
10

E. CASALICCHIO, R.LANCELLOTTI, M.E. POLEGGI: SIMULATION FRAMEWORK

A SIMULATION FRAMEWORK FOR CLUSTER-BASED WEB
SERVICES

EMILIANO CASALICCHIO
Dipartimento di Informatica, Sistemi e Produzione

Università di Roma “Tor Vergata”
E-mail: casalicchio@uniroma2.it

RICCARDO LANCELLOTTI
Dipartimento di Iingegneria dell'Informazione

Università di Modena e Reggio Emilia
E-mail:riccardo.lancellotti@unimore.it

MARCO EMILIO POLEGGI
CERN-IT/INFN-CNAF

E-mail: Marco.Emilio.Poleggi@cern.ch

Abstract: We propose a simulation framework, namely CWebSim, specifically designed for the performance
evaluation and capacity planning of cluster-based Web services. A broad variety of Web cluster configurations
can be simulated through CWebSim. Its modularity permits the definition of different mechanisms, algorithms,
network topologies and hardware resources. Also, two workload input alternatives are possible: a trace-driven
mode and a distribution-driven mode that encompasses the most recent results on Web workload
characterization. We present two case studies to show how CWebSim can be used to test cache cooperation
protocols and Web switch dispatching algorithms.

Keywords: Simulation framework, Cluster-based Web systems, Performance evaluation, Caching, Cooperation
algorithms

1. INTRODUCTION

Simulation is a common practice for the
performance evaluation and capacity planning of
Web-based systems. Indeed, the complexity of
current Web architectures often makes analytical
solutions of the related mathematical models
infeasible. In this paper we present CWebSim: a
simulation framework conceived for cluster-based
Web services. These architectures are frequently
used in practice: they are built on pools of server
nodes, also known as Web farms/clusters, that are
interconnected by a LAN with the goal of sharing
the load of incoming requests. Many alternatives
exist and CWebSim can be used to evaluate most of
them, especially those acting at the higher levels,
that is, application protocols, server-level caching,
file systems. Nevertheless, CWebSim remains a
detailed simulation model of a Web cluster,
encompassing the main issues about the hardware,
the operating system and the application layers, such
as internal network and disk transfers, overheads due
to request dispatching and processing. Special
attention has been posed also to the workload model
that reproduces a Web environment: in the case of
the synthetic workload, realistic distributions for
document sizes and requests are adopted, whereas
the trace-based method has the appreciable feature
of preserving the time dependencies. The CWebSim
simulation framework can be customized into
several Web service architectures, thanks to its

modular design which allows the combinations of a
broad variety of technical features, such as the
adoption of different request dispatching policies
and internal network hardware. By redefining the
node functions and interconnections, complex
proxy-caching systems or multi-tier architectures for
e-commerce services can be easily simulated.

Figure 1. A basic cluster of cooperating Web servers

To the best of our knowledge, no simulation tool in
literature is specifically oriented to Web clusters.
General purpose frameworks exist for simulating
computer networks, such as ns-2, OPNET
Modeler and other tools that are considered in
Section 5. CWebSim is written in C and uses the
CSIM process-based simulation library (see
Mesquite, 2001): this provide us with an adequate

I.J. of SIMULATION Vol. 7 No 6 ISSN 1473-804x online, 1473-8031 print

mailto:Marco.Emilio.Poleggi@cern.ch
mailto:Marco.Emilio.Poleggi@cern.ch
mailto:Marco.Emilio.Poleggi@cern.ch
mailto:casalicchio@uniroma2.it
mailto:casalicchio@uniroma2.it
mailto:casalicchio@uniroma2.it

11

E. CASALICCHIO, R.LANCELLOTTI, M.E. POLEGGI: SIMULATION FRAMEWORK

basis of classes and functions to be used as the
building blocks for the implementation of complex
simulation models. CWebSim can be ported to most
operating systems thanks to the different CSIM
distributions available: we tested it successfully on
Linux and on various Unix-like platform. Some
efforts can be necessary to implement CWebSim
through other simulation languages/libraries, but
there is no theoretical limit to its porting, because
the design of CWebSim relies on CSIM features that
are common to many other library-based simulation
tools.
We present two case studies where we simulate
through CWebSim a set of clustered HTTP servers.
In the first case, the nodes cooperate for global
caching purposes, as shown in Figure 1, with the
aim of improving the performance of standard Web
clusters, composed of stand-alone nodes. The
second case study focuses on dispatching algorithm
alternatives that can be adopted at the front-end
component of the Web cluster, namely, the Web
switch.
The rest of the paper is organized as follows. Section
2 gives a detailed description of the simulation
framework we designed for the evaluation of generic
Web-based services. In Section 3 and 4, we discuss
the use of CWebSim for simulating, respectively,
global caching mechanisms and Web switch
dispatching algorithms. Some related work is
discussed in Section 5. We outline conclusions and
future work in Section 6.

2. CWebSim: A WEB CLUSTER SIMULATION
TOOL

In this paper we present the architecture details and
some applications of a simulation tool conceived for
the performance evaluation of cluster-based Web
architectures. CWebSim (‘C’ stands for “cluster”) is a
discrete-event simulator implemented through the
CSIM package: a library of routines for process-
oriented simulations. The simulation framework
underlying CWebSim can be customized to represent
many classes of Web architectures, but in this paper
we focus on locally distributed HTTP servers, also
known as Web clusters. Therefore, in the following
discussion we consider only the main components of
Web clusters, that are the Web switch, the servers
and the internal network, disregarding some external
issues such as DNS servers, gateways and routers.
Figure 2 shows an high-level view of the CWebSim
software architecture. CWebSim has a modular
software structure conceived to isolate the
implementation of the target model from the
auxiliary simulation routines. The target system’s
behavior is defined by a set of four modules
(Dispatching module, Client module, Server module,
and the subset of Hardware definition modules) that
implement the core Web component models; these
modules are described in Section 2.1. The remaining
modules (Input module, Output module and Gather
module) are described in Section 2.2: they

implement simulation services such as input/output
and statistic gathering routines.

Figure 2. Software modules of CwebSim

2.1. Target system modules

The target system can be seen as a set of nodes that
are interconnected through one or more network
links. Each node is an abstraction of a physical
computer unit, such as a PC or a workstation, and
can be configured with different hardware
capabilities, so that specialized nodes can be easily
modeled. A process abstraction mechanism allows
CSIM threads to be activated on the nodes. The main
hardware components we consider are CPUs, hard-
disks, memory banks and network interface cards
(NICs): the related models are implemented by
appropriate CSIM facilities having, if needed, their
own queueing system. These components are
included in the Hardware definition modules:
CPUs are round-robin-scheduled service centers.

