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1. INTRODUCTION

Simulation  is  a  common  practice  for  the 
performance  evaluation  and  capacity  planning  of 
Web-based  systems.  Indeed,  the  complexity  of 
current  Web  architectures  often  makes  analytical 
solutions  of  the  related  mathematical  models 
infeasible.  In  this  paper  we  present  CWebSim:  a 
simulation  framework  conceived  for  cluster-based 
Web  services.  These  architectures  are  frequently 
used in  practice:  they are built  on pools  of  server 
nodes,  also known as  Web farms/clusters,  that  are 
interconnected by a LAN with the goal of sharing 
the  load  of  incoming  requests.  Many  alternatives 
exist and CWebSim can be used to evaluate most of 
them,  especially  those  acting  at  the  higher  levels, 
that  is,  application  protocols,  server-level  caching, 
file  systems.  Nevertheless,  CWebSim  remains  a 
detailed  simulation  model  of  a  Web  cluster, 
encompassing the main issues about the hardware, 
the operating system and the application layers, such 
as internal network and disk transfers, overheads due 
to  request  dispatching  and  processing.  Special 
attention has been posed also to the workload model 
that reproduces a Web environment: in the case of 
the  synthetic  workload,  realistic  distributions  for 
document  sizes  and requests  are adopted,  whereas 
the trace-based method has the appreciable feature 
of preserving the time dependencies. The CWebSim 
simulation  framework  can  be  customized  into 
several  Web  service  architectures,  thanks  to  its 

modular design which allows the combinations of a 
broad  variety  of  technical  features,  such  as  the 
adoption  of  different  request  dispatching  policies 
and  internal  network  hardware.  By  redefining  the 
node  functions  and  interconnections,  complex 
proxy-caching systems or multi-tier architectures for 
e-commerce services can be easily simulated.

Figure 1. A basic cluster of cooperating Web servers

To the best of our knowledge, no simulation tool in 
literature  is  specifically  oriented  to  Web  clusters. 
General  purpose  frameworks  exist  for  simulating 
computer networks, such as ns-2, OPNET 
Modeler and  other  tools  that  are  considered  in 
Section 5.  CWebSim is  written in  C and uses  the 
CSIM  process-based  simulation  library  (see 
Mesquite,  2001):  this provide us with an adequate 
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basis  of  classes  and  functions  to  be  used  as  the 
building blocks for the implementation of complex 
simulation models. CWebSim can be ported to most 
operating  systems  thanks  to  the  different  CSIM 
distributions available: we tested it  successfully on 
Linux  and  on  various  Unix-like  platform.  Some 
efforts  can  be  necessary  to  implement  CWebSim 
through  other  simulation  languages/libraries,  but 
there is  no theoretical  limit  to its  porting,  because 
the design of CWebSim relies on CSIM features that 
are common to many other library-based simulation 
tools. 
We  present  two  case  studies  where  we  simulate 
through CWebSim a set of clustered HTTP servers. 
In  the  first  case,  the  nodes  cooperate  for  global 
caching purposes,  as  shown in  Figure  1,  with  the 
aim of improving the performance of standard Web 
clusters,  composed  of   stand-alone  nodes.  The 
second case study focuses on dispatching algorithm 
alternatives  that  can  be  adopted  at  the  front-end 
component  of  the  Web  cluster,  namely,  the  Web 
switch.
The rest of the paper is organized as follows. Section 
2  gives  a  detailed  description  of  the  simulation 
framework we designed for the evaluation of generic 
Web-based services. In Section 3 and 4, we discuss 
the  use  of  CWebSim  for  simulating,  respectively, 
global  caching  mechanisms  and  Web  switch 
dispatching  algorithms.  Some  related  work  is 
discussed in Section 5. We outline  conclusions and 
future work in Section 6.

