
Wide-Coverage CCG Parsing

with Quantifier Scope

Dimitrios Kartsaklis
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2010

Abstract

This dissertation presents the development of a wide-coverage semantic parser capable

of handling quantifier scope ambiguities with a novel way. In contrast with traditional

approaches that deliver an underspecified representation and focus on enumerating the

possible readings “offline” after the end of the syntactic analysis, our parser handles

the ambiguities during the derivation using a semantic device known as generalized

skolem term. This approach combines most of the benefits of the existing methods

and provides solutions to their deficiencies with a natural way. Furthermore, this takes

place in the context of the grammar itself, without resorting to ad-hoc complex mech-

anisms.

As a grammar formalism for this work we use Combinatory Categorial Grammar

(CCG), exploiting its lexicalized nature and the surface-compositional semantics that

provides. The logical forms are represented in first-order logic, using λ-calculus as a

“glue” language, in the tradition of Montague. We base our parser on the OpenCCG

framework, and we augment it by applying a well-established supertagger and by de-

veloping a head-driven probabilistic model. Our model is trained on CCGbank, a CCG

version of the Penn Treebank. For the semantic component we develop a Java library

capable of representing and unifying λ-calculus expressions, including the necessary

support for the new semantic elements of generalized skolem terms.

We evaluate the syntactic component of our parser on Section 23 of CCGbank, get-

ting very high lexical accuracy and coverage but less than optimal PARSEVAL and head

dependencies measures. For the semantic part, we create a test suite with sentences that

exhibit a wide-range of quantifier scope ambiguities, and we test the performance of

our parser on this. We also evaluate the semantic component on a small test set de-

rived from the FraCas framework. For almost all cases we get results that conform

to the predictions of the theory. Although time did not permit the testing of the se-

mantic component in a wide-coverage setting, we consider these results as a strong

indication that this is actually feasible. Finally, we close this dissertation with specific

suggestions of what we consider important to be done as a follow-up work.

i

Acknowledgements

Despite its inevitable naı̈veness to the experienced eye, this piece of work is the hardest

thing I have ever accomplished, and I feel obliged to many people for that. I would

like to thank Mark Steedman, my supervisor, for his guidance and his support all those

months, and for the fact that he introduced me to the exciting field of Natural Language

Processing with the best possible way. Most of all, though, I thank him because in a

time where a large part of AI is expended on counting things and dividing by total, he

offered me the opportunity to work on something really “intelligent”.

I owe a lot to Christos Christodoulopoulos, who was always there when I needed

him, providing useful remarks and spending his time trying to understand the nature

of my project. Furthermore, his well-written MSc thesis was one of the most helpful

resources for me during this period, since the nature of our works were actually pretty

similar. I would also like to thank Mark McConville for his useful suggestions and

help on OpenCCG framework.

During this year I met many remarkable people and a few really exceptional: I am

grateful to Sia Togia, for her valuable advice on semantics, her support, and the kind

words with which she was always referred to my work. Most of all, I thank her for

her willingness to help under any circumstances, regardless deadlines or how busy she

actually was.

I very much thank Yang Gao, who was a true friend and faithful partner all those

hard months. Her clear way of thinking helped me to put things in order every time I

was starting to feel that I am loosing control.

I can’t thank enough my good friend Andreas Chatzistergiou, for our endless dis-

cussions about almost everything, his patience when I was trying to explain things like

why smoothing is not working (despite the fact, as he later admitted, that even the title

of my thesis was giving him a headache), and in general for sharing with me this one

in a lifetime experience here in Edinburgh. People like him and Sia showed me that

after all there might be some chance for this small piece of land at the southern end of

Europe.

Finally, I would like to thank my family for their support, emotional and financial

during this year. Without them this would be impossible.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Dimitrios Kartsaklis)

iii

Table of Contents

1 Introduction 1

2 Background 4
2.1 Semantics and compositionality . 4

2.2 Combinatory Categorial Grammar 6

2.2.1 Introduction . 6

2.2.2 Computational complexity of CCG 9

2.3 Quantification problems . 10

2.4 Related work . 12

2.4.1 Storage-based approaches 12

2.4.2 Constraint-based approaches 13

2.4.3 Other important contributions 15

2.5 Skolemization . 15

2.6 Generalized Skolem Terms . 16

3 Wide-coverage Parsing 22
3.1 Probabilistic models . 23

3.1.1 Generative models . 23

3.1.2 Discriminative models . 25

3.1.3 Comparing the two approaches 27

3.2 Wide-coverage semantic parsing . 28

4 Methodology 30
4.1 Creating a wide-coverage parser . 32

4.1.1 The OpenCCG framework 32

4.1.2 Supertagging . 34

4.1.3 Probabilistic model . 36

4.1.4 Dealing with sparse data . 38

iv

4.1.5 Treatment of coordination and punctuation 40

4.1.6 Type-changing rules . 43

4.1.7 Form of the syntactic derivations 43

4.2 Adding semantics . 44

4.2.1 An object-oriented design 45

4.2.2 Beta-conversion . 47

4.2.3 Alpha-conversion . 49

4.2.4 Self-application and other transformations 50

4.2.5 Implementation of Generalized Skolem Terms 52

4.2.6 CKY modifications . 52

4.2.7 The semantic lexicon . 55

4.2.8 Integration of semantics to the system 56

4.2.9 Semantic output of the program 57

5 Results 60
5.1 Syntactic parsing results . 60

5.2 Semantic evaluation . 62

5.2.1 Generic evaluation . 63

5.2.2 Evaluation on Fracas framework 70

5.3 Computational complexity issues . 72

6 Discussion 75
6.1 General remarks . 75

6.2 Future work . 78

6.2.1 Extending the semantic lexicon 78

6.2.2 Unpacking of the results . 79

Bibliography 81

v

List of Figures

3.1 Output of Bos et al. (2004) system for a CCGbank sentence 29

4.1 The chart-parsing process . 33

4.2 A CCG derivation for a sentence with multiple conjunctions 42

4.3 The output of the parser for a simple sentence 44

4.4 A nested object structure for a logical form 46

4.5 Class diagram for the λ-calculus Java library 47

4.6 A skolem term object with its specifications 52

4.7 Collecting the environment of a skolem term 53

4.8 A sample derivation for the sentence “Everybody needs somebody” . 54

4.9 The output of the parser with logical forms 58

5.1 The CCG mechanism as a stack . 73

vi

List of Tables

2.1 The extended Chomsky Hierarchy 9

3.1 Performance of CCG generative models 26

3.2 Comparison of the results for the CCG parsers 28

4.1 Results of the supertagger in Section 00 of CCGbank 35

4.2 The conditional probabilities of the HWDep model 37

4.3 β-conversion for the sentence “John loves Mary” 48

4.4 β-conversion for a more complicated case 51

4.5 Mapping of syntactic rules to semantic transformations 56

5.1 Parsing results of SemCCG parser on Section 23 of CCGbank 61

vii

List of Algorithms

2.1 Using generalized skolem terms to handle quantifier scope ambiguities 19

4.1 The Cocke-Kasami-Younger (CKY) algorithm 33

6.1 An enumeration algorithm . 80

viii

Chapter 1

Introduction

Although a very large part of the activity that takes place in the context of Natural

Language Processing (NLP) is focused on analyzing text from a syntactical or a mor-

phological perspective, it seems that for certain really “intelligent” applications this is

not sufficient. Indeed, in tasks like machine translation, question-answering systems,

or automatic essay scoring, to name just a few, there will always be a gap between raw

linguistic information (such as part-of-speech labels, for example) and the knowledge

of the real world that is needed for the completion of the task in a satisfactory way. Se-

mantic analysis has exactly this role, aiming to close (or reduce as much as possible)

this gap by linking the linguistic information with detailed semantic representations

that embody this elusive real-world knowledge.

As we would expect, such task is not trivial, and semantic analysis has still to

face a variety of problems coming from the ambiguity that is inherent to every natural

language. This project addresses one the most known kinds of such problems, the so-

called quantifier scoping that can be originated from alternations in the scope of the

quantifiers in a sentence. Departing from traditional approaches, such underspecifica-

tion, we will approach the problem with a novel way, by using non-quantificational

devices known as generalized skolem terms. This idea has its origins in an earlier

work of Mark Steedman (1999), and it takes its final form in his forthcoming book,

“The Natural Semantics of Scope”1. The main argument is that the integration of such

an account with the syntactic derivation mechanism of Combinatory Categorial Gram-

mar (CCG; Steedman, 2000) brings important advantages over the existing approaches

and can provide elegant and natural explanations to many linguistic phenomena that

arise from quantifier ambiguities. At the same time, the concept of generalized skolem

1Currently in publication by MIT Press.

1

Chapter 1. Introduction 2

terms tends to fit better in a self-contained semantic theory, eliminating the need of

resorting to ad-hoc complex algorithmic mechanisms.

The purpose of this project is the creation of a wide-coverage semantic parser that

will use generalized skolem terms in order to handle quantifier scope ambiguities. By

providing a realization of the theory, we aim to present a proof of concept for its ap-

plicability on the specific problem and the advantages that brings compared to current

approaches. The parser uses CCG as the grammar formalism, and first-order logic

combined with λ-calculus for the representation of the logical forms. The reasoning

behind these decisions will become clear in the following chapters, but here we can

briefly note that the main attraction of CCG for our purposes was its lexicalized nature

and the transparent interface between syntax and semantics that provides, while the

motivation for selecting first-order logic and λ-calculus was readability.

The creation of a wide-coverage parser is a multi-stage process, and we can roughly

divide our work in three main tasks:

1. Development of the syntactic parser. Since the semantics we use is surface-

compositional, that is, guided by the syntactic derivation, the syntactic part of

the parser plays an important role in the success of the project. We base our

implementation on the OpenCCG framework – additionally, in order to get an

acceptable performance we apply a probabilistic model based on head-word de-

pendencies.

2. Realization of the semantic component. This step consists of the creation of

a Java library responsible for the representation and manipulation of first-order

logic/λ-calculus formulas. Of course, our library has to support the new semantic

elements of the theory.

3. Integration of the two components. In this step we add the machinery for inte-

grating the two components in one coherent tool. Beyond the algorithmic aspect,

an important part of this step is the creation of the semantic lexicon containing

the logical forms for the lexical items.

We evaluate the syntactic part using the standard PARSEVAL measures and the more

appropriate for CCG metric of labeled and unlabeled dependencies, and we find that,

although not comparable with state-of-the-art CCG parsers, our parser can indeed parse

Section 23 of CCGbank presenting acceptable performance. Due to time constraints,

the semantic aspect of our tool is evaluated against a carefully selected set of sentences

Chapter 1. Introduction 3

that encompass a wide range of linguistic phenomena related to quantifier scoping.

Since we wanted to also provide an evaluation that uses test cases from some other

independent source, we also test the parser on a small set of sentences derived from

the FraCas framework (Cooper et al., 1996), which has been created as a tool for

testing textual entailment tasks. We indeed find that the results we get are in line with

the predictions of the theory, and we consider this as a strong indication that further

work is justified on this area, covering aspects that time did not permit us to test in the

context of this project.

The rest of this dissertation describes in detail every stage of the development of

the semantic parser, focusing mainly on the semantic component which is the central

point of the present work. More specifically, the dissertation is structured with the

following way:

Chapter 2 provides the necessary background for the problem we address, presents

the related work, and discusses in detail the approach we are going to use. Chapter

3 serves as a short introduction to the work that has been done so far on CCG wide-

coverage parsing. Chapter 4 describes in detail our methodology, using information

presented in the previous chapters. This chapter consists of two large sections, one

dedicated to the development of the probabilistic parser and one describing the creation

of the semantic component. Chapter 5 presents the detailed results of our evaluation

for both components. Finally, Chapter 6 summarizes this work, provides comments on

its contributions, and discusses in detail future work that needs to be done in this area.

Chapter 2

Background

“There is in my opinion no important theoretical difference between natural

languages and the artificial languages of logicians”

Richard Montague, Universal Grammar

2.1 Semantics and compositionality

Undoubtedly, one of the most influential works on the area of linguistic semantics is

due to Richard Montague (1930-1971), who was the first who managed to present

an algorithmic way of processing fragments of the English language in order to get

semantic representations capturing their “meaning” (Montague, 1970a,b, 1973). By

treating English as a formal language, Montague was able to use the notion of com-

positionality in order to combine simple logical forms of individual words into more

complex semantic representations for larger language fragments such as phrases and

sentences. It is this idea, that “the meaning of the whole is a function of the meanings

of its parts”, often called Frege’s principle1, that makes us possible to construct de-

tailed representations aiming to capture the meaning of arbitrarily complex discourse

elements.

To make such an account work, one would need two things: First, a resource which

will provide the logical forms of each specific word (a lexicon); and second, a way to

determine the correct order in which the discourse elements should be combined in

order to end up with a valid semantic representation. A natural way to address the

1Jannsen (1997) convincingly argues that it is more accurate to speak of “Fregean principle” than of
“Frege’s principle” since, despite the fact Frege’s latest writings were in the spirit of the concept, the
principle itself was not stated in its known form in any of his published works.

4

Chapter 2. Background 5

second problem, and one traditionally used in computational linguistics, is to use the

syntactic structure as a means of driving the semantic derivation (an approach called

syntax-driven semantic analysis). In other words, we assume that there is an one-to-one

mapping between syntactic and semantic types, and that the composition in the syntax

level implies a similar composition in the semantic level. This is known as the rule-to-

rule hypothesis (Bach, 1976) and, in turn, provides an insight for the exact form of the

lexicon for addressing the first problem: Each entry in our lexicon should include three

pieces of information: the surface form of the lexical item, its syntactic type, and its

logical form. For the sentence “Every boy likes some girl”, we can imagine a lexicon

of the following form (here using simple context-free grammar categories):

(1) a. every ` DT : λp.λq.∀y[p(y)→ q(y)]

b. boy ` N : λx.boy(x)

c. likes `V B : λx.λy.likes(y,x)

d. some ` DT : λp.λq.∃x[p(x)∧q(x)]

e. girl ` N : λx.girl(x)

In the above logical forms, λ-terms like λx or λq have the role of placeholders that

remain to be filled. The predicate likes(y,x) for example, defines a relation that holds

between two entities: likes(john,mary) simply means that John likes Mary. In the case

of (1c), these entities are still unknown and they will be specified based on the syntactic

combinatorics. Furthermore, the forms in (1a) and (1d) reflect the traditional way

for representing universal and existential, respectively, quantifiers in natural language,

where the still unknown part is actually the predicates acting over a range of entities.

Let’s see how we can apply the principle of compositionality to get a logical form

for the above sentence. The parse tree in (2) below provides us a syntactic analysis:

(2) S

NP

DT

Every

N

boy

VP

VB

likes

NP

DT

some

N

girl

Chapter 2. Background 6

Our simple context-free grammar (CFG) consists of three rules, NP → DT N,

V P→ V B NP, and S→ NP V P, which essentially will drive the semantic derivation.

Interpreted from a semantic perspective, the first rule states that the logical form of a

noun phrase is the combination of the logical forms of its constituents (the determiner

and the noun). So, in the logical form of (1a) λp will be substituted by the logical

form for boy (1b), and the same will happen for some (1d) and girl (1e), yielding the

following semantic representations for the two noun phrases:

(3) a. λq.∀y[boy(y)→ q(y)]

b. λq.∃y[girl(x)∧q(x)]

In order to get the logical form of the verb phrase, we need to unify the forms

of the verb likes and the second noun phrase. This corresponds to substituting λq in

(3b) with the logical form of likes (1c), which will result in the following semantic

representation:

(4) λy.∃x[girl(x)∧ likes(y,x)]

Finally, the third rule tells us that the logical form of the whole sentence is derived

by the combination of the logical forms of the first noun phrase (3a) and the verb phrase

(4):

(5) ∀y[boy(y)→∃x[girl(x)∧ likes(y,x)]]

The above use of first-order logic in conjunction with λ-calculus was first intro-

duced in Montague’s seminal work (Montague, 1970b, 1973), and it can provide us

a framework for getting logical forms for arbitrarily complex sentences. As we will

see in Section 2.3, however, at the very heart of this compositional approach lies the

problem of quantifier scoping that is the subject of our project. Before we move on to

this though we have to introduce CCG, the grammar formalism we are going to use in

this work.

2.2 Combinatory Categorial Grammar

2.2.1 Introduction

Combinatory Categorial Grammar (CCG; Steedman, 2000) is an extension of Catego-

rial Grammar (Ajdukiewicz, 1935; Bar-Hillel, 1953), and has some important differ-

ences from typical context free grammars:

Chapter 2. Background 7

• It is a lexicalized grammar, which means that the grammar is entirely defined in

the lexicon, with the form of syntactic categories assigned to individual words.

In contrast with context-free grammars, such a grammar contains only a very

small number of rules.

• Each category can be either a function that takes an argument (some other cate-

gory) and returns a new syntactic type, or an argument that is used as input to a

function category.

• It provides a completely transparent interface between syntax and semantics,

meaning that each step of the syntactic derivation corresponds to a semantically

interpretable structure.

A function CCG category can be of the form X/Y or X\Y , where X is the result

category, Y is the argument category, and the directionality of the slash defines the

position in which the argument is expected: the forward slash (/) indicates that the

position should be at the right of the functor, while the backslash (\) indicates that the

argument is expected at the left. X and Y can be arbitrarily complex categories, or

atomic categories with no slashes that serve only as arguments (for example, NP or

PP). Here are some examples, with the corresponding logical forms:

(6) a. Mary ` NP : mary

b. dances ` S\NP : λx.dances(x)

c. loves ` (S\NP)/NP : λx.λy.loves(y,x)

The example in (6b) shows the category and the logical form for intransitive verbs:

they need a noun phrase at their left (the subject – e.g. “Mary”) to return a sentence

(“Mary dances”). The case of a transitive verb is shown in (6c). It expects a noun

phrase at its right (the object), to return something that can be combined with a noun

phrase at its left (the subject), to make a sentence. This kind of category combination

is known as functional application, and can be summarized as follows (again including

semantics):

(7) Functional Application:

a. X/Y : f Y : a ⇒ X : f (a) (>)

b. Y : a X\Y : f ⇒ X : f (a) (<)

Chapter 2. Background 8

Forward and backward functional application provide to a categorial grammar the

expressive power of a context-free grammar, which is inadequate to capture complex

syntactic phenomena like unbounded dependencies, coordination of non-standard con-

stituents, and cross dependencies in Dutch and some other Germanic languages. In

order to cover such cases, CCG has introduced some additional operations based on

the work of Curry and Feys (1958):

(8) Functional Composition:

a. X/Y : f Y/Z : g ⇒B X/Z : λx. f (g(x)) (> B)

b. X/Y : f Y\Z : g ⇒B X\Z : λx. f (g(x)) (> B×)

c. Y\Z : g X\Y : f ⇒B X\Z : λx. f (g(x)) (< B)

d. Y/Z : g X\Y : f ⇒B X/Z : λx. f (g(x)) (< B×)

(9) Type-raising:

a. X : a ⇒T T/(T\X) : λ f . f (a) (> T)

b. X : a ⇒T T\(T/X) : λ f . f (a) (< T)

Composition (8) allows the combination of two functors into another functor, and

the type-raising operators, shown in (9), can be used to convert an atomic category to

a functor, if this is required by the derivation. These two operations (and, in a lesser

degree for English, substitution which is not included in this short introduction), allows

CCG to capture a wide-range of long-distance dependencies like in the case below.