CSIM threads engage the centers for a timeslice
configurable to approximate the behavior of
current operating system schedulers. The service
time depends on the requested operation.

Hard-disks are FCFS (First-Come-First-Served)
centers with service time defined by a constant
part (average values from off-the-shelf device
datasheets are considered for the controller delay
and the seek time) plus a part that is proportional
to the requested data amount through a transfer-
rate parameter.

Memory banks are not modeled as independent
service centers: they are accessed through the
CPU, like in real systems. The service time is
proportional to the amount of the transferred
data.

NICs can be defined according to various models
available in the Network module, as described in
Section 2.1.4.

I.J. of SIMULATION Vol. 7 No 6 ISSN 1473-804x online, 1473-8031 print

12

E. CASALICCHIO, R.LANCELLOTTI, M.E. POLEGGI: SIMULATION FRAMEWORK

As the main focus of the simulation is on Web-based
applications, we find unnecessary to model low-
level factors, such as operating system delays or
MAC contention. Being typically two or three orders
of magnitude lower than application service times,
these overheads are negligible with respect to the
costs of Web-based services hosted on a cluster.
A Web cluster model is obtained by defining a set of
Web server nodes, a Web switch node and one or
more Web client nodes. The “Web” qualifier in front
of some non-ambiguous terms, such as “client” and
“server”, will be often omitted. The server nodes and
the Web switch are interconnected by an internal
network, whereas the client nodes are connected to
the Web switch through an external network
simulating the Internet; the network models are
managed by the Network module. Since CWebSim is
cluster-oriented, the overall target system description
is based on some global data structures that define
the components available on each node: for
example, number of CPUs in a node, type of NIC,
and so on. When the simulator is initialized, for each
node (or group of homogeneous nodes), a setup
function instantiates the needed CSIM
facilities,stating, for instance, how much memory it
owns and which scheduling policy its CPU adopts.
In a typical Web interaction, a client sends a
connection request to the Web switch, that selects a
server node and forwards the request to it; the server,
in its turn, processes the request and sends a reply to
the client. Our framework relies on process-oriented
simulation. Hence, any active entity, such as clients,
servers and dispatchers, are instances of CSIM
threads, which communicate through internal
message passing routines: models for high-level
network protocols can be easily built upon this basic
communication system.

2.1.1 Client module
This module is responsible of generating the input
workload for the target system. The life cycle of a
Web client is modeled according to the most recent
results on the Web load characterization (see
Barford, 1999, Arlitt, 1997). In a real scenario, users
visit a Web site for a time whose length depends on
their personal profile and on the requested services;
once completed the service request, they leave the
Web site. Hence, we consider a Web interaction
model wherein clients enter the system and populate
it for a Web session. During a Web session a client
generates a random number of requests for Web
pages, each of them being composed of an HTML
file and a random number of embedded objects.
Once received the requested document with its
embedded objects, the client reads it and issues a
new page request after a random user think time,
mimicking the human behavior.
Clients are implemented by CSIM processes which
generate input requests through either a distribution-
driven model or a trace-driven model.
Distribution-driven model. Client processes are
generated concurrently. At any simulation instant,
the system is populated by a random number of

processes. In our implementation, each client
process is activated at a simulation time ti , which is
a stochastic variable describing the client arrival
time: the mean difference value ti+1 − ti (inter-arrival
time) can be adjusted to obtain the desired incoming
load pressure.
Once activated, a client process computes some
session parameters: first, the number of HTML
pages requested during the Web session, and then,
for each page, the number of embedded objects;
HTML pages and embedded objects are chosen
according to a certain popularity distribution. After
this set-up phase, the Web client enters the system,
issues the first connection request to the Web switch,
and stands waiting for a reply. When a response
message from one server of the cluster is received,
the Web client process is resumed: it can either
submit a request for an embedded object of the same
HTML page or, if all the embedded objects have
been received, it can wait for a user think time Ttt,
during which the user is supposed to read the
obtained page. These actions are repeated until all
the HTML pages composing the Web session are
received, then the client process leaves the system.
The Web interaction model also covers connection
refusals, which occur when the cluster service
capacity reaches a predefined saturation point;
rejected connections are not reissued, to avoid
driving the system into a trashing state. Each random
variable describing the client life cycle is
characterized by a probability distribution function,
whose shape and parameters can be defined by the
CWebSim user. The alternatives of statistical
distribution supported by CWebSim for distribution-
driven workload generation are discussed in Section
2.2.1.
Trace-driven Model. In this model, all the
characteristics of the workload model are
determined by a real log of Web requests. The
behavior of a client process is entirely driven by pre-
loaded data. Our trace-driven model is fairly realistic
because it preserves the time patterns of real logs of
the typical Web traffic. We are mainly interested in
preserving the time dependencies of the request
stream, since this affects significantly the server
performance. A trace log must be pre-processed to
be used as input by the simulator: this operations
introduces some artifacts necessary to rebuild a
session-structured trace. The log’s lines are scanned
with a sliding time window that defines the
maximum session time length: all requests coming
from the same IP address within the time window
are assigned to the same Web session. The first
object requested in a session is considered an HTML
page, whereas the following objects are treated as
embedded objects. This introduces some
approximations, but it is not possible to rebuild the
exact page structure without considering the original
structure of the Web site.

