
A New Method for Solving Hard Satis�ability Problems

Bart Selman
AT�T Bell Laboratories

Murray Hill� NJ �����

selman�research�att�com

Hector Levesque�

Dept� of Computer Science

University of Toronto

Toronto� Canada M�S 	A�

hector�ai�toronto�edu

David Mitchell
Dept� of Computing Science

Simon Fraser University

Burnaby� Canada V�A 	S


mitchell�cs�sfu�ca

Abstract

We introduce a greedy local search procedure called
GSAT for solving propositional satis�ability problems�
Our experiments show that this procedure can be used
to solve hard� randomly generated problems that are
an order of magnitude larger than those that can be
handled by more traditional approaches such as the
Davis�Putnam procedure or resolution� We also show
that GSAT can solve structured satis�ability problems
quickly� In particular� we solve encodings of graph
coloring problems� N�queens� and Boolean induction�
General application strategies and limitations of the ap�
proach are also discussed�
GSAT is best viewed as a model��nding procedure�

Its good performance suggests that it may be advan�
tageous to reformulate reasoning tasks that have tra�
ditionally been viewed as theorem�proving problems as
model��nding tasks�

Introduction

The property of NP�hardness is traditionally taken to
be the barrier separating tasks that can be solved com�
putationally with realistic resources from those that
cannot� In practice� to solve tasks that are NP�hard�
it appears that something has to be given up� restrict
the range of inputs� allow for erroneous outputs� use
defaults outputs when resources are exhausted� limit
the size of inputs� settle for approximate outputs� and
so on� In some cases� this can be done in a way that
preserves the essence of the original task� For exam�
ple� perhaps erroneous outputs occur extremely rarely�
perhaps the class of allowable inputs excludes only very
large� unlikely� or contrived cases� perhaps the approxi�
mate answers can be guaranteed to be close to the exact
ones� and so on� In this paper� we propose an algorithm
for an NP�hard problem that we believe has some very
de�nite advantages� In particular� it works very quickly
�relative to its competition� at the expense of what ap�
pears to be statistically minimal errors�

�Fellow of the Canadian Institute for Advanced Research�
and E� W� R� Steacie Fellow of the Natural Sciences and
Engineering Research Council of Canada�

The �rst computational task shown to be NP�hard
by Cook ��	
�� was propositional satis�ability� or SAT�
given a formula of the propositional calculus� decide
if there is an assignment to its variables that satis�es
the formula according to the usual rules of interpreta�
tion� Unlike many other NP�hard tasks �see Garey and
Johnson ��	
	� for a catalogue�� SAT is of special con�
cern to AI because of its direct connection to reasoning�
Deductive reasoning is simply the complement of sat�
is�ability� Given a collection of base facts �� then a
sentence � should be deduced i� ��f��g is not satis��
able� Many other forms of reasoning �including default
reasoning� diagnosis� planning� and image interpreta�
tion� also make direct appeal to satis�ability� The fact
that these usually require much more than the propo�
sitional calculus simply highlights the fact that SAT is
both a fundamental task and a major stumbling block
to e�ective reasoners�

In� Proceedings of the Tenth National Conference on Ar�
ti�cial Intelligence �AAAI����� San Jose� CA� July �����
��	
����

Though SAT is originally formulated as decision
problem� there are two closely related search problems�

�� model��nding� �nd an interpretation of the variables
under which the formula comes out true� or report
that none exists� If such an interpretation exists� then
the formula is obviously satis�able�


� theorem�proving� �nd a formal proof �in a sound and
complete proof system� of the negation of the formula
in question� or report that there is no proof� If a proof
exists� then the negated formula is valid� and so the
original formula is not satis�able�

Whereas much of the reasoning work in AI has favored
theorem�proving procedures �and among these� resolu�
tion is the favored method�� in this paper� we investi�
gate the behaviour of a new model��nding procedure
called GSAT� We will also explain why we think that
�nding models may be a useful alternative for many AI
reasoning problems�
The original impetus for this work was the recent suc�

cess in �nding solutions to very large N�queens prob�
lems� �rst using a connectionist system �Adorf and
Johnston �		��� and then using greedy local search
�Minton et al� �		��� To us� these results simply indi�
cated that N�queens was an easy problem� We felt that
such techniques would fail in practice for SAT� But this



appears not to be the case� The issue is clouded by the
fact that some care is required to randomly generate
SAT problems that are hard for even ordinary back�
tracking methods�� But once we discovered how to do
this �and see Mitchell et al� ��		
� for details�� we found
that GSAT�s local search was very good at �nding mod�
els for the hardest formulas we could generate�
Because model��nding is NP�hard� we cannot expect