2. CWebSim: A WEB CLUSTER SIMULATION 
TOOL

In this paper we present the architecture details and 
some applications of a simulation tool conceived for 
the  performance  evaluation  of  cluster-based  Web 
architectures. CWebSim (‘C’ stands for “cluster”) is a 
discrete-event  simulator  implemented  through  the 
CSIM package:  a  library  of  routines  for  process-
oriented  simulations.  The  simulation  framework 
underlying CWebSim can be customized to represent 
many classes of Web architectures, but in this paper 
we focus on locally distributed HTTP servers, also 
known as Web clusters. Therefore, in the following 
discussion we consider only the main components of 
Web clusters,  that  are the Web switch,  the servers 
and the internal network, disregarding some external 
issues such as DNS servers, gateways and routers.
Figure 2 shows an high-level view of the CWebSim 
software  architecture.  CWebSim  has  a  modular 
software  structure  conceived  to  isolate  the 
implementation  of  the  target  model  from  the 
auxiliary  simulation  routines.  The  target  system’s 
behavior  is  defined  by  a  set  of  four  modules 
(Dispatching module, Client module, Server module, 
and the subset of Hardware definition modules) that 
implement  the core Web component  models;  these 
modules are described in Section 2.1. The remaining 
modules (Input module,  Output module and  Gather 
module)  are  described  in  Section  2.2:  they 

implement simulation services such as input/output 
and statistic gathering routines.

Figure 2. Software modules of CwebSim

2.1. Target system modules

The target system can be seen as a set of nodes that 
are  interconnected  through  one  or  more  network 
links.  Each  node  is  an  abstraction  of  a  physical 
computer unit,  such as a PC or a workstation, and 
can  be  configured  with  different  hardware 
capabilities, so that specialized nodes can be easily 
modeled.  A process  abstraction  mechanism allows 
CSIM threads to be activated on the nodes. The main 
hardware components we consider are CPUs, hard-
disks,  memory  banks  and  network  interface  cards 
(NICs):  the  related  models  are  implemented  by 
appropriate CSIM facilities having, if needed, their 
own  queueing  system.  These  components  are 
included in the Hardware definition modules:
CPUs are  round-robin-scheduled  service  centers. 

CSIM threads engage the centers for a  timeslice 
configurable  to  approximate  the  behavior  of 
current operating system schedulers. The service 
time depends on the requested operation.

Hard-disks are  FCFS  (First-Come-First-Served) 
centers with service time defined by a constant 
part  (average  values  from  off-the-shelf  device 
datasheets are considered for the controller delay 
and the seek time) plus a part that is proportional 
to the requested data amount through a transfer-
rate parameter.

Memory  banks are  not  modeled  as  independent 
service  centers:  they  are  accessed  through  the 
CPU,  like  in  real  systems.  The service time is 
proportional  to  the  amount  of  the  transferred 
data.

NICs can be  defined according to  various models 
available in the Network module, as described in 
Section 2.1.4.

I.J. of SIMULATION Vol. 7 No 6                                                       ISSN 1473-804x online, 1473-8031 print



12

E. CASALICCHIO, R.LANCELLOTTI, M.E. POLEGGI: SIMULATION FRAMEWORK

As the main focus of the simulation is on Web-based 
applications,  we  find  unnecessary  to  model  low-
level  factors,  such  as  operating  system  delays  or 
MAC contention. Being typically two or three orders 
of magnitude lower than application service times, 
these  overheads  are  negligible  with  respect  to  the 
costs of Web-based services hosted on a cluster.
A Web cluster model is obtained by defining a set of 
Web server nodes,  a  Web switch node  and one  or 
more Web client nodes. The “Web” qualifier in front 
of some non-ambiguous terms, such as “client” and 
“server”, will be often omitted. The server nodes and 
the  Web  switch  are  interconnected  by  an  internal 
network, whereas the client nodes are connected to 
the  Web  switch  through  an  external  network 
simulating  the  Internet;  the  network  models  are 
managed by the Network module. Since CWebSim is 
cluster-oriented, the overall target system description 
is based on some global data structures that define 
the  components  available  on  each  node:  for 
example, number of CPUs in a node, type of NIC, 
and so on. When the simulator is initialized, for each 
node  (or  group  of  homogeneous  nodes),  a  setup 
function  instantiates  the  needed  CSIM 
facilities,stating, for instance, how much memory it 
owns and which scheduling policy its CPU adopts.
In  a  typical  Web  interaction,  a  client  sends  a 
connection request to the Web switch, that  selects a 
server node and forwards the request to it; the server, 
in its turn, processes the request and sends a reply to 
the client. Our framework relies on process-oriented 
simulation. Hence, any active entity, such as clients, 
servers  and  dispatchers,  are  instances  of  CSIM 
threads,  which  communicate  through  internal 
message  passing  routines:  models  for  high-level 
network protocols can be easily built upon this basic 
communication system.

