01 8 370 0.01 8 350 −1.6739E+01
13 3 2(1) 0.47 8 4178 1.47 8 3820 1.8935E+02
14 4 3(3) 0.00 1 1 0.00 1 1 −4.5142E+00
15 3 3(1) 0.06 4 1080 0.18 4 1558 0.0000E+00
16 5 3(1) 0.15 6 902 0.22 6 758 7.0492E−01

Table 2: Performance of the global Augmented Lagrangian algorithm. As expected, the global
solutions were found (up to the prescribed tolerance) in all the problems. While using the
piecewise convex α-underestimator reduces the number of nodes, it increases the CPU time
when compared with using the convex α-underestimator.

obtained, and not on the procedures used to obtain it. The same results (in terms of number of
outer iterations) would be expected if a completely different robust global optimization method
were used for solving the subproblems.

5.3 Influence of linear relaxations of the penalized constraints

In a third set of experiments we selected three problems (prodpl0, prodpl1 and optmass) from
the Coconut Benchmark [46] with m + n ≥ 100. For these medium-size problems we use
Minos [35], that uses sparse linear algebra, for solving the linear programming as well as the
linearly constrained nonlinear programming subproblems.

We solve these problems using the convex α-underestimator and εk = ε = 10−1. In a first run,
we set W[l̄,ū] = ∅, which is equivalent to skip Step 4 of Algorithm 4.1, where the subdomains
are shrinked using valid linear inequalities related to the penalized constraints. In a second
run we made full use of the shrinking feature as described at the Remark 3 of Algorithm 4.1.
Table 3 shows the results. In Table 3, n is the number of variables and m is the number of
constraints (recall that the number within parentheses is the number of linear constraints), “It”
is the number of iterations of Algorithm 2.1 (outer iterations), “#Nodes” is the total number of
iterations of Algorithm 4.1 (inner iterations), and f(x∗) is the global minimum. Both versions
found the global minimum reported in the literature [46]. The feature being evaluated is related
to the performance of the αBB method for solving the Augmented Lagrangian subproblems.
Then, as expected, the number of outer iterations is the same for the two different runs. On the
other hand, looking at the number of nodes needed to solve the subproblems in both cases, it is
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Problem n m

Without
shrinking subdomains

Shrinking subdomains
with the help of linear relaxations

of penalized constraints
f(x∗)

It #Nodes It #Nodes
prodpl0 68 37(33) 9 673573 9 269 6.0917E+01
prodpl1 68 37(33) 5 2230001 5 681 5.3037E+01
optmass 70 55(44) 2 – 2 5703816 −1.8954E−01

Table 3: Evaluation of the box-shrinking feature of the αBB method by considering linear
relaxations of the nonlinear penalized constraints in the Augmented Lagrangian framework.

easy to see that the shrinking feature greatly speeds up the convergence of the αBB method.
A consideration about CPU time is needed at this point. For the small problems considered

in the previous subsections, the CPU time varies from a fraction of a second to a few seconds,
and is directly related to the number of nodes in the Branch and Bound tree multiplied by the
time needed to solve the 2n LP problems from Step 4 plus the two NLP problems from Steps 5.2
and 6 of Algorithm 4.1. So, the total amount of CPU time is small if the number of nodes is
small or if n (the number of variables) is small. This is the case for all the problems of the
previous subsections and for problems prodpl0 and propl1, for which the method used 7.35 and
21.43 seconds of CPU time, respectively. However, to solve the almost 840 millions of LP and
the 12 millions of NLP subproblems of problem optmass, the method used around four days
of CPU time. Several improvements may be suggested to alleviate this work. Probably, using
a warm start procedure considering the solution of one PL to initialize another one at Step 4
of Algorithm 4.1 would help. Definitely, the precision required for the optimality of each NLP
subproblem has a huge impact in the computational effort needed to satisfy the stopping criteria.
Therefore, further improvement is necessary in order to address large problems in reasonable
time. Moreover, there must be a balance between computational effort and the allowed tolerance
for truly finding the global optimum.

5.4 Discusion

It is well known that the performance of a global optimization method for solving a problem
strongly depends on the particular way the problem is modeled. So, it is worth mentioning that
all the test problems, apart from Problems 2(a–d), were solved using the models shown in the
Appendix without any kind of algebraic manipulation or reformulation. One of the key problem
features that affects the behavior of the present approach is the number of variables that appear
nonlinearly in the objective function or in a nonlinear constraint. Those are the variables that
need to be branched in the αBB method. In the formulation of Problems 2(a–c) presented in
the Appendix, all the nine variables need to be branched. As a result, the direct application
of Algorithm 2.1 to those problems takes several seconds of CPU time. On the other hand, the
addition of new variables w78 = x7x8 and w79 = x7x9 reduces the number of variables that need
to be branched from nine to five and the CPU time used by the method to a fraction of a second.
Almost identical reasoning applies to Problem 2(d).