GSAT to solve it completely and exactly within toler�
able resource bounds� What we will claim� however�
is that the compromises it makes are quite reasonable�
In particular� we will compare GSAT to another proce�
dure DP �which is� essentially� a version of resolution
adapted to model��nding� and demonstrate that GSAT
has clear advantages� But there is no free lunch� we
can construct satis�able formulas for which GSAT may
take an exponential amount of time� unless told to stop
earlier� However� these satis�able counter�examples do
appear to be extremely rare� and do not occur naturally
in the applications we have examined�
In the next section� we give a detailed description of

the GSAT procedure� We then present test results of
GSAT on several classes of formulas� This is followed
by a discussion of the limitations of GSAT and some po�
tential applications� In the �nal section� we summarize
our main results�

The GSAT procedure

GSAT performs a greedy local search for a satisfying
assignment of a set of propositional clauses�� The pro�
cedure starts with a randomly generated truth assign�
ment� It then changes ���ips�� the assignment of the
variable that leads to the largest increase in the to�
tal number of satis�ed clauses� Such �ips are repeated
until either a satisfying assignment is found or a pre�
set maximumnumber of �ips �MAX�FLIPS� is reached�
This process is repeated as needed up to a maximum of
MAX�TRIES times� See Figure ��
GSAT mimics the standard local search procedures

used for �nding approximate solutions to optimization
problems �Papadimitriou and Steiglitz �	�
� in that
it only explores potential solutions that are �close� to
the one currently being considered� Speci�cally� we ex�
plore the set of assignments that di�er from the current
one on only one variable� One distinguishing feature of
GSAT� however� is the presence of sideways moves� dis�

�After the current paper was prepared for publication�
we were surprised to discover that a procedure very similar
to ours had been developed independently� and was claimed
to solve instances of SAT substantially larger than those dis�
cussed here 
Gu 	����� It is tempting� however� to discount
that work since the large instances involved are in fact easy
ones� readily solvable by backtracking procedures like DP in
a few seconds�

�A clause is a disjunction of literals� A literal is a propo�
sitional variable or its negation� A set of clauses corresponds
to a formula in conjunctive normal form 
CNF�� a conjunc�
tion of disjunctions� Thus� GSAT handles CNF SAT�

procedure GSAT

Input� a set of clauses �� MAX�FLIPS� and MAX�TRIES
Output� a satisfying truth assignment of �� if found
begin

for i �� 	 to MAX�TRIES
T �� a randomly generated truth assignment
for j �� 	 to MAX�FLIPS

if T satis�es � then return T
p �� a propositional variable such that a change

in its truth assignment gives the largest
increase in the total number of clauses
of � that are satis�ed by T

T �� T with the truth assignment of p reversed
end for

end for
return �no satisfying assignment found�

end

Figure �� The procedure GSAT�

cussed below� Another feature of GSAT is that the
variable whose assignment is to be changed is chosen
at random from those that would give an equally good
improvement� Such non�determinism makes it very un�
likely that the algorithm makes the same sequence of
changes over and over�
The GSAT procedure requires the setting of two pa�

rameters MAX�FLIPS and MAX�TRIES� which deter�
mine� respectively� how many �ips the procedure will
attempt before giving up and restarting� and how many
times this search can be restarted before quitting� As
a rough guideline� setting MAX�FLIPS equal to a few
times the number of variables is su�cient� The setting
of MAX�TRIES will generally be determined by the to�
tal amount of time that one wants to spend looking
for an assignment� which in turn depends on the ap�
plication� In our experience so far� there is generally
a good setting of the parameters that can be used for
all instances of an application� Thus� one can �ne�tune
the procedure for an application by experimenting with
various parameter settings�
It should be clear that GSAT could fail to �nd an

assignment even if one exists� i�e� GSAT is incomplete�
We will discuss this below�

Experimental results

We tested GSAT on several classes of formulas� ran�
dom formulas� graph coloring encodings� N�queens en�
codings� and Boolean induction problems� For purposes
of comparison� we ran the tests with the Davis�Putnam
procedure �DP� �Davis and Putnam �	����

The DP procedure

DP is in essence a resolution procedure �Vellino �	�	��
It performs a backtracking search in the space of all
truth assignments� incrementally assigning values to



formulas GSAT DP
vars clauses M�FLIPS tries time choices depth time
�� 
�� 
�� ��� ���s 

 �� ���s

� ��� ��� ���� ��	s �
 �� ��s
��� ��� ��� �
�� �s ��� ��� �	 
��m
�
� ��� ��� ���� ��s ���� ��� 

 ��m
��� ��
 
�� �
�� ��s 
�
� ��� 

 ��
h
��� ��� ���� ����� ��s � � �

�� ��� 
��� 
���� 
��m � � �

�� ���
 
��� 
���� ���m � � �
��� �

� ���� 
���� �
m � � �
��� �
�� ���� ����	 ��m � � �
��� 
��� ����� 		��� ���h � � �

Table �� Results for GSAT and DP on hard random �CNF formulas�

variables and simplifying the formula� If no new vari�
able can be assigned a value without producing an
empty clause� it backtracks� The performance of the
basic DP procedure is greatly improved by using unit
propagation whenever unit clauses arise�� variables oc�
curring in unit clauses are immediately assigned the
truth value that satis�es the clause� and the formula
is simpli�ed� which may lead to new unit clauses� etc�
This propagation process can be executed quite e��
ciently �in time linear in the total number of literals��
DP combined with unit propagation is one of the most
widely used methods for propositional satis�ability test�
ing�

Hard random formulas

Random instances of CNF formulas are often used in
evaluating satis�ability procedures because they can
be easily generated and lack any underlying �hidden�
structure often present in hand�crafted instances� Un�
fortunately� unless some care is taken in sampling for�
mulas� random satis�ability testing can end up look�
ing surprisingly easy� For example� Goldberg ��	
	�
showed experimentally how DP runs in polynomial av�
erage time on a class of random formulas� However�
Franco and Paull ��	��� demonstrated that the in�
stances considered by Goldberg were so satis�able that
an algorithm that simply guessed truth assignments
would �nd a satisfying one just as quickly as DP� This
issue is discussed in detail in �Mitchell et al� �		
��
Formulas are generated using the uniform distribu�

tion or �xed�clause length model� For each class of for�
mulas� we choose the number of variables N � the num�
ber of literals per clause K� and the number of clauses
L� Each instance is obtained by generating L random
clauses each containing K literals� The K literals are
generated by randomly selecting K variables� and each
of the variables is negated with a ��� probability� As
discussed in Mitchell et al� ��		
�� the di�culty of such
formulas critically depends on the ratio between N and

�A unit clause is a clause that contains a single literal�

L� The hardest formulas appear to lie around the region
where there is a ��� chance of the randomly generated
formula being satis�able� For �CNF formulas �K � ���
experiments show that this is the case for L � ���N ��

We should stress that for di�erent ratios of clauses to
variables� formulas can become very easy� For example�
DP solves ������ variable 
����� clause �SAT instances
in a few seconds� whereas it cannot in practice solve 
��
variable ���
 clause instances� In this paper� when we
speak of random formulas we mean those in the hardest
region only�
Unsatis�able formulas are of little interest when test�

ing GSAT� since it will always �correctly� return �no
satisfying assignment found� in time directly proposi�
tional to �MAX�FLIPS � MAX�TRIES�� So we �rst
used DP to select satis�able formulas to use as test
cases� This approach is feasible for formulas contain�
ing up to ��� clauses� For longer formulas� DP simply
takes too much time� and we can no longer pre�select
the satis�able ones� In such cases� GSAT is tested on
both satis�able and unsatis�able instances�
Table � summarizes our results� �rst the number of

variables and clauses in each formula� and then statis�
tics for GSAT and DP� For formulas containing up to
�
� variables� the statistics are based on averages over
��� satis�able instances� for the larger formulas� the av�
erage is based on �� satis�able formulas� For GSAT� we
report the setting of MAX�FLIPS �in the header short�
ened to M�FLIPS�� how many tries GSAT took before
an assignment was found� and the total time used in
�nding an assignment�� The fractional part of the num�
ber of tries indicates how many �ips it took on the �nal
successful one� So� for example� ��� tries in the �rst row
means that an assignment was not found in the �rst �

�For more than 	�� variables per formula� the ratio seems
to converge to ����N � In table 	� we have used this ratio
for the higher values of N� The exact ratio is not known�
the theoretical derivation of the ���� satis�able� point is a
challenging open problem�

�Both GSAT and DP were written in C and ran on a
MIPS machine under UNIX�



tries of 
�� �ips� but on the 
th try� one was found after
����
�� � ��� �ips� For DP� we give the number of bi�
nary choices made during the search� the average depth
of the search tree �ignoring unit propagation�� and the
time it took to �nd an assignment�
First� note that for each satis�able formula found by

DP� GSAT had no trouble �nding an assignment� This
is quite remarkable in itself� since one might expect it
to almost always hit some local minimumwhere at least
a few clauses remain unsatis�ed� But apparently this
is not the case� Moreover� as is clear from table �� the
procedure is substantially faster than DP�
The running time of DP increases dramatically with

the number of variables with a critical increase occur�
ring around ��� variables� This renders it virtually use�
less for formulas with more than ��� variables�� The be�
havior of GSAT� on the other hand� is quite di�erent�
��� variable formulas are quite manageable� and even
��� variable formulas can be solved� As noted above�
the satis�ability status of these large test cases was ini�
tially unknown� Nonetheless� GSAT did still manage
to �nd assignments for a substantial number of them�
�See Selman et al� ��		
� for more details��
Now consider in table � the total number of �ips used

by GSAT to �nd an assignment and the total number
of binary choices in the DP search tree� Again� we
see a dramatic di�erence in the growth rates of these
numbers for the two methods� This shows that the
di�erence in running times is not simply due to some
peculiarity of our implementation�� So� GSAT appears
to be well�suited for �nding satisfying assignments for
hard random formulas� Moreover� the procedure can
handle much larger formulas �up to ��� variables� than
DP �up to around ��� variables�� Again� we should
stress that we have shown these results for the hardest
region of the distribution� Like most other procedures�
GSAT also solves the �easy� cases quickly �Selman et
al� �		
��

Graph coloring

In this section� we brie�y discuss the performance of
GSAT on graph coloring� Consider the problem of col�
oring with K colors a graph with V vertices such that
no two nodes connected by an edge have the same color�
We create a formula with K variables for each node of
the graph� where each variable corresponds to assign�
ing one of the K possible colors to the node� We have
clauses that state that each node must have at least one
color� and that no two adjacent nodes have the same
color�

�A recent implementation of a highly optimized variant
of DP incorporating several special heuristics is able to han�
dle hard random formulas of up to ��� variables 
Crawford
and Auton� personal communication 	��	��

�If the depth continues to grow at its current rate� the
DP search tree for ��� variable formulas could have as many
as ���� nodes� Even when processing 	��� nodes per second�
DP could take 	��� years to do a complete search�

Johnson et al� ��		�� evaluate state�of�the�art graph�
coloring algorithms on instances of random graphs� We
considered one of the hardest instances discussed� a �
�
vertex graph for which results are given in table II of
Johnson et al� ��		��� The encoding that allows for ��
colors consists of �	�
�� clauses with 
�
�� variables�
and an encoding that allows for only �
 colors consists
of ���


 clauses with 
��
� variables� GSAT managed
to �nd the ���coloring in approximately � hours� �DP
ran for many more hours but did not �nd an assign�
ment�� This is quite reasonable given that the running
times for the various specialized algorithms in Johnson
et al� ranged from 
� minutes to ��
 hours� Unfortu�
nately� GSAT did not �nd a �
�coloring �most likely
optimal� Johnson ��		����� This is perhaps not too
surprising given that some of the methods in Johnson
et al� couldn�t �nd one either� while another took 
���
hours� and the fastest took ��� hours� Interestingly�
some of the best graph�coloring methods are based on
simulated annealing� an approach that shares some im�
portant features with GSAT�
So� although it is not as fast as the specialized graph�

coloring procedures� GSAT can be used to �nd near op�
timal colorings of hard random graphs� Moreover� the
problem reformulation in terms of satis�ability does not
result in a dramatic degradation of performance� con�
trary to what one might expect� The main drawback of
such an encoding appears to be the inevitable polyno�
mial increase in problem size�

N�queens

In the N�queens problem one has to �nd a placement of
N queens on a N � N chess board such that no queen
attacks another� Although a generic solution to the
problem is known �Falkowski et al� �	���� it is based on
placing the queens in a very speci�c� regularly repeated
pattern on the board� The problem of �nding arbitrary
solutions has been used extensively to test constraint
satisfaction algorithms�
Using standard backtracking techniques� the problem

appears to be quite hard� But in a recent paper� Minton
et al� ��		�� show how one can generate solutions by
starting with a random placement of the queens �one in
each row� and subsequently moving the queens around
within the rows� searching for a solution� This method
works remarkably well� their method appears to scale
linearly with the number of queens��

To test GSAT on the N�queens problem� we �rst
translate the problem into a satis�ability question� we

�By using initial assignments that are not completely
random� as suggested by Geo� Hinton� we have recently
been able to solve also this instance 
Selman et al� 	�����

	There are� it should be mentioned� notable di�erences
in Minton�s and our approaches� One is the use of sideways
moves� This appears essential in satis�ability testing� dis�
cussed below� Also� GSAT chooses the variable that gives
the best possible improvement� while Minton�s program se�
lects an arbitrary queen and moves it to reduce con�icts�



formulas GSAT
Queens vars clauses �ips tries time

� �� 
�� ��� 
 ���s

� ��� �
��� ��	 
 ��	s
�� 	�� ��
�� ��	 � 
��s
�� 
��� 
����� ��
	 � �
s
��� ����� ������� ��
� � �	�s

Table 
� Results for GSAT on CNF encodings of the
N�queens problem�

use one variable for each of the N� squares of the board�
where intuitively� a variable is true when a queen is
on the corresponding square� To encode the N�queens
problem� we use N disjunctions �each with N variables�
stating that there is at least one queen in each row� and
a large number of binary disjunctions stating that there
are no two queens in any row� column� or diagonal�
Table 
 shows the performance of GSAT on these

formulas��	 For N larger than ��� a solution is always
found on the �rst try��� Also� the number of �ips is
roughly ��� N�� This is near optimal� since a random
truth assignment places about that many queens on
the board� and most of them must be removed� �On
the order of N �ips are needed if one starts with ap�
proximately N queens randomly placed on the board in
the initial state �Selman et al� �		
��� One of the most
interesting aspects of this approach is that so few natu�
ral constraints �such as the obvious one of using only N
queens� are maintained during the search� Nonetheless�
solutions are found quickly�

Boolean induction

Promising results have recently been obtained using
integer programming techniques to solve satis�ability
problems �Hooker �	��� Kamath et al� �		��� Most
of the experimental evaluations of these methods have
been based on the constant�density random clause
model� which unfortunately under�represents hard in�
stances �Mitchell et al� �		
�� To compare GSAT and
these methods� we considered the formulas as studied
by Kamath et al� ��		�� in their work on Boolean induc�
tion� In Boolean induction� the task is to derive ��in�
duce�� a logical circuit from its input�output behavior�
Kamath et al� give a translation of this problem into
a satis�ability problem� They present test results for
their algorithm on these formulas� We considered the
formulas presented in table ��� in Kamath et al� ��		���
Table � shows our results� The performance of GSAT

is comparable to the integer programming method�
which is somewhat surprising given its relative simplic�
ity� Further testing is needed to determine whether

��The size of our propositional encodings prevented us
from considering problems with more than 	�� queens�

��For fewer queens it may sometimes take a second try�
This happens rarely though� about 	 in every 	�� tries�

formula time
id vars clauses Int� progr� GSAT

��A� ���� �	��� 
��	s ����s
��B� �

� 
�
	
 
�s 

��s
��C� ���� ����
 
��s 
s
��D� �
�� ��	�� ���
s ��s
��E� �
�� ��
�� 
���s �s

Table �� Results for GSAT on encodings of Boolean
induction problems as given table ��� of in Kamath et
al� ��		���

there are classes of formulas on which the methods be�
have very di�erently�

Limitations and sideways moves
So far� we have concentrated mainly on the strengths
of GSAT� But it does also have some important lim�
itations� The following conjunction of clauses shows
that it can be �misled� into exploring the wrong part
of the search space �numbers stand for propositional
variables��

�� ��
 � �� � �� � ��� �� �
�� ��� � �
� � �� � � � 
� �
�� ��� � 
� � ��� ��� � 
� �
��� � �
 � �� � � � � �
��� � �	� � 		� � ��� ��		 � ��

Note that although most of clauses here contain a neg�
ative occurrence of variable �� the formula can only be
satis�ed if variable � is assigned positively �see the �rst
� clauses�� The problem is that the greedy approach re�
peatly steers the search towards a negative assignment�
since this does satisfy so many of the clauses� The only
way GSAT will solve this example is if starts a search
very close to a satisfying assignment� which could take
an exponential number of tries�
Finally� we consider sideways moves� In a departure

from standard local search algorithms� GSAT continues
�ipping variables even when this does not increase the
total number of satis�ed clauses��� To show why this is
important� we re�ran some experiments� but only allow�
ing �ips that increase the number of satis�ed clauses�
restarting otherwise�
Table � gives the results� All formulas considered

were satis�able� We tried ��� instances of the random
formulas� The ��solved column shows what percentage
of those instances was solved� Note that quite often no
assignment was found� despite a very large number of
tries� For comparison� we included our previous data
on these formulas� It is clear that �nding an assign�
ment becomes much harder without the use of sideways
moves�

��We have also seen cases where an assignment was found
after a sequence of �ips containing some that decreased the
number of satis�ed clauses� but these are very rare� Here
we ignore such �ips�



type formulas M�TRIES no sideway moves all moves
vars clauses ��solved tries time ��solved tries time

random �� 
�� ���� �	� ��
 ��s ���� � ���s
random ��� ��� ������� �	� �����
 ��m ���� �� 
��m

���queens 	�� ��
�� ������� ���� ������ ��h ���� � 
��s

Table �� Comparing GSAT with and without sideway moves� �MAX�TRIES is shortened to M�TRIES��

Applications

As we noted above� GSAT is a sound but incomplete
model��nding procedure� when it succeeds in �nding
an interpretation� we know that it is correct� but neg�
ative answers� although perhaps suggestive� are not
conclusive� The practical value of GSAT for theorem�
proving purposes� where the concern is precisely for un�
satis�ability� is therefore limited� Fortunately� certain
AI tasks have naturally been characterized as model�
�nding tasks� for example� the visual interpretation task
�Reiter and Mackworth �		��� In addition� it is often
possible to reformulate tasks that have traditionally
been viewed as theorem�proving problems as model�
�nding ones� One example is the formulation of plan�
ning as a model��nding task �Kautz and Selman �		
��
and we suspect that there will be many others�
Another potential application of GSAT lies in the

generation of �vivid� representations �Levesque �	���
as a way of dealing with the computational problems
encountered in knowledge representation and reason�
ing systems� Determining what can be deduced from
a knowledge base is intractable in general� but not if
the knowledge is vivid in form� So� instead of relying
on general theorem�proving in a knowledge�based sys�
tem� one could use a two�step operation� �rst� use a
model��nding procedure like GSAT o��line to generate
one or more vivid representations �or models� of what is
known� then� as questions arise� answer them e�ciently
by appealing to these vivid representations� E�cient
model��nding procedures like GSAT have therefore the
potential of making the vivid reasoning approach and
the related model�checking proposal by Halpern and
Vardi ��		�� workable���

Conclusions

We have introduced a new method for �nding satisfying
assignments of propositional formulas� GSAT performs
a greedy local search for a satisfying assignment� The
method is simple� yet surprisingly e�ective� We showed
how the method outperforms the Davis�Putnam proce�
dure by an order of magnitude on hard random formu�
las� We also showed that GSAT performs well on graph

��Most applications of GSAT would require formulas of
�rst�order logic� If the Herbrand universe in question is
�nite� the generalization is straightforward� Otherwise� one
approach we intend to investigate is to use a form of iterative
deepening by searching for models in ever larger Herbrand
universes�

coloring problems� N�queens encodings� and Boolean in�
duction problems� The price we pay is that GSAT is
incomplete�
Currently� there is no good explanation for GSAT�s

performance� Some recent results by Papadimitriou
��		�� and Koutsoupias and Papadimitriou ��		
� do�
however� provide some initial theoretical support for
the approach� Our sense is that the crucial factor
here is having some notion �however crude� of an ap�
proximate solution that can be re�ned iteratively� In
these terms� model��nding has a clear advantage over
theorem�proving� and may lead us to AI methods that
scale up more gracefully in practice�

Acknowledgments

The second author was funded in part by the Natural
Sciences and Engineering Research Council of Canada�
and the Institute for Robotics and Intelligent Systems�
We thank David Johnson for providing us with the

hard instances of graph coloring and Anil Kamath for
the inductive inference problems� We also thank Larry
Auton� Ron Brachman� Jim Crawford� Matt Ginsberg�
Geo� Hinton� David Johnson� Henry Kautz� David
McAllester� Steve Minton� Christos Papadimitriou�Ray
Reiter� Peter Weinberger� and Mihalis Yannakakis for
useful discussions�

References

Adorf� H�M�� Johnston� M�D� ��		��� A discrete
stochastic neural network algorithm for constraint
satisfaction problems� Proc� of the Int� Joint Conf�
on Neural Networks� San Diego� CA� �		��

Cook� S�A� ��	
��� The complexity of theorem�proving
procedures� Proceedings of the �rd Annual ACM
Symposium on the Theory of Computing� �	
�� ����
����

Davis� M� and Putnam� H� ��	���� A computing pro�
cedure for quanti�cation theory� J� Assoc� Comput�
Mach�� �	��� 
�
���
���

Falkowski� Bernd�Jurgen and Schmitz� Lothar ��	����
A note on the queens� problem� Information Process�
Lett�� 
�� �	��� �	����

Franco� J� and Paull� M� ��	���� Probabilistic analysis
of the Davis Putnam procedure for solving the sat�
is�ability problem� Discrete Applied Math� �� �	���


��
�

Garey� M�R� and Johnson� D�S� ��	
	�� Computers



and Intractability� A Guide to the Theory of NP�
Completeness� W�H� Freeman� New York� NY� �	
	�

Goldberg� A� ��	
	�� On the complexity of the satis��
ability problem� Courant Computer Science Report�
No� ��� New York University� NY� �	
	�

Gu� J� ��		
�� E�cient local search for very large�scale
satis�ability problems� Sigart Bulletin� vol� �� no� ��
�		
� ���
�

Halpern� J�Y� and Vardi� M�Y� ��		�� Model checking
vs� theorem proving� a manifesto� Proceedings KR�
	�� Boston� MA� �
������

Hooker� J�N� ��	��� Resolution vs� cutting plane solu�
tion of inference problems� Some computational ex�
perience� Operations Research Letter� 
���� �	���

Johnson� D�S� ��		�� Personal communication� �		��

Johnson� D�S�� Aragon� C�R�� McGeoch� L�A�� and
Schevon� C� ��		�� Optimization by simulated an�
nealing� an experimental evaluation� part ii� graph
coloring and number partioning� Operations Re�
search� �	�����
������ �		��

Kamath� A�P�� Karmarkar� N�K�� Ramakrishnan� K�G��
and Resende� M�G�C� ��		��� A continuous approach
to inductive inference� Submitted for publication�

Kautz� H�A� and Selman� B� ��		
�� Planning as satis�
�ability� Forthcoming�

Koutsoupias� E� and Papadimitriou C�H� ��		
� On
the greedy algorithm for satis�ability� Forthcoming�

Levesque� H�J� ��	���� Making believers out of com�
puters� Arti�cial Intelligence� ��� �	��� �������

Minton� S�� Johnston� M�D�� Philips� A�B�� and Laird�
P� ��		�� Solving large�scale constraint satisfaction
an scheduling problems using a heuristic repair
method� Proceedings AAAI���� �		�� �
�
��

Mitchell� D�� Selman� B�� and Levesque� H�J� ��		
��
Hard and easy distributions of SAT problems� Forth�
coming�

Papadimitriou� C�H� ��		��� On selecting a satisfying
truth assignment� Proc� of ��th Conference on the
Foundations of Computer Science� �		�� ���� ��	�

Papadimitriou� C�H�� Steiglitz� K� ��	�
�� Combina�
torial optimization� Englewood Cli�s� NJ� Prentice�
Hall� Inc�� �	�
�

Reiter� R� and Mackworth� A� ��	�	�� A logical frame�
work for depiction and image interpretation� Arti��
cial Intelligence� ��� No� 
� �	�	� �
������

Selman� B�� Levesque� H�J�� Mitchell� D� ��		
� GSAT�
A new method for solving hard satis�ability prob�
lems� Technical Report� AT�T Bell Laboratories�
�		
�

Vellino� A� ��	�	� The complexity of automated rea�
soning� Ph�D� thesis� Dept� of Philosophy� University
of Toronto� Toronto� Canada ��	�	��


