
© IJIGS/University of Wolverhampton/EUROSIS

Scripting Versus Emergence: Issues for Game Developers and Players in Game

Environment Design

Penelope Sweetser and Janet Wiles

School of Information Technology and Electrical Engineering

The University of Queensland

St Lucia, Queensland,

Australia

E-mail: penny@itee.uq.edu.au

KEYWORDS

Emergence, Scripting, Game Environments, User-

Centered, Game Design.

ABSTRACT

This paper defines and discusses two contrasting

approaches to designing game environments. The

first, referred to as scripting, requires developers to

anticipate, hand-craft and script specific game

objects, events and player interactions. The

second, known as emergence, involves defining

general, global rules that interact to give rise to

emergent gameplay. Each of these approaches is

defined, discussed and analyzed with respect to the

considerations and affects for game developers and

game players. Subsequently, various techniques

for implementing these design approaches are

identified and discussed. It is concluded that

scripting and emergence are two extremes of the

same continuum, neither of which are ideal for

game development. Rather, there needs to be a

compromise in which the boundaries of action

(such as story and game objectives) can be hard-

coded and non-scripted behaviors (such as

interactions and strategies) are able to emerge

within these boundaries.

INTRODUCTION

The approach that is used to develop game worlds

holds considerations for game developers and

players. The current approach to developing game

worlds is a scripted approach. Scripting involves a

specific, low-level, entities-based approach to

developing game worlds. The considerations of the

scripted approach for game players include

inconsistencies in the game world, unintuitive

interactions, a slow learning curve, limited

freedom for the player and no possibility of

emergent gameplay. For game developers,

developing scripted game worlds involves

substantial effort in planning, implementing and

testing, difficulties in extending and modifying,

and issues with quality assurance due to

inconsistencies. However, the current scripted

approach does afford developers full creative

control, no uncertainty in how the game system

will behave and ease of giving feedback and

direction to players. The current proliferation of

the scripted approach is partly due to these reasons

and partly due to the widespread use of scripted

and static software techniques, such as scripting

and finite state machines.

One possible alternative to the current scripted

approach is an emergent approach to developing

game worlds. Emergence involves a top-down,

systems-based approach to developing game

worlds. Emergence has been integrated to a limited

degree in previous games to allow emergent

gameplay or emergent narrative. Considerations of

an emergent approach for game developers include

significant planning and tuning in development, a

loss of creative control, difficulties in giving

feedback and direction to players and uncertainty

in how the game will respond to the player.

However, emergent systems are easier to modify

and extend and the uncertainty gives the possibility

for emergent gameplay. Emergent systems can

potentially improve player experience as they are

inherently consistent, interactions can be more

intuitive, the players’ learning curve can be

reduced, and emergent systems allow far more

freedom for players and the possibility of emergent

gameplay. Techniques that can potentially be used

to facilitate emergence in games include flocking,

neural networks, cellular automata and

evolutionary algorithms.

© IJIGS/University of Wolverhampton/EUROSIS

This paper presents the issues associated with

these different design approaches for game

developers and players. It then discusses the

methods that are currently used for hand-crafting

game worlds and identifies and explores the

techniques that have the potential to facilitate

emergence in games.

SCRIPTING AND EMERGENCE

The majority of current games are developed with

a scripted approach, which involves the game

developer predefining specific paths and

interactions that the player will take throughout the

game. Scripted game design is the creation of

gameplay out of the ideas of a particular designer,

as needed for a specific, localised occurrence in

the game. Scripted design involves limited

awareness of global game patterns and relies on a

given designer’s ideas of what is consistent and

fun (Smith, 2002). The environments, objects and

agents in these games are limited to the narrow and

static behaviour that the developer has predefined.

As a result, the players’ possible interactions with

these game elements and resulting gameplay is

confined, inflexible and lifeless. These scripted

systems have also been referred to as “emulations”

(Church, 2002) and “specific” systems (Smith,

2002).

A possible alternative to the current scripted

approach to game design is to design general, rule-

based systems that allow the creation of gameplay

out of combinations of existing game elements

with globally defined, consistent characteristics

and behaviour. This emergent approach to game

design is also referred to as “simulation” (Church,

2002) and “systemic” system design (Smith, 2002)

in the game development literature. An emergent

approach to game design requires a globally

designed game system that provides rules and

boundaries for player interactions, rather than

prescripted paths.

CONSIDERATIONS FOR GAME

DEVELOPERS

Different approaches need to be taken to develop

games that are emergent versus scripted. They also

offer different advantages and disadvantages for

the development team. In developing scripted

games, the development team needs to design

specific game elements, and implement and test

them individually, which can be costly in time and

effort. However, the designers are empowered to

create a specific narrative and flow for the game

and there are no nasty surprises. For emergence,

the development team needs to design types of

objects and has the convenience of dropping a type

of object into a certain level. This approach gives

rise to greater efficiency in implementation and

testing. However, there are potential problems

with uncertainty and loss of control for the

designers.

There are five central issues in the game

development literature that are important to

consider when designing game systems. These

issues are (1) effort in designing, implementing

and testing, (2) effort in modifying and extending,

(3) level of creative control for game developers,

(4) uncertainty and quality assurance, and (5) ease

of feedback and direction to players. Each of these

issues is described in this section and discussed

with respect to scripted and emergent games.

Developer Considerations for Scripted Systems

Effort in Designing, Implementing and Testing

In developing scripted games, specific interactions

need to be planned by the game designers (Church,

2002) and the possible courses of action that the

players can take need to be manually setup by the

developers (Smith, 2001). Scripting requires a

“look and feel” approach to the placement of units,

weapons, tools, resources, and specific puzzles or

scripted sequences. Scripted games require a

considerable time and effort by the designers, as

well as vigilant manual effort to ensure

consistency in the game world (Smith, 2002).

Effort in Modifying and Extending

Scripted systems scale poorly and do not lend

themselves to extensibility (Church, 2002). The

properties and parameters of objects in scripted

systems are different for each instance. Also,

objects must have explicit relationships with other

game elements for interactions to occur. For

example, for a bullet from a gun to break a

window, there needs to be a direct relationship

between the gun entity and the window entity

(Smith, 2001). The gun class would need to

© IJIGS/University of Wolverhampton/EUROSIS

contain code listing all the things it could affect.

Consequently, any changes that need to be made to

the system require revision of any aspect of the

game that is affected by the change (Church,

2002). Also, fixing bugs in the system requires

each instance of a game element to be visited and

reconfigured manually (Smith, 2002).

Level of Creative Control

As game developers manually plan and set up

specific situations, interactions and events in

scripted games, the game designers have full

creative control over the game. The designers are

empowered to create a specific narrative flow for

the game, by defining the order and nature of the

players’ actions and encounters in the game.

Uncertainty and Quality Assurance

Similarly, nothing occurs in the game that was not

intended or planned by the game developer.

Consequently, there is no uncertainty or

unexpected events in the game. The player plays

the game in the exact way that the developer had

intended. However, due to the inconsistencies that

can exist in scripted games, quality assurance

requires extensive testing of each game element,

interaction and event. The scripted approach is

effective for developing simple systems or specific

complex behaviour, but can be difficult to manage

on a larger scale.

Ease of Feedback and Direction

As with creative control, giving feedback and

direction to players is simple in scripted systems as

the developer knows when and how the player will

interact with various game elements. As the

desired outcome is known, it is straightforward to

give players feedback on their success at

performing actions or fulfilling goals.

Developer Considerations for Emergent

Systems

Effort in Designing, Implementing and Testing

Creating emergent games involves designing types

of objects and interactions, rather than specific

ones (Church, 2002), which can give rise to greater

efficiency in development and testing. The

properties and parameters reside at a higher level

(Smith, 2002). Rather than having a specific gun

able to break a specific window, there is an

additional layer of abstraction that allows a gun to

break anything made of glass. For example, the

gun would project a bullet entity that has certain

properties (e.g. ballistic damage, heat or

electricity) and the glass is a stimulus-receiving

entity (Smith, 2001). The system would have a set

of rules about the relationship between the entities’

general-case properties and when the bullet meets

the glass, the game’s object-property system looks

up the effect of the bullet’s properties on the glass

entity. Therefore, the gun will work on any

window (or any other stimulus-receiving object),

rather than only the specified windows.

Emergent systems often require considerable

initial effort in planning and building, as the rules

and properties need to be defined in advance.

Additionally, the system can require a lot of tuning

to get the rules and properties to function correctly.

However, development can be more efficient as

programmers can build tools that allow designers

to “drop” objects into levels, with the properties

and behaviour of the object already defined.

Designers can also create new objects and attribute

properties to the objects using the tools (Smith,

2002).

Effort in Modifying and Extending

Once an emergent system is built successfully, the

design scales well (i.e. increases in size easily,

maintaining robustness and manageability) and is

easily extended (Church, 2002). Making changes

to the system (e.g. fixing bugs) has the potential to

be more efficient as changes can be made to object

types, rather than each particular instance of an

object than needs to be changed (Smith, 2002).

Level of Creative Control

The use of emergence in games could result in a

possible loss of creative control for the game

designer. Using emergence involves defining types

of interactions and behaviours, which makes it is

more difficult to set up specific narrative and

sequences. Consequently, controlling the flow of

game and telling a specific story is not as

straightforward in an emergent system.

Uncertainty and Quality Assurance

Emergence also introduce uncertainty, which

means that the game can behave in ways that the

developers had not anticipated. Although this

© IJIGS/University of Wolverhampton/EUROSIS

uncertainty can give rise to desirable, emergent

gameplay, it can also be undesirable if the system

allows behaviour that is detrimental to the game

(Church, 2002). Extensive testing is required to

ensure that the game does not allow detrimental

behaviour. However, the emergent events can be

too numerous or subtle for the development team

to predict or detect during testing (Smith, 2002).

Ease of Feedback and Direction

Players have a greater need for feedback on the

outcome and success of their actions in emergent

systems, as the openness of the game world gives

rise to more possibilities for action (Smith, 2001).

Consequently, the players need more feedback to

know that they are on the right track and that their

actions are successful.

CONSIDERATIONS FOR GAME PLAYERS

As well as having significantly different

development approaches, scripting and emergence

also give rise to different methods of playing the

game. Some issues that need to be considered

include the ability of the game to uphold the

player’s suspension of disbelief, consistency in the

game world, the intuitiveness of the environment,

player expectation and learning, and how well the

game facilitates player expression and emergent

gameplay. This section discusses the impact that

scripting and emergence have on each of these

issues.

Consistency and Immersion

Game worlds that behave consistently and in ways

that the player understands enable the player to

become immersed in the environment and suspend

disbelief (Smith, 2001). Conversely,

inconsistencies in games remind that player that it

is just a game, breaking their suspension of

disbelief. For example, if the player becomes stuck

in a wall when adventuring in a dungeon (Hecker,

2000) or a monster attacks them through the wall

then inconsistencies occur with the fantasy that the

game has created. Similarly, if a boom microphone

appears in an emotional scene in a movie, the

immersion the viewer feels – their suspension of

disbelief – is instantly broken (Hecker, 2000). The

viewer of the movie or the player of the game is

transported back to the real world, reminded and

disappointed that their experience was fake.

Scripted game systems inherently break the

player’s immersion, as their specific interactions

and situations give rise to many inconsistencies.

Emergent systems have the potential to be used to

create more consistent game worlds (Smith, 2001).

The game worlds in emergent systems are

inherently consistent as the rules and properties are

defined globally, for types of objects, rather than

locally for each specific object. For example, the

player knows that bullets affect everything that is

damageable, such as windows, vases and chairs,

rather than some windows and no vases.

Furthermore, the player can deduce that if they can

move objects and put objects on top of one another

then they can stack crates. Games that obey a

consistent set of physical laws allow the player to

stay immersed in the game, sparing them from

unpleasant surprises (Hecker, 2000).