I.J. of SIMULATION Vol. 7 No 6 ISSN 1473-804x online, 1473-8031 print

13

E. CASALICCHIO, R.LANCELLOTTI, M.E. POLEGGI: SIMULATION FRAMEWORK

2.1.2. Dispatching module

The Web switch, also known as dispatcher, is
responsible of forwarding the incoming Web
requests to a server node selected according to a
certain policy. CWebSim can simulate either
stateless dispatching algorithms, such as random and
round-robin, or stateful algorithms, such as least-
loaded and dynamically-weighted round-robin. Also
content-aware dispatching policies are supported.
An overview of the main dispatching alternatives for
Web clusters is given in Cardellini, 2002.
A Web switch can be a general purpose PC or a
dedicated hardware device: in both cases the
components relevant to our performance studies are
CPU(s) and NICs. The basic Web switch node model
consists of a queuing system with three service
centers connected to work in a one-way mode, that
is, only the incoming client requests go through it,
whereas the server replies reach directly the clients.
The service centers are a CPU used to run the
dispatching algorithm, and two NICs: a first one
connects the cluster to the Internet, through which
the client requests come in, a second one connects
the Web switch to the internal network which
conveys the requests forwarded to the server nodes.
A two-way Web switch could be modeled using two
service centers for each NIC, according to the model
of a Web server node proposed in Carrera, 2001.
 Since some of the supported dispatching algorithms
are based upon server state information, a special
CSIM process runs on the Web switch node: every
Tget seconds it stores load state information, such as
number of active processes on each server node,
server response time, CPU and disk utilization. The
same information is used to simulate an optional
admission control mechanism that rejects connection
requests when the system gets overloaded.

2.1.3. Server module

The Web server node model encompasses the main
hardware components, as shown in Figure 3: a CPU,
a hard-disk, a memory bank used as a main memory
cache and two NICs. One NIC is used to connect the
node to the internal network, the other NIC connects
the node to the external network.

Figure 3. Server node model

We suppose that when a Web request is assigned to a
Web server the service centers are visited as it
follows.

1. The incoming HTTP request is queued at the
internal NIC .

2. The CPU parses the incoming HTTP request,
and runs a load management algorithm to decide
whether to accept or discard the request.

3. The memory bank is accessed, engaging the
CPU, trying to retrieve a cached copy of the
requested document.

4. If the requested file is not found in the memory
cache, the hard-disk is accessed to load the file
into the cache.

5. The CPU is used again to produce an HTTP
response.

6. The external NIC is used to deliver the response
back to the client.

 The Web server application simulates a multi-
threaded server, whereby a CSIM process started at
the system boot acts as a master HTTP daemon,
waiting for request connections; when a server node
receives an HTTP request from the Web switch, the
master daemon forks a new slave CSIM process
which serves the request. Any admission control
policy is performed by the master daemon: the slave
process is not spawned if the system is overloaded,
in which case an error reply is sent to the client by
the master process.
The main memory is used as a stand-alone local
cache to simulate the behavior of the caching
mechanisms of current operating systems. Different
classical replacement policy, such as Least Recently
Used (LRU), Least Frequently Used (LFU) and their
variants, are supported.
We model both HTTP/1.0 and HTTP/1.1 protocols.
Through the HTTP/1.0 protocol, a new slave HTTP
process is forked to serve each Web page
component, that is, the HTML file and all the
embedded objects. Through the HTTP/1.1 protocol,
the same slave HTTP process serves the HTML file
and all embedded objects.

2.1.4. Network module

Since we are interested in the main issues of high-
level communication protocols, such as the HTTP
handshaking or the TCP connection handoff, the
communication among the diverse Web entities is
modeled as a single message exchange mechanism,
without simulating any packet fragmentation and
routing mechanisms. This approach aims to obtain a
server-side performance evaluation, and is based on
the assumption that each application-level
computation, like the HTTP request processing
inside the Web server process, is much longer than
any characteristic time of the underlying network
layers (with the exclusion of transfer delays). Inside
a Web cluster, such a system configuration is
achievable with the adoption of light-weight
messaging protocols, like UDP. As for the
geographical network overheads, the connection
setup times are, in most cases, negligible with
respect to the average transfer latency. Although for
the server-side comparison of diverse cluster-based
architecture it is not necessary to simulate a wide-

I.J. of SIMULATION Vol. 7 No 6 ISSN 1473-804x online, 1473-8031 print

14

E. CASALICCHIO, R.LANCELLOTTI, M.E. POLEGGI: SIMULATION FRAMEWORK

area network, CWebSim can be easily extended to
accommodate this need.
Various network models are implemented inside the
Network Module of CWebSim. Each of them can be
adopted according to the topology and features of
the system under study.
Ideal network: neither delays nor contentions are

considered. This model is suited to scenarios
where all communication overheads are
negligible, or where the network links should
never become a performance bottleneck. NICs
are dummy elements.

Delayed network: each transfer experiments a delay
proportional to its size, but network contentions
are not considered (NICs are delay elements).
This model can be used when the network is
supposed to never saturate, even though it is
necessary to model transmission delays as in
Internet’s back-bones.

Bus network: all the transfer requests share the
same resource (a single FCFS queue service
center, NICs are delay elements) and experience
a delay proportional to the size of the transmitted
data; network contentions are captured by the
queuing discipline. This model is an
approximation of Ethernet-like LANs, wherein
each node is connected on the same physical
medium.

Switched network: it is composed of N
independent links each of them being modeled
through a single FCFS queue service center (that
is the NIC), which simulates the network
contentions; each transfer from one attached
node to another engages two links with a delay
proportional to the transmitted data size. Each
link’s queue is used for bidirectional
communication. No switching delay is
considered, as, in most real cases, it is negligible
with respect to the transfer latency. The
maximum theoretical bandwidth of such network
model is N/2 times greater than the bandwidth
value of the single link. This model resembles
switched LANs with a star topology, like the
Fast/Gigabit Ethernet.

2.2. Service modules

The service modules implement functionalities
related to the simulator, such as providing the
system with the input parameters, collecting
simulation statistics and producing the simulation
reports.

2.2.1. Input module

This module is responsible of processing all the
input parameters, which are then dispatched to the
other modules in order to configure and initialize
their components. CWebSim’s input parameters can
be divided into three main classes: workload
parameters needed to configure the Client module,
system parameters needed to configure the Web
switch node, Web servers nodes and the Network

module, and dispatching parameters which select
and configure the dispatching algorithm to be used.
Table 1 summarizes the main input parameters of
CWebSim with some hints about the experiments
that can be done by varying one or more of them.

Table 1. Input parameters of CWebSim

The workload parameters can be adjusted for
different statistical distributions. Web access patterns
exhibit a high variability and a self-similar nature
which are well approximated by “heavy-tailed”
distributions, such as Pareto and Lognormal
distributions (see Arlitt, 2000, Barford, 1999,
Cherkasova 2001). For instance, in Pitkow 1999 is
shown that the number of requests per Web session
follows an inverse Gaussian distribution, whereas a
Pareto function fits the distributions of the number
of embedded objects per request and of the user
think time (see Barford, 1999, Pitkow, 1999). Since
CSIM offers only a set of standard distributions,
such as exponential and normal, we implemented
inside CWebSim the following heavy-tailed
distributions of interest for the Web: Inverse
Gaussian, Lognormal, Pareto, Weibull and Zipf.
The case study presented in Section 3 shows some
application examples.