(10) the song that Mary likes

NP (NP\NP)/(S/NP) NP (S\NP)/NP
>T

S/(S\NP)
>B

S/NP
>

NP\NP
<

NP

However, for certain sentences like the one in (11) (Steedman, 2000, p.42) a gen-

eralized form of composition is necessary, which can be applied over functors with

different number of arguments but the same target (innermost) category:

(11) I offered, and may give, a flower to a policeman

NP ((S\NP)/PP)/NP CONJ (S\NP)/VP (VP/PP)/NP NP PP
>B2

((S\NP)/PP)/NP

The four rules of generalized composition are the following:

Chapter 2. Background 9

(12) Generalized Functional Composition:

a. X/Y : f (Y/Z)/$1 : . . .λz.qz . . .⇒Bn (X/Z)/$1 : . . .λz. f (g(z . . .)) (> Bn)

b. X/Y : f (Y\Z)/$1 : . . .λz.qz . . .⇒Bn (X\Z)\$1 : . . .λz. f (g(z . . .)) (> Bn
×)

c. (Y\Z)\$1 : . . .λz.qz . . . X\Y : f ⇒Bn (X\Z)\$1 : . . .λz. f (g(z . . .)) (< Bn)

d. (Y\Z)/$1 : . . .λz.qz . . . X\Y : f ⇒Bn (X/Z)/$1 : . . .λz. f (g(z . . .)) (< Bn
×)

The generalized form of composition uses the $ convention introduced in Ades and

Steedman (1982), where the symbol $ schematizes over category clusters that have the

same target category. In other words, the notation S/$ could be used to denote the

category set {S, S/NP, (S/NP)/NP, ((S/NP)/NP)/NP, . . .}, where the innermost

category (the target) in all cases is S.

2.2.2 Computational complexity of CCG

CCG has been proved by Vijay-Shanker and Weir (1994) to be weakly equivalent

to Linear Indexed Grammar (LIG) and Tree-Adjoining Grammar (TAG; Joshi et al.,

1975), belonging to a group of languages that occupies the low end of “mildly context-

sensitive” family in the extented Chomsky hierarchy (Table 2.1) – a containment hier-

archy of classes of formal grammars based on their expressive power. The theoretical

power of CCG, LIG, and TAG is just above that of context-free grammars, so these

languages can be also characterized as “nearly context-free”. Even more interestingly,

despite their low computational complexity it has been suggested that they provide

sufficient level of expressiveness for capturing all syntactic phenomena of natural lan-

guages.

Grammar Language Automaton Production rules

Type-0 Recursively enumerable Turing machine α→ β

Type-1 Context-sensitive Linear-bound automaton αAβ→ αγβ

Mildly context-sensitive i-th order NPDA A→ f (β)

Nearly context-free Nested push-down autom. A[(i),...]→ αB[(i),...]β

Type-2 Context-free Push-down automaton A→ γ

Type-3 Regular Finite-state automaton A→ a, A→ aB

Table 2.1: The extended Chomsky Hierarchy. Lowercase English letters represent ter-

minal symbols (words), uppercase letters are non-terminals (e.g. NP, V P), and lower-

case Greek letters (α, β, γ) represent any combination of terminals and non-terminals.

Chapter 2. Background 10

2.3 Quantification problems

After this short introduction to our grammar formalism, we will now turn our attention

to the main subject of this work, the quantifier scoping problem. We return to our

example sentence, introduced in Section 2.1, and its logical form we produced by

using λ-calculus (repeated here for convenience):

(13) Everyboy boy likes some girl:

∀y[boy(y)→∃x[girl(x)∧ likes(y,x)]]

How this expression can be interpreted? In plain English, the logical form implies

that every boy y likes a (possibly) different girl x, which seems that indeed captures

the intended meaning of the sentence. However, the problem here is that there is also

a second reading which is not supported by the syntactic combinatorics:

(14) ∃x[girl(x)∧∀y[boy(y)→ likes(y,x)]]

that is, there is a specific (very popular) girl x who is liked by every boy. This inter-

pretation is equally valid with the one in (13), but since our semantics is driven by

the surface form, and we have only one such form, it was left unaccounted. The two

interpretations differ on which quantifier has the outer scope in the final expression:

In the first case, the universal has scope over the existential, and the reverse is true

for the second reading. The important point here is that a proper semantic account

should be able to provide all the attested readings, despite the restrictions imposed by

the syntactic form.

Interestingly, the expressiveness of CCG seems to provide a natural solution to the

problem. While the conventional CCG derivation in (15a) will result in the narrow-

scope reading, where the universal quantifier outscopes the existential, the use of com-

position and type-raising provides an alternative derivation, shown in (15b), covering

the other case.

(15) a. Every boy likes some girl

NP (S\NP)/NP NP
: λq.∀y[boy(y)→ q(y)] : λx.λy.likes(y,x) : λq.∃x[girl(x)∧q(x)]

>
S\NP : λy.∃x[girl(x)∧ likes(y,x)]

<
S : ∀y[boy(y)→∃x[girl(x)∧ likes(y,x)]]

Chapter 2. Background 11

b. Every boy likes some girl

NP (S\NP)/NP NP
: λq.∀y[boy(y)→ q(y)] : λx.λy.likes(y,x) λq.∃x[girl(x)∧q(x)]

>T
S/(S\NP) : λq.∀y[boy(y)→ q(y)]

>B
S/NP : λx.∀y[boy(y)→ likes(y,x)]

>
S : ∃x[girl(x)∧∀y[boy(y)→ likes(y,x)]]

Despite the elegance of such a solution, however, this direct linking between scope

and syntax implies that scope ambiguities can emerge only in cases where there are

also ambiguous syntax derivations. Unfortunately, this is not always the case. If we

had formulated our sentence as “Some girl, every boy likes”, for example, we would

get only the wide-scope derivation, where the ∃girl quantifier has the outer scope. How-

ever, the narrow-scope reading is still there, but this time it remains unaccounted by

the syntax. Furthermore, although the description we provided above presents the core

of the scoping problem, there are many more further complications that quantifiers can

cause in a semantic analysis.

For example, one very common problem is that of spurious readings, where a sen-

tence can be assigned more than one logical forms that bring the same meaning – that,

is, they are equivalent. An example of this phenomenon is the sentence “Some rep-

resentative showed some company some sample”, which has six equivalent meanings

that correspond to permutations of the three existential quantifiers:

(16) a. ∃x[repr(x)∧∃y[company(y)∧∃z[sample(z)∧ showed(x,y,z)]]]

b. ∃x[repr(x)∧∃z[sample(z)∧∃y[company(y)∧ showed(x,y,z)]]]

c. ∃x[company(y)∧∃x[repr(x)∧∃z[sample(z)∧ showed(x,y,z)]]]

d. . . .

In a sentence with n quantifiers, the number of alternative readings is n!. Such a

proliferation of spurious interpretations could cause a significant overhead to any sys-

tem. Koller and Thater (2006), for example, point out that the sentence “For travelers

going to Finnmark there is a bus service from Oslo to Alta through Sweden” has 3960

distinct readings, all equivalent to each other.

Another possible problem is the case of scope asymmetries, as exemplified by the

sentence “Every boy likes, and every girl detests, some saxophonist” (Geach, 1972). In

such a case, a naı̈ve account of quantification would result in a large number of possible

readings, many of which are actually invalid. For example, the mixed reading:

(17) ∀x[boy(x)→∃y[sax(y)∧ likes(x,y)]]∧∃v[sax(v)∧∀z[girl(z)→ detests(z,v)]]

Chapter 2. Background 12

presents a scope asymmetry, since the saxophonist is a different person for every boy,

but the same person for all girls. In such a case, “some saxophonist” should in fact

have retained the same scope for both the coordinated constituents.

Finally, in cases where a sentence contains more than two quantifiers, there is a

possibility of “intermediate” scope readings, as in the following case:

(18) Some teacher showed every pupil every movie:

*∀x[movie(x)→∃y[teacher(y)∧∀z[pupil(x)→ showed(x,y,z)]]]

In the logical form of (18), the teacher depends only on the movies – in other words,

this reading implies that there is a different teacher for every movie, which is not the

intended meaning.

It seems then that the problem of quantifier scoping requires an even more flexible

approach, one that would be able to properly handle every kind of complex dependency

that can arise between multiple quantifiers. From the next section we will begin to

work towards this direction, first presenting a comprehensive introduction to the most

important approaches that have been applied so far in this regard.

2.4 Related work

A traditional approach to handle quantifier scope ambiguities is the creation of an

underspecified representation that embodies all the possible readings without including

specific information about the exact position of each quantifier. This idea was initially

introduced by Kempson and Cormak (1981), and from then on has experienced a large

number of implementations and variations. In this section we are going to discuss the

most important approaches.

2.4.1 Storage-based approaches

Usually, underspecification is achieved through the notion of a storage, a special store

that holds the core meaning of a node together with any quantified expressions that

are gathered from the daughters of this node in the tree. For the case of the sentence

“Every boy likes some girl”, for example, the store would have the following form at

the end of the derivation:

(19) 〈loves(x1,x2),

(λq.∀x[boy(x)→ q(x)],1),

Chapter 2. Background 13

(λq.∃y[girl(y)∧q(y)],2)〉

Here, indices 1 and 2 indicate the position in the predicate from which each quan-

tified expression is originated. Note that although these three expressions contain all

the information we need, they remain neutral as to the order of the two quantifiers.

After the end of the derivation, this underspecified representation is passed to a differ-

ent component, which retrieves each quantified expression and merges it with the core

meaning. The two alternative readings can be produced by retrieving the quantified

expressions in different order. If we retrieve first the ∀boy expression, the narrow scope

reading is created, where every boy likes a possibly different girl; by retrieving the

∃girl reading first, we produce the wide scope reading.

The approach described above was initially introduced by Cooper (1983), and in

this form suffers an important deficiency: It cannot take in consideration the structure

of a complex NP that contains other nested NPs, like in the case of “John likes every

girl in the classroom”2. A solution to the problem was given by Bill Keller (1988), who

essentially allowed every entry in the storage to be itself a storage. This nested storage

concept was able to properly track abritrarily complex NPs by taking in account their

hierarchical structure.

2.4.2 Constraint-based approaches

An important deficiency of storage methods described above is that they are too per-

missive – that is, they focus on representing all the available readings with an abstract

way, but they do not have a means to filter efficiently these interpretations. As we saw

in Section 2.3, this can lead to serious problems such as large numbers of spurious

readings. Another problem of storage methods is that they can handle only a simple

form of quantified noun phrases, similar to those we used in our previous examples.

However, they are inadequate to face ambiguities that result in from more complex

syntactic constructions, such as negation. For example, neither Cooper storage nor

nested Cooper storage can properly address the sentence “Every boy does not like a

girl”.

Constraint-based approaches follow a different perspective: Each underspecified

represenation is a set of constraints that govern the exact relations between the com-

ponents of the sentence. Any first-order logic formula that satisfies these constraints

2We will not go into details about the exact nature of the problem here. The interested reader can
find a detailed description in Blackburn and Bos (2005) pp. 122-125.

Chapter 2. Background 14

constitutes a valid logical form for the sentence. A representative of this area is the hole

semantics approach (Bos, 1995), in which every λ-variable of a first-order formula is

replaced by a hole that needs to be filled. Each sub-expression gets a distinct label,

and which kinds of labels can fill which hole is governed by a set of what is called

dominance constraints. With this approach, our example sentence gets the following

underspecified representation:

(20) l1 : ∀x.[boy(y)→ h1]

l2 : ∃y.[girl(y)∧h2]

l3 : likes(y,x)

l1 ≤ h0, l2 ≤ h0, l3 ≤ h1, l3 ≤ h2

The last line of the above representation provides the constraints. In general, an

expression l ≤ h means that the expression with hole h dominates the expression with

label l – that is, the expression with h must contain l as subexpression and not the

other way around. In our example, h0 is a hole that represents the whole expression,

so it dominates every other expression. Holes h1 and h2 represent the two possible

interpretations, so they outscope l3. Furthermore, no constraint relates to l1 and l2 since

we don’t want to impose a specific ordering in the two quantifiers. Given the above

underspecified form, the process of retrieving a fully specified formula corresponds to

filling the holes with a way that satisfies every constraint. This is known as plugging.

Finally, an important aspect of this method is that everything should be represented in

a meta-language, which is responsible for associating labels and holes with the logical

forms and imposing constrains like those in (20).

The notion of dominance constraints is also used by Koller and Thater (2006),

this time in the form of dominance graphs. This work concerns the design of an al-

gorithm that takes as input an underspecified represenation and reduces the available

readings to distinct (non-equivalent) ones. The basic concept of their algorithm is that

of permutable splits – that is, parts of the graph that are mutually exchangeable and

thus equivalent. The algorithm proceeds by checking each subgraph for permutable

splits; when it finds one, removes all the equivalent splits except the current.

Finally, we will close this section by mentioning the work of Koller et al. (1998)

and Willis and Manandhar (1999), all of which used some aspect of dominance con-

straints for filtering the readings of underspecified represenations.

Chapter 2. Background 15

2.4.3 Other important contributions

There is a vast amount of work dedicated to underspecification and quantifier scope

ambiguities, and it would be impossible to present everything in this short introduction.

In this section we will provide some pointers to important contributions that can be

used for further research. In particular, we should mention the work of Hobbs and

Shieber (1987), Pereira and Shieber (1987), Copestake and Flickinger (2000), and

Farkas (2001) all of which approached the quantification problems by applying some

form of underspecification.

2.5 Skolemization

All the clever approaches described above can indeed provide a solution to the problem

of quantifier scoping (up to a different degree each one), but all of them have a serious

flaw: by decoupling the semantic derivation from the syntactic combinatorics, they

allow more degrees of freedom on the way that the available semantic readings can

be derived. This could give rise to a wide range of possible undesirable phenomena

concerning the quantifiers, a sample of which we saw in Section 2.3.

Since all these side-effects have their roots in the complex dependencies that can

arise between universal and existential quantifiers, an approach aiming to simplify

these dependencies would seem reasonable. The process of skolemization (named af-

ter Thoralf Albert Skolem; 1887-1963) follows along these lines, aiming to relax the

dependencies between quantifiers in formal logic statements by removing all existen-

tial quantifiers from them. More specifically, every existential quantifier is replaced by

a function of all variables bound by a universal quantifier in whose scope the existential

falls. In the example below

(21) ∀x∃y∀z.P(x,y,z)⇐⇒∀x∀z.P(x,sk(x),z)

the existential ∃y has been replaced by the function sk(x), since the only preceding

universal quantifier was ∀x. In the case where the existential has the outer scope in an

expression, it is replaced by a function of no arguments, that is, a constant:

(22) ∃y∀x∀z.P(x,y,z)⇐⇒∀x∀z.P(x,sk(),z)

Let us proceed and see the effect of skolemization in a more concrete example.

Using skolem functions, the two readings of the sentence “Everyboy likes some girl”

in (13) and (14) above now take the following form:

Chapter 2. Background 16

(23) a. ∀x[boy(x)→ (girl(sk1(x))∧ likes(x,sk1(x)))]

b. ∀x[boy(x)→ (girl(sk1())∧ likes(x,sk1()))]

In (23a) the skolem term is a function of x, yielding the meaning that every different

boy x has their own specific favourite girl, sk1(x), whereas in (23b) the skolem term is

a constant that has wide scope (the same very popular girl is liked by every boy). We

can immediately see the advantage of skolemization in the representation of the logical

forms: both readings now share an identical structure3, where the only details that may

differ is the set of the parameters in each skolem function. In the next section we are

going to pursue further this important observation in order to apply a novel treatment

of the quantifier scoping problem.

2.6 Generalized Skolem Terms

In his forthcoming work, “The Natural Semantics of Scope”, Mark Steedman proposes

a new semantic theory which replaces existential quantifiers in natural language with a

generalized form of the skolem terms we introduced in the previous section. The main

argument of Steedman’s earlier and recent work on generalized skolem terms is that if

this special form of skolemization is strictly guided by the combinatory rules of CCG,

it can handle a large number of quantifier scope ambiguities like those described in

Section 2.3 with a natural and elegant way. The key points are the following:

• The only determiners in English that should be represented by traditional gener-

alized quantifiers are the universals every, each, and their relatives.

• Every other non-universal determiner should be associated with a generalized

form of a skolem term, which can be freely interpreted at any step of the deriva-

tion process according to its environment – that is, the set of universal quantifiers

in whose scope the generalized skolem term falls.

A generalized skolem term has the form skE
n:p;c where E is the environment, n the

number of the originating noun phrase, p a nominal property, and c a cardinality condi-

tion. The index n is used only for disambiguation purposes, when the nominal property

happens to be the same in two or more noun phrases – in all other cases is usually omit-

ted. The nominal property p is a unary λ-abstraction that captures the semantics of the

3Technically, the process of skolemization produces an expression in prenex normal form (a sequence
of quantifiers followed by a quantifier-free part) with only universal quantifiers.

Chapter 2. Background 17

specific NP, e.g. λx.man(x) for “a man”, and can be arbitrarily complex. Finally, the

cardinality condition c aims to capture quantifiers that denote subsets of a totality4 like

“most” or “at least 3”, and can also be vacuous – case in which it will be also omitted.

When a skolem term is applied to a nominal property, say girl, it is still unspeci-

fied and has the form skolem(girl). It will take its final generalized form by a process

known as skolem specification that can freely occur at any point in the grammatical

derivation based on the combinatory rules of the grammar. If at the time of specifica-

tion E is empty, then the skolem term becomes a constant (a function of no arguments);

if E is not empty, then the term becomes a function of the bound variables that the en-

vironment contains. In the light of the above description, the two formulas for our

example sentence now become:

(24) a. ∀x[boy(x)→ likes(x,sk{x}girl)]

b. ∀x[boy(x)→ likes(x,sk{}girl)]

Although these formulas seem very similar to those in (23), there is an important

difference: In this new form, we do not need to include a separate predicate girl over

our skolem terms. This is because a generalized skolem term is a semantic element of

its own right, where nominal properties like girl or boy are directly associated from

the start. After the end of the derivation, these representations should be unpacked so

the nominal properties would be able to be reinstated as predications over traditional

skolem terms, producing the available alternative readings.

In order to apply the theory, we have to assign the following logical forms to uni-

versal and non-universal determiners:

(25) a. every, each, all, . . . : λp.λq.∀x[p(x)→ q(x)]

b. a, an, some, . . . : λp.λq.q(skolem(p))

The form in (25a) is the traditional first-order logic formula for universals that

we have already introduced in previous examples. The application of (25b) on a

predicate of the form λx.girl(x) would consume the term λp yielding the expression

λq.q(skolem(λx.girl(x)), in which the skolem term is still unspecified and can be spec-

ified at any step of the derivation. In this “self-application” form, the skolem term waits

4Actually, every quantifier in natural language denotes that a subset of some totality has a specific
property. An expression of the form ∀xφ(x) denotes a set that contains every individual with property φ,
while ∃xφ(x) asserts that the set of individuals with property φ has at least one member. The two tradi-
tional quantifiers of formal logic are nothing else but special cases of what is now known as generalized
quantifiers (Mostowski, 1957).

Chapter 2. Background 18

for a predicate q that will be applied to itself, in order to bring itself to the scope of any

quantifiers that could determine its specification.

We will now proceed to see how the use of generalized skolem terms together with

the “anytime” process of specification can yield the two available readings showed in

(24). In the analysis below the generalized skolem term for some girl is left unspecified

until the last step of the derivation. Since during the specification is within the scope

of every boy, it becomes a function of this quantified variable.

(26) Every boy likes some girl

NP/N N (S\NP)/NP NP/N N
: λp.λq.∀y[p(y)→ q(y)] : λy.boy(y) : λx.λy.likes(y,x) : λp.λq.q(skolem(p)) : λx.girl(x)

> >
NP : λq.∀y[boy(y)→ q(y)] NP : λq.q(skolem(λx.girl(x)))

>
S\NP : λy.likes(y,skolem(λx.girl(x)))

<
S : ∀y[boy(y)→ likes(y,skolem(λx.girl(x)))]

. .
S : ∀y[boy(y)→ likes(y,sk{x}girl)]

However, in (27) the specification takes places very early, where the skolem term is

still unbounded. This results in a constant which is propagated to the final expression

through the derivation.