Finally, note that, as Problems 11 and 16 have just lower-level constraints, the Augmented
Lagrangian framework is not activated at all and its resolution is automatically made through
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the direct application of the αBB method.
These numerical results are the first step towards corroboration of the practical reliability

of our method. The Augmented Lagrangian ideas are different from the ones that support
current available global nonlinear programming solvers [36], in particular, the ones involved in
the broad numerical study [37]. However, most of the interest of the Augmented Lagrangian
approach relies on the fact that one is not restricted to the use of a particular linear-constraint
solver. The Augmented Lagrangian method may use linear-constraint solvers quite different from
αBB, if this is required by particular characteristics of the problem. Moreover, if the constraints
of a particular problem can be divided into two sets, Easy and Difficult, and problems with Easy
constraints (not necessarily linear) may be efficiently solved by some other solver, an appealing
idea is to define the Augmented Lagrangian only with respect to the Difficult constraints and
employ the other solver for the subproblems. This is the approach of [6] for constrained local
optimization. External Penalty methods share this characteristic of the Augmented Lagrangian
algorithm, but they tend to produce very difficult subproblems for big penalty parameters. In
the Augmented Lagrangian method, the penalty parameter tends to remain bounded [6].

6 Final remarks

As already mentioned in [6], one of the advantages of the Augmented Lagrangian approach for
solving nonlinear programming problems is its intrinsic adaptability to the global optimization
problem. Namely, if one knows how to solve globally simple subproblems, the Augmented La-
grangian methodology allows one to globally solve the original constrained optimization problem.
In this paper, we proved rigorously this fact, with an additional improvement of the Augmented
Lagrangian method: the subproblems are redefined at each iteration using an auxiliary constraint
set Pk that incorporates information obtained on the flight about the solution. Using the αBB

algorithm for linearly constrained minimization subproblems, we showed that this approach is
reliable. As a result, we have a practical Augmented Lagrangian method for constrained op-
timization that provably obtains ε-global minimizers. Moreover, the Augmented Lagrangian
approach has a modular structure thanks to which one may easily replace subproblem global
optimization solvers. This means that our method will be automatically improved as long as
new global optimization solvers will be developed for the simple subproblems.

The challenge is improving efficiency. There are lots of unconstrained and constrained global
optimization problems in Engineering, Physics, Chemistry, Economy, Computational Geometry
and other areas that are not solvable with the present computer facilities. Our experiments seem
to indicate that there is little to improve in the Augmented Lagrangian methodology, since the
number of outer iterations is always moderate. The field for improvement is all concentrated
in the global optimization of the subproblems. So, much research is expected in the following
years in order to be able to efficiently solve more challenging practical problems.

The αBB global optimization algorithm is fully parallelizable in at least two levels: (i)
subproblems with different subdomains can be solved in parallel; and (ii) the piecewise convex
α-underestimator can be computed in parallel, reducing the number of nodes in the Branch &
Bound algorithm without increasing the CPU time. Also the development of tighter underesti-
mators for general nonconvex terms would be the subject of further research.
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[15] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance pro-
files, Mathematical Programming 91, pp. 201–213, 2002.

[16] C. A. Floudas, Deterministic global optimization: theory, methods and application, Kluwer
Academic Publishers, DorDrecht, Boston, London, 1999.

[17] C. A. Floudas, I. G. Akrotirianakis, S. Caratzoulas, C. A. Meyer and J. Kallrath, Global
optimization in the 21st century: Advances and challenges, Computers and Chemical En-
gineering 29, pp. 1185–1202, 2005.

[18] C. A. Floudas and V. Visweeswaran, A global optimization algorithm (GOP) for certain
classes of nonconvex NLPs – I. Theory, Computers & Chemical Engineering 14, pp. 1397–
1417, 1990.

[19] D.Y. Gao, Duality Principles in Nonconvex Systems: Theory, Methods, and Applications,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.

[20] D. Y. Gao, Canonical dual transformation method and generalized triality theory in non-
smooth global optimization, Journal of Global Optimization 17, pp. 127–160, 2000.

[21] D. Y. Gao, Perfect duality theory and complete solutions to a class of global optimization
problems, generalized triality theory in nonsmooth global optimization, Optimization 52,
pp. 467–493, 2003.

[22] D. Y. Gao, Canonical duality theory and solutions to constrained nonconvex quadratic
programming, Journal of Global Optimization 29, pp. 337–399, 2004.