2.1.1 Client module
This module is responsible of generating the input 
workload for the target system. The life cycle  of a 
Web client is modeled according to the most recent 
results  on  the  Web  load  characterization  (see 
Barford, 1999, Arlitt, 1997). In a real scenario, users 
visit a Web site for a time whose length depends on 
their personal profile and on the requested services; 
once completed the service request, they leave the 
Web  site.  Hence,  we  consider  a  Web  interaction 
model wherein clients enter the system and populate 
it for a  Web session. During a Web session a client 
generates  a  random  number  of  requests  for  Web 
pages, each of them being composed of an HTML 
file  and  a  random  number  of  embedded  objects. 
Once  received  the  requested  document  with  its 
embedded objects,  the  client  reads it  and issues  a 
new page  request  after  a  random  user  think  time, 
mimicking the human behavior.
Clients are implemented by CSIM processes which 
generate input requests through either a distribution-
driven model or a trace-driven model.
Distribution-driven  model. Client  processes  are 
generated  concurrently.  At  any  simulation  instant, 
the  system  is  populated  by  a  random  number  of 

processes.  In  our  implementation,  each  client 
process is activated at a simulation time ti , which is 
a  stochastic  variable  describing  the  client  arrival 
time: the mean difference value ti+1 − ti (inter-arrival 
time) can be adjusted to obtain the desired incoming 
load pressure.
Once  activated,  a  client  process  computes  some 
session  parameters:  first,  the  number  of  HTML 
pages requested during the Web session,  and then, 
for  each  page,  the  number  of  embedded  objects; 
HTML  pages  and  embedded  objects  are  chosen 
according to a certain popularity distribution. After 
this set-up phase, the Web client enters the system, 
issues the first connection request to the Web switch, 
and  stands  waiting  for  a  reply.  When  a  response 
message from one server of the cluster is received, 
the  Web  client  process  is  resumed:  it  can  either 
submit a request for an embedded object of the same 
HTML page  or,  if  all  the  embedded  objects  have 
been received, it can wait for a user think time Ttt, 
during  which  the  user  is  supposed  to  read  the 
obtained page. These actions are repeated until  all 
the  HTML pages  composing  the  Web  session  are 
received, then the client process leaves the system. 
The Web interaction model also covers connection 
refusals,  which  occur  when  the  cluster  service 
capacity  reaches  a  predefined  saturation  point; 
rejected  connections  are  not  reissued,  to  avoid 
driving the system into a trashing state. Each random 
variable  describing  the  client  life  cycle  is 
characterized by a probability distribution function, 
whose shape and parameters can be defined by the 
CWebSim  user.  The  alternatives  of  statistical 
distribution supported by CWebSim for distribution-
driven workload generation are discussed in Section 
2.2.1.
Trace-driven  Model. In  this  model,  all  the 
characteristics  of  the  workload  model  are 
determined  by  a  real  log  of  Web  requests.  The 
behavior of a client process is entirely driven by pre-
loaded data. Our trace-driven model is fairly realistic 
because it preserves the time patterns of real logs of 
the typical Web traffic. We are mainly interested in 
preserving  the  time  dependencies  of  the  request 
stream,  since  this  affects  significantly  the  server 
performance. A trace log must be pre-processed to 
be  used  as  input  by the  simulator:  this  operations 
introduces  some  artifacts  necessary  to  rebuild  a 
session-structured trace. The log’s lines are scanned 
with  a  sliding  time  window  that  defines  the 
maximum session time length: all  requests coming 
from the same IP address within the time window 
are  assigned  to  the  same  Web  session.  The  first 
object requested in a session is considered an HTML 
page,  whereas the following objects are treated as 
embedded  objects.  This  introduces  some 
approximations, but it is not possible to rebuild the 
exact page structure without considering the original 
structure of the Web site.
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2.1.2. Dispatching module

The  Web  switch,  also  known  as  dispatcher,  is 
responsible  of  forwarding  the  incoming  Web 
requests  to  a  server  node  selected  according  to  a 
certain  policy.  CWebSim  can  simulate  either 
stateless dispatching algorithms, such as random and 
round-robin,  or  stateful  algorithms,  such  as  least-
loaded and dynamically-weighted round-robin. Also 
content-aware dispatching  policies  are  supported. 
An overview of the main dispatching alternatives for 
Web clusters is given in Cardellini, 2002.
A Web  switch  can  be  a  general  purpose  PC  or  a 
dedicated  hardware  device:  in  both  cases  the 
components relevant to our performance studies are 
CPU(s) and NICs. The basic Web switch node model 
consists  of  a  queuing  system  with  three  service 
centers connected to work in a  one-way mode, that 
is, only the incoming client requests go through it, 
whereas the server replies reach directly the clients. 
The  service  centers  are  a  CPU  used  to  run  the 
dispatching  algorithm,  and  two  NICs:  a  first  one 
connects the cluster to the Internet, through which 
the client requests come in, a second one connects 
the  Web  switch  to  the  internal  network  which 
conveys the requests forwarded to the server nodes. 
A two-way Web switch could be modeled using two 
service centers for each NIC, according to the model 
of a Web server node proposed in Carrera, 2001.
 Since some of the supported dispatching algorithms 
are  based  upon server  state  information,  a  special 
CSIM process runs on the Web switch node: every 
Tget seconds it stores load state information, such as 
number  of  active  processes  on  each  server  node, 
server response time, CPU and disk utilization. The 
same  information  is  used  to  simulate  an  optional 
admission control mechanism that rejects connection 
requests when the system gets overloaded.

2.1.3. Server module

The Web server node model encompasses the main 
hardware components, as shown in Figure 3: a CPU, 
a hard-disk, a memory bank used as a main memory 
cache and two NICs. One NIC is used to connect the 
node to the internal network, the other NIC connects 
the node to the external network.

Figure 3. Server node model

We suppose that when a Web request is assigned to a 
Web  server  the  service  centers  are  visited  as  it 
follows.

1. The  incoming  HTTP request  is  queued  at  the 
internal NIC .

2. The  CPU  parses the incoming HTTP request, 
and runs a load management algorithm to decide 
whether to accept or discard the request.

3. The  memory  bank is  accessed,  engaging  the 
CPU,  trying  to  retrieve  a  cached  copy  of  the 
requested document.

4. If the requested file is not found in the memory 
cache, the hard-disk is accessed to load the file 
into the cache.

5. The  CPU is  used  again  to  produce  an  HTTP 
response.

6. The external NIC is used to deliver the response 
back to the client.

 The  Web  server  application  simulates  a  multi-
threaded server, whereby a CSIM process started at 
the  system  boot  acts  as  a  master  HTTP daemon, 
waiting for request connections; when a server node 
receives an HTTP request from the Web switch, the 
master  daemon  forks  a  new  slave  CSIM  process 
which  serves  the  request.  Any  admission  control 
policy is performed by the master daemon: the slave 
process is not spawned if the system is overloaded, 
in which case an error reply is sent to the client by 
the master process.
The  main  memory  is  used  as  a  stand-alone  local 
cache  to  simulate  the  behavior  of  the  caching 
mechanisms of current operating systems. Different 
classical replacement policy, such as Least Recently  
Used (LRU), Least Frequently Used (LFU) and their 
variants, are supported.
We model both HTTP/1.0 and HTTP/1.1 protocols. 
Through the HTTP/1.0 protocol, a new slave HTTP 
process  is  forked  to  serve  each  Web  page 
component,  that  is,  the  HTML  file  and  all  the 
embedded objects. Through the HTTP/1.1 protocol, 
the same slave HTTP process serves the HTML file 
and all embedded objects.