Intuitiveness and Learning

Another important aspect of player interaction

with the game environment is intuitiveness and

player expectation. Casual game player or non-

game players can be baffled by the physics in

game worlds (Smith, 2001). In some game worlds,

only “explosive” barrels burn, some pieces of light

furniture cannot be moved, the player’s character

might not be able to climb onto a desk and

sometimes glass does not break. In order to be able

to play computer games, it is necessary to relearn

the physics of the world like a child (Smith, 2001).

These types of problems arise in scripted games

because the possible interactions that the player

can have with the game environment are not

intuitive and they do not meet player expectation.

The intuitiveness of interactions in game worlds

can be partly attributed to how the interactions

correspond to interactions with the same objects in

the real world. Game worlds are populated with

objects that are visually similar to objects that we

use every day, but that are functionally different.

Not only can these interactions be counter-intuitive

for the player, but they can often confuse and

frustrate the player (Hecker, 2000). It is natural for

a player to expect that they will be able to pick up

a phone, kick a chair and break a window, as they

have learned these actions are possible throughout

© IJIGS/University of Wolverhampton/EUROSIS

their whole life. However, in scripted games, these

actions are only possible if the developer has

specifically coded them for each game object.

Consequently, it is likely that many intuitive and

seemingly logical actions will not be possible.

Game worlds that work in a way that reflect

players’ lifelong experiences (in the real world) are

more intuitive and easier to understand for the

average person, even in fantasy realms and alien

dimensions (Smith, 2001). Emergent games are

more likely to be intuitive to the average person as

it is easier to create objects that behave and

interact in more natural ways, with a wider variety

of interactions. The objects in emergent games are

not limited to specific interactions that have been

hard-coded. Instead, they interact in ways that are

conducive to their properties and rules for

interaction.

An important benefit of making game worlds more

intuitive is that they become easier to learn. The

player is more likely to develop an intuitive

understanding of the game elements if they are

consistent with real world elements (Smith, 2002).

For example, if fire in the game behaves like fire

in the real world then the player will have an

inherent understanding of how the fire works,

without needing to be retaught the rules of fire

within the game (Smith, 2001). With the use of

intuitive game elements, the player is more likely

to understand the elements, even when

encountering them for the first time. As a result,

the learning curve of the player is substantially

decreased, which means that the player spends less

time learning and more time playing the game

(Smith, 2002).

Emergent Gameplay and Player Expression

The final issue identified in the game development

literature is the degree of freedom of player

expression and the possibility of emergent

gameplay that is supported by the game system. In

scripting, the designers manually define a number

of outcomes or interactions and allow the player to

pick one. The result is a handful of canned

solutions to each particular problem (Smith, 2001),

which makes the game linear (i.e. only one path

through the game). The player is given a choice of

a small number of static courses of action to take,

which have been predefined by the game

designers. The game is played in the exact way it

was specified, which might not accommodate

player creativity (Church, 2002).

In contrast to scripted systems, emergent systems

define global possibilities for actions the player

can perform, which can be applied in more open

ways in specific situations. Players have more

freedom to express their creativity and gameplay

can occur that wasn’t anticipated by the designers.

Emergent gameplay allows players to solve game

problems by using strategies that were not

envisaged by the designers (Smith, 2001; Garneau,

2002). Emergent gameplay occurs when a player’s

actions result in a second order of consequence

that the development team did not predict and the

game behaves in a rational but unplanned way

(McLean, 2002; Smith, 2002). For example, in the

game Deus Ex, players used proximity mines to

create ladders up walls to climb off the map, a

possibility that was not foreseen by the developers.

Emergent games empower the player by putting

them centre stage (Church, 2002), giving them

freedom to experiment, greater control, a sense of

agency, and less of a feeling of uncovering a path

set for them by the designers (Smith, 2002).

Consequently, the game can be more satisfying

and interesting for the player. Game worlds that

are not full of prescripted one-to-one interactions

are empowering to the player as the gameplay

becomes largely about exploring the possibility

space and the game experiences become richer

(McLean, 2002). Emergent games also have high

replayability as each time the player plays the

game they make different decisions, which change

the game as a whole and result in different

possibilities for action (Garneau, 2002).