[23] D. Y. Gao, Complete solutions and extremality criteria to polynomial optimization prob-
lems, Journal of Global Optimization 35, pp. 131–143, 2006.

[24] D. Y. Gao, Solutions and optimality to box constrained nonconvex minimization problems,
Journal of Industry and Management Optimization 3, pp. 1–12, 2007.

[25] M. R. Hestenes, Multiplier and gradient methods, Journal of Optimization Theory and
Applications 4, pp. 303–320, 1969.

[26] R. Horst, P. M. Pardalos and M. V. Thoai, Introduction to Global Optimization, Kluwer
Book Series: Nonconvex Optimization and its Applications, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2000.

21



[27] R.B. Kearfott, M. Dawande, K. Du and C. Hu, Algorithm 737: INTLIB: A portable For-
tran 77 interval standard-function library, ACM Transactions on Mathematical Software
20, pp. 447–459, 1994.

[28] L. Liberti, Reduction constraints for the global optimization of NLPs, International Trans-
actions in Operational Research 11, pp. 33–41, 2004.

[29] L. Liberti and C. C. Pantelides, An exact reformulation algorithm for large nonconvex
NLPs involving bilinear terms, Journal of Global Optimization 36, pp. 161–189, 2006.

[30] J. Liebman, L. Lasdon, L. Schrage and A. Waren, Modeling and Optimization with GINO,
The Scientific Press, Palo Alto, CA, 1986.

[31] H. Z. Luo, X. L. Sun and D. Li, On the Convergence of Augmented Lagrangian Methods
for Constrained Global Optimization, SIAM Journal on Optimization 18, pp. 1209–1230,
2007.

[32] M. Manousiouthakis and D. Sourlas, A global optimization approach to rationally con-
strained rational programming, Chemical Engineering Communications 115, pp. 127–147,
1992.

[33] C. D. Maranas and C. A. Floudas, Global minimum potencial energy conformations for
small molecules, Journal of Global Optimization 4, pp. 135–170, 1994.

[34] C. A. Meyer and C. A. Floudas, Convex underestimation of twice continuously differen-
tiable functions by piecewise quadratic perturbation: spline αBB underestimators, Journal
of Global Optimization 32, pp. 221–258, 2005.

[35] B. A. Murtagh and M. A. Saunders, MINOS 5.4 User’s Guide. System Optimization
Laboratory, Department of Operations Research, Standford University, CA.

[36] A. Neumaier, Complete search in continuous global optimization and constraints satisfac-
tion, Acta Numerica 13, pp. 271–369, 2004.

[37] A. Neumaier, O. Shcherbina, W. Huyer and T. Vinkó, A comparison of complete global
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7 Appendix

In this Appendix we describe the global optimization test problems considered in the numerical
experiments.

Problem 1. [35]

Minimize (x1 − 1)2 + (x1 − x2)
2 + (x2 − x3)

3 + (x3 − x4)
4 + (x4 − x5)

4

subject to x1 + x2
2 + x3

3 = 3
√

2 + 2

x2 − x2
3 + x4 = 2

√
2− 2

x1x5 = 2
−5 ≤ xi ≤ 5, i = 1, . . . , 5

Problem 2. Haverly’s pooling problem [3].

Minimize −9x1 − 15x2 + 6x3 + c1x4 + 10(x5 + x6)
subject to x7x8 + 2x5 − 2.5x1 ≤ 0

x7x9 + 2x6 − 1.5x2 ≤ 0
3x3 + x4 − x7(x8 + x9) = 0
x8 + x9 − x3 − x4 = 0
x1 − x8 − x5 = 0
x2 − x9 − x6 = 0
(0, . . . , 0) ≤ x ≤ (c2, 200, 500, . . . , 500)

(a) c1 = 16 and c2 = 100; (b) c1 = 16 and c2 = 600; (c) c1 = 13 and c2 = 100.
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Problem 2(d). A very similar version of the problem above but with an additional variable
and different bounds [42].

Minimize −9x5 − 15x9 + 6x1 + 16x2 + 10x6

subject to x10x3 + 2x7 − 2.5x5 ≤ 0
x10x4 + 2x8 − 1.5x9 ≤ 0
3x1 + x2 − x10(x3 + x4) = 0
x1 + x2 − x3 − x4 = 0
x3 + x7 − x5 = 0
x4 + x8 − x9 = 0
x7 + x8 − x6 = 0
(0, . . . , 0, 1) ≤ x ≤ (300, 300, 100, 200, 100, 300, 100, 200, 200, 3)

Problem 3. Reactor network design [32].