2.2.2. Gather and Output module

Once defined the system and the workload model,
the next step in the testbed setup is to choose the
most appropriate performance indexes to evaluate
cluster-based Web systems. We classify performance
indexes into three broad groups: service capacity
indexes , service efficiency indexes and system load
indexes . Any index can be referred either to the
whole system or to its components.
Service capacity indexes estimate quantitatively the
system performance at the service source point.
Commonly adopted indexes are the following:
throughput: it is defined as the number of quantities

computed by a system in a time unit. Quantities
of interest for Web systems are: HTML pages
(including the embedded objects), objects (files),
HTTP and TCP connections, bytes. Some
throughput indexes can be further specified: for
instance, we can distinguish between the static
object throughput for pre-existent files, and the
dynamic object throughput for those files
generated on the fly, like CGI results;

cache hit ratio: measurable as the ratio of the
number of either documents (document hit ratio,

I.J. of SIMULATION Vol. 7 No 6 ISSN 1473-804x online, 1473-8031 print

15

E. CASALICCHIO, R.LANCELLOTTI, M.E. POLEGGI: SIMULATION FRAMEWORK

or DHR) or bytes (byte hit ratio, or BHR) found
in the cache to the total number of requested
documents/bytes. The hit ratios give an estimate
of the effectiveness of the caching subsystem,
e.g., when simulating a proxy architecture.

The main service source points in a Web cluster are
the Web switch (toward the server pool), each server
node and the whole cluster (toward the client nodes).
Service efficiency indexes estimate qualitatively
the system performance at the service destination
point. The items of interest are:
response time: it is defined as the time experienced

by an user to obtain a service from a system. In
the case of Web systems, the service request can
be an object/page request or a session, therefore,
the response time is measured, respectively, as
the time to receive an object, an HTML page
with all its embedded objects or a certain number
of HTML pages composing a session;

latency time: it is the time needed by a system to
process a service request, excluding any
communication delay. For instance, the object
latency time of the entire Web cluster does not
encompass the internal/external network delays.

The main service destination point in a Web cluster
are the client nodes (the source being the whole
cluster) and the server nodes (the source being the
Web switch).
System load indexes estimate the stress of a system
at the service processing point: they represent
complementary performance indexes, that is, they
give a measure of the service costs. We consider the
following index:
utilization: it is the fraction of a base time interval

during which a single-resource system is busy.
The utilization of a multi-resource system can be
measured in many ways, according to its
architecture. For an n−resource pipelined system,
which is a good approximation of a server node
equipped with one CPU and one disk, we adopt
an OR-based definition of utilization: the fraction
of a base time interval during which at least one
of the system resources is busy. On the other
hand, for a parallel system, like a dual CPU/disk
server node, we adopt an AND-based definition
of utilization: the fraction of a base time interval
during which all the system resources are busy;

network B/W consumption: it measures the traffic
conveyed by the network in a time unit, that is,
the bandwidth (B/W) consumed: this gives an
estimate of the network stress.

Once defined the performance indexes, we use some
metrics to extrapolate a single or a set of values that
are representative for that index. Common statistical
measures of a set of sampled data are: sample mean,
sample standard deviation, x-percentile and
cumulative distribution function. Sample mean and
standard deviation are representative measures of a
set of sampled data following a standard
distribution, such as normal and Poisson. When the
probability distribution of the samples is
characterized by an infinite standard deviation the
most representative statistical metrics are the x

-percentiles and the cumulative distribution
functions. All these metrics can be easily
extrapolated via CSIM routines.
In order to generate the output statistics, the Gather
module provides the simulator with a service agent
that, periodically, collects some status values probed
inside the system components, computes some
performance metrics and stores the resulting values
into CSIM tables. The simulation can be controlled,
through internal CSIM routines, in order to stop the
run when a given confidence interval is reached. At
the end of the simulation, the collected data are
processed by the Output module to carry out a
detailed simulation report. The main output statistics
available in CWebSim are shown in Table 2.
Furthermore, the simulator is enriched by a set of
Perl scripts that analyze the simulator output for
additional computation. The scripts can build
automatically graphs from a set of simulations or
can aggregate multiple simulation runs (e.g., by
calculating average values and standard deviation) to
provide results that are more significant from a
statistic point of view.

Table 2. Output statistics of CWebSim

3. SIMULATION OF GLOBAL CACHING
MECHANISMS

 A classical Web cluster is a pool of stand-alone
server nodes, each of them being unaware of the
others. The main performance limitation of this
architecture is the shortage of memory resource on
each server node, which forces it to retrieve most of
the requested documents from its hard-disk: as this
is often the bottleneck of a commodity-based server
machine, the single node performance is bounded by
the hard-disk performance. Yet, a Web cluster has a
lot of aggregated RAM that can be used as a
distributed cache to be accessed via a light-weight
cooperation protocol, exploiting RAM-to-RAM
transfers through the internal LAN, which can be
two orders of magnitude faster than a local disk-to-
RAM transfer: this is what we call a global caching
architecture. To the best of our knowledge,
commercial Web clusters do not adopt cache
cooperation solutions, whereas some examples exist
in the research community (see: [Li, 2001], [Liu,
2000], [Song, 2000]).
The logical topology of the cluster is considered to
be a flat mesh. This choice enables us to design the
cooperation protocol in a fully distributed and peer-
to-peer fashion, as all the nodes are responsible of

I.J. of SIMULATION Vol. 7 No 6 ISSN 1473-804x online, 1473-8031 print

16

E. CASALICCHIO, R.LANCELLOTTI, M.E. POLEGGI: SIMULATION FRAMEWORK

the same Web dominion. Distributed file systems are
often used to share files within a Web cluster,
because of their transparent interface toward the
user-level applications. However, there are some
performance trade-offs in this approach due to their
architecture, designed to work in a read/write
environment. Hence, unlike the distributed file
systems, the caching cooperation protocol should
run at the application level, because it needs to
manage whole files, instead of disk blocks.
Moreover, present disk storage dimensions allow us
to replicate the whole Web content on the disk of
each node, that simplifies file retrieval.
In the following sections, we discuss how the
modules of CWebSim are instantiated to simulate
some cooperation alternatives, and present some
performance results.