(27) Every boy likes some girl

NP/N N (S\NP)/NP NP/N N
: λp.λq.∀y[p(y)→ q(y)] : λy.boy(y) : λx.λy.likes(y,x) : λp.λq.q(skolem(p)) : λx.girl(x)

> >
NP : λq.∀y[boy(y)→ q(y)] NP : λq.q(skolem(λx.girl(x)))

. .
NP : λq.q(sk{}girl)

>

S\NP : λy.likes(y,sk{}girl)
<

S : ∀y[boy(y)→ likes(y,sk{}girl)]

Since the specification of a skolem term can happen at any step of the derivation, by

the end of the parsing we will have both the required readings for the sentence. A subtle

point is that the specification of a skolem term makes sense only in cases where the

environment of this skolem term has been changed from the previous step – otherwise,

the specification will yield an expression which is an exact duplicate of an already

existing one. A new specification of the skolem term for some girl, for example, just

after the combination of likes with some girl, will produce one more constant of the

form sk{}girl , since the skolem term is still not bounded by any universals.

So now we are in position to propose an abstract algorithm that reflects the ap-

proach we are going to use:

Chapter 2. Background 19

(28) 1. Assign the appropriate categories to every determiner in the sentence, ac-

cording to (25)

2. For every CCG rule that can be applied to a pair of categories 〈B,C〉 and

produce a result A, combine the logical forms ΛB and ΛC to derive a new

logical form ΛA

3. For every skolem term sk in ΛA, if the environment of sk has been changed

from the previous step, specify a new generalized skolem term

The above steps are presented in pseudo-code form in Algorithm 2.1, and in Chap-

ter 4 we will see how this can be placed in the context of the generic parsing process.

1: for all {DT∃|DT∃ ∈ {a,an,some, . . .}} do

2: ΛDT∃ ← λp.λq.q(skolem(p))

3: end for

4: for all {DT∀|DT∀ ∈ {every,each,all, . . .}} do

5: ΛDT∀ ← λp.λq.∀x[p(x)→ q(x)]

6: end for

7: for all {A|A→ BC ∈ grammar} do

8: ΛA = app(ΛB,ΛC)

9: for all {skEOLD |skEOLD ∈ ΛA} do

10: if ENEW 6= EOLD then

11: speci f y(skENEW)

12: end if

13: end for

14: end for

Algorithm 2.1: Using generalized skolem terms to handle quantifier scope ambiguities

This approach is in position to address quantifier scope ambiguities much more

effectively than existing quantification methods such as storages, while at the same

time delivers in the context of the grammar itself functionality that now is available

through complex algorithmic solutions such as dominance graphs. For example, while

a naı̈ve quantification approach could return 3! = 6 readings for a sentence with 3

quantifiers, like “some representative of some company showed a sample”, it is clear

that our method will return just one:

(29) show(sk{}
λx.repr(x),sk{}company,sk{}sample)

since there is no universal within whose scope any of the existentials can fall – and

this will be solely based on the combinatory rules of the grammar, without the need of

Chapter 2. Background 20

using some kind of meta-language like in hole semantics or resorting to a dominance

graph reduction method.

The Geach sentence with the scope asymmetries presents a much more challeng-

ing case for all quantification approaches. The diagrams below show how a CCG

parser equipped with generalized skolem terms can deliver only the non-mixed read-

ings (where the saxophonist retains the same scope for both boys and girls).

(30) a. Every boy admires and every girl detests some saxophonist

S\NP NP
: λx.∀y[boy(y)→ admires(y,x)]∧∀z[girl(z)→ detests(z,x)] <T

S\(S/NP)
: λq.q(skolem(sax))

<
S : ∀y[boy(y)→ admires(y,skolem(sax))]∧∀z[girl(z)→ detests(z,skolem(sax))]
. .

S : ∀y[boy(y)→ admires(y,sk{y}sax)]∧∀z[girl(z)→ detests(z,sk{z}sax)]

b. Every boy admires and every girl detests some saxophonist

S\NP NP
: λx.∀y[boy(y)→ admires(y,x)]∧∀z[girl(z)→ detests(z,x)] <T

S\(S/NP)
: λq.q(skolem(sax))
.

: λq.q(sk{}sax)
<

S : ∀y[boy(y)→ admires(y,sk{}sax)]∧∀z[girl(z)→ detests(z,sk{}sax)]

In (30a), the specification of the skolem term takes places at the end of the deriva-

tion. However, since the skolem term is the same for both coordinated constituents,

the specification takes places in parallel, yielding just one reading, that of the narrow-

scope saxophonist. In (30b) the skolem term is specified early, and then again is the

same entity that substitutes λx in the logical form of the verb phrase for both boys and

girls. At the end of the derivation we have a single reading, this time the one in which

the saxophonist is the same person (say, John Coltrane) for everybody.

As we will see in Chapter 5, this approach can indeed address a wide range of other

quantifier scoping phenomena with a natural way. Furthermore, given the transparent

interface between syntax and semantics that a lexicalized grammar as CCG provides,

it can be easily incorporated into the syntactic combinatorics without requiring ex-

tensive modification of the underlying mechanism or raising the theoretical power of

a CCG system. In fact, it can be shown that the power of a nested push-down au-

tomaton (NPDA) needed for the syntactic combinatorics of CCG is also sufficient for

accommodating the semantic manipulation. Finally, the most important point is that

Chapter 2. Background 21

the whole process of semantic derivation will be performed in parallel with the syn-

tactic analysis, solely based on the combinatory rules of CCG – this close integration

between syntax and semantics provides a limit to the degree of freedom in which the

available readings are derived, and ensures that all non-attested readings have been

excluded from the results.

Chapter 3

Wide-coverage Parsing

The term wide-coverage parser in the NLP literature is used to describe a tool that can

be syntactically or semantically analyze unrestricted text of the kind we meet in news-

papers and magazines. The biggest problem with such an endeavor is that enumerating

all possible parses and choosing the “best” possible parse according to some criterion

is usually prohibitively expensive from a computational perspective. So, in order for a

parser to be able to complete its task in a reasonable amount of time, an efficient way

is needed for restricting the search space and focusing on the most promising parses.

This is the role of the oracle, one of the three parts of a parser (with the other two

being a grammar and an algorithm), and in the following sections we will see how sta-

tistical models can be used for CCG towards this goal. Ironically, the expressiveness

of CCG adds to this problem, since even a simple sentence can have many different

(but semantically equivalent) analyses, a phenomenon that sometimes called spurious

ambiguity (Wittenburg, 1986). An example is shown in (1) below1.

(1) a. John likes peanuts

NP : john (S\NP)/NP : λx.λy.likes(y,x) NP : peanuts
>

S\NP : λy.likes(y,peanuts)
<

S : likes(john,peanuts)

b. John likes peanuts

NP : john (S\NP)/NP : λx.λy.likes(y,x) NP : peanuts
>T

S/(S\NP) : λq.q(john)
>B

S/NP : λx.likes(john,x)
>

S : likes(john,peanuts)

1Note that this is different from the case presented by diagrams 15a and 15b in Chapter 2. In that
case, the alternative derivations produced different logical forms, so they cannot be considered spurious.

22

Chapter 3. Wide-coverage Parsing 23

Since these equivalent parses can be up to a Catalan number, that is (2n)!
(n+1)!n! for

a sentence with n words, this problem threatens to undermine the nearly context-free

complexity of CCG. One solution has been proposed by Eisner (1996), involving the

restriction of type-raising and composition only in cases in which these operations are

necessary. More specifically, Eisner proposed that any constituent which is the result

of a forward composition cannot serve as a functor in another forward composition or

application. Similarly, any constituent produced by a backward composition cannot

serve as a functor in another backward composition or application. This technique

creates normal form derivations, and can drastically reduce the CCG parsing space.

3.1 Probabilistic models

In modern parsers the role of the oracle is fulfilled by statistical models, either genera-

tive or discriminative. A parser that uses a generative model makes every decision by

taking in account probabilities calculated by the training data; the overall probability

of an analysis (parse tree) is the joint probability of all these individual decisions that

have been taken along the way. On the other hand, discriminative models attempt to

calculate the probability of a parse tree given a sentence directly, by combining linearly

a set of features associated with specific weights; in this case, the goal of learning is

to set the feature weights in a way that favours the most probable analysis for the sen-

tence. The next sections describe in some detail how both of these approaches have

been applied to CCG parsing with very satisfying results.

3.1.1 Generative models

The first important work on generative models for CCG parsing (and one very revelant

to our case, since in Chapter 4 we are going to reproduce a part of it) was conducted

by Hockenmaier (2003). Using as her primary resource CCGbank (a CCG version of

Penn Treebank – for more details, see Hockenmaier and Steedman, 2002), the author

describes a number of models based on a simple probabilistic model (Hockenmaier,

2001) which served as a baseline for the evaluation of the performance in all other

experiments.

In Hockenmaier’s models a CCG derivation is handled in a top-down manner, start-

ing from the root of a tree and proceeding to the leafs. The overall probability of a parse

tree is calculated as the product of the probabilities of all local trees (trees with depth

Chapter 3. Wide-coverage Parsing 24

1) that comprise the specific analysis. The probability of a local tree with root N then

is defined in terms of a number of individual probabilities (described here for the base-

line model): First, the expansion probability P(expansion|N) is used to decide how the

node N should be expanded. There are four different possibilities:

1. It is a leaf node, so it must be expanded to an appropriate word

2. It is a unary node, that is, a node that expands to just one daughter

3. It is a binary node (it has two daughters) with the head daughter being at the left

4. It is a binary node with the head daughter being at the right

If N is a leaf node, then the lexical probability P(w|N,expansion = lea f) is used

to estimate the most probable word w for the specific leaf category. If N is not a leaf

(i.e. it has either one or two daughters) then the most probable category H of the

head daughter (the daughter from which the parent inherits its lexical head) is calcu-

lated given the parent N and the way it has been expanded, using the head probability

P(H|N,expansion). In the case that the number of daughters is two, the non-head

probability P(S|N,expansion,H) estimates the most probable category S for the non-

head daughter, given the category of the parent node, the way it has been expanded,

and the category of the head daughter. Finally, the daughters are expanded using the

same process, until every constituent has been expanded to a word.

Extending the baseline model

The most serious problem of a probabilistic model for parsing is the independence

assumption that embodies: the category of each individual node is estimated indepen-

dently of the position and the context of this node in the tree, possibly leading to wrong

analyses (for example, the word “book” can be a noun or a verb, but if we notice that

the previous word is a determiner then we can rule out the latter case). Collins (1999)

showed that one of the most efficient ways to solve this problem is to use head depen-

dencies, that is, to take in account not only the category of each individual constituent

but also its head word (the most important word in the constituent from a grammatical

perspective).

However, for a grammar as expressive as CCG the independence assumption seems

a lesser problem, since every CCG category encodes a great amount of contextual

information. Despite of that, Hockenmaier tried to further lessen possible problems by

Chapter 3. Wide-coverage Parsing 25

applying a number of additional features to the baseline model, both non-lexical and

lexical. The non-lexical features extensions were as follows:

• A boolean feature which was true for every constituent expanded to some kind

of coordination and false for all other cases.

• The addition of information not only for the parent node of a local tree, but also

for the grandparent node.

• The inclusion of distance measures, produced by calculating the distance of a

head word from the left and the right frontier of its constituent.

Each extension modifies the probabilities of the baseline model with some way. In

the case of the grandparent feature, for example, the expansion probability of a node

N is not only based on the category of the node itself, but also on the category of the

grandparent, GP: P(expansion|N,GP).

More importantly, the author extended her models using lexical dependencies be-

tween the heads of the nodes. According to her top-down approach, the lexical head

of a node (both the lexical category of the head word and the head word itself) is

created probabilistically before of anything else, and then this information is used for

expanding the node and generating the local tree. So, in this model, the daughters are

conditioned both on the parent node and its lexical head. Furthermore, the author in-

corporated word-word dependencies, since the head of the one daughter is generated

by taking in account the head of the other.

Table 3.1 provides a comparison of the results for the individual models, mak-

ing clear that the word-word dependency model (HWDep) provides the best perfor-

mance. The column LexCat shows the accuracy in the assignment of lexical cate-

gories, columns LP, LR, BP, BR refer to the standard PARSEVAL measures, and the

two rightmost columns correspond to labeled and unlabeled dependencies, a measure

that is more appropriate for CCG parsers since does not penalize the binary nature of

the parses. For more details about the measures used for parsing evaluation, refer to

Section 5.1. The HWDep model is described with details in Section 4.1.3.

3.1.2 Discriminative models

An important deficiency of generative probabilistic models is that they cannot easily

incorporate arbitrary information – for example, there is no easy way to define specific

Chapter 3. Wide-coverage Parsing 26

Model NoParse LexCat LP LR BP BR 〈P,H,S〉 〈〉

Baseline 6 87.7 72.8 72.4 78.3 77.9 75.7 84.3

Conj 9 87.8 73.8 73.9 79.3 79.3 76.7 85.1

Grandparent 91 88.8 77.1 77.6 82.4 82.9 79.9 87.9

LexCat 9 88.5 75.8 76.0 81.3 81.5 78.6 86.8

LexCatDep 9 88.5 75.7 75.9 81.2 81.4 78.4 86.6

HeadWord 8 89.6 77.9 78.0 83.0 83.1 80.5 88.3

HWDep 8 92.0 81.6 81.9 85.5 85.9 84.0 90.1

Table 3.1: Performance of CCG generative models (Hockenmaier, 2003)

cases of long-range dependencies or distance measures. This greater degree of flexi-

bility is given through the use of discriminative models, which is the approach adopted

by Clark and Curran (2004b).

Taking ideas from the previous successful works in CCG parsing (Hockenmaier,

2003; Clark et al., 2002), the authors compare two different log-linear models: The

first uses normal-form derivations, while the second exploits predicate-argument de-

pendencies in which each derived structure is related to the complete set of possible

derivations, including the non-standard ones. As the authors note, one of their goals

was to test in what degree non-standard derivations can affect the analysis of a sen-

tence. Since these are discriminative models, the probability of a parse ω given a sen-

tence S is calculated by combining linearly a set of features associated with appropriate

weights. More concisely:

P(ω|S) =
1
ZS

e∑i λi fi(ω) (3.1)

where λi is the weight of the ith feature, ZS a normalizing constant ensuring that P(ω|S)

is a valid probability, and fi(ω) is a function that defines how many times the ith feature

occurs in the context of ω. For the normal-form model, where ω is a single derivation,

the above equation can directly provide a distribution for our probabilities. However,

for the “all-derivations” model, a parse ω is actually a single derivation d (standard

or non-standard) paired with the dependency structure π to which it leads. So, in

this model, the probability of a dependency structure π given a sentence S is defined

as the sum of the probabilities of all possible derivations d that lead to the specific

dependency structure. That is,

Chapter 3. Wide-coverage Parsing 27

P(π|S) = ∑
d∈∆(π)

P(d,π|S) (3.2)

where ∆(π) is the set of all derivations that lead to π.

A key component for the success of every discriminative model is the set of features

that incorporates. For their dependency model, Clark and Curran chose to use features

that were based on local or long-range predicate-argument dependencies. Each of these

dependencies was represented by a tuple of the form 〈h,c,s,ha, l〉, where h is the head

word of the component, c is the lexical category, s is the specific slot for which the

dependency holds, ha is the head word of the argument, and l depends on the kind of

the dependency: if the dependency is local, then l is null; if the dependency is long-

range, then l is the lexical category of the item that mediates between the two tensed

domains. For example, the tuple

(2) 〈chased,(S\NP1)/NP2,2,cat,(NP\NP)/(S/NP)〉

represents the fact that the word “cat” can be the extracted object of “chased” (so in

this case the number 2 indicates that we are referring to the second NP in the lexical

category of “chased”), and can be connected with that verb using a relative pronoun

with category (NP\NP)/(S/NP).

For the normal form model, the features were based on local rules instantiations,

that is, local trees consisting of a parent and one or two daughters (pretty similar with

the way that Hockenmaier created her lexicalized generative models). The authors

enriched their feature sets by also including other information, for example distance

measures and POS labels.

3.1.3 Comparing the two approaches

The experiments conducted by Clark and Curran showed that the normal-form model

had almost the same performance with the dependency model, meaning that the im-

pact of non-standard derivations in a dependency structure was very low. This was

actually very good news, since the training of the dependency model was very com-

putationally expensive, requiring about 17 hours in a 64-node cluster. On the other

hand, the normal-form model was able to be trained in just 2 hours. Furthermore, as

noted above, it also had significantly better parsing times than the dependency model.

Compared with the best generative model of Hockenmaier, both of the discriminative

Chapter 3. Wide-coverage Parsing 28

models had a slightly better performance. Table 3.2 presents the normal-form results

in comparison with the two previous CCG parsing works.

LP LR UP UR LexCat

Clark et al. (2002) 81.9 81.8 90.1 89.9 90.3

Hockenmaier (2003) 84.3 84.6 91.8 92.2 92.2

Clark and Curran (2004b) 86.6 86.3 92.5 92.1 93.6

Table 3.2: Comparison of the results for the CCG parsers (Clark and Curran, 2004b)

As in Hockenmaier’s work, Clark and Curran found that word-word dependencies

result in great improvements to their models. They also reported that the inclusion of

distance features improved further the performance of the parser (this time in contrast

to Hockenmaier), something that they attributed to the discriminative nature of their

models.

3.2 Wide-coverage semantic parsing

The creation of robust and accurate parsers for CCG like the ones described in the

previous sections made possible for researchers to pursue a more ambitious step, that of

wide-coverage semantic parsing. Despite the large number of efficient wide-coverage

parsers that exist, most of them provide syntactic phrase-structure trees that are not

very helpful for reconstructing predicate-argument relationships or deriving logical

forms. Exploiting the surface compositional semantics of CCG and its lexalized nature,

Bos et al. (2004) used Clark and Curran’s parser in order to create a system capable

of providing semantic representations for newspaper text. The system operated on

the output of the parser, which was a CCG derivation annotated with the exact rules

applied in every step. Their overall approach consisted of the following steps:

1. Assigning semantic representation to the lexical items

2. Mapping each combinatory rule to the appropriate semantic transformation

3. Dealing with unaru rules, such as type-raising and type-changing

4. Applying β-conversion2 to the derivation

2The basic process of a λ-abstraction, where λ-terms such λx are substituted by other expressions –
a detailed description is provided in Section 4.2.2.

Chapter 3. Wide-coverage Parsing 29

The authors annotated their lexicon with semantic representations with a semi-

automatic way. For most open-class items they used the lemma to instantiate the se-

mantics. As an example, the logical form of intransitive verbs was the following (in

the Neo-Davidsonial analysis of events adopted by the authors):

(3) λq.λu.q(λx.∃e(lemma(e)∧agent(e,x)∧u(e)))

where lemma was replaced every time by the appropriate lemma, for example “walk”

or “talk”. For closed-class lexical items, the semantics were defined for each lemma

individually. The mapping between syntactic rules and semantic reformulation is ex-

plicitely stated for each CCG rule in Section 2.2, and we will not go into further details

here.