The major difference between scripting and

emergence is that emergence focuses on what the

player wants to do, whereas scripting focuses on

what the designer wants the player to do (Smith,

2001). However, it is important to realise that

emergence alone isn’t a game (Church, 2002).

Emergence in games needs to be used to improve

gameplay, not simply for its own sake.

© IJIGS/University of Wolverhampton/EUROSIS

TECHNIQUES FOR SCRIPTING AND

EMERGENCE IN GAMES

The techniques that are used to implement the

game environments, objects and agents define

whether the system will be static and scripted or

dynamic and emergent. Techniques that require

everything to be built into the system in

development, with no room for adaptation or

unexpected behavior, can only facilitate a system

that behaves as it is told to behave. On the other

hand, techniques that are given the boundaries for

behavior (rather than the script) or are able to grow

and change have the potential to give rise to

behavior that may not have been foreseen (or

expected) by the developers. This section describes

several techniques that have the potential to be

used in games for implementing scripted or

emergent games, or aspects of games, with the

considerations for using each technique.

Techniques for Scripting Game Worlds

Scripted systems are custom coded for specific

reactions to complex inputs for various localized

situations in a game. The majority of current

games are designed with this approach and there

are two main techniques that are used for

implementation, scripting and finite state

machines. Almost every commercial computer

game uses scripting or state machines for some, if

not all, of the game system.

Finite State Machines

A finite state machine (FSM) is a device that

consists of a set of states, a set of input events, a

set of output events and a state transition function,

which takes the current state and an input event

and returns the new set of output events and the

next state. The purpose of an FSM is to divide a

game object’s behaviour into logical states so that

the object has one state for each different type of

behaviour it exhibits (Rabin, 2000).

FSMs are by far the most popular technique in

modern games, as they are simple to program, easy

to understand and debug, and general enough to be

used for any problem (Rabin, 2002). FSMs are

amongst the simplest computational devices and

provide a large amount of power relative to their

complexity. Consequently, FSMs are ideal for the

conditions of game development, which involves

limited computational resources, as well as limited

development and testing time. Some problems

with using FSMs are that they tend to be poorly

structured with poor scaling, so that they increase

in size uncontrollably as the development cycle

progresses. As a result, FSM maintenance can be

very difficult and game FSMs that are not well

planned and structured can grow out-of-hand

quickly.

Scripting Languages

Scripting languages are designed to simplify some

set of tasks for a game and hide many complicated

aspects (Berger, 2002), thus allowing non-

programmers, such as designers and artists, to

write script for the game. Scripting languages for

games, such as Quake’s QuakeC or Unreal’s

UnrealScript, allow game code to be programmed

in a high-level, English-like language (LaMothe,

1999), which is used to control the game engine

from the outside. The scope of a scripting language

can vary significantly depending on the problems

it is designed to solve, ranging from a simple

configuration script to a full-blown runtime

interpreted language (Poiker, 2002).

Scripting languages are ideal for games as they are

suitable for non-programmers, such as designers,

artists and end users. During development, the

designers use scripting to implement stories

(Poiker, 2002), while artists use scripting to

automate repetitious tasks, do things that the

computer can do better than humans and add new

functionality (Stripinis, 2001). After the game is

shipped, “mod” groups and hobbyists write scripts

if the scripting system has been exposed to the

public (Poiker, 2002). Also, scripting languages

are generally separate from the game’s data

structures and codebase and thus provide a safe

environment for non-programmers and end users

to make changes to the game, so that bugs in the

script will not cause the game to crash. However,

as with FSMs, scripting languages are

deterministic and they require the game developer

to hard-code character behaviour and game

scenarios. Therefore, the developer must anticipate

and hard-code each of the player’s possible

situations, making the game predictable and linear.

© IJIGS/University of Wolverhampton/EUROSIS

Techniques for Emergence in Game Worlds

Emergent behavior occurs when simple,

independent rules interact to give rise to behavior

that wasn’t specifically programmed into the

system (Rabin 2004). Techniques that can be used

to facilitate emergence come from complex

systems, machine learning and artificial life. Some

examples of these techniques that can and have

been used in games are flocking, cellular automata,

neural networks and evolutionary algorithms.