3.1. The cooperation engine

We integrate a cooperation engine into the basic
framework of CWebSim to simulate various GCP
(Global Caching Protocol) schemes. This extension
transforms the pool of stand-alone servers into a
cluster of peer-to-peer cooperating servers. Only the
Server module is directly affected by these
modifications, while the remaining modules are
instantiated over their original structure.

3.1.1. Server module extensions

Each server node is endowed with a cooperation
frame consisting of a fully replicated Web content on
its hard-disk, and of an engine, which has the
following CSIM-based components (see Figure 4:
CPUs and NICs are not shown).

Figure 4. Model of the cooperation engines

RAM Cache: this is the local main memory storage
of Web documents (i.e., a memory bank). The
cache is managed with a LFU-Aging
replacement policy (see: [Arlitt, 1997]) allowing
a maximum age of 600 s, without any global
coordination. Each HTTP daemon can access
directly its local RAM Cache (through its CPU),
whereas the other remote RAM Caches can be
looked up via a “GCP Client Routine”. The
RAM Cache is accessed for meta-information
management (document lookup and location

update) approximating simple hash-based
operations, and for object insertion/replacement.
The hashing CPU cost depends on the number of
objects hosted in the cache, whereas the
insertion/replacement CPU cost is proportional
to the size of the target object.

GCP Client Routine: this procedure, embedded in
the HTTP daemon’s code, plays the client role of
the GCP, sending service requests to a remote
“Cache Manager” and waiting for replies from it.
The goal of these requests is to retrieve a Web
document in a sibling cache, within a timeout
sufficiently lower than the mean disk service
time but not inferior to the round-trip time of the
internal network.

Cache Manager: this CSIM process plays the
server role in the GCP, accepting two kind of
requests: service requests from remote GCP
Clients (HTTP daemons), to which a reply must
follow, and update issues from remote “Cache
Monitors”, which trigger modifications on the
local meta-information.

Cache Monitor: it is the CSIM process responsible
of checking periodically the local meta-
information in order to update the state of the
global cache. Any change is broadcasted (update
issue) to the other nodes; these messages do not
require replies.

The HTTP request/reply stream is conveyed by the
external network, whereas inter-node messages
(GCP flow) are transmitted over the internal
network. HTTP daemons and Cache Managers start
refusing connections when their load conditions
reach, respectively, 100 and 10 active connections.
The default computing flow of the simulated Web
server (Section 2.1.3) is modified as follows: after a
client request has been accepted and dispatched to a
node, if the requested document is not found in the
local cache (local cache miss), the GCP is activated
before the hard-disk is accessed. This interaction
scheme is based upon two sequential phases, global
lookup and document retrieval .
In the global lookup phase, a cooperation policy
aiming to provide the nodes with a global view of
the system caches is applied. We focus on an
adaptation of the informed protocols relying on
periodic broadcast communication to update the
global state of the system; other informed-based
solutions for Web clusters are proposed in Li, 2001
and Ahn, 2000.
Document retrieval techniques consist of a set of
operations that are carried out by the GCP to satisfy
a Web request after a successful global lookup
phase. These operations involve only two nodes: the
first contacted node (A) and the node that has been
selected by the global lookup step (B). We focus on
two techniques:
Migration technique. The requested file is moved

from the node B to the node A ([see: Ahn,
2000]). This mechanism balances the
competition for global cache space, as the
number of document replicas is unchanged, but it
can consume lots of network bandwidth.

I.J. of SIMULATION Vol. 7 No 6 ISSN 1473-804x online, 1473-8031 print

17

E. CASALICCHIO, R.LANCELLOTTI, M.E. POLEGGI: SIMULATION FRAMEWORK

Handoff technique. Unlike the previous technique,
the handoff mechanism requires kernel-level
interventions to move the TCP connection to a
different node, but it does not transfer any
document (see: [Pai, 1998], [Song, 2000]). In
this case, the node A “delegates” the node B to
complete the Web transaction.

The hard-disk on the node A is accessed only when
the global lookup fails (global cache miss).

3.1.2. Other simulation modules

Dispatching module. In the basic global caching
cluster, the Web switch node is not involved in the
cooperation protocol. In this case study, the Web
switch is instantiated as a one-way layer-4 device
working with a round-robin selection algorithm:
each incoming request is circularly assigned to a
different server-node through manipulation of
network-level packet headers. As this is one of the
fastest dispatching mechanisms, it ensures that the
Web switch is not a performance bottleneck: indeed,
packets belonging to the same TCP connections are
routed to the selected server by changing their MAC
destination address (packet forwarding, see
Cardellini, 2002); no further processing is done at
the higher network layers.
Network module. For the interconnection of the
cluster nodes, a 100 Mb/s switched network model is
adopted, whereas the external network, which,
simulating the Internet, connects the unique client
node to the Web switch node and the server nodes to
the client node is ideal. This configuration
guarantees that all the cluster’s ingress and egress
points are not a performance bottleneck. The GCP is
characterized by a minimum message size of 200 B;
GCP requests timeout after 2 ms and metadata
updates occur every 10 s. The simulated Web
protocol is the HTTP/1.0.
Input module. Table 3 summarizes the distributions
adopted for the workload, together with their
probability mass functions (PMFs) and parameters.
The mean client inter-arrival time is the driver
parameter of the entire test series. Note that the size
distribution of Web objects (both HTML files and
embedded objects) is hybrid, that is, the body and
the tail are modeled by two different functions.

Table 3. Workload distribution and parameters

The simulated Web content counts 5000 files and
has an average file size of 57 KB, whereas the HTTP
request stream exhibits a mean request size of 32 KB
(different parameters are used for the request size
distribution). Since the file size follows an heavy-
tailed distribution, to give an idea of the working-set

size, we may divide the distribution in 4 buckets as
shown in table 4, where the min, max and average
values are expressed in bytes. We refer to working-
set as the total of all the files accessed during the
observed period. From this file size discretization,
by summing up the resulting amount in each bucket,
we obtain a working-set size of about 280 MB.

Table 4. A discretization of file size distribution

Sooner or later all files are requested at least once
during the simulation, but the “core” of the most
accessed ones in the working-set amounts to about
37 MB, because it contains many small objects. The
composition of the core-set is determined by the
Zipf distribution, that captures the locality of
references in the whole Web content.