Since there is no some globally accepted evaluation metric for semantic analysis,

the authors evaluated their work by testing the coverage and the well-formedness of

the semantic representations, and they found that the system was able to cover 92.3%

of the test corpus, providing logical forms all of which were well-formed. Below we

can see an example of the system’s output for a CCGbank sentence:

some A ((school-board[A] & hearing[A]) & some B (female[B] & some C

(dismiss[C] & (patient[C,B] & (at[A,C] & some D (crowd[D] &

(patient[D,A] & ((some E (student[E] & with[D,E]) & some F

(teacher[F] & with[D,F])) & event[D]))))))))

Figure 3.1: Output of Bos et al. (2004) system for the sentence “The school-board

hearing at which she was dismissed was crowded with students and teachers”

Of course, as authors note, the well-formedness of an epxression does not neces-

sarily guarantee its correctness – furthermore, the system in its original form did not

attempt to handle complex semantic phenomena such as pronominal anaphora reso-

lution or quantifier scope ambiguities. In any case, this work consisted a proof that

wide-coverage semantic interpretation is indeed feasible, and it clearly demonstrated

the attractions of CCG for such a purpose.

Chapter 4

Methodology

The purpose of this project is the creation of a wide-coverage parser able to use gen-

eralized skolem terms in order to handle quantifier scope ambiguities. This chapter

describes with details all stages of the development and explains the courses of action

that have been followed along the way. Before we step into implementation issues,

however, we need to provide an answer to some questions regarding our fundamental

decisions, the first of which was the selection of a grammar formalism and a logical

form for the semantic representations.

Regarding the selected grammar, it should be clear by our previous discussion in

Chapter 2 that CCG was a very appropriate choice for our purposes. The benefits of

this formalism for a semantic parser can be summarized to the following points:

1. The transparent interface of CCG between syntax and semantics provides the

surface compositionality that is necessary for such a goal

2. The lexicalized nature of the formalism makes the task of adding semantic rep-

resentations to surface forms trivial, by simply augmenting the existing lexicon

3. The small number of combinatory rules means that little effort is required for the

modification of each rule in a way that allows the correct semantic combinations

to take place.

For our semantic representations, we decided to create our own Java library that

allowed us to use first-order logic combined with λ-calculus as a “glue” language.

This method was introduced by Montague (1970b) in its “Universal Grammar” paper,

and from then on constitutes the way of preference among linguists for representing

30

Chapter 4. Methodology 31

semantics in natural languages. There is a reason for that: First-order logic is flexi-

ble enough to capture in a great extend the complexity of a natural language, while

at the same time it can present the meaning of text with an elegant and intuitive way.

It is true that there were many other alternative solutions, with the most appealing of

them to be hybrid logic, since this was the semantic representation supported by the

OpenCCG framework we used for the creation of the parser. The basic problem of

such an approach was simply that hybrid logic is not as expressive as first-order logic

– for example, it needs to be extended in certain ways in order to allow quantification

(Blackburn and Marx, 2002). This limited expressiveness might be adequate for spe-

cialized tasks (Blackburn and Bos, 2005, p. 46), but eventually it will pose problems in

the context of a wide-coverage parser. Even if we have decided to follow that way, the

incorporation of generalized skolem terms into the existing logical framework would

have required a great amount of ad-hoc manipulation with consequences in the clar-

ity of the approach and possibly the robustness of the tool (for example, how can we

embed the notion of the environment in a hybrid logic graph?). After all, the purpose

of the project was to provide a proof of concept for the theory being tested, and not to

be expended in obscure technical details about transformations between first-order and

hybrid logic.

We need to address one more question: Why we chose to create our own proba-

bilistic parser instead of using some of the existing state-of-the-art parsing tools that

are now available for CCG? The basic motivation was that since none of those parsers

carried some built-in functionality for semantic support, we would need in any case

to closely integrate some semantic module with the existing parsing machinery. This

would have required extensive modifications of the parser’s existing code, a task that

(as any software developer can confirm) can be proved very hard even under the most

propitious circumstances (which basically are well-written code, consistent applica-

tion of software engineering principles, and, even more importantly, very detailed doc-

umentation). Unfortunately, most of the code written in the context of some research

project does not reach this level of readability, which means that by following such an

approach (and given the limited time) we would put ourselves in the danger to spend a

lot of time trying to control something that it was simply out of our control in the first

place.

Of course, another possibility for us would be to apply an approach similar with

Bos et al. (2004) (briefly discussed in Section 3.2), whose semantic component acts

on the output of Clark and Curran’s parser with very good results. The basic problem

Chapter 4. Methodology 32

with this method was that for our purposes we needed access to every possible full

parse, not just to the single “best” one that is returned by the parser’s statistical model.

The necessity of examining all the alternative semantic readings corresponding to a

full parse originates from two reasons: First, we needed this in order to thoroughly

test the behaviour of semantic component; second, and even more importantly, this

strategy actually seems to be integral to the method we apply, since there are cases

where the full set of available readings can be derived only by scanning every alterative

semantic derivation, not just the one that is linked to the best syntactic analysis (we

will encounter such situations during the semantic evaluation stage, in Section 5.2).

A modification of an existing parser to allow something like this could again lead to

complications.

With all the above said, however, we have to admit that a great motivation for cre-

ating a parsing tool was the educational value of such an endeavor. The ultimate goal

of an MSc thesis, after all, is to offer an opportunity for applying the taught material of

the course in practical conditions. To this respect, the creation of a probabilistic parser

was a necessary and invaluable addition, since it combined almost every aspect of a

Natural Language Processing programme of studies.

4.1 Creating a wide-coverage parser

4.1.1 The OpenCCG framework

Since the creation of an efficient statistical parser from scratch is far beyond the scope

of a project like this, our tool will be based on the OpenCCG framework. OpenCCG

is an open-source Java framework for text parsing and realization purposes based on

the CCG formalism. It has been developed by Jason Baldridge as a successor of the

Grok system, while current development efforts, led by Michael White, are focused

on practical applications of the realizer in dialogue systems. Despite the fact that the

system has been used so far mostly for realization and natural language generation

purposes, it provides a rich and well-tested API for parsing purposes which allows us

to get a quick and robust result in the available time. Moreover, it fully supports almost

every aspect of CCG.

OpenCCG parsing is based on the Cocke-Kasami-Younger (CKY) algorithm, a pop-

ular instance of dynamic programming for parsing purposes which uses a chart (a table)

to store the intermediate results. The basic intuition of dynamic programming is that

Chapter 4. Methodology 33

a complex problem can be solved by providing solutions to smaller sub-problems. In

the parsing case, by storing every intermediate step in our derivation (every partial

derivation), we are able to re-use it for our larger calculations (derivations that cap-

ture larger spans), saving a lot of time. The algorithm scans the chart left-to-right and

bottom-up, combining categories and storing new intermediate results, so that at the

end of the derivation the top-right cell of the chart contains one or more full parses of

the sentence. This process is summarized in Figure 4.1, where solid lines represent a

conventional CCG derivation for a simple sentence, and dotted lines show a derivation

using type-raising and composition. Algorithm 4.1 provides the pseudo-code.

Mary

married

John

NP

NP

(S\NP)/NP S\NP

S/(S\NP)

S/(S\NP)

S/NP

S

S

Figure 4.1: The chart-parsing process

1: function CKY-PARSE(words,grammar) returns table

2: for j← 1 to LENGTH(words) do

3: table[j−1, j]←{A|A→ words[j] ∈ grammar}
4: for i← j−2 downto 0 do

5: for k← i+1 to j−1 do

6: table[i, j]← table[i, j]∪{A|A→ BC ∈ grammar,

B ∈ table[i,k],

C ∈ table[k, j]}
7: end for

8: end for

9: end for

Algorithm 4.1: The Cocke-Kasami-Younger (CKY) algorithm (adapted by Jurafsky and

Martin, 2000)

Chapter 4. Methodology 34

4.1.2 Supertagging

The first step of the parsing process, as demonstrated in line 3 of Algorithm 4.1, deals

with the assignment of lexical categories to each word in the input sentence. The

parser reads each word in the row, scans the lexicon (which has been extracted from

some corpus – in our case CCGbank), and adds every category from the word’s entry

into the corresponding chart cell. The problem here is that in lexicalized grammars

like CCG a word can correspond to a large number of categories, depending on the

different contexts in which the word has been seen in the corpus used for the creation

of the lexicon. For example, the number of categories for the verb is in CCGbank is 45.

This fact, combined with the spurious ambiguity phenomenon of CCG, could cause a

high computational cost to any parsing system.

A more sensible approach therefore would be, instead of blindly assigning every

category to the word, to assign only the lexical categories that are more likely given

the context of the word, by using a probabilistic model. This technique, known as su-

pertagging (Bangalore and Joshi, 1999) has been applied by Clark and Curran (2004b)

on their parser with excellent results, and provably can drastically reduce the parsing

speed without noticeable loss in the quality of the results (Table 4.1). The supertagger

of Clark and Curran uses a log-linear model trained from CCGbank, with probabilities

of the form:

p(c|h) =
1

Z(h)
e∑i λi fi(c,h) (4.1)

Here, c is a lexical category, h is a context, fi a feature, λi the corresponding weight,

and Z(h) a normalization constant. The context h is a 5-word window surrounding the

target word, and the features are the words in the window as well as their POS tags.

To provide a simple example of how beneficial the use of a supertagger can be, we

used Clark and Curran’s supertagger in order to assign categories to the sentence in (1)

below. The interesting point here is that, by taking into account the context of word cat,

the supertagger has assigned to it the category N/S, instead of the presumed N. With

this way, the supertagger allows cat to be nicely combined with the relative pronoun

that, simplifying the rest of the derivation. It is exactly this quality of supertagging

that made Bangalore and Joshi to call the technique almost parsing in their work on

the LTAG formalism.

Chapter 4. Methodology 35

(1) This is the cat that the dog chased

NP (S\NP)/NP NP/N N/S S/S NP S\NP
<

S
>

S
>

N
>

NP
>

S\NP
<

S

The supertagger of Clark and Curran works as follows: first, it uses the probabilistic

model in order to find the most likely category for a specific word, given its context.

Next, it assigns all the other categories from the word’s entry in the lexicon whose

probabilities fall within a factor β of the highest probability. If the word has been seen

fewer than k times in the training data, the supertagger assigns categories based on the

POS tag of the word, instead on the word itself. So the performance of the supertagger

is governed by these two parameters, β and k, and Table 4.1 provides some results

under different configurations. The last row (β = 0) represents the “no restrictions”

case, where each word gets all the categories from its entry in the lexicon. Note that

despite the drastic reduction in the number of categories assigned to each word in

average, the accuracy remains in very high levels.

β Categories/ Accuracy Sentence Accuracy Sent. Accuracy

word accuracy (POS tagger) (POS tagger)

0.1 1.4 97.0 62.6 96.4 57.4

0.075 1.5 97.4 65.9 96.8 60.6

0.05 1.7 97.8 70.2 97.3 64.4

0.01 2.9 98.5 78.4 98.2 74.2

0.01k=100 3.5 98.9 83.6 98.6 78.9

0 21.9 99.1 84.8 99.0 83.0

Table 4.1: Results of the supertagger in Section 00 of CCGbank. Sentence accuracy

refers to sentences with all words correctly tagged. The two last columns present results

for automatically assigned POS tags (Clark and Curran, 2004a)

Due to the importance of the supertagging process in the creation of an efficient

parser, and given the time limitations of this project, we decided to use the supertagger

of Clark and Curran as a front end to our parser, instead of trying to implement our own

Chapter 4. Methodology 36

custom-made version. In order to do that, we created a wrapper class which encapsu-

lates all the technical details of the interaction between the two programs. The wrapper

passes the sentence to be parsed to the external program by defining appropriate β and

k parameters, and then gets the output of the supertagger and processes it in order to

create a data structure readable by our parser. From this point on, the parsing process

proceeds with the usual way.

We should note that our use of the supertagger as a “black box” imposes an im-

portant restriction compared with the parser of Clark and Curran. In their case, the

supertagger initially provides to the parser a minimum set of lexical categories for the

words of the sentence; if the parser is not able to end up with a derivation, it then re-

quests more categories from the supertagger. The process is repeated until the parser

gets a full parse. This kind of close interaction between the parser and supertagger

(called by the authors adaptive supertagging) has been found to provide much higher

parsing speed (by a factor of 3) without any loss in accuracy. In our case, however, this

degree of integration between the parser and the supertagger is not possible, since the

overhead of repeatedly calling an external program from within our code would have

eventually compromise the overall efficiency.

4.1.3 Probabilistic model

After the supertagger has assigned the lexical categories to the words of the sentence,

the parsing process proceeds left-to-right and bottom-up, as shown in Figure 4.1. For

every cell of the column that is currently processed, the algorithm attempts to combine

every partial parse that can be found in a previous cell of the same row with every

partial parse in a previous cell of the same column. As the derivation process proceeds

to cover larger spans of the sentence, this produces an exponentially increasing number

of entries in the cells, making eventually the parsing infeasible.

The role of a probabilistic model is to provide a score for each possible result, so the

program will be able to keep only the most likely of them and to finish in a finite time.

For our parser, we chose to implement the head-words dependency model (HWDep)

of Hockenmaier (2003), shortly described in Section 3.1.1. The motivation for this

decision is simple: Although the project has no ambition to compete the state-of-the-

art parsers that are now available for CCG (something like that would be unrealistic for

the scope of this work), we still need to take in consideration that our semantic analysis

is syntax-driven and depends on the way with which syntactic derivation is proceeding.

Chapter 4. Methodology 37

So, by using a powerful model for guiding the syntactic derivation we can expect an at

least acceptable performance for our parser, despite the fact that the limited time does

not permit subtle parameter refinement or fine-grain adjustments of the model.

HWDep model

As we saw in Section 3.1.1, all Hockenmaier’s models are based to a simple base-

line model that uses four kinds of probabilities: expansion, head, non-head, and lex-

ical. The difference in HWDep model is that in this case the head word and the

category of the head word for a local tree are generated at the maximal projection

(either at the root of the tree or when generating a non-head daughter S), and then

these pieces of information are used as conditioning variables for generating the other

elements. If exp is the way that the parent node is expanded, taking values from

{le f t,right,unary, lexical}, P is the parent category (the category for the root of the

tree), H the category of the head daughter, S the category of the non-head daughter,

〈cP,wP〉 the pair of category and word for the head of the tree, and 〈cS,wS〉 the pair of

category and word for the head of the sister node, the new model uses the conditional

probabilities shown in Table 4.2.

Description Conditional probability

Expansion P(exp|P,cP#wP)

Head P(H|P,exp,cP#wP)

Non-head P(S|P,exp,H#cP#wP)

Lexical category P(cS|S#H,exp,P) or P(cTOP|P = TOP)

Head word P(wS|cS#P,H,S,wP) or P(wTOP|cP)

Table 4.2: The conditional probabilities of the HWDep model (Hockenmaier, 2003). The

symbols indicate interpolation levels (explained in the next section).

So, in this model, expansion probability, head probability, and non-head probabil-

ity are now also conditioned on the lexical head 〈cP,wP〉. These additions to the model

has been found by Hockenmaier to increase the labeled dependencies1 performance

compared with the baseline model by 4.8%. The last row of the above table indicates

that the head word of the sister node is generated by conditioning on the head word

of the local tree, among other information. This kind of dependency that holds be-

tween the head words of the sibling nodes improves the overall labeled dependencies

1Briefly explained in Section 5.1.

Chapter 4. Methodology 38

performance by a further 3.5%.

Applying beam search

Equipped with our model, we are now in position to assign scores to the results. In

this step essentially we are dealing with line 6 of the CKY pseudo-code (Algorithm

4.1), where a list of results is returned with the categories produced by every possible

combination 〈B,C〉 that is permitted by some CCG rule. Instead of adding all these

results to the chart cell, we first apply a simple beam-search approach, adding only

those results that fall within a specific factor of the result with the highest probability.

This factor depends on an initial parameter γ, known as base beam factor, and the size

of the list with the following way:

f (γ, |l|) = γ |l|2 (4.2)

Essentially, what this technique achieves is that when the length of the list is small

then the beam width f is very wide, so the majority of the results will be accepted;

on the other hand, when the number of the returned results is high, the beam width is

relatively narrow, and only a small portion of them will be accepted (Roark, 2001).

We will close this section with some notes about the implementation of the proba-

bilistic model: We trained our models on Sections 02-21 of CCGbank using a Python

script, which prepared one text file for each model (each conditional probability). From

the parser’s side, we collected all the necessary functionality of the probabilistic ma-

nipulation in a single Java class, in order to introduce the minimum possible amount of

modifications to the existing OpenCCG code. From a software engineering perspec-

tive, our design aimed to impose the lowest possible coupling (the degree in which one

class depends on other classes) and the highest cohesion (how strongly correlated is

the content of a class). This will be a typical strategy for every aspect of this project.

4.1.4 Dealing with sparse data

The most important problem of any probabilistic model is that no matter how large

our training corpus is, there will always be cases that they were not contained in the

training data, and so the model is not able to rank them properly. For our model to be

in position to assign a score in the following local tree,

(2) Dogs bark:

Chapter 4. Methodology 39

S

NP

Dogs

S\NP

bark

there should be at least one identical instance in the training corpus (Section 02-21),

otherwise the model will return 0. Actually, this is exactly the number we are going

to get, since this sentence, despite its simplicity, cannot be found in Sections 02-21 of

CCGbank. The zero score will be multiplied with scores of other partial derivations,

and eventually will invalidate (by zeroing its overall score) a possibly legitimate parse.

One way to avoid such problems is to linearly interpolate the empirical estimates

we have calculated from our training data with (possibly smoothed) estimates coming

from less specific distributions. If our empirical estimate is êi and the less specific

estimate is ẽi−1, then the linear interpolation has the form:

ẽi = λêi +(1−λ)ẽi−1 (4.3)

where λ is a weight that depends on the particular distribution (we will see in a minute

how this weight is calculated). Note that the above definition is recursive: with 3 levels

of interpolation, for example, Equation 4.3 becomes:

ẽ3 = λ3ê3 +(1−λ3)[λ2ẽ2 +(1−λ2)ẽ1] (4.4)

In her models, Hockenmaier indicates levels of interpolation with the symbol #

(Table 4.2). For example, the non-head probability P(S|P,exp,H#cP#wP) contains two

levels of interpolation: P(S|P,exp,H,cP,wP) is interpolated with P(S|P,exp,H,cP),

which in turn is an interpolation of P(S|P,exp,H,cP) and P(S|P,exp,H).

For our model, we decided to introduce some additional levels of interpolation,

trying to avoid as much as possible the problems caused by the sparseness of data.

More specifically, we augmented the expansion probability to P(exp|P ∗ cP#wP) and

the head probability to P(H|P,exp ∗ cP#wP), with the ∗ symbol indicating the new

levels of backoff. This addition indeed caused a 2% improvement to the parsing results.

The last thing that remains to be seen is how we calculate the interpolation weights.

We followed Collins (1999, p. 185), who suggests that if the more specific estimate is

equal to ni
fi

(so ni is the partial count and fi the total), the value of λi can be found using

the following formula:

Chapter 4. Methodology 40

λi =
fi

fi +5ui
(4.5)

Here, ui is the diversity of fi, that is, the number of different outcomes that have

been seen in the context of fi in the training corpus. This treatment of weights is indeed

very reasonable: each interpolation weight λi depends on the sample size fi on which

the specific distribution is based. As this sample increases, the distribution becomes

more reliable, and this is reflected by a higher weight. The smaller the sample, the

closer λi is to 0, so the contribution of the specific backoff level to the overall result

will be minimal. The inclusion of the diversity term ui in the denominator makes also

sense: a high diversity means that there is high probability for a new outcome to be

observed, so this penalizes λi.