Minimize −x4

subject to x1 + k1x1x5 = 1
x2 − x1 + k2x2x6 = 0
x3 + x1 + k3x3x5 = 1
x4 − x3 + x2 − x1 + k4x4x6 = 0√

x5 +
√

x6 ≤ 4
(0, 0, 0, 0, 10−5, 10−5) ≤ x ≤ (1, 1, 1, 1, 16, 16)

k1 = 9.755988 10−2; k2 = 0.99 k1; k3 = 3.919080 10−2; k4 = 0.90 k3.

Problem 3(b). A reformulation of Problem 3 eliminating some variables [16].

Minimize −
(

k1x1

(1+k1x1)(1+k3x1)(1+k4x2) + k2x2

(1+k1x1)(1+k2x2)(1+k4x2)

)

subject to
√

x1 +
√

x2 ≤ 4
(10−5, 10−5) ≤ x ≤ (16, 16)

k1 = 9.755988 10−2; k2 = 0.99 k1; k3 = 3.919080 10−2; k4 = 0.90 k3.

Problem 4. [45]
Minimize −x1 − x2

subject to x1x2 ≤ 4
(0, 0) ≤ x ≤ (6, 4)

Problem 5. Water pumping system [42].

Minimize x3

subject to 30x1 − 6x2
1 − x3 = −250

20x2 − 12x2
2 − x3 = −300

0.5(x1 + x2)
2 − x3 = −150

(0, 0, 0) ≤ x ≤ (9.422, 5.903, 267.42)
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Problem 6. Design of a reinforced concrete beam [30].

Minimize 29.4x1 + 18x2

subject to −x1 + 0.2458x2
1/x2 ≤ −6

(0, 10−5) ≤ x ≤ (115.8, 30)

Problem 7. [58]
Minimize x1 + x2

subject to x2
1 + x2

2 ≤ 4
x2

1 − x2
2 ≤ −1

x1 − x2 ≤ 1
−x1 + x2 ≤ 1
(−2,−2) ≤ x ≤ (2, 2)

Problem 8. [32]
Minimize x4

1 − 14x2
1 + 24x1 − x2

2

subject to x2 − x2
1 − 2x1 ≤ −2

−x1 + x2 ≤ 8
(−8, 0) ≤ x ≤ (10, 10)

Problem 9. Design of three-stage process system with recycle [54].

Minimize x0.6
1 + x0.6

2 + x0.4
3 − 4x3 + 2x4 + 5x5 − x6

subject to −3x1 + x2 − 3x4 = 0
−2x2 + x3 − 2x5 = 0
4x4 − x6 = 0
x1 + 2x4 ≤ 4
x2 + x5 ≤ 4
x3 + x6 ≤ 6
(10−5, 10−5, 10−5, 0, 0, 0) ≤ x ≤ (3, 4, 4, 2, 2, 6)

Problem 10. [55]
Minimize 2x1 + x2

subject to −16x1x2 ≤ −1
−4x2

1 − 4x2
2 ≤ −1

(0, 0) ≤ x ≤ (1, 1)

Problem 11. [55]
Minimize −2x1x2

subject to 4x1x2 + 2x1 + 2x2 ≤ 3
(0, 0) ≤ x ≤ (1, 1)

Problem 12. [54]
Minimize −12x1 − 7x2 + x2

2

subject to −2x4
1 − x2 = −2

(0, 0) ≤ x ≤ (2, 3)
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Problem 13. [59]
Minimize 35x0.6

1 + 35x0.6
2

subject to 600x1 − 50x3 − x1x3 = −5000
600x2 + 50x3 = 15000
(10−5, 10−5, 100) ≤ x ≤ (34, 17, 300)

Problem 14. Design of two-stage process system [54].

Minimize x0.6
1 + x0.6

2 − 6x1 − 4x3 + 3x4

subject to −3x1 + x2 − 3x3 = 0
x1 + 2x3 ≤ 4
x2 + 2x4 ≤ 4
(10−5, 10−5, 0, 0) ≤ x ≤ (3, 4, 2, 1)

Problem 15. Chemical equilibrium problem [42].

Minimize 0
subject to x2

3/(x1x
3
2) = 0.000169

x2/x1 = 3
x1 + x2 + x3 = 50
(10−5, 10−5, 0) ≤ x ≤ (12.5, 37.5, 50)

Problem 16. Heat exchanger network design [30].

Minimize x1 + x2 + x3

subject to (x4 − 1)− 12x1(3− x4) = 0
(x5 − x4)− 8x2(4− x5) = 0
(5− x5)− 4x3 = 0
(0, 0, 0, 1, 1) ≤ x ≤ (1.5834, 3.6250, 1, 3, 4)
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