2.1.4. Network module

Since we are interested in the main issues of high-
level  communication protocols,  such as  the  HTTP 
handshaking  or  the  TCP  connection  handoff,  the 
communication  among the  diverse  Web entities  is 
modeled as a single message exchange mechanism, 
without  simulating  any  packet  fragmentation  and 
routing mechanisms. This approach aims to obtain a 
server-side performance evaluation, and is based on 
the  assumption  that  each  application-level 
computation,  like  the  HTTP  request  processing 
inside the Web server process, is much longer than 
any  characteristic  time  of  the  underlying  network 
layers (with the exclusion of transfer delays). Inside 
a  Web  cluster,  such  a  system  configuration  is 
achievable  with  the  adoption  of  light-weight 
messaging  protocols,  like  UDP.  As  for  the 
geographical  network  overheads,  the  connection 
setup  times  are,  in  most  cases,  negligible  with 
respect to the average transfer latency. Although for 
the server-side comparison of diverse cluster-based 
architecture it is not necessary to simulate a wide-
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area network, CWebSim can be easily extended to 
accommodate this need.
Various network models are implemented inside the 
Network Module of CWebSim. Each of them can be 
adopted  according to  the topology and features  of 
the system under study.
Ideal  network: neither  delays  nor  contentions  are 

considered.  This  model  is  suited  to  scenarios 
where  all  communication  overheads  are 
negligible,  or  where  the  network  links  should 
never  become a  performance  bottleneck.  NICs 
are dummy elements.

Delayed network: each transfer experiments a delay 
proportional to its size, but network  contentions 
are  not  considered  (NICs  are  delay  elements). 
This  model  can  be  used  when  the  network  is 
supposed  to  never  saturate,  even  though  it  is 
necessary  to  model  transmission  delays  as  in 
Internet’s back-bones.

Bus  network: all  the  transfer  requests  share  the 
same  resource  (a  single  FCFS  queue  service 
center, NICs are delay elements) and experience 
a delay proportional to the size of the transmitted 
data;  network  contentions  are  captured  by  the 
queuing  discipline.  This  model  is  an 
approximation  of  Ethernet-like  LANs,  wherein 
each  node  is  connected  on  the  same  physical 
medium.

Switched  network: it  is  composed  of  N 
independent  links  each of  them being modeled 
through a single FCFS queue service center (that 
is  the  NIC),  which  simulates  the  network 
contentions;  each  transfer  from  one  attached 
node to another engages two links with a delay 
proportional  to  the  transmitted  data  size.  Each 
link’s  queue  is  used  for  bidirectional 
communication.  No  switching  delay  is 
considered, as, in most real cases, it is negligible 
with  respect  to  the  transfer  latency.  The 
maximum theoretical bandwidth of such network 
model is  N/2  times greater  than the bandwidth 
value of  the  single  link.  This  model  resembles 
switched  LANs  with  a  star  topology,  like  the 
Fast/Gigabit Ethernet.

2.2. Service modules

The  service  modules  implement  functionalities 
related  to  the  simulator,  such  as  providing  the 
system  with  the  input  parameters,  collecting 
simulation  statistics  and  producing  the  simulation 
reports.

2.2.1. Input module

This  module  is  responsible  of  processing  all  the 
input parameters, which are then dispatched  to the 
other  modules  in  order  to  configure  and  initialize 
their components. CWebSim’s input parameters can 
be  divided  into  three  main  classes:  workload 
parameters needed to configure the Client module, 
system  parameters needed  to  configure  the  Web 
switch  node,  Web servers  nodes  and the  Network 

module,  and  dispatching  parameters which  select 
and configure the dispatching algorithm to be used. 
Table  1  summarizes  the  main  input  parameters  of 
CWebSim  with  some  hints  about  the  experiments 
that can be done by varying one or more of them.

Table 1. Input parameters of CWebSim

The  workload  parameters  can  be  adjusted  for 
different statistical distributions. Web access patterns 
exhibit  a  high variability and a self-similar  nature 
which  are  well  approximated  by  “heavy-tailed” 
distributions,  such  as  Pareto  and  Lognormal 
distributions  (see  Arlitt,  2000,  Barford,  1999, 
Cherkasova 2001). For instance, in Pitkow 1999 is 
shown that the number of requests per Web session 
follows an inverse Gaussian distribution, whereas a 
Pareto function fits the distributions of the number 
of  embedded  objects  per  request  and  of  the  user 
think time (see Barford, 1999, Pitkow, 1999). Since 
CSIM  offers  only  a  set  of  standard  distributions, 
such  as  exponential  and  normal,  we  implemented 
inside  CWebSim  the  following  heavy-tailed 
distributions  of  interest  for  the  Web:  Inverse 
Gaussian, Lognormal, Pareto, Weibull and Zipf.
The case study presented in Section 3 shows some 
application examples.