4.1.5 Treatment of coordination and punctuation

Coordination and punctuation constitute special cases for every parser, and usually

require ad-hoc machinery for their treatment. However, as a lexicalized grammar, CCG

provides us the necessary tools to handle this issues in the context of the formalism

itself. For coordination, we can imagine that a proper category for a conjunction would

have the form (X\X)/X , allowing derivations of the following form:

(3) John likes peanuts and spinach

NP (S\NP)/NP NP (NP\NP)/NP NP
>

NP\NP
<

NP
>

S\NP
<

S

However, such a naı̈ve treatment can also lead to violations of the across the board

condition (ATB; Ross, 1967) and over-generation, like in following case (adapted by

Baldridge, 2002):

(4) ∗ player that shoots and he misses

N (N\N)/(S\NP) S\NP (S\S)/S S
>

S\S
<B

S\NP
>

N\N
<

N

Chapter 4. Methodology 41

This was the reason for which in the original form of CCG Mark Steedman opted to

address coordination by introducing a ternary rule, which consumes both coordinated

arguments simultaneously:

(5) Coordination:

X CONJ X ⇒ X (> Φn)

The problem here was that since the ternary rule did not correspond to some CCG

combinator, the solution seemed rather ad-hoc and ill-fitting in the generic CCG frame-

work2. A better approach to coordination was eventually made possible by the work

of Jason Baldridge, who in 2002 introduced as part of his PhD thesis an extension of

CCG, incorporating category modalities (Baldridge, 2002). In this multi-modal ver-

sion, every slash in a category can be decorated with one of four types {?,×,�, ·},
imposing certain restrictions to the way that the categories can be combined. The ?

type is the most restrictive, allowing only the use of functional application. In the light

of this new feature, we can now avoid the over-generation observed in (4) by using for

our conjunctions the category (X\?X)/?X .

OpenCCG provides us the tools to apply such a solution, since it supports modali-

ties and also incorporates the notion of dollar variables, that is, variables that can range

over a stack of arguments (the concept of dollar variables is based on the $ convention,

as explained in Section 2.2.1). For our parser, then, we assign to every conjunction the

following set of lexical categories:

(6) a. (S$1\?S$1)/?S$1

b. (NP$1\?NP$1)/?NP$1

c. (N$1\?N$1)/?N$1

The first category allows the coordination over a wide range of clausal categories,

while the other two aim to capture coordination cases between various forms of noun

phrases and nouns. Equipped with this feature, our parser gives the derivation showed

in Figure 4.2 for the rather complicated case of the sentence “I like music and cinema

but I know you don’t and nothing can changes that”.

For the case of punctuation, we decided to provide a very simple solution. More

specifically, we introduced a new OpenCCG punctuation rule that combines every

punctuation mark to the previous constituent, essentially forcing the parser to ignore

2More specifically, the ternary rule did not conform to the Principle of Combinatory Type Trans-
parency, as stated in Steedman (2000).

Chapter 4. Methodology 42

I
lik

e
m

us
ic

an
d

ci
ne

m
a

bu
t

I
kn

ow
yo

u
do

n′
t

an
d

no
th

in
g

ch
an

ge
s

th
at

N
P

(S
\N

P
)/

N
P

N
(N

$ 1
\ ?

N
$ 1

)/
?
N

$ 1
N

(S
$ 1
\ ?

S$
1)

/ ?
S$

1
N

P
(S
\N

P
)/

N
P

N
P

(S
\N

P
)\

(S
\N

P
)

(S
$ 1
\ ?

S$
1)

/ ?
S$

1
N

P
(S
\N

P
)/

N
P

N
P

>
>

>
N

$ 1
\ ?

N
$ 1

S\
N

P
S\

N
P

<
<

<
N
⇒

N
P

S\
N

P
S

>
<

S\
N

P
S

<
>

S
S$

1\
?
S$

1
<

S
<

S$
1\

?
S$

1
<

S

Fi
gu

re
4.

2:
A

C
C

G
de

riv
at

io
n

fo
ra

se
nt

en
ce

w
ith

m
ul

tip
le

co
nj

un
ct

io
ns

Chapter 4. Methodology 43

any punctuation marks. Of course, such an account is an oversimplification. In a proper

treatment, the absorption of punctuation should be performed according to the type of

the punctuation mark and the categories of adjacent constituents. Clark and Curran’s

parser, for example, includes a large number of punctuation rules defining in every

detail what category can absorb what kind of punctuation mark according to its rela-

tive position (right or left of the constituent). Some cases are even more complicated,

like the sentence “I like movies, books and music”, where comma has essentially the

role of a conjunction. Despite these obvious shortcomings, our solution was a decent

trade-off between the available time and efficiency, and has been found to work well

in practice.

4.1.6 Type-changing rules

Beyond the standard combinatory rules presented in Section 2.2.1, CCGbank includes

a number of unary rules that convert a CCG category to some other category. These

unary rules usually serve to convert a verb phrase to a modifier. Such a case, for

example, is the following:

(7) the millions of dollars it generates

NP S/NP⇒ NP\NP
<

NP

Sections 02-21 of CCGbank (our training corpus) contain about 190 distinct unary

rules that cover a wide range of cases. However, most of them (about 150) are quite

rare, with less than 10 occurences (on the other hand, the most frequent one was

N ⇒ NP, with 115,541 occurences). For our parser we use a set of about 25 unary

rules, which was derived by taking in consideration the frequency of the rules, the

suggestions of Clark and Curran (2007, pp. 542-543), and the results of extensive

experimentation in Section 00 of CCGbank, our development corpus.

4.1.7 Form of the syntactic derivations

The parser provides its output in text form through a series of lines, each of which

corresponds to an assignment of a lexical category or an application of a CCG rule

(binary or unary). The type of rule is showed inside parentheses at the beginning of

the line. Figure 4.3 shows the output of the parser for a simple CCGbank sentence.

Chapter 4. Methodology 44

(lex) A :- NP/N

(lex) Lorillard :- N/N

(lex) spokewoman :- N

(>) Lorillard spokewoman :- N

(>) A Lorillard spokewoman :- NP

(lex) said :- (S\NP)/S

(lex) , :- ,

(punct) said , :- (S\NP)/S

(lex) This :- NP

(lex) is :- (S\NP)/NP

(lex) an :- NP/N

(lex) old :- N/N

(lex) story :- N

(lex) . :- .

(punct) story . :- N

(>) old story . :- N

(>) an old story . :- NP

(>) is an old story . :- S\NP

(<) This is an old story . :- S

(>) said , This is an old story . :- S\NP

(<) A Lorillard spokewoman said , This is an old story . :- S

Figure 4.3: The output of the parser for a simple sentence

4.2 Adding semantics

The second part of this project (and the most relevant towards our purpose) was the

implementation of the semantic aspect of the parser and the integration of this aspect

with the probabilistic parser. At the time of this writing, no Java library was available

for the logical form of this project (λ-calculus/first-order logic) to serve as the basis for

an extended version with generalized skolem terms. The only option, therefore, was

the creation of a new framework capable of performing the logical manipulation we

have introduced in the previous sections of this dissertation, based on the λ-calculus

and first-order combination introduced by Richard Montague.

We believe that this approach has many advantages: First, it offers us the necessary

flexibility so that our design can focus solely on representation and efficiency issues,

instead of expending our time trying to fit a new concept in something that it has not

designed for this purpose in the first place; second, our library constitutes a useful tool

for students and researchers that can be used as it is or be extended further in order

Chapter 4. Methodology 45

to incorporate other more advanced aspects of semantics (such negation or anaphora

resolution) that we wouldn’t be able to address here due to time limitations; and third,

once again, the importance of such an effort from an educational perspective it was

sufficient to justify the extra time and work.

4.2.1 An object-oriented design

The first challenge in creating a calculus software system is to find an efficient way to

represent arbitrarily complex expressions. Let us examine for now a rather mild case

(taken from Gabsdil and Striegnitz, 2000):

(8) Every owner of a hash bar gives every criminal a big kahuna burger:

∀x[(∃y[hashbar(y)∧o f (x,y)]∧owner(x))→
∀z[criminal(z)→∃u[bigburger(u)∧gives(x,z,u)]]]

Despite the apparent complexity of such an expression, we can immediately no-

tice that in fact it is nothing else but an aggregation of other simpler expressions like

∃y[hashbar(y)∧o f (x,y)] or ∀z[criminal(z)→∃u[bigburger(u)∧gives(x,z,u)]]. Each

sub-expression may, in turn, consists of other sub-expressions, and this structure ends

to atomic formulas such as the predicates criminal(z), owner(x), or gives(x,z,u).

In fact, the definition of a well-formed formula (wff) in predicate logic provides us

all the necessary information for how a first-order formula should be constructed:

(9) 1. If R is a n-ary relation symbol, and t1, . . . tn are terms (variables, constants,

and other relation symbols), then R(t1, . . . tn) is an atomic formula.

2. All atomics formulas are wffs.

3. If φ and ψ are wffs, then the same is true for ¬φ, (φ∧ψ), (φ∨ψ), and

(φ→ ψ).

4. If φ is a wff, and x is a variable, then both ∃xφ and ∀xφ are wffs.

5. Nothing else is a wff.

So we can see that no matter how complex a first-order formula is must follow one

of the forms defined in 9(3) (or be an atomic formula), and the same must holds for

all of its sub-expressions (one for negation, and two for conjunction, disjunction, and

implication). This creates a disciplined nested structure that might not be immediately

apparent because of the infix notation of first-order logic, where operators are written

between the operands they act on. However, nothing in principle prevent us to write our

Chapter 4. Methodology 46

formulas using prefix notation, where operators are placed to the left of their operands.

With this notation, the relations of 9(3) can be rewritten as not(φ), and(φ,ψ), or(φ,ψ),

and imp(φ,ψ). Accordingly, the quantified expressions of 9(4) become all(x,φ) and

exists(x,φ)3. By using this new way of notation, the expression

(10) ∀x[man(x)→ walks(x)]

can now be written as:

(11) all(x,imp(man(x),walks(x)))

The above observations provide us the insight for the exact form of the data struc-

ture we should use for the representation of our logical forms. We adopt an object-

oriented approach, where each expression is an object that contains other (possibly

complex) sub-objects, representing the sub-expressions. For the formula of (11), for

example, we can imagine a nested object of the following form:

xx

xx

all(x, expr)

imp(expr1, expr2)

man(x)

xx

walk(x)

Figure 4.4: A nested object structure for a logical form

There are few more details we need to specify. The first is to decide the form of

a λ-expression, that is, an expression that contains one or more λ-terms. This is easy:

we will introduce a relation lam(x,φ) and we will adopt a format similar to that of the

quantified expressions. The formula λx.λy.loves(y,x), for example, can be now written

as lam(x,lam(y,loves(y,x))) – a λ-expression having as an argument another λ-

expression. We can use the same approach for an inclusion relation, which we are

going to use for handling plurar nouns and generalized quantifiers like “most”. For

this purpose, we represent relations of the form x ∈ y by a binary relation inc(x,y).

Finally, we need a notation for functional application, the process of combining two

logical forms in order to derive a new one. Again, we can simply introduce a binary

3Of course, our new theory does not require existentials. We include this relation just for demonstra-
tion purposes.

Chapter 4. Methodology 47

relation of the form app(φ,ψ). This will be an instruction to our system for applying

the λ-calculus manipulation on the two expressions and producing a new logical form.

Figure 4.5 presents a diagram with the class hierarchy of our design. We can see

that every relation introduced in the previous paragraphs is represented by a separate

class. The basic point here is that all objects have the same superclass Expression, so

for every object holds an is-a relationship with this class. For our purposes, this simply

means that every object can be used as an argument (sub-expression) to every other

object. This object composition technique allows us to represent arbitrarily complex

expressions.

Expression

LambdaAbstraction FunctionalApplication FirstOrderExpression Variable SkolemTerm

Quantification Conjunction ...

BindingTerm PlainVariable

Lambda Quantified

GeneralizedST

GenericPredicate

Constant

Figure 4.5: Class diagram for the λ-calculus Java library

4.2.2 Beta-conversion

The previous section described in some detail the basic data structures for our library,

but it did not attempt any description of the underlying algorithmic mechanism. So,

before we proceed to the discussion for the exact form of the generalized skolem terms

objects, we need to address this important issue.

λ-calculus works with the following way: Every time that a λ-expression of the

form λx.φ has to be combined with some other expression ψ using functional applica-

tion, the λx term at the left is thrown away and every occurrence of x in φ is replaced

by ψ. This process is called β-conversion and lies at the core of a λ-calculus system.

Chapter 4. Methodology 48

In order to implement such a mechanism for our library, we follow the stack-based

method described in Blackburn and Bos (2005) for their Prolog system. Our approach

can be described as follows:

• When the expression that is currently been processed is an application, we push

its argument to the stack, and we discard the outermost application object.

• If the expression is a λ-abstraction, we throw away the λ-term, and we pop the

item at the top of the stack and substitute it for every occurrence of the correlated

variable.

• If the expression we are working with is neither an application nor a λ-abstraction,

we attempt to first β-convert its sub-expressions.

As an example4, suppose that we need to get the logical form for the sentence “John

loves Mary”. In our prefix notation, and with the appropriate application relations

added, our expression has the following form before β-conversion:

(12) app(app(lam(x,lam(y,loves(y,x))),mary),john)

In order to β-convert (12), we begin by pushing the expression in the stack. The

rest of the process is described in Table 4.3.

Expression Stack

1 app(app(lam(x,lam(y,loves(y,x))),mary),john) []

2 app(lam(x,lam(y,loves(y,x))),mary) [john]

3 lam(x,lam(y,loves(y,x))) [mary,john]

4 lam(y,loves(y,mary)) [john]

5 loves(john,mary) []

Table 4.3: β-conversion for the sentence “John loves Mary”

In Step 1, the argument of the application, john, is pushed in the stack and we

throw away the outer object. Our new expression is again an application, so in Step 2

we again push its argument, mary, to the stack and throw away the outer object. Now

in Step 3 we have a λ-abstraction, so we pop the first entry of the stack (mary) and

substitute for every occurrence of x (only one here, in predicate loves). By discarding

the outer object, we get another λ-abstraction in Step 4. We repeat the same procedure

for john, and this leaves us with an empty stack and the β-converted form of Step 55.
4Adapted by Blackburn and Bos (2005), p. 76.
5A more complicated case is demonstrated in Table 4.4.

Chapter 4. Methodology 49

4.2.3 Alpha-conversion

The mechanism introduced in the previous section requires an important addition in

order to function properly. Specifically, there are certain problems that can arise from

careless use of variable names in the expressions that participate in an application.

Imagine, for example, that we wish to combine the logical form for “every man”

λq.∀x[man(x)→ q(x)] with the logical form of “loves a woman” λy.∃x[woman(x)∧
love(y,x)]6. The first steps of β-reduction we will produce the intermediate form

(13) ∀x[man(x)→ λy.∃x[woman(x)∧ love(y,x)](x)]

where the notation λy.∃x[woman(x)∧ love(y,x)](x) is used to denote application be-

tween the λ-abstraction at the left and the variable x. The problem now is obvious:

such an application will substitute x for every occurrence of y in the λ-abstraction,

producing the following wrong result:

(14) ∗∀x[man(x)→∃x[woman(x)∧ love(x,x)]]

The solution to this problem is to replace the expression that acts as a functor,

in this example, λy.∃x[woman(x)∧ love(y,x)], with some other α-equivalent expres-

sion in which the variables bound by some quantifier are not in conflict with the vari-

able that acts as an argument. One such expression in the previous case would be

λy.∃z[woman(z)∧ love(y,z)]. In that case, the application of this expression to x would

provide the result:

(15) ∀x[man(x)→∃z[woman(z)∧ love(x,z)]]

which is a correct representation of the meaning of the sentence “Every man loves a

woman”.

In our design, the responsibility of α-conversion has been delegated to λ-terms

(represented by objects of type LambdaVariable). Before the λ-term object proceeds

to substitute its bounded variable with some argument, it scans the overall object struc-

ture to verify if there are any α-conversions that should be performed first. If such a

case is located, the λ-term selects a name not used anywhere else and renames accord-

ingly the problematic variable.

6Again, we will use a non-skolemized form of a formula since it serves better our purposes for this
example.

Chapter 4. Methodology 50

4.2.4 Self-application and other transformations

In the context of the λ-calculus operations, some non-typical cases of manipulation

can emerge that need special treatment by our library. Perhaps the most frequent of

them is the case of self-application, where a λ-expression waits for a predicate that it

then applies on itself. This is, for example, the typical logical form for NPs:

(16) a. Mary ` NP : λq.q(mary)

b. a book ` NP : λq.q(skolem(book))

Suppose we want to combine the logical form of a transitive verb, λx.λy.loves(y,x),

with the first of the above expressions. If we just follow the stack-based procedure de-

scribed in Section 4.2.2, the term λx will be consumed by λq.q(mary) and we will end

up with something like λy.loves(y,λq.q(mary)), which of course is not the expected

outcome. An easy way to overcome the problem is to simply swap the positions of the

two operands in the application before the β-conversion, that is, use λq.q(mary) as the

left operand and λx.λy.loves(y,x) as the right operand. This simple work-around will

indeed give us the required result, but works only with very simple cases such those in

(16). Let’s imagine, for example, that our parser needs to combine the logical forms

below:

(17) a. loves ` (S\NP)/NP : λx.λy.loves(y,x)

b. every woman ` NP : λq.∀y[woman(y)→ q(y)]

The β-conversion between these two constituents will yield the following trans-

formations: first, q is substituted by λx.λy.loves(y,x), so the new expression (after the

appropriate α-conversion) is ∀y[woman(y)→ λx.λz.loves(z,x)(y)]. This involves a fur-

ther application for the sub-expression λx.λz.loves(z,x)(y), with our final expression

to be

(18) ∀y[woman(y)→ λz.loves(z,y)]

However, in this form λz.loves(z,y) is not further reducible, since the remaining

slot in the predicate loves, represented by term λz, will not have a chance to be sub-

stituted by any expression. In such cases, the λ-terms representing the unfilled slots

should be moved outside of the brackets:

(19) λz.∀y[woman(y)→ loves(z,y)]

Chapter 4. Methodology 51

In order to capture such cases we apply a certain amount of pre-processing to the

operands of an application. Instead of attempting to swap their positions, like in the

case of self-application, we transform the left operand by introducing an additional

λ-term that can be used for guiding the proper application of the right term. In our pre-

vious case, for example, the logical form of the transitive verb will be first transformed

to

(20) λw.λy.w(λx.loves(y,x))

It is instructive to see how this allows the right kind of β-conversion. Table 4.4

shows the detailed states of our β-conversion stack, but this time using a mixed notation

in order to not clutter things (prefix for application, infix for everything else).

Expression Stack

1 app(λw.λy.app(w,λx.loves(y,x))), []

↪→ λq.∀z[woman(z)→ app(q,z)])

2 λw.λy.app(w,λx.loves(y,x)) [λq.∀z[woman(z)→ app(q,z)]]

3 λy.app(λq.∀z[woman(z)→ app(q,z)],λx.loves(y,x)) []

3.1 app(λq.∀z[woman(z)→ app(q,z)],λx.loves(y,x)) []

3.2 λq.∀z[woman(z)→ app(q,z)] [λx.loves(y,x)]

3.3 ∀z[woman(z)→ app(λx.loves(y,x),z)] []

3.3.1 app(λx.loves(y,x),z) []

3.3.2 λx.loves(y,x) [z]

3.3.3 loves(y,z) []

3.4 ∀z[woman(z)→ loves(y,z)] []

4 λy.∀z[woman(z)→ loves(y,z)] []

Table 4.4: β-conversion for a more complicated case

The lines in which the numbering is getting more specific (e.g. from 3 to 3.1) indi-

cate points where the outer expression at the left is not further reducible and the process

has to β-convert its sub-expressions. Of course, this transformation technique has to

be generalized for predicates of an arbitrary arity. So, for every application where one

term has the form λq.(. . .q(x) . . .) and the other the form λx.λy. . . . pred(x,y, . . .), the

latter is transformed to:

(21) λw.λy. . . .w(λx.pred(x,y, . . .))

Chapter 4. Methodology 52

4.2.5 Implementation of Generalized Skolem Terms

As we can see in the class diagram of Figure 4.5, our design supports the skolem-

ization process by two different objects, SkolemTerm and GeneralizedSkolemTerm.

The first object corresponds to the unspecified form of a skolem term, as discussed in

Section 2.6. Such an object includes a list of specifications, which in the beginning

of the derivation is empty. Every time the environment (that is, the set of quantifiers

within whose scope the skolem term falls) changes, a new generalized skolem term

object is created, and this new object is added to the list of the specifications. By the

end of the derivation, the generic “unspecified” form will be linked with all possible

alternative readings, as shown in Figure 4.6.

GeneralizedSkolemTerm
(Specification1)

SkolemTerm

GeneralizedSkolemTerm
(Specification2)

GeneralizedSkolemTerm
(Specification3)

Object references
(pointers)
to specifications

Figure 4.6: A skolem term object with its specifications

It is important at this point to clarify that the contents of the specification list are

not complete objects but object references, that is, the Java equivalent of pointers in

other languages (numbers that indicate the memory address in which the actual object

is stored). In other words, the multiple specified readings are efficiently stored as

a single linked packed structure that is shared among the other parts of the logical

expression. For the sentence “A boy ate a pizza”, this packed structure would have the

following form at the end of the derivation (the brackets represent disjunctive packing

of the chart):

(22) ate(

{
skolem′

sk′

}
boy′,

{
skolem′

sk′

}
pizza′)

4.2.6 CKY modifications

Now we have finally set almost every detail that is required in order to modify the core

of our parser, the CKY algorithm. Actually, this is a rather trivial task given all the

Chapter 4. Methodology 53

above preparation. The only thing we have to do is to introduce an additional step in

the inner loop of the algorithm, which we call skolem term specification7. If ΛA is the

logical form of a result category A that has been produced by the application of some

CCG rule, then this step will proceed as follows:

(23) Skolem term specification:

1. For each skolem term ST in the logical form Λ, collect the new environment

of ST .

2. If the new environment is different than the old environment, specify a new

Generalized Skolem Term and add it to the specifications list of ST .

The collection of the environment is actually trivial due to our design, and is shown

in Figure 4.7. Since the skolem term forms part of a nested structure, the environment

is always implicit and readily available, without requiring from us to pass some list of

bound variables from the daughters to the parent, introducing further computational

cost. The skolem term can simply backtrack from parent to parent, following the

pointers, and collect each bound variable every time it reaches a quantified expression.

all(y,
 imp(woman(y),
 all(x,
 imp(and(man(x),
 read(x,sk'book)
),
 loves(x,y)
)
)
)

Figure 4.7: Collecting the environment of a skolem term

To make things clearer, we have included an example of a derivation for the simple

sentence “Everybody needs somebody”, that can be found in Figure 4.8. The figure at

the top left (a) depicts the chart in its initial condition, after the assignment of the log-

ical forms to every word. Note that word somebody has been assigned to the category

λq.q(skolem(person)), following our new semantic theory. Since this is the first step

in the derivation, and there is no old environment for the skolem term skolem(person),

the system proceeds to a specification creating the “constant” skolem form sk{}person

and linking it with the unspecified form (part b). Next, the system combines needs
7See also Algorithm 2.1 in page 19.

Chapter 4. Methodology 54

with somebody, leaving the chart at the state showed in part c. In this case, there is

no change to the environment, so the specification step does not alter the current state

of the skolem term. Now the system proceeds to the combination of everybody with

needs somebody, yielding the logical form of part d at the top-right cell of the chart.

However, now the environment has been changed, since the skolem term in 4.8d falls

within the scope of the quantified variable x. Therefore, the specification step yields a

new generalized skolem term sk{x}person. So at the end of the derivation (part e) we have

the required result: two specifications corresponding to all possible quantifier scopes

(the final state also includes the unspecified form, which essentially is a “container”

for all the specifications).

everybody

needs

somebody

q.∀ x [personx q x ]

 x . y . needsy ,x 

q. q skolem ' person

(a)

everybody

needs

somebody

q.∀ x [personx q x ]

 x . y . needsy ,x 

q. q {skolem'sk ' } person ' 

(b)

everybody

needs

somebody

q.∀ x [personx q x ]

 x . y . needsy ,x 

q. q {skolem'sk ' } person ' 

 y.needs  y ,

{skolem 'sk ' } person ' 

(c)

everybody

needs

somebody

q.∀ x [person x q x ]

 x . y . needsy ,x 

q. q {skolem'sk ' } person ' 

∀ x [person x 

needs  x , {skolem'sk ' } person ' ]
 y.needs  y ,

{skolem 'sk ' } person ' 

(d)

everybody

needs

somebody

q.∀ x [person x q x ]

 x . y . needsy ,x 

q. q {skolem'sk ' } person ' 

∀ x [person  x 

needs  x , {
skolem'
sk '
sk '  x } person ' ]

 y.needs  y ,

{skolem 'sk ' } person ' 

(e)

Figure 4.8: A sample derivation for the sentence “Everybody needs somebody”

Chapter 4. Methodology 55

4.2.7 The semantic lexicon

In this section we will describe the semantic lexicon of our parser, the repository for

storing the semantic representations. We adopt a simple form that allows various de-

grees of grouping between categories and words. Each entry is comprised by a de-

scriptive title, a list of CCG categories, a list of surface forms, and a logical expression

in the prefix notation introduced in Section 4.2.18. The entry for universal quantifiers,

for example, could have the following form:

(24) [universal]

categories: (S/(S\NP))/N|NP/N

words: every|each|all

LF: lam(p,lam(q,all(x,impl(app(p,x),app(q,x)))))

The lists of categories and words can be empty (but not at the same time for the

same group): An empty category list means that every word in the word list will

take the specified logical form, regardless its assigned CCG category; respectively,

an empty word list means that all lexical entries that has been assigned to one of the

specified categories should get the given logical form. This second case is useful for

open-class lexical items. For such cases, the logical form contains the placeholder

<word>, which is an instruction for the system to instantiate the lexical semantics us-

ing the surface form. The group for adjectives, for example, is the following:

(25) [adjectives]

categories: N/N

LF: lam(p,lam(x,and(<word>(x),app(p,x))))

This instructs the parser that every word w with the category N/N should get the

logical form λp.λx.w(x)∧ p(x). On the other hand, groupings with both a category and

a word list (like in 24), or with just a word list, represent closed-class lexical items,

where the semantics should be defined for each lemma individually. In such cases, it is

not unusual for the word list to contain just one lexical item, as in the case of the word

not:

(26) [not]

categories: (S\NP)\(S\NP)

8The only reason we use prefix notation in the lexicon is that it simplifies the translation of an
expression to the internal nested object structure that our system uses. In principle, we could also use
infix notation or some other representation compatible with our formalism.

Chapter 4. Methodology 56

words: not

LF: lam(v,lam(q,lam(f,not(app(app(v,q),f)))))

4.2.8 Integration of semantics to the system

Having all the necessary information, we are now in position to provide a general

workflow of our system concerning the semantic manipulation: After the assignment

of lexical categories by the supertagger, the parser consults the semantic lexicon in

order to allocate appropriate semantic forms to every word. Then, control is passed

to the CKY algorithm, which starts to produce new results according to CCG rules.

Now, for every new result A that is accepted by the probabilistic model and has been

produced by the application of a rule R to a pair of input categories 〈B,C〉, with logical

forms 〈ΛB,ΛC〉, the semantic component creates a new λ-abstraction for 〈ΛB,ΛC〉 and

attemps to β-convert it by taking in consideration the originating combinatory rule

R. This produces a new semantic form ΛA that will be assigned to result A. More

specifically, we apply semantic support to forward and backward application (FAPP

and BAPP, respectively) and all the versions of forward and backward composition

(FCOMP and BCOMP, respectively)9. Table 4.5 presents the exact way in which the

logical forms are combined.

Rule λ-abstraction

FAPP(ΛB,ΛC) ΛA = app(ΛB,ΛC)

BAPP(ΛB,ΛC) ΛA = app(ΛC,ΛB)

FCOMP(ΛB,ΛC) ΛA = λx̄.app(ΛB,app(x̄,ΛC))

BCOMP(ΛB,ΛC) ΛA = λx̄.app(ΛC,app(ΛB, x̄))

Table 4.5: Mapping of syntactic rules to semantic transformations

The treatment of forward and backward application is straightforward: we just

change the order of logical forms in the case of backward application. However, com-

position is more involved. In order for this rule to work properly, the λ-terms of the

predicate should be substituted in reverse order, that is, the inner term first. So, in

the above table, x̄ represents a vector containing the outer λ-terms of the predicate

that remain to be filled after the composition. Suppose, for example that we have the

following derivation:

9Currently the system is not supporting semantics for substitution.

Chapter 4. Methodology 57

(27) I gave Mary ten dollars

NP ((S\NP)/NP)/NP NP NP
>T : λx.λy.λz.give(z,x,y) : λq.q(Mary) : λq.q(dollars)

(S/NP)/NP
: λq.q(me)

>B2

(S/NP)/NP
: λx.λy.give(me,x,y)

>
S/NP : λy.give(me,Mary,y)

>
S : give(me,Mary,dollars)

In the forward composition betweeb I and gave, x̄ is (λx,λy). So, the semantic

reformulation, as presented in the third row of Table 4.5, follows these steps:

(28) 1. λx.λy.app(λq.app(q,me),λz.give(z,x,y))

2. λx.λy.(app(λz.give(z,x,y),me)

3. λx.λy.give(me,x,y)

giving the right result. Finally, we apply semantic transformations for a small num-

ber of unary rules, including the type-raising case. For example, the type-change

from a category N with logical form ΛN to NP will result in a new logical form

λq.q(skolem(ΛN)). For the type-raising case, a category C with logical form ΛC will

get the new form λq.q(ΛC).

4.2.9 Semantic output of the program

With the addition of the semantic component, each step of a derivation is now aug-

mented by the appropriate logical form. The logical forms are presented in a text infix

notation, as shown in Figure 4.9.

Most of the forms should be self-explanatory. However, we need to describe the

way in which the parser represents the new semantic elements, the skolem terms. We

use a packed form to represent all the readings that are available by the end of the

derivation. For example, the result for the sentence of Figure 4.9 in a more readable

format is the following:

(29) ∀x[theorem(x)→ proved(sk{}{x}logician,x)]

The different environments superscripting a skolem term, here sk{}{x}logician, represent

all the different specifications (i.e generalized skolem terms) that are linked with this

skolem term by the end of the derivation. This notation represents disjunctive packing:

A sentence with two skolem terms, for example, of the form ∀x[. . .sk{}{x}nom1 . . .sk{}{x}nom2 . . .]

has four different readings:

Chapter 4. Methodology 58

(lex) Some :- NP/N : lam:p.lam:q.q(skolem(p))

(lex) logician :- N : lam:x.logician(x)

(>) Some logician :- NP : lam:q.q(sk{lam:x.logician(x)}_{})

(lex) proved :- (S\NP)/NP : lam:x.lam:y.proved(y,x)

(lex) every :- NP/N : lam:p.lam:q.all:x[p(x)->q(x)]

(lex) theorem :- N : lam:x.theorem(x)

(>) every theorem :- NP : lam:q.all:x[theorem(x)->q(x)]

(>) proved every theorem :- S\NP : lam:y.all:x[theorem(x)->proved(y,x)]

(gram) type-changing3: S\NP => NP\NP

(tchange3) proved every theorem :- NP\NP : lam:y.all:x[theorem(x)->proved(y,x)]

(<) Some logician proved every theorem :- NP :

all:x[theorem(x)->proved(sk{lam:x.logician(x)}_{}_{x},x)]

Figure 4.9: The output of the parser with logical forms

(30) a. ∀x[. . .sk{}nom1 . . .sk{}nom2 . . .]

b. ∀x[. . .sk{}nom1 . . .sk{x}nom2 . . .]

c. ∀x[. . .sk{x}nom1 . . .sk{}nom2 . . .]

d. ∀x[. . .sk{x}nom1 . . .sk{x}nom2 . . .]

For the above example, then, our parser delivers two readings: One in which the

same ingenious logicial proved all theorems, and one in which every theorem has been

proved by some possibly different logicial.

(31) a. ∀x[theorem(x)→ proved(sk{}logician,x)]

b. ∀x[theorem(x)→ proved(sk{x}logician,x)]

There are some cases, however, where a parallel reading is enforced, as we saw in

(30) in Chapter 2 for the Geach sentence. For such cases, the parser uses an index to

indicate the parallelization, as follows:

(32) Every boy likes, and every girl detests, some saxophonist:

a. all:y[boy(y)->likes(y,sk{lam:x.saxophonist(x)}_{}_{y}<1>)]/\

all:y[girl(y)->detests(y,sk{lam:x.saxophonist(x)}_{}_{y}<1>)]

b. ∀y[boy(y)→ likes(y,sk{}{y}〈1〉:λx.saxophonist(x))]∧

∀y[girl(y)→ detests(y,sk{}{y}〈1〉:λx.saxophonist(x))]

This form corresponds to the following two readings:

(33) a. ∀x[boy(x)→ likes(x,sk{}
λsaxo)]∧∀y[girl(y)→ detests(y,sk{}saxo)]

Chapter 4. Methodology 59

b. ∀x[boy(x)→ likes(x,sk{x}
λsaxo)]∧∀y[girl(y)→ detests(y,sk{y}saxo)]

In general, a sentence with logical form ∀x[. . .skE1
〈1〉:nom1

. . .skEn
〈1〉:nom1

. . .], where n

is the number of different environments associated with the skolem term, has n distinct

readings:

(34) a. ∀x[. . .skE1
nom1 . . .skE1

nom1 . . .]

b. ∀x[. . .skE2
nom1 . . .skE2

nom1 . . .]

. . .

c. ∀x[. . .skEn
nom1

. . .skEn
nom1

. . .]

Chapter 5

Results

Our work for this project was essentially divided in two large parts: The construction

of the probabilistic parser and the subsequent development and integration of the se-

mantic component. We evaluate these two parts separately, mainly because despite

their strong association a good performance for one component does not necessarily

implies a similar performance for the other. Another practical reason is that although

there are many well-established measures for the syntactic parsing, the same is not

true for semantics. In fact, the evaluation of semantic analysis is usually performed

in an ad-hoc fashion, producing results that are not interpretable according to a glob-

ally accepted standard. In the case of our work, the purpose was to provide a proof

of concept that the theory we presented in Section 2.6 can offer an elegant solution to

specific problems which can rise from quantifier scope ambiguities, and this is exactly

the point in which we focus our evaluation efforts.

5.1 Syntactic parsing results

Traditionally, syntactic parsers are evaluated using the PARSEVAL metric suite (Black

et al., 1991), which is based on the information retrieval notions of precision and recall.

In the parsing context, precision shows us what fraction of the constituents returned by

the parser is correct, according to some “gold standard”. More formally:

P =
correct constituents in parsing result
total constituents in parsing result

(5.1)

On the other hand, recall gives the fraction of the correct constituents in the gold

standard that was eventually returned by the parser – in other words, it provides an

indication of how many correct constituents the parser has missed.

60

Chapter 5. Results 61

R =
correct constituents in parsing result
total constituents in gold standard

(5.2)

PARSEVAL provides two types of precision-recall metrics: one for unlabeled con-

stituents, where the above equations are applied to correct yields (groupings of adjucent

words) that the parser retrieves, and one for labeled constituents, where the metric takes

also in consideration the category of each constituent. The problem of this method (and

of any method that is based on the number of crossing brackets) is that it heavily pe-

nalizes the binary trees produced by a CCG parser compared with the flat trees of other

CFG parsers. The problem is purely arithmetical: a binary tree contains many more

bracketings than a non-binary, so the number of mismatches tends to be higher. As

Hockenmaier (2003) notes, there is an even more important problem: in many cases,

CCG produces many different but equivalent bracketings. Since the reference corpus

will contain just one of them as the “gold standard” parse, the exact score assigned to

the tree is a matter of chance.

For the above reasons, we also evaluate our model by examining the recovery of

word-word dependencies on local trees. For a tree 〈P,H,S〉, where P, H, and D are the

labels of the parent node, the head daugher, and the sister daughter in the local tree,

respectively, rel(wH ,wS) holds if wH is the head word of the head daughter and wS the

head word of the sister node. Again, there are two variations: the labeled dependencies

measure takes in account the labels P, H, and S, while the unlabeled dependencies

examines only the word-word relations.

Table 5.1 presents the results of our parser using the metrics discussed above, and

provides a comparison with all the state-of-the-art parsers for CCG that have been

developed so far. The table includes two more columns: Coverage shows the percent-

age of the test corpus for which our parser was able to get a parse, and LexCat is the

percentage of the correcty assigned lexical categories.

Parser Cov. LexCat LP LR BP BR 〈P,H,S〉 〈〉

Clark et al. (2002) 95.0 90.3 – – – – 81.8 90.0

Hockenmaier (2003) 99.8 92.2 82.2 82.4 86.2 86.4 85.1 91.4

Clark and Curran (2004b) 99.6 93.6 – – – – 86.4 92.3

SemCCG parser 96.6 92.4 68.9 70.6 76.2 75.8 71.8 78.8

Table 5.1: Parsing results of SemCCG parser on Section 23 of CCGbank

The use of Clark and Curran’s supertagger provides to our parser a lexical cate-

Chapter 5. Results 62

gory accuracy of 92.4%, and the performance of the probabilistic model is sufficiently

acceptable to guide the derivations in a way that offers a coverage of 96.6%, making

the parser really “wide-coverage”. Of course, compared to state-of-the-art parsers, the

results for PARSEVAL and head dependencies are less than optimal. We should note

though that the fine-tuning of a propabilistic parser is a task worthing months of ex-

perimentation by its own right, and certainly this amount of time is not available in

the context of an MSc thesis. Our intention was to get an acceptable performance that

would support and not undermine the semantic manipulation which was the central

point of this work. We think we achieved that.

5.2 Semantic evaluation

We evaluate the semantic aspect of our parser on about 30 selected sentences that

present a wide range of linguistic challenges, most of which are related to the quantifier

scope ambiguity problem. Additionally, we provide the logical forms as delivered by

the parser for about 20 sentences from the quantifier section of FraCaS test suit (Cooper

et al., 1996), as an independent set of test cases created by some other source.

One important problem we faced during this task was that in many cases the proba-

bilistic model was simply too weak to provide us the expected kind of syntactic deriva-

tion that would allow the proper manipulation in the level of the logical form. To

present an example, in the analysis of the sentence “Every man who reads a book

loves a woman” the parser always opted to combine first man and every instead of

creating the full form of the subject, man who reads a book. This blocked the seman-

tic derivation, since the two constituents every man and who reads a book cannot be

subsequently combined in a semantics level. This is shown in the following (partial)

diagram:

(1) Every man who reads a book

NP N (NP\NP)/(S\NP) (S\NP)/NP NP
: λp.λq.∀x[p(x)→ q(x)] : λx.man(x) : λq.λn.λy.n(y)∧q(y) : λx.λy.reads(y,x) : skolem(book)

> >
NP : λq.∀x[man(x)→ q(x)] S\NP : λy.reads(y,skolem(book))

>
NP\NP : λn.λy.n(y)∧ reads(y,skolem(book))

<
NP :×

The nature of such problems is purely statistical: The model disfavours the con-

stituent man who reads a book simply because there is no data in the training corpus to

support it, so at some point is pruned by the beam-search process1. Since our goal here
1In order to ensure that this was not some flaw of our model, we cross-checked the sentence by

Chapter 5. Results 63

was to test the semantic theory and the capacity of our library under very specific lin-

guistic configurations, we needed a higher level of control on the way that constituents

can be composed. So, in order to overcome such situations, we created a testing envi-

ronment which allows us to control the exact way in which syntactic derivation takes

place. The input of this environment is bracketed sentences, like the following:

(2) (((every (man (who (reads (a book)>)>)>)<)> loves)F (every woman)>)>

where the symbols >, < , F, and B state the rule that should apply to the specific brack-

eting (forward and backward application, and forward and backward composition, re-

spectively).