3.2. Performance study

 This section presents a selection of the experimental
work executed to evaluate the performance of the
GCP in different Web scenarios. We focus on two
informed cooperation schemes, adopting a
migration-based and a handoff-based document
retrieval mechanism, respectively; the reference
system configuration is a non-cooperative cluster.
Hereafter, we refer to the three cluster configurations
as Migration, Handoff and No-coop.
The performance metrics we consider are the sample
means of the byte hit ratio (BHR), of the byte
throughput and of the page response time. Moreover,
the maximum B/W consumption over the internal
network is recorded to evaluate the peak cooperation
overhead. All the reported values are the aggregate
results of multiple experiments referring to the
whole cluster.
The goal of this experiments is to evaluate the peak
performance of the GCP schemes. The system under
testing is a cluster with eight server-nodes, each of
them endowed with 5 MB of cache: the global cache
size is sufficient to hold the whole working-set’s
core. The mean number of incoming client process
per second has been progressively increased from 15
to 70, until the saturation point of the best
performing scheme has been reached. The system
performance is evaluated under a Web scenario
characterized by a static workload wherein all
requested objects are cacheable. The results of this
test series are reported in Figure 5.

I.J. of SIMULATION Vol. 7 No 6 ISSN 1473-804x online, 1473-8031 print

18

E. CASALICCHIO, R.LANCELLOTTI, M.E. POLEGGI: SIMULATION FRAMEWORK

As shown in Figures 5(a), 5(b) and 5(c), to obtain a
significant performance boost, it is necessary that a
cooperative scheme yields a BHR improvement of at
least 13-14%, with respect to the no-coop scheme.
The poor performance of the Migration scheme is
due to an excessive cooperation overhead, as shown
in Figure 5(d): the bandwidth consumption
experiences a steep increase until it reaches a peak at
30-35 clients/s, that corresponds to the knee of the
throughput and response time curves. On the other
hand, the Handoff scheme transmits only control
messages over the internal network, thus it can
sustain higher loads.

4. SIMULATION OF WEB SWITCH
DISPATCHING POLICIES

In cluster-based Web services the role of the Web
switch node is fundamental to obtain adequate
system performance. This section shows how
CWebSim is instantiated to study the behavior of
dispatching policies for dynamic Web-based
services: we focus on the modules of the simulator
that are affected by some modifications or by a

different configuration with respect to the previous
case study.
Dispatching module. The components of the Web
switch node, shown in Figure 6, are described below.

Figure 6. Web Switch node model

Dispatcher: this CSIM process simulates a kernel-
level thread that receives the connection requests
coming from the Web client nodes, through the
external NIC (an ideal zero-delay queue). The
first connection request of each session (see
Section 2.1.1) is registered in the Service table,
so that subsequent requests belonging to the
same session are properly managed.

Service table: this data structure is used to relay
session control information, needed by layer-7
dispatching algorithms, between the Dispatcher

I.J. of SIMULATION Vol. 7 No 6 ISSN 1473-804x online, 1473-8031 print

Figure 5: Increasing load tests on an eight node cluster

19

E. CASALICCHIO, R.LANCELLOTTI, M.E. POLEGGI: SIMULATION FRAMEWORK

and the Controller processes. Conversely, layer-4
algorithms ignore that information.

Controller: this CSIM process simulates the kernel-
level thread that executes the dispatching
algorithm, basing its decision upon the data read
from the Service table and upon some server-
state information collected from the server
nodes. Two content-aware selection criteria are
considered: LARD (see: [Pai, 1998]) and CAP
(see: [Casalicchio, 2001]); as a reference
algorithm we consider the WRR (see:
[Casalicchio, 2001]), which is a content-blind
policy. The CAP policy, in its simplest form,
does not require to set any parameter other than
the choice of classes of services that can be
identified from the URL. The LARD strategy
requires to set only the parameters Tlow and Thigh

indicating the minimum and maximum allowed
server utilization. In our experiments we set
Tlow=0.3 and Thigh=0.7, and we did not observed
considerable changes for slightly different
values, such as 0.2 and 0.75. According to the
adopted dispatching algorithm, the CPU is used
for a time ranging from some tenths to some
hundreds of microseconds, every time a
connection is accepted. Dispatched requests
reach the selected server via the internal NIC.

Server module. A basic server node model is
adopted: the computing flow is the same described
in Section 2.1.3 and no caching cooperation protocol
is executed. Besides the HTTP Daemon, another
CSIM thread simulates a periodical task that samples
the node load state and transmits it to the Web
switch over the internal network.
Input module. Because of the dynamic nature and
security requirements of e-commerce transactions,
the CWebSim’s synthetic workload generator is
configured to issue a certain share of dynamic and/or
secure requests, according to various parameters. A
ciphering algorithm is modeled via a single
throughput parameter defining the CPU’s processing
speed. For example, we use 38.5 Kb/s for the 256-

bit-key RSA, 46886 Kb/s for the Triple DES and
331034 Kb/s for the MD5. Secure requests are
considered CPU-bound requests. The simulator
allows us to define also dynamic requests that stress
the server disk, namely, disk-bound requests.

4.1. Simulation results

The considered performance measure is the
cumulative frequency of the page latency time.We
consider three scenarios where light dynamic CPU-
and disk-bound requests are mixed in different ways.
In the first set of experiments, we assume that a 40%
of the total requests need secure connections and
cryptography. This is the most critical scenario
because CPU-bound requests affect the performance
of the other 60% of requests that have to use the
CPU, even if for less intensive operations such as
parsing a request and building an HTTP response.
Figure 7(a) shows how this very critical (and, we
can say, unrealistic) scenario deteriorates the
performance of all dispatching strategies. However,
multiple service scheduling allows CAP to achieve
better results than WRR and LARD.
In the second scenario, we introduce both CPU- and
disk-bound requests, but CPU-bound requests (20%)
differ from disk-bound requests (20%). In Figure
7(b), we see that the CAP policy provides really
good page latency times, while WRR reaches its
limit and LARD does not guarantee a scalable Web
cluster. The improvement of the CAP strategy is
significant, especially if we consider that the WRR
curve refers to a WRR policy with optimal
parameter setting. For example, CAP achieves a
page latency time of about 4 seconds with 0.95
probability. For WRR, a similar latency time is
achieved with a probability of about 0.78, and for
LARD with a probability of less than 0.5.