2.2.2. Gather and Output module

Once defined the system and the workload model, 
the next  step in the testbed setup is  to  choose the 
most  appropriate  performance  indexes to  evaluate 
cluster-based Web systems. We classify performance 
indexes  into  three  broad  groups:  service  capacity  
indexes ,  service efficiency indexes and system load 
indexes .  Any index  can  be  referred  either  to  the 
whole system or to its components.
Service capacity indexes estimate quantitatively the 
system  performance  at  the  service  source  point. 
Commonly adopted indexes are the following:
throughput: it is defined as the number of quantities 

computed by a system in a time unit.  Quantities 
of  interest  for  Web systems  are:  HTML pages 
(including the embedded objects), objects (files), 
HTTP  and  TCP  connections,  bytes.  Some 
throughput indexes can be further specified: for 
instance,  we can distinguish  between the  static 
object throughput for pre-existent  files, and the 
dynamic  object  throughput  for  those  files 
generated on the fly, like CGI results;

cache  hit  ratio: measurable  as  the  ratio  of  the 
number of either documents (document hit ratio, 
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or DHR) or bytes (byte hit ratio, or BHR) found 
in  the  cache  to  the  total  number  of  requested 
documents/bytes. The hit ratios give an estimate 
of  the  effectiveness  of  the  caching  subsystem, 
e.g., when simulating a proxy architecture.

The main service source points in a Web cluster are 
the Web switch (toward the server pool), each server 
node and the whole cluster (toward the client nodes).
Service  efficiency  indexes estimate  qualitatively 
the  system performance  at  the  service  destination 
point. The items of interest are:
response time: it is defined as the time experienced 

by an user to obtain a service from a system. In 
the case of Web systems, the service request can 
be an object/page request or a session, therefore, 
the response time  is  measured,  respectively,  as 
the  time  to  receive  an  object,  an  HTML page 
with all its embedded objects or a certain number 
of HTML pages composing a session;

latency time: it is the time needed by a system to 
process  a  service  request,  excluding  any 
communication  delay.  For  instance,  the  object 
latency time of the entire Web cluster does not 
encompass the internal/external network delays.

The main service destination point in a Web cluster 
are  the  client  nodes  (the  source  being  the  whole 
cluster) and the server nodes (the source being the 
Web switch).
System load indexes estimate the stress of a system 
at  the  service  processing  point:  they  represent 
complementary  performance  indexes,  that  is,  they 
give a measure of the service costs. We consider the 
following index:
utilization: it is the fraction of a base time interval 

during which a  single-resource  system is  busy. 
The utilization of a multi-resource system can be 
measured  in  many  ways,  according  to  its 
architecture. For an n−resource pipelined system, 
which is a good approximation of a server node 
equipped with one CPU and one disk, we adopt 
an OR-based definition of utilization: the fraction 
of a base time interval during which at least one 
of  the  system resources  is  busy.  On  the  other 
hand, for a parallel system, like a dual CPU/disk 
server node, we adopt an AND-based definition 
of utilization: the fraction of a base time interval 
during which all the system resources are busy;

network B/W consumption: it measures the traffic 
conveyed by the network in a time unit,  that is, 
the  bandwidth  (B/W)  consumed:  this  gives  an 
estimate of the network stress.

Once defined the performance indexes, we use some 
metrics to extrapolate a single or a set of values that 
are representative for that index. Common statistical 
measures of a set of sampled data are: sample mean, 
sample  standard  deviation, x-percentile and 
cumulative distribution function.  Sample mean and 
standard deviation are representative measures of a 
set  of  sampled  data  following  a  standard 
distribution, such as normal and Poisson. When the 
probability  distribution  of  the  samples  is 
characterized  by an infinite  standard deviation the 
most  representative  statistical  metrics  are  the  x 