All the logical forms provided below have been derived by the toTex() method

of our library, in the form that is explained in detail in Section 4.2.9. Here, we briefly

repeat for convenience the basic skolem term conventions: the different environments

superscripting a skolem term, for example, sk{}{x}donkey, represent all the disjunctive read-

ings that are available by the end of the derivation. On the other hand, a subscript of the

form 〈n〉 denotes a parallelization between two or more skolem terms with the same

nominal property.

5.2.1 Generic evaluation

The sentences have been divided in some general (and in some cases, rather arbitrary

and overlapping) categories – when appropriate, we have included comments explain-

ing the aspect being tested and how our program is handling the case.

General

Some simple sentences demonstrating the basic concept. In (2) we can also see a scope

invertion case.

1. Everybody loves somebody:

I ∀y[person(y)→ loves(y,sk{}{y}
λx.person(x))]

2. Somebody loves everybody:

I ∀x[person(x)→ loves(sk{}{x}
λx.person(x),x)]

getting a derivation from Clark and Curran’s parser, which is also trained using CCGbank. We got
exactly the same syntactic analysis.

Chapter 5. Results 64

Donkey sentences

Donkey sentences present a kind of quantifier problem first observed by Geach (1962).

In cases like (3a), the pronoun seems to be bound in an existential quantifier associated

with the NP a donkey. However, this is not allowed by any kind of syntactic analysis.

The interpretation of the NP as a skolem term provides a solution, although a complete

treatment would require some mechanism of pronominal anaphora resolution, binding

the pro-term pro to the skolem term before the beginning of the derivation. Our tool

does not carry such a mechanism, so the logical form below provides just an indication

for the feasibility of this account.

3. (a) Every farmer who owns a donkey feeds it:

I ∀x[f armer(x)∧owns(x,sk{}{x}donkey)→ f eeds(x, pro)]

(b) Every farmer who owns a fat donkey feeds it:

I ∀x[f armer(x)∧owns(x,sk{}{x}
λx. f at(x)∧donkey(x))→ f eeds(x, pro)]

The basic “donkey” concept is demonstrated in (3a). The interesting point of

the variation in (3b) is that the nominal property of a skolem term can be an

arbitrarily complex expression.

4. Some farmer owns every donkey:

I ∀x[donkey(x)→ owns(sk{}{x}
λx. f armer(x),x)]

Another case of scope inversion.

Scope asymmetries

In this category we examine cases involving possible asymmetries in the scope of noun

phrases, as exemplified by the Geach sentence (Geach, 1972) in (5).

5. Every boy likes, and every girl detests, some saxophonist:

I ∀y[boy(y)→ likes(y,sk{}{y}〈3〉:λx.saxophonist(x))]∧

∀y[girl(y)→ detests(y,sk{}{y}〈3〉:λx.saxophonist(x))]

The subscript 〈3〉 in the above logical form2 implies that the readings are not

disjunctive – that is, the system returns only the two predicted readings, where

the saxophonist retains the same scope for both constituents:

2In the output of the system in (5) we can see that the quantified variable is the same (y) for both
boys and girls. This is actually not a problem, since the two quantified expressions are totally separate
and there is no need for the parser to α-convert them.

Chapter 5. Results 65

(3) a. ∀x[boy(x)→ likes(x,sk{}saxo)]∧∀y[girl(y)→ detests(y,sk{}saxo)]

b. ∀x[boy(x)→ likes(x,sk{x}saxo)]∧∀y[girl(y)→ detests(y,sk{y}saxo)]

6. Some woman detests every saxophonist and every pianist:

I ∀z[saxophonist(z)→ detests(sk{}{z}〈3〉:λx.woman(x),z)]

∧∀a[pianist(a)→ detests(sk{}{a}〈3〉:λx.woman(x),a)]

I ∀x[saxophonist(x)→∀z[pianist(z)→ detests(sk{}{z,x}〈3〉:λx.woman(x),x)

∧detests(sk{}{z,x}〈3〉:λx.woman(x),z)]]

In both logical forms delivered for this sentence there are only two distinct read-

ings (as denoted by the subscripts of skolem terms), one in which some woman

has wide scope, and one in which it has narrow scope and is dependent on both

universals. Again, there is no mixed reading.

7. Some woman detests every saxophonist and likes every pianist:

I ∀z[saxophonist(z)→ detests(sk{}{z}〈3〉:λx.woman(x),z)]

∧∀z[pianist(z)→ likes(sk{}{z}〈3〉:λx.woman(x),z)]

Another variation of a sentence that could result in a possible scope asymmetry.

The system once again delivers only two distinct readings.

8. (a) Some woman likes and John detests every saxophonist:

I ∀x[saxophonist(x)→ likes(sk{}{x}
λx.woman(x),x)∧detests(john,x)]

(b) Some woman likes and every man detests every saxophonist:

I∀x[saxophonist(x)→ likes(sk{}{x}
λx.woman(x),x)∧∀y[man(y)→ detests(y,x)]]

The above sentences are interesting cases where a non-paraller reading is al-

lowed. Here, some woman can be a constant or a function of every saxophonist

irrespectively of the state of the other constituent. In (8a) this other constituent

is a constant (John), while in (8b) is a universal. In both cases the system returns

the correct interpretations.

Intermediate scope

The following sentences present complex dependencies between the so-called existen-

tial and universal quantifiers that can lead to intermediate scope readings.

9. Every man who reads a book loves every woman:

I ∀x[man(x)∧ reads(x,sk{}{x}book)→∀z[woman(z)→ loves(x,z)]]

I ∀x[woman(x)→∀y[man(y)∧ reads(y,sk{}{y}{y,x}book)→ loves(y,x)]]

Chapter 5. Results 66

This case is exhaustively examined in Steedman (2010). If we unpack the above

logical forms (each one of which corresponds to a different syntactic derivation),

we get the following five readings:

(4) a. ∀x[man(x)∧ reads(x,sk{}book)→∀z[woman(z)→ loves(x,z)]]

b. ∀x[man(x)∧ reads(x,sk{x}book)→∀z[woman(z)→ loves(x,z)]]

c. ∀x[woman(x)→∀y[man(y)∧ reads(y,sk{}book)→ loves(y,x)]]

d. ∀x[woman(x)→∀y[man(y)∧ reads(y,sk{y}book)→ loves(y,x)]]

e. ∀x[woman(x)→∀y[man(y)∧ reads(y,sk{y,x}book)→ loves(y,x)]]

We can see that readings (4a)-(4c) and (4b)-(4d) differ only in the order of the

two universal quantifiers, so we can consider them model-theoretically equiva-

lent: The first pair corresponds to the wide-scope reading for a book, while the

second pair is the narrow scope reading, where a book depends on men. There

is also a third reading (4e), where the skolem term depends on both men and

women. However, the fact that there is no reading in which a book is depen-

dent solely on women means that (4e) is again model-theoretically equivalent

to the narrow scope reading, where books depends only on men. So, equipped

with a rather trivial filtering mechanism, our parser would be able to provide the

following output:

(5) a. ∀y[man(y)∧ reads(y,sk{}book)→∀x[woman(x)→ loves(y,x)]]

b. ∀y[man(y)∧ reads(y,sk{y}book)→∀x[woman(x)→ loves(y,x)]]

As Steedman notes, this constitutes an important difference from underspeci-

fication and storage approaches, where the decoupling between syntactic and

semantic derivation allows the problematic reading where a book depends solely

on women (Hobbs and Shieber, 1987; Cooper, 1983; Copestake and Flickinger,

2000).

10. (a) Some teacher showed every pupil every movie:

I ∀x[movie(x)→∀y[pupil(y)→ show(sk{}{y}{y,x}
λx.teacher(x),y,x)]]

(b) Every student studied every paper by some author:

I ∀x[student(x)→∀z[paper(z)∧by(z,sk{}{z}{z,x}
λx.author(x))→ study(x,z)]]

Some variations of the previous case. In (10a) there is no reading where the

teacher depends solely on movies, while in (10b) again an author is not depen-

dent solely on students.

Chapter 5. Results 67

Spurious readings

The benefit of eliminating existential quantifiers from a logical form is the simplifi-

cation of the form and the restriction of spurious (equivalent) readings that can be

produced during the derivation. The following group of sentences demonstrates that in

every case the system derives only the necessary readings.

11. (a) Some representative showed some company some sample:

I show(sk{}
λx.repr(x),sk{}

λx.company(x),sk{}
λx.sample(x))

(b) Some representative of some company saw some sample:

I see(sk{}
λx.repr(x)∧o f (x,sk{}

λx.company(x))
,sk{}

λx.sample(x))

The output for these sentences shows just one reading, since there is no univer-

sal quantifier within the scope of which any skolem term can fall. The second

sentence also presents a more interesting case of a complex nominal property,

embedding another skolem term.

12. (a) Every representative of some company saw some sample:

I ∀y[repr(y)∧o f (y,sk{}{y}
λx.company(x))→ see(y,sk{}{y}

λx.sample(x))]

(b) Every representative showed some company some sample:

I ∀z[repr(z)→ show(z,sk{}{z}
λx.company(x),sk{}{z}

λx.sample(x))]

Both of the above sentences have four readings, since the sample and the com-

pany skolem terms can depend or not on the representative, based on their exact

specification time.

Coordination

The purpose of this group is to examine a wide range of coordination cases and how

the semantic compontent addresses them.

13. John likes peanuts and spinach:

I likes(john, peanuts∧ spinach)

Simple coordination over NPs.

14. I like and you detest music

I like(me,music)∧detest(you,music)

A simple case of coordination between verb phrases.

Chapter 5. Results 68

15. (a) Every man walks and talks:

I ∀x[man(x)→ walks(x)∧ talks(x)]

(b) Every man walks or talks:

I ∀x[man(x)→ walks(x)∨ talks(x)]

The above sentences test the distribution of universal quantifiers over conjunc-

tion and disjunction, with the expected results.

16. (a) Some man walks and talks:

I walks(sk{}〈3〉:λx.man(x))∧ talks(sk{}〈3〉:λx.man(x))

(b) Some man walks or talks:

I walks(sk{}〈3〉:λx.man(x))∨ talks(sk{}〈3〉:λx.man(x))

Distributivity of skolem terms over conjunction and disjunction. Although re-

dundant in this case, since there is only one available reading, we can see that

the identical index 〈3〉 enforces a paraller interpretation of the coordinated parts.

17. (a) Every man and every woman:

I λx.∀y[man(y)→ x(y)]∧∀y[woman(y)→ x(y)]

(b) Every man and every woman walks:

I ∀y[man(y)→ walks(y)]∧∀y[woman(y)→ walks(y)]

(c) Every man and every woman likes chocolate:

I ∀y[man(y)→ likes(y,chocolate)]∧∀y[woman(y)→ likes(y,chocolate)]

(d) Every man and every woman walks or talks:

I∀y[man(y)→walks(y)∨talks(y)]∧∀y[woman(y)→walks(y)∨talks(y)]

Coordination of universally quantified NPs for a range of cases. (17a) demon-

strates the basic logical form, (17b) and (17c) show the behaviour on intransitive

and transitive verbs, and (17d) presents a more complicated case including an

additional level of distribution over disjunction.

18. (a) Some man and some woman:

I λr.r(sk{}
λx.man(x))∧ r(sk{}

λx.woman(x))

(b) Some man and some woman walks:

I walks(sk{}
λx.man(x))∧walks(sk{}

λx.woman(x))

(c) Some man and some woman likes chocolate:

I likes(sk{}
λx.man(x),chocolate)∧ likes(sk{}

λx.woman(x),chocolate)

Chapter 5. Results 69

(d) Some man and some woman walks or talks:

I (walks(sk{}〈3〉:λx.man(x))∨ talks(sk{}〈3〉:λx.man(x)))

∧ (walks(sk{}〈4〉:λx.woman(x))∨ talks(sk{}〈4〉:λx.woman(x)))

Coordination of indefinite NPs, in a setting similar to the one for universals in the

previous sentence group. In (18a) we can see the basic form of a such a sentence,

which is derived by using the following lexicon entry for the conjunction:

(6) and ` (NP$1\NP$1)/NP$1 : λx.λy.λr.r(y)∧ r(x)

Especially interesting is case (18d), where the indefinite NPs are distributed over

an additional level of disjunction. The indices 〈3〉 and 〈4〉 enforce the parallel

readings.

Generalized quantifiers

The implementation of generalized quantifiers like “most” or “few” in our system

is still basic, since the cardinality properties of generalized skolem terms are simple

strings that essentially are used as labels. Despite this, the parser can deliver the in-

tendent meaning in most of the cases. In our experiments, every verb with plular

agreement, say read, gets a category of the following form:

(7) read ` (S\NP)/NP : λx.λy.∀z[z ∈ y→ read(z,x)]

In sentences like “Four students read a book”, this category allows both a collec-

tive reading, where all students read the same book (8a), and a distributive reading

where each student reads a possibly different book (8b) – each reading corresponds to

a different scoping possibility for the skolem term a book:

(8) a. ∀z[z ∈ sk{}students; f our→ read(z,sk{}book)]

b. ∀z[z ∈ sk{}students; f our→ read(z,sk{z}book)]

Note that if we just continue to use the conventional logical form λx.λy.read(y,x),

the system will be able to delive only the collective reading:

(9) read(sk{}students; f our,sk{}book)

A more extensive set of generalized quantifier cases, taken from FraCaS test suite,

can be found in Section 5.2.2.

Chapter 5. Results 70

19. Most farmers own a donkey:

I ∀z[z ∈ sk{}f armers;most → own(z,sk{}{z}donkey)]

A simple case of using most. The system delivers both a collective and a dis-

tributive reading.

20. Most farmers who own a donkey feed it:

I ∀z[z ∈ sk{}
λy. f armers(y)∧owns(y,sk{}donkey);most

→ f eed(z, pro)]

A slightly more complicated case. This differs from (19) in that the cardinality

property most is now attached to the whole phrase “farmers who owns a donkey”.

However, this example reveals also a flaw of the system. The inner skolem term

skdonkey fails to specify a new generalized form sk{x}donkey when it falls into the

scope of the universal.

21. Three boys ate a pizza:

I ∀z[z ∈ sk{}
λx.boys(x);three→ ate(z,sk{}{z}

λx.pizza(x))]

Again, the parser returns both readings.

5.2.2 Evaluation on Fracas framework

In this section we test our parser in a set of sentences taken by the FraCaS framework,

a test suite created for textual entailment. The part of FraCaS that is devoted to gen-

eralized quantifiers contains 80 cases, each of which consists of one or two premises

and a question. A textual entailment system must provide an answer to the question of

the form “yes”, “no”, or “don’t know”, given the specific premises. What we did was

to use the premises of the first set of cases as a test suite for our tool. The reason we

did not test a larger number of sentences was purely practical, since for every sentence

we had to prepare an appropriate lexicon for our testing environment manually. On

the other hand, since the framework aims to test not quantifier scope ambiguities but

entailment, most of the sentences were very similar to each other, so the usefulness of

a larger test set from this source would be limited.

Most of the following sentences contain generalized quantifiers, an aspect in which

our parser in its current form provides limited support. In order to get consice forms,

we use the following logical form for the verb “are”:

(10) are ` (S\NP)/NP : λp.λx.∀z[z ∈ x→ p(z)]

Cases where the logical form is wrong are marked with an asterisk (∗).

Chapter 5. Results 71

1. An Italian became the greatest tenor:

I became(sk{}
λx.Italian(x),λx.greatest(x)∧ tenor(x))

2. Every Italian man wants to be a great tenor:

I ∀y[Italian(y)∧man(y)→ wants(y,sk{}{y}
λx.great(x)∧tenor(x))]

3. Some Italian men are great tenors:

I ∀z[z ∈ sk{}
λx.Italian(x)∧men(x);some→ great(z)∧ tenors(z)]

4. All Italian men want to be a great tenor:

I ∀y[Italian(y)∧men(y)→ wants(y,sk{}{y}
λx.great(x)∧tenor(x))]

5. ∗ Each Italian tenor wants to be great:

I ∀x[Italian(x)∧ tenor(x)→ wants(x,λz.great(z))]

6. No great tenors are modest:

I ¬(∀z[z ∈ λx.great(x)∧ tenors(x)→ modest(z)])

7. Some Italian tenors are great:

I ∀z[z ∈ sk{}Italian(λx.tenors(x));some→ great(z)]

8. The really ambitious tenors are Italian:

I ∀z[z ∈ λx.ambitious(x)∧ tenors(x)→ Italian(z)]

9. Some great tenors are Swedish:

I ∀z[z ∈ sk{}
λx.great(x)∧tenors(x);some→ Swedish(z)]

10. Many great tenors are German:

I ∀z[z ∈ sk{}
λx.great(x)∧tenors(x);many→ German(z)]

11. Several great tenors are British:

I ∀z[z ∈ sk{}
λx.great(x)∧tenors(x);several → British(z)]

12. Most great tenors are Italian:

I ∀z[z ∈ sk{}
λx.great(x)∧tenors(x);most → Italian(z)]

13. Some great tenors like popular music:

I ∀z[z ∈ sk{}
λx.great(x)∧tenors(x);some→ like(z,music)]

14. Few tenors are poor:

I ∀z[z ∈ sk{}
λx.tenors(x); f ew→ poor(z)]

Chapter 5. Results 72

15. Both leading tenors are excellent:

I ∀z[z ∈ sk{}
λx.leading(x)∧tenors(x);both→ excellent(z)]

16. ∗ Tenors who are excellent are indispensable:

I ∀z[z ∈ λy.tenors(y)∧∀z[z ∈ y→ excellent(z)]→ indispensable(z)]

17. An Irishman won the Nobel prize:

I won(sk{}
λx.Irishman(x),nobel)

18. Most Europeans are residents in Europe:

I ∀z[z ∈ sk{}
λx.Europeans(x);most → residents(z)∧ in(z,Europe)]

5.3 Computational complexity issues

One of the arguments we used towards our approach in quantifier scoping in this dis-

sertation was that the incorporation of the generalized skolem term concept in a CCG

parser does not raise the theorerical power of the system, which has been found by

Vijay-Shanker and Weir (1994) to be equivalent to that of a nested pushdown automa-

ton. We would like to attempt to provide an informal explanation why this is actually

true.

If we simplify things a little, we can imagine that at the core of a CCG parser lies

a stack. At the beginning of the derivation, the parser starts by pushing in the stack the

lexical categories for each word. In every case in which a CCG rule can be applied to

the top categories in the stack, the parser does a reduction, that is, replaces these top

categories with their result. In Figure 5.1, we can see that the first reduction for the

sentence “I like swimming” happens in part d, where like and swimming are combined

to a verb phrase. This new constituent can be further reduced with the next item in the

stack, producing the final state that is shown in part e.

Of course, this description is an oversimplification. In a real CCG parser, every

item of the stack could also have a stack-like form, accommodating more than one

categories. In any case, it provides us a chance to show that this conceptual stack which

lies at the core of the parsing process can actually also accommodate the generalized

skolem term mechanism and the semantic manipulation.