I.J. of SIMULATION Vol. 7 No 6 ISSN 1473-804x online, 1473-8031 print

Figure 7: E-commerce scenario, cumulative frequency of page response time

20

E. CASALICCHIO, R.LANCELLOTTI, M.E. POLEGGI: SIMULATION FRAMEWORK

5. RELATED WORK

Simulation frameworks oriented to the evaluation of
network-based systems have a general scope and do
not focus on Web cluster systems. Multiple general
purpose simulators are available in the literature and
in the industry. For example, the Network Simulator
ns-2 (see: [McCanne, 2007]) is an example of a
discrete-event simulator strictly conceived for
networking-related research, such as the testing of
new communication protocols. Similar to the ns-2,
are the Georgia Tech Network Simulator GTNetS
(see: [Lee, 2005]) and YANS (see: [Lacage, 2006]).
The Network Simulator is undergoing a new
development cycle that will improve the general
design, taking advantage from GTNetS and YANS:
besides addressing scalability and code cleanup
issues, the new ns-3 (see: [Henderson, 2006]) aims
at simulating low-level network details, without
addressing explicitly Web clustering features. The
OPNET Modeler (see: [OPNET, 2007]) is a
comprehensive industry-standard simulation
environment, that can be used to model
communication networks and distributed systems: it
incorporates tools for all the phases of a
performance study, including graphical model
design, simulation, data collection and analysis.
Another general purpose simulation and analysis
tool is the Tangram II suite (see: [de Souza e Sinlva,
2006]), which allows the analysis of distributed
systems using a combination of analytical and
simulation models. However, like the other tools
mentioned above, Tangram II is not specifically
designed for the analysis of Web-based systems.
In the research area of Web systems, simulators are
typically created for specific goals, that is, they
cannot be instantiated over different target systems
without significant modifications. For example,
Cherkasova and Phaal model a single Web server as
a service center with a finite listen queue, to
investigate a particular admission control policy.
Similarly, Cherkasova and Karlsson use a CSIM-
based simulator that implements a model of a Web
cluster: the goal of the authors is to evaluate the
performance of a workload-aware request
dispatching policy.
Pai et al. propose a Web cluster model wherein the
Web switch is ideal, and each Web server is modeled
through a waiting queue, simulating the NIC, and
two service centers simulating the CPU and the
hard-disk, respectively. Trace-driven simulations are
executed to study the performance of a locality-
aware dispatching policy.
A hybrid simulation tool is presented by Wang et al.:
it integrates ns-2 with Logsim, a Web server
simulator similar to that adopted in Pai, 1998. The
goal is to explore the performance of request
redirection mechanisms in Content Delivery
Networks, that are geographically deployed systems.
Similarly, the trace-driven discrete-event tool
presented by Davison simulates geographic proxy-
caching architectures, with efficient network-level
models, though less detailed than those available in

ns-2. Typically, the server-side of these simulators is
not modeled with all the details required by the
complexity of Web cluster systems.

6. CONCLUSIONS

 This paper presents the design and implementation
of a modular simulation framework (CWebSim)
conceived for Web-based services deployed over
clusters of HTTP servers. The basic structure of
CWebSim can be configured to represent a broad
variety of cluster-based Web architectures; also, it is
possible to build custom system models through
extensions to its functional modules. Particular
attention has been dedicated to the network and
workload models, which are customizable with
different degrees of realism to allow simulations of
the most typical Web scenarios. The workload
module is capable of both distribution- and trace-
driven generation modes.
CWebSim is written in C and it is based on the
CSIM library, which is available for the most
popular platforms, including Linux and Windows.
We have presented a first case study where
CWebSim is used to simulate global caching
systems: the simulation of these architectures
required a careful modeling of the server-to-server
interaction occurring through the internal network.
In a second case study, we focus on the simulation of
diverse Web switch dispatching algorithms, that
required a detailed modeling of the dispatcher
components.
CWebSim is being extended to support the modeling
of low-level network-related issues, so as to allow
the simulation of geographically distributed Web
systems.

REFERENCES:

W. H. Ahn, S. H. Park, and D. Park (2000).
“Efficient Cooperative Caching for File Systems in
Cluster-based Web Servers”. In Proc. of the 2nd
IEEE Int’l Conf. on Cluster Computing
(CLUSTER2000)

M. F. Arlitt and T. Jin (2000). “A Workload
Characterization Study of the 1998 World Cup Web
Site”. IEEE Network, 14(3):30–37.

M. F. Arlitt and C. L.Williamson (1997). “Internet
Web servers: Workload Characterization and
Performance Implications”. IEEE/ACM Trans. on
Networking , 5(5):631–645.

M. F. Arlitt and C. L. Williamson (1997). “Trace-
driven Simulation of Document Caching Strategies
for Internet Web Servers”. SIMULATION Journal ,
68(1):23–33.

P. Barford, A. Bestavros, A. Bradley, and M. E.
Crovella (1999). “Changes in Web Client Access
Patterns: Characteristics and Caching Implications”.
World Wide Web , 2(1-2):15–28.

I.J. of SIMULATION Vol. 7 No 6 ISSN 1473-804x online, 1473-8031 print

21

E. CASALICCHIO, R.LANCELLOTTI, M.E. POLEGGI: SIMULATION FRAMEWORK

P. Barford and M. E. Crovella (1998). “Generating
Representative Web Workloads for Network and
Server Performance Evaluation”. In Proc. of the
ACM Performance 1998/SIGMETRICS 1998 , pp.
151–160, Madison, WI, USA.

P. Barford and M. E. Crovella (1999). “A
Performance Evaluation of Hyper Text Transfer
Protocols”. In Proc. of the ACM SIGMETRICS
1999 , pp. 188–197, Atlanta, GA, USA.

V. Cardellini, E. Casalicchio, M. Colajanni, and P. S.
Yu (2002). “The State of the Art in Locally
Distributed Web-server Systems”. ACM Computing
Surveys , 34(2):1–49.

E. V. Carrera and R. Bianchini . “Efficiency vs.
Portability in Cluster-based Network Servers”. In
Proc. of the 8th ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming
(PPoPP’01) , pp. 113–122, Snowbird, UT, USA,
June 2001.

E. Casalicchio and M. Colajanni (2001). “A Client-
aware Dispatching Algorithm for Web Clusters
Providing Multiple Services”. In Proc. of the 10th
Int’l World Wide Web Conf. (WWW’01) , Hong
Kong, HKG.