Flocking

Flocking is a technique for simulating natural

behaviours for a group of entities, such as a herd of

sheep or a school of fish (Grub, 2003). Flocking

was devised as an alternative to scripting the paths

of each entity individually, which was tedious,

error-prone and hard to edit, especially for a large

number of objects. Flocking assumes that a flock

is simply the result of the interaction between the

behaviours of individual birds. In flocking, the

generic simulated flocking creatures are called

boids. The basic flocking model consists of three

simple steering behaviours, separation, alignment

and cohesion, which describe how an individual

boid manoeuvres based on the positions and

velocities of its nearby flockmates. Separation

enables the boid to steer to avoid crowding local

flockmates, alignment allows the boid to steer

towards the average heading of local flockmates

and cohesion makes the boid steer to move toward

the average position of local flockmates

(Reynolds, 2003). Each member in the flock

revaluates its environment at every update cycle,

which reduces the memory requirements and

allows the flock to be purely reactive, responding

to the changing environment in real time.

Flocking has been successfully used in various

commercial games, including Half-life, Unreal,

Theme Hospital and Enemy Nations, as it provides

a powerful tool for unit movement (Johnson &

Wiles, 2001) and for creating realistic

environments the player can explore (Woodcock,

2003). It is a relatively simple algorithm and only

composes a small component of a game engine.

However, flocking makes a significant

contribution to games by making an attack by a

group of monsters or marines realistic and

coordinated. It therefore adds to the suspension of

disbelief of the game and is ideal for real-time

strategy or first-person shooter games that include

flocks, swarms or herds.

Cellular Automata

Cellular automata (CA) are widely-used

techniques in the field of complex systems, which

studies agents and their interactions. A traditional

CA is a spatial, discrete time model in which space

is represented as a uniform grid (Bar-Yam, 1997).

Each cell in the grid has a state, typically chosen

from a finite set. In a CA, time advances in

discrete steps. At each time step, each cell changes

its state according to a set of rules that represent

the allowable physics of the model. The new state

of a cell is a function of the previous state of the

cell and the states of its neighbouring cells. A CA

can be represented in one, two or more

dimensions. A one-dimensional CA consists of a

single line of cells, where the new state of each

cell depends on its own state and the state of the

cells to its left and right. In a two-dimensional CA,

each cell can have four or eight neighbours,

depending on whether cells diagonally adjacent to

a cell are considered neighbours. CA have been

proposed as a solution to the static environments

that are prevalent in current computer games

(Forsyth, 2002). The use of CA could lead to more

dynamic and realistic behaviour of many game

elements that are currently scripted, such as fire,

water, explosions, smoke and heat.

A variation of CA, influence mapping, is a method

for representing the distribution of power within a

game world in a two-dimensional grid (Rabin,

2004). Influence maps are commonly used for

strategic assessment and decision-making in games

(Sweetser, 2004a), but were also used in the game

SimCity to model the influence of various social

entities, such as police and fire stations around the

city (Rabin, 2004).

Neural Networks

Neural networks are machine learning techniques

inspired by the human brain. Neural networks are

comprised of artificial neurons, called units, and

artificial synapses, called weights. In a neural

network, knowledge is acquired from the

environment through a learning process and stored

in the network’s connection weights (Haykin,

1994). The network learns from a training set of

© IJIGS/University of Wolverhampton/EUROSIS

data by iteratively adjusting its weights until each

weight correctly reflects the relative influence that

each unit has on the output. After training is

complete, the network is ready to be used for

prediction, classification or decision-making.

Considerations when developing neural networks

for games include which variables from the game

world will be used as input, the design of the

structure of the network, what type of learning will

be used, and whether learning will be conducted

in-game or during development (Sweetser, 2004b).

If the neural network is allowed to learn during the

game then it will be able to dynamically build up a

set of experiences and adapt to new situations and

the human player as the game progresses.

Alternatively, training the neural network during

development will produce a network that will

behave within expectations and require minimal

resources. Overall, advantages of neural networks

include their flexibility for different applications,

their ability to adapt when trained in-game and the

efficiency of their evaluation once trained.