-percentiles  and  the  cumulative  distribution 
functions.  All  these  metrics  can  be  easily 
extrapolated via CSIM routines.
In order to generate the output statistics, the Gather 
module  provides the simulator with a service agent 
that, periodically, collects some status values probed 
inside  the  system  components,  computes  some 
performance metrics and stores the resulting values 
into CSIM tables. The simulation can be controlled, 
through internal CSIM routines, in order to stop the 
run when a given confidence interval is reached. At 
the  end  of  the  simulation,  the  collected  data  are 
processed  by  the  Output  module   to  carry  out  a 
detailed simulation report. The main output statistics 
available in CWebSim are shown in Table 2.
Furthermore,  the simulator  is  enriched by a set  of 
Perl  scripts  that  analyze  the  simulator  output  for 
additional  computation.  The  scripts  can  build 
automatically  graphs  from a  set  of  simulations  or 
can  aggregate  multiple  simulation  runs  (e.g.,  by 
calculating average values and standard deviation) to 
provide  results  that  are  more  significant  from  a 
statistic point of view.

Table 2. Output statistics of CWebSim

3.  SIMULATION  OF  GLOBAL  CACHING 
MECHANISMS

 A classical  Web  cluster  is  a  pool  of  stand-alone 
server  nodes,  each  of  them being  unaware  of  the 
others.  The  main  performance  limitation  of  this 
architecture is the shortage of memory resource on 
each server node, which forces it to retrieve most of 
the requested documents from its hard-disk: as this 
is often the bottleneck of a commodity-based server 
machine, the single node performance is bounded by 
the hard-disk performance. Yet, a Web cluster has a 
lot  of  aggregated  RAM  that  can  be  used  as  a 
distributed cache to be accessed via a light-weight 
cooperation  protocol,  exploiting  RAM-to-RAM 
transfers  through the  internal  LAN,  which  can  be 
two orders of magnitude faster than a local disk-to-
RAM transfer: this is what we call a global caching 
architecture.  To  the  best  of  our  knowledge, 
commercial  Web  clusters  do  not  adopt  cache 
cooperation solutions, whereas some examples exist 
in  the  research  community  (see:  [Li,  2001],  [Liu, 
2000], [Song, 2000]).
The logical topology of the cluster is considered to 
be a flat mesh. This choice enables us to design the 
cooperation protocol in a fully distributed and peer-
to-peer   fashion, as all the nodes are responsible of 
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the same Web dominion. Distributed file systems are 
often  used  to  share  files  within  a  Web  cluster, 
because  of  their  transparent  interface  toward  the 
user-level  applications.  However,  there  are  some 
performance trade-offs in this approach due to their 
architecture,  designed  to  work  in  a  read/write 
environment.  Hence,  unlike  the  distributed  file 
systems,  the  caching  cooperation  protocol  should 
run  at  the  application  level,  because  it  needs  to 
manage  whole  files,  instead  of  disk  blocks. 
Moreover, present disk storage dimensions allow us 
to replicate the whole Web content  on the disk of 
each node, that simplifies file retrieval.
In  the  following  sections,  we  discuss  how  the 
modules  of  CWebSim  are  instantiated  to  simulate 
some  cooperation  alternatives,  and  present  some 
performance results.

3.1. The cooperation engine

We  integrate  a  cooperation  engine  into  the  basic 
framework  of  CWebSim  to  simulate  various  GCP 
(Global Caching Protocol) schemes. This extension 
transforms  the  pool  of  stand-alone  servers  into  a 
cluster of peer-to-peer cooperating servers. Only the 
Server  module  is  directly  affected  by  these 
modifications,  while  the  remaining  modules  are 
instantiated over their original structure.

3.1.1. Server module extensions

Each  server  node  is  endowed  with  a  cooperation 
frame consisting of a fully replicated Web content on 
its  hard-disk,  and  of  an  engine,  which  has  the 
following  CSIM-based  components  (see  Figure  4: 
CPUs and NICs are not shown).

Figure 4. Model of the cooperation engines

RAM Cache: this is the local main memory storage 
of  Web documents  (i.e.,  a  memory bank).  The 
cache  is  managed  with  a  LFU-Aging 
replacement policy (see: [Arlitt, 1997]) allowing 
a  maximum  age  of  600  s,  without  any  global 
coordination.  Each  HTTP  daemon  can  access 
directly its local RAM Cache (through its CPU), 
whereas the other remote RAM Caches can be 
looked  up  via  a  “GCP  Client  Routine”.  The 
RAM  Cache  is  accessed  for  meta-information 
management  (document  lookup  and  location 

update)  approximating  simple  hash-based 
operations, and for object insertion/replacement. 
The hashing CPU cost depends on the number of 
objects  hosted  in  the  cache,  whereas  the 
insertion/replacement  CPU  cost  is  proportional 
to the size of the target object.