L. Cherkasova and M. Karlsson (2001).
“ScalableWeb Server Cluster Design withWorkload-
aware Request Distribution Strategy WARD”. In
Proc. of the 3rd Int’l Work. on Advanced Issues of
E-commerce and Web-based Information Systems ,
San Jose, CA, USA, June 2001.

L. Cherkasova and P. Phaal (1999). “Session Based
Admission Control: a Mechanism for Improving
Performance of Commercial Web Sites”. In Proc.
Int’l Work. on Quality of Service , London.

M. E. Crovella and A. Bestavros (1997). “Self-
similarity in World Wide Web Traffic: Evidence and
Possible Causes”. IEEE/ACM Trans. on Networking
, 5(6):835–846.

B. D. Davison (2001). “NCS: Network and Cache
Simulator – An Introduction”. Technical Report
DCS-TR-444, Rutgers University, Department of
Computer Science.

T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley
(2006). “ns-3 Project Goals”. In Proc. of the
Workshop on NS-2 2006 , Pisa, IT.

M. Lacage, and T. R. Henderson (2006). “Yet
Another Network Simulator”. In Proc. of the
Workshop on NS-2 2006 , Pisa, IT, Oct. 2006.

Y. J. Lee, and G. F. Riley (2005). “Efficient
Simulation of Wireless Networks using Lazy MAC
State Update”. In ACM/IEEE/SCS Workshop on

Principles of Advanced and Distributed Simulation
(PADS).

Q. Li and B. Moon (2001). “Distributed Cooperative
Apache Web Server”. In Proc. of the 10th Int’l World
Wide Web Conf. (WWW’01) , Hong Kong, HKG.

W. Liu, M. Wu, W. Zheng, and M. Sheng (2000).
“Design of an I/O Balancing File System on Web
Server Clusters”. In Proc. of the 2000 Int’l Work. on
Scalable Web Services (in conjunction with
ICPP’00) , Toronto, ON, CAN.

S .McCanne, and S. Floyd (2007). “ns-2 Network
Simulator”. http://www.isi.edu/nsnam/ns/.

Mesquite Software, Inc. (2007) “CSIM”.
http://www.mesquite.com/.

OPNET Technologies, Inc. (207) “OPNET
Modeler”. http://www.opnet.com/.

V. S. Pai, M. Aron, G. Banga, M. Svendsen, P.
Druschel, W. Zwaenepoel, and E. M. Nahum (1998).
“Locality-aware Request Distribution in Cluster-
based Network Servers”. In Proc. of the ASPLOS-
VIII, San Jose, CA, USA

J. E. Pitkow (1999). “Summary of WWW
Characterizations”. World Wide Web, 2(1-2):3–13.

J. Song, E. Levy-Abegnoli, A. Iyengar, and D. Dias
(2000). “Design Alternatives for Scalable Web
Server Accelerators”. In Proc. of the 2000 IEEE Int’l
Symp. on Performance Analysis of Systems and
Software, pp. 184–192, Austin, TX, USA.

E. de Souza e Silva, R. M. M. Lenao, A. P. Couto da
Silva, A. A. A. Rocha, F. P. Duarte, F J. Silveira
Filho, G. D. G. Jaime. and R. R. Muntz (2006).
“Modeling, Analysis, Measurement and
Experimentation with the Tangram-II Integrated
Environment”. In Proc. of ValueTools 2006, Pisa, IT.

L. Wang, V. Pai, and L. Peterson (2002). “The
Effectiveness of Request Redirection on
CDNRobustness”. Technical Report TR–654–02,
Princeton University.

BIOGRAPHY:

Dr. Emiliano Casalicchio is with the Computer
Science Systems and Production Department of the
University of Roma "Tor Vergata". His main
research interests are on distributed systems design
modeling and performance evaluation, with a
particular interest on Grid Computing, Web Systems
and Technologies for wired and mobile
environments. Since 2004 he has been also working
on Interdependency Analysis in Critical Information
Infrastructures, working on Agent-based modeling
and simulation of complex systems.

I.J. of SIMULATION Vol. 7 No 6 ISSN 1473-804x online, 1473-8031 print

http://www.isi.edu/nsnam/

22

E. CASALICCHIO, R.LANCELLOTTI, M.E. POLEGGI: SIMULATION FRAMEWORK

He acts as reviewer for international conferences,
and journals: IEEE Transaction on Software
Engineering (2007), Computer Communication
Journal, Elsevier (2007); IEEE Internet
Computer(2005); Journal of Systems and Software
Elsevier (2004); Performance Evaluation Review,
NorthHolland 2003; IEEE International Conference
on Communication 2003; IEEE Vehicular
Technology Conference 2004 - Fall; IEEE Vehicular
Technology Conference 2003; ACM-WIAPP2003;
ICC2003. He is an IT consultant for many Italian
companies and for the Italian Custom Agency and he
is actually a member of the editorial committee of
the Italian Society of Critical Infrastructure Experts
(AIIC).

Dr. Riccardo Lancellotti received the Laurea and
the Ph.D. degrees in computer engineering from the
University of Modena and from the University of
Rome “Tor Vergata”, respectively. He is currently an
Assitent professor in the department of Information
Engineering at the University of Modena, Italy. In
2003 he spent eight months at the IBM T.J. Watson
Research Center as a visiting researcher. His
research interests include scalable architectures for
Web content delivery and adaptation, peer-to-peer
systems, distributed systems performance evaluation
and benchmarking. He is a member of the IEEE
Computer Society. Fro additional details see
http://weblab.ing.unimo.it/people/riccardo.

Dr. Marco Emilio Poleggi received his MSc in
Electronic Engineering from University of Rome
"La Sapienza" and his PhD in Computer
Engineering from the University of Rome "Tor
Vergata". During his studies, he focused on cache-
cooperation mechanisms for cluster-based Web
servers. He currently works at CERN – the European
Organization for Nuclear Research - as a research
fellow: he is a developer and the release manager of
Quattor, an open source tool suite for the
administration of large computer clusters. Marco
Emilio is a member of the IEEE Computer Society.
Contact him at <Marco.Poleggi@cern.ch>"

I.J. of SIMULATION Vol. 7 No 6 ISSN 1473-804x online, 1473-8031 print

mailto:Marco.Poleggi@cern.ch

	EMILIANO CASALICCHIO
	RICCARDO LANCELLOTTI
	MARCO EMILIO POLEGGI