Indeed, it is obvious that since the semantic manipulation takes places during the

reduction stage, the stack at that time is neutral and can be used for the β-conversion

process described in Section 4.2.2. We can imagine then that during the reduction

Chapter 5. Results 73

NP : me

(a)

(S\NP)/NP : λx.λy.like(y,x)

NP : me

(b)

NP : swimming

(S\NP)/NP : λx.λy.like(y,x)

NP : me

(c)

S\NP : λy.like(y,swimming)

NP : me

(d)

S : like(me,swimming)

(e)

Figure 5.1: The CCG mechanism as a stack

in step c, the semantic component pushes and pops from the stack the logical form

swimming, following the steps explained in detail in 4.2.2. As we demonstrated there,

β-conversion ends up with an empty stack, which means that our semantic component

will leave the single CCG stack in its original condition, as it was before the start of

the β-conversion process. In this way, the syntactic derivation can continue from the

point in which has stopped, moving on to possible subsequent reductions.

This argument can be also extented for the case of the different environments col-

lected for the skolem term objects, which might resemble a stack of bounded variables

passed between the nodes of the syntactic tree. However, as we have already noted

in Section 4.2.6, in our design the environment is always implicit in the nested object

structure that is created for every logical form. This means that collecting the envi-

ronment for an object with n levels of nesting brings a complexity of O(n), that is,

insignificant. What about the construction of logical forms then? This process indeed

takes place with a recursive way, exhibiting stack-like behaviour. However, the con-

struction of logical forms happens when again the main CCG stack is neutral, before

of each reduction stage. So the system once more does not need to resort to a second

stack.

The fact that the whole process can take place in the context of just one stack is

very important, since it means that CCG keeps its nearly-context free complexity3; the

addition of a second stack would in principle give to the mechanism the expressive

3See Section 2.2.2.

Chapter 5. Results 74

power of a universal Turing machine, possibly raising its theoretical power to expo-

nential time.

Chapter 6

Discussion

In this dissertation we described in detail the construction of a wide-coverage parsing

system capable of handling quantifier scope ambiguities with a novel way. In the

present chapter we attempt to provide a summary of our work, critically evaluating our

contributions and the extend to which we achieved our purpose. In Section 6.2, we also

provide specific suggestions on possible ways with which this work might be further

extended.

6.1 General remarks

Before of anything else, it would be helpful to recall our initial intentions. Our purpose

was to provide a proof of concept that a semantic CCG parser equipped with general-

ized skolem terms can naturally and efficiently handle a wide range of quantifier scop-

ing phenomena, which until now were covered in various (and, in many cases, unsatis-

factory) degrees by many different ad-hoc and incompatible to each other approaches.

This can be achieved in the context of the grammar itself, providing a linguistically

appealing “global” solution to the problem. We believe that the results presented in

Chapter 5 prove that we have accomplished this. More specifically, the contributions

of this paper were the following:

• We provided one of the few implementations1 of the generalized skolem term

notion and showed how this can be placed in the context of a λ-calculus manip-

ulation system.

1Actually, the only other “hands-on” work using generalized skolem terms we are aware of is that of
Otake and Yoshimoto (2006) on quantified relative clauses in Japanese.

75

Chapter 6. Discussion 76

• We showed how this concept can be applied in the context of wide-coverage

parsing, describing in details the integration process between a probabilistic

parser and the semantic component.

• We provided a proof of concept for the applicability of the approach under practi-

cal conditions and the benefits it brings regarding the quantifier scoping problem

compared with the current approaches, by presenting results that indeed conform

to the theory.

A by-product of this work is the Java implementation of a λ-calculus system, the

only one at this level of completeness in the open-source domain we are aware of by the

time of this writing. This library is self-contained and designed in a way that favours

extensibility, so it can be used in other contexts with minimal modifications2.

The probabilistic parser we developed is able to parse 96.6% of unseen newspaper

text and to achieve 92.4% accuracy on the assignment of lexical categories. Despite the

less than optimal performance in PARSEVAL measures and head-word dependencies,

we consider this part of the project successful. After all, and given that the parser

assigns the right categories to the lexical entries at the beginning of the parsing process,

it is mathematically certain that the application of the combinatory rules will lead to a

derivation.

Although the syntactic component was really “wide-coverage”, time did not permit

us to achieve a similar result for the semantic part. Something like that would require

the creation of a detailed lexicon of semantic forms able to cover any possible syntactic

structure in the test corpus. This was very difficult to be achieved in the available time

(in Section 6.2 we present a methodology of how this part can be fulfilled). We can

certainly expect that the application of the semantic component to unrestricted text

would create further requirements from our implementation, which for now remained

unseen behind the carefully selected test set we used.

Despite this fact, our semantic evaluation covered a wide range of quantifier scope

ambiguities, focusing on the most problematic and the less succesfully addressed by

current approaches cases: spurious readings, scope assymetries, intermediate readings,

distribution over conjunction and disjunction, generalized quantifiers. Most of the test

cases we used are long-studied examples that are constantly turn up in linguistic papers

related to quantifier scoping. In almost every case we got the right result – some minor

problems were due to flaws of the implementation and can be easily fixed. This is

2The code of the project will be available in due time at http://code.google.com/p/semccg/.

Chapter 6. Discussion 77

a proof that our approach can indeed provide a global and a natural treatment to the

problem, and that its application in a wide-coverage setting is also possible.

During our evaluation we met some problems, since in many cases the probabilistic

model could not produce the right constituents that would allow the proper semantic

manipulation. This problem is not specific to our parser, but constitutes a real weakness

of every statistical approach: No matter how simple or common a constituent is, the

model will disfavour it if it was not originally contained in the training data3.

Interestingly, wide-coverage parsers have their way to overcome such problems,

by stretching the syntactic flexibility provided by the grammar. They will eventually

end up to some derivation, even if this is not the optimal or even not the right one.

In the short discussion of this issue in Chapter 5, we mentioned an example that falls

to the “not optimal” case. It is instructive to also see a “wrong” analysis. For the

remarkably simple sentence “Every man walks and talks”, both our tool and Clark and

Curran’s parser assigned the wrong category N to the verb talks4. The interesting point

is how both tools eventually managed to provide an analysis, despite this fact (the C&C

derivation is provided in 11a, while our derivation in 11b):

(11) a. Every man walks and talks

NP (S\NP)/NP conj N
>

N
N⇒ NP

>
S\NP

<
S

b. Every man walks and talks

NP S\NP (S$1\?S$1)/?S$1 N
< N⇒ NP⇒ S

S >
S$1\?S$1

<
S

The fact that logical forms cannot follow this kind of “workarounds” constitutes

a real problem for every wide-coverage semantic system, and might be a strong in-

dication that we simply follow a wrong perspective: Instead of running a semantic

component on top of a wide-coverage parser, perhaps we should work the other way

around. After all, in our case syntactic analysis is just a means to derive correct logical

forms, not an end by itself.

3Zipf’s law says that this will be the case for the majority of text fragments.
4This should not be surprising: both tools use the same supertagger, although with a slightly different

way – see Section 4.1.2 for details.

Chapter 6. Discussion 78

6.2 Future work

The work presented in this dissertation is by no means complete. For the syntactic

component, further work is needed in order to achieve better performance according

to the standard parsing measures. This work has to be concentrated on the fine-tuning

of the probabilistic model, where extensive experimentation is required with every

possible configuration between the various parameters: the supertagger’s k and β pa-

rameters, the beam-search width, and the set of unary rules that the system should use.

Furthermore, an error analysis we attempted showed that our approach for treating con-

junction and punctuation has some differences with the way in which these structures

were handled during the initial development of CCGbank, and are now represented

in our “gold standard”. Our parser had also difficulties in recognizing correctly many

cases of numbers or financial symbols, as well as dashes, parentheses, and other de-

limiters. All these problems might have resulted some reduction in the performance. It

seems then that a systematic examination of these small details and refining can bring

some considerable improvements to our numbers.

The semantic component needs also considerable amount of work. First, in its cur-

rent form does not incorporate polarities or negation, while the support of generalized

guantifiers like “most” or “at least 3” and plural nouns is rather sketchy. Together with

the extention of the semantic lexicon (which is described in the next section) we con-

sider the addition of this functionality as the next step towards a really wide-coverage

tool. This task is simplified by the fact that the appropriate design and the required

data structures are already present. There is also a number of other issues that time did

not permit us to properly address. The next sections provide a short introduction to the

most important of them:

6.2.1 Extending the semantic lexicon

The extension of the semantic lexicon in order to provide logical forms for every case

that can be encountered in a wide-coverage setting is an involved task, but we believe

that our design simplifies it to a great extend. We propose a semi-automatic procedure

similar to that of Bos et al. (2004): the semantics for each open-class word can be

instantiated by using the lemma of the word – this in our system is achieved through

the keyword <word> that can be included in a logical form, such us λx.λy.<word>(y,x)

for transitive verbs. On the other hand, the logical forms for closed-class words (e.g.

prepositions) can be assigned manually. The form of our lexicon helps again for this

Chapter 6. Discussion 79

purpose, since it allows arbitrary levels of granularity in the word groupings, and even

supports the assignment of logical forms to individual words. More details about the

semantic lexicon can be found in Section 4.2.7.

6.2.2 Unpacking of the results

The unpacking and enumeration of the available semantic readings is another issue not

adequately addressed in this project due to time constraints. For the moment, the parser

delivers packed forms of the kind described in Section 4.2.9 and used in Section 5.2

for the presentation of the evaluation. This output should eventually be unpacked, rein-

stating the predications that currently are represented as nominal properties of skolem

terms, and enumerating the readings in a conventional form. For example, the output

for the sentence “Everybody loves somebody” is the following:

(12) ∀x[person(x)→ loves(x,sk{}{x}person)]

After the end of the derivation, this should be unpacked in the two prenex normal

form conventional formulas:

(13) a. ∀x[person(x)→ (person(sk1())∧ loves(x,sk1()))]

b. ∀x[person(x)→ (person(sk1(x))∧ loves(x,sk1(x)))]

This will provide compatibility with the current conventions and will allow the

use of the tool in many other contexts and applications. Although this specific part is

trivial, the whole process of collecting all the available readings can be a little more

involved, since, as we saw in Section 5.2, in some cases the parser needs access to

all full parses that managed to reach the upper-right cell of the chart. To this respect,

Algorithm 6.1 presents the steps that should be performed after the end of the parsing

process. In the pseudo-code, P corresponds to a full parse and R is the set of prenex

normal form formulas returned to the user. After the collection of the results, we have

added an extra step of filtering. This can be done along the lines of the discussion in

Section 5.2 for the sentence “Every man who reads a book loves a woman” (p. 66).

Finally, we should admit that the code of our semantic component at its current

state is by no means optimal – in software engineering terms, we would consider it

as an alpha version. We will continue working on this and we will constantly publish

updates in the address given in footnote 2, page 76.

Chapter 6. Discussion 80

1: function ENUMERATERESULTS(table,words) returns R

2: R←{}
3: for all {P|P ∈ table[0, LENGTH(words)]} do

4: Q←ENUMERATE(P)

5: Q←NORMALIZE(Q)

6: R← R∪Q

7: end for

8: R =FILTER(R)

Algorithm 6.1: An enumeration algorithm

Bibliography

Ades, A. and Steedman, M. (1982). On the order of words. Linguistics and Philosophy,

4:517–558.

Ajdukiewicz, K. (1935). Die syntaktische konnexität. In McCall, S., editor, Polish

Logic 1920-1939, pages 207–231. Oxford University Press, Oxford. Translated from

Studia Philosophica, 1, 1-27.

Bach, E. (1976). An extension of classical transformational grammar. In Problems

in Linguistic Metatheory: Proceedings of the 1976 Conference at Michigan State

University, pages 183–224, Lansing. Michigan State University.

Baldridge, J. (2002). Lexically Specified Derivational Control in Combinatory Cate-

gorial Grammar. PhD thesis, University of Edinburgh.

Bangalore, S. and Joshi, A. K. (1999). Supertagging: An approach to alsmost parsing.

Computational Linguistics, 25(2):237–265.

Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description. Lan-

guage, 29:47–58.

Black, E., Abney, S. P., Flickenger, D., Gdaniec, C., Grishman, R., Harrison, P., Hindle,

D., Ingria, R., Jelinek, F., Klavans, J. L., Liberman, M., Marcus, M. P., Roukos, S.,

Santorini, B., and Strzalkowski, T. (1991). A procedure for quantitatively comparing

the syntactic coverage of english grammars. In HLT. Morgan Kaufmann.

Blackburn, P. and Bos, J. (2005). Representation and Inference for Natural Language:

A First Course in Computational Semantics. CSLI Publications, Stanford, Califor-

nia.

Blackburn, P. and Marx, M. (2002). Tableaux for quantified hybrid logic. In Egly,

U. and Fermüller, C. G., editors, Automated Reasoning with Analytic Tableaux and

81

Bibliography 82

Related Methods, volume 2381 of Lecture Notes in Computer Science, pages 38–52.

Springer-Verlag.

Bos, J. (1995). Predicate logic unplugged. In Proceedings of the 10th Amsterdam

Colloquium, pages 133–143, University of Amsterdam.

Bos, J., Clark, S., Steedman, M., Curran, J., and Hockenmaier, J. (2004). Wide-

coverage semantic representations from a CCG parser. In Proceedings of the 20th

International Conference on Computational Linguistics, pages 1240–1246, Geneva.

Clark, S. and Curran, J. R. (2004a). The importance of supertagging for wide-coverage

ccg parsing. In Proceedings of the 20th International Conference on Computational

Linguistics, pages 282–288, Geneva.

Clark, S. and Curran, J. R. (2004b). Parsing the WSJ using CCG and log-linear models.

In ACL, pages 103–110.

Clark, S. and Curran, J. R. (2007). Wide-coverage efficient statistical parsing with

CCG and log-linear models. Computational Linguistics, 33(4):493–552.

Clark, S., Hockenmaier, J., and Steedman, M. (2002). Building deep dependency

structures using a wide-coverage CCG parser. In ACL, pages 327–334.

Collins, M. (1999). Head-Driven Statistical Models for Natural Language Parsing.

PhD thesis, University of Pennsylvania.

Cooper, R. (1983). Quantification and Syntactic Theory. D. Reidel, Dordrecht, The

Netherlands.

Cooper, R., Crouch, D., Eijck, J. V., Fox, C., Genabith, J. V., Jaspars, J., Kamp, H.,

Milward, D., Pinkal, M., Poesio, M., Pulman, S., Briscoe, T., Maier, H., and Konrad,

K. (1996). Using the framework.

Copestake, A. and Flickinger, D. (2000). An open-source grammar development en-

vironment and broad-coverage English grammar using hpsg. In Proceedings of the

2nd International Conference on Language Resources and Evaluation (LREC-2000.

ACL.

Curry, H. B. and Feys, R. (1958). Combinatory Logic: Vol. I. North Holland, Amster-

dam.

Bibliography 83

Eisner, J. (1996). Efficient normal-form parsing for combinatory categorial grammar.

In Joshi, A. and Palmer, M., editors, Proceedings of the Thirty-Fourth Annual Meet-

ing of the Association for Computational Linguistics, pages 79–86, San Francisco.

Association for Computational Linguistics, Morgan Kaufmann Publishers.

Farkas, D. (2001). Dependent indefinites and direct scope. In Condoravdi, C. and

de Lavalette, R., editors, Logical Perspectives on Language and Information, pages

41–72. CSLI Publications, Stanford, CA.

Gabsdil, M. and Striegnitz, K. (2000). Classifying scope ambiguities. Journal of

Language and Computation, 1(2):291–297.

Geach, P. T. (1972). A program for syntax. In Davidson, D. and Harman, G. H.,

editors, Semantics of Natural Language, pages 483–497. D. Reidel Publishing Co.,

Dordrecht.

Hobbs, J. and Shieber, S. (1987). An algorithm for generating quantifier scopings.

Computational Linguistics, 13:47–63.

Hockenmaier, J. (2001). Statistical parsing for CCG with simple generative models.

In ACL (Companion Volume), pages 7–12.

Hockenmaier, J. (2003). Data and models for statistical parsing with Combinatory

Categorial Grammar. PhD thesis, University of Edinburgh.

Hockenmaier, J. and Steedman, M. (2002). Acquiring compact lexicalized grammars

from a cleaner treebank. In Proceedings of the Third International Conference on

Language Resources and Evaluation, pages 1974–1981, Las Palmas, Spain.

Jannsen, T. (1997). Compositionality. In Van Benthem, J. and Ter Meulen, A., editors,

Handbook of Logic and Language, chapter 7, pages 417–473. Elsevier.

Joshi, A., Levy, L., and Takahashi, M. (1975). Tree-adjunct grammars. Journal of

Computer Systems Science, 10:136–163.

Jurafsky, D. and Martin, J. H. (2000). Speech and Language Processing: An Intro-

duction to Natural Language Processing, Computational Linguistics, and Speech

Recognition. Prentice Hall, Englewood Cliffs, New Jersey.

Bibliography 84

Keller, W. R. (1988). Nested cooper storage: the proper treatment of quantification

in ordinary noun phrases. In Reyle, U. and Rohrer, C., editors, Natural Language

Parsing and Linguistic Theories, pages 432–447. D. Reidel, Dordrecht.

Kempson, R. M. and Cormak, A. (1981). Ambiguity and quantification. Linguistics

and Philosophy, 4(2):259–309.

Koller, A., Niehren, J., and Treinen, R. (1998). Dominance constraints: Algorithms

and complexity. In Proceedings of the Third Conference on Logical Aspects of

Computational Linguistics (LACL ’98), Grenoble, France. To appear in LNCS.

Koller, A. and Thater, S. (2006). An improved redundancy elimination algorithm for

underspecified representations. In ACL. The Association for Computer Linguistics.

Montague, R. (1970a). English as a formal language. In Linguaggi nella Società e

nella Tecnica, pages 189–224. Edizioni di Comunità, Milan.

Montague, R. (1970b). Universal grammar. Theoria, 36:373–398.

Montague, R. (1973). The proper treatment of quantification in ordinary english. In

e.a., J. H., editor, Approaches to Natural Language, pages 221–242. Reidel.

Mostowski, A. (1957). On a generalization of quantifiers. Fundamenta Mathematica,

44:12–36.

Otake, R. and Yoshimoto, K. (2006). Multiply quantified internally headed relative

clause in japanese: A skolem term based approach. In 19th Asia-Pacific Conference

on Language, Information and Computation.

Pereira, F. and Shieber, S. (1987). Prolog and Natural Language Analysis. CSLI

Publications, Stanford, CA.

Roark, B. (2001). Probabilistic top-down parsing and language modeling. Computa-

tional Linguistics, 27:249–276.

Ross, J. R. (1967). Constraints on Variables in Syntax. PhD thesis, MIT. Published as

Infinite Syntax!, Ablex, Norton, NJ, 1986.

Steedman, M. (1999). Quantifier scope alternation in CCG. In Proceedings of the 37th

Annual Meeting of the Association for Computational Linguistics, College Park,

MD, pages 301–308, San Francisco, CA. Morgan Kaufmann.

Bibliography 85

Steedman, M. (2000). The syntactic process. MIT Press, Cambridge, Massachusetts.

Steedman, M. (2010). The Natural Semantics of Scope. Currently in publication by

MIT Press.

Vijay-Shanker, K. and Weir, D. J. (1994). The equivalence of four extensions of

context-free grammars. Mathematical Systems Theory, 27(6):511–546.

Willis, A. and Manandhar, S. (1999). Two accounts of scope availability and semantic

underspecification. In Proceedings of the 37th Annual Meeting of the Association for

Computational Linguistics, College Park MD, June, pages 293–300, San Francisco,

CA. Morgan Kaufmann.

Wittenburg, K. B. (1986). Natural Language Parsing with Combinatory Categorial

Grammar in a Graph-Unification Based Formalism. PhD thesis, University of

Texas, Austin.