However, neural networks can also consume a lot

of resources when training, can require substantial

tuning to produce optimal results and can learn

unpredictable or inaccurate information if trained

incorrectly.

Evolutionary Algorithms

An evolutionary algorithm (EA) is a technique for

optimization and search, which evolves a solution

to a problem in a similar way to natural selection

and evolution. An EA’s similarities to nature

include the use of a population of possible

solutions to a problem, referred to as

chromosomes, as well as processes that evaluate

each chromosome’s fitness and select which

chromosomes will become parents. Additionally,

the chromosomes that are selected to be parents

take part in a process similar to reproduction in

which they generate new offspring by exchanging

genes. The new offspring also have a chance that

they will mutate, similar to natural mutation. As

the cycle continues over time, more effective

solutions to the problem are evolved.

Considerations that need to be made when

designing an EA for a game include the many

parameters that need to be tuned, such as choice of

a suitable representation, population size, number

of generations, choice of a fitness function and

selection function, and mutation and crossover

parameters (Sweetser, 2004c). There are many

advantages to using an EA, as they are a robust

search method for large, complex or poorly-

understood search spaces and non-linear problems.

An EA is useful and efficient when domain

knowledge is limited or expert knowledge is

difficult to encode as they require little information

to search effectively. Also, they are useful when

traditional mathematical and search methods fail.

On the down side, an EA is computationally

expensive and requires a lot of tuning to work

effectively. In general, the more resources they can

access the better, with larger populations and

generations giving better solutions. However, an

EA can be used offline, either during development

or between games on the user’s computer, rather

than consuming valuable in-game resources.

CONCLUSIONS

The two extreme approaches to game design

discussed in this paper ranged from hand-crafted,

hard-coded, scripted environments to rule-based,

general, emergent environments. An emergent

approach to game design is significantly different

from the current scripted approach to game design,

in terms of modelling techniques, as well as the

implications for developers and players. However,

the two approaches are not mutually exclusive.

Rather, scripting and emergence can be seen as

two extremes of a continuum (Church, 2002;

Smith, 2002).

Both extremes hold benefits and drawbacks for

game developers, as well as consequences for the

game players. At the specific, scripted end of the

continuum, the developers must hand-craft,

implement and test every aspect of the game

individually but are able to keep full creative

control and rest assured that the game won’t break

after release. With the scripted extreme, the

players are often locked into playing the game in a

predefined way, unable to express their own

creativity and may encounter inconsistencies in the

game world. At the other end of the continuum are

emergent game worlds that simply contain general

rules for how the environment, objects and agents

will interact, and the specific behaviours and

events emerge from the interactions of the general

© IJIGS/University of Wolverhampton/EUROSIS

rules. However, emergence can be a disconcerting

prospect for developers, who cannot be sure how

the game will actually behave after it is released,

and is a sandbox type environment even a game?

The emergent extreme does, however, hold the

potential for players to express their own creativity

and for intuitive and consistent interactions to take

place in the game world.

It seems that it is somewhere between these two

extremes that the future of game development lies;

that there needs to be the right combination of

scripted, narrated gameplay and freedom to

interact within the world. There needs to be some

way to define the boundaries of action, moving the

story forwards, but still letting the player do their

own thing along the way. We suggest that a game

world that facilitates emergent interactions, based

on a technique such as cellular automata, can be

used in conjunction with other more conventional

techniques for gameplay, such as scripting, to

allow the player sandbox-style interaction within

the boundaries of a predefined story and game

objectives. The ongoing research that we are

conducting is aimed at developing such a game

environment (Sweetser, 2005).

REFERENCES

Bar-Yam, Y. 1997. Dynamics of Complex Systems. Addison

Wesley, Reading, MA.

Berger, L. 2002. “Scripting: Overview and Code-

Generation.” In AI Game Programming Wisdom, S. Rabin,

ed. Charles River Media, Inc, Hingham, MA.

Church, D. 2002. “Simulation, Emulation, and the Game

Design/Development Process.” Presented at Australian Game

Developers Conference, Melbourne, Australia, 6-8

December.

Forsyth, T. 2002. “Cellular Automata for Physical

Modelling.” In Game Programming Gems 3, D. Treglia, ed.

Charles River Media, Inc, Hingham, MA

Garneau, P. 2002. Emergence: Making Games Deeper.

Available online at http://www.pagtech.com/

Articles/Emergence.html.

Grub, T. 2003. Flocking. Available online at

http://www.riversoftavg.com/flocking.htm.

Haykin, S. 1994. Neural Networks: A Comprehensive

Foundation. Maxwell Macmillan International.

Hecker, C. 2000. “Physics in Computer Games”. In

Communications of the ACM 43, no. 7: 34-37.

Johnson, D. and Wiles, J. 2001. “Computer Games with

Intelligence.” In Proceedings of the 10
th

 IEEE International

Conference on Fuzzy Systems.

LaMothe, A. 1999. Tricks of the Windows Game

Programming Gurus. SAMS.

McLean, J. 2002. Conversations from GDC Europe: Bill

Fulton, Zeno Colaco, Harvey Smith. Available online at

http://www.gamasutra.com/features/20020911/

mclean_01.htm.

Poiker, F. 2002. “Creating Scripting Languages for

Nonprogrammers.” In AI Game Programming Wisdom, S.

Rabin, ed. Charles River Media, Inc, Hingham, MA.

Rabin, S. 2000. “Designing a General Robust AI Engine.” In

Game Programming Gems, M. DeLoura, ed. Charles River

Media, Inc, Hingham, MA.

Rabin, S. 2002. “Implementing a State Machine Language.”

In AI Game Programming Wisdom, S. Rabin, ed. Charles

River Media, Inc, Hingham, MA.

Rabin, S. 2004 “Common Game AI Techniques.” In AI Game

Programming Wisdom 2, S. Rabin, ed. Charles River Media,

Inc, Hingham, MA.

Reynolds, C. 2003. Boids. Available online at

http://www.red3d.com/cwr.

Smith, H. 2001. The Future of Game Design: Moving Beyond

Deus Ex and Other Dated Paradigms. Available online at

http://www.planetdeusex.com/witchboy/articles/

thefuture.shtml.

Smith, H. 2002. “Systemic Level Design.” Presented at Game

Developers Conference, San Jose, CA, March 21-23.

Stripinis, D. 2001. “The (Not So) Dark Art of Scripting for

Artists.” In Game Developer Magazine: 40-45.
Sweetser, P. 2005. PhD Thesis: “An Emergent Approach to Game

Design – Development and Play”. Available online, 15 May, at

http://www.itee.uq.edu.au/~penny/publications.htm

Sweetser, P. 2004a. “Strategic Decision-Making with Neural

Networks and Influence Maps.” In AI Game Programming

Wisdom 2, S. Rabin, ed. Charles River Media, Inc, Hingham,

MA.

Sweetser, P. 2004b. “How to Build Neural Networks for

Games.” In AI Game Programming Wisdom 2, S. Rabin, ed.

Charles River Media, Inc, Hingham, MA.

Sweetser, P. 2004c. “How to Build Evolutionary Algorithms

for Games.” In AI Game Programming Wisdom 2, S. Rabin

ed.. Charles River Media, Inc, Hingham, MA.

Woodcock, S. 2003. Games Making Interesting Use of

Artificial Intelligence Techniques. Available online at

http://www.gameai.com.

BIOGRAPHY

Penelope Sweetser is a game designer at The

Creative Assembly, Brisbane, Australia. She is

also completing her PhD in emergence in games

and lecturing game design at The University of

Queensland, Australia. Her research interests

include artificial intelligence, emergence and user-

centred design in games.

Janet Wiles is Associate Professor in the Division

of Complex and Intelligent Systems Research in

ITEE at the University of Queensland. She studies

complex systems with particular applications in

biology, neuroscience and cognition. Insights from

© IJIGS/University of Wolverhampton/EUROSIS

such systems contribute to game design by

showing how local interactions in such systems

can give rise to system-wide properties.