GCP Client Routine: this procedure, embedded in 
the HTTP daemon’s code, plays the client role of 
the  GCP,  sending  service  requests  to  a  remote 
“Cache Manager” and waiting for replies from it. 
The goal of these requests is to retrieve a Web 
document  in  a  sibling  cache,  within  a  timeout 
sufficiently  lower  than  the  mean  disk  service 
time but not inferior to the round-trip time of the 
internal network.

Cache  Manager: this  CSIM  process  plays  the 
server  role  in  the  GCP,  accepting two kind  of 
requests:  service  requests  from  remote  GCP 
Clients (HTTP daemons), to which a reply must 
follow,  and  update  issues  from remote  “Cache 
Monitors”,  which  trigger  modifications  on  the 
local meta-information.

Cache Monitor: it is the CSIM process responsible 
of  checking  periodically  the  local  meta-
information  in  order  to  update  the  state  of  the 
global cache. Any change is broadcasted (update 
issue) to the other nodes; these messages do not 
require replies.

The HTTP request/reply stream is conveyed by the 
external  network,  whereas  inter-node  messages 
(GCP  flow)  are  transmitted  over  the  internal 
network. HTTP daemons and Cache Managers start 
refusing  connections  when  their  load  conditions 
reach, respectively, 100 and 10 active connections.
The default  computing flow of  the simulated  Web 
server (Section 2.1.3) is modified as follows: after a 
client request has been accepted and dispatched to a 
node, if the requested document is not found in the 
local cache (local cache miss ), the GCP is activated 
before   the  hard-disk is  accessed.  This  interaction 
scheme is based upon two sequential phases, global 
lookup and document retrieval .
In  the  global  lookup phase,  a  cooperation  policy 
aiming to provide the nodes with a global  view of 
the  system  caches  is  applied.  We  focus  on  an 
adaptation  of  the  informed  protocols relying  on 
periodic  broadcast  communication  to  update  the 
global  state  of  the  system;  other  informed-based 
solutions for Web clusters are proposed in Li, 2001 
and Ahn, 2000.
Document retrieval techniques consist of a set  of 
operations that are carried out by the GCP to satisfy 
a  Web  request  after  a  successful  global  lookup 
phase. These operations involve only two nodes: the 
first contacted node (A) and the node that has been 
selected by the global lookup step (B). We focus on 
two techniques:
Migration technique. The requested file is moved 

from  the  node  B  to  the  node  A ([see:  Ahn, 
2000]).  This mechanism  balances  the 
competition  for  global  cache  space,  as  the 
number of document replicas is unchanged, but it 
can consume lots of network bandwidth.
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Handoff technique. Unlike the previous technique, 
the  handoff  mechanism  requires  kernel-level 
interventions to move the TCP connection to a 
different  node,  but  it  does  not  transfer  any 
document  (see:  [Pai,  1998],  [Song,  2000]).  In 
this case, the node A “delegates” the node B to 
complete the Web transaction. 

The hard-disk on the node A is accessed only when 
the global lookup fails (global cache miss ).

3.1.2. Other simulation modules

Dispatching module.  In the basic global caching 
cluster, the Web switch node is not  involved in the 
cooperation  protocol.  In  this  case  study,  the  Web 
switch  is  instantiated  as  a  one-way layer-4 device 
working  with  a  round-robin selection  algorithm: 
each  incoming  request  is  circularly  assigned  to  a 
different  server-node  through  manipulation  of 
network-level packet headers. As this is one of the 
fastest  dispatching mechanisms, it  ensures that  the 
Web switch is not a performance bottleneck: indeed, 
packets belonging to the same TCP connections are 
routed to the selected server by changing their MAC 
destination  address  (packet  forwarding,  see 
Cardellini,  2002);  no further processing is  done at 
the higher network layers.
Network  module. For  the  interconnection  of  the 
cluster nodes, a 100 Mb/s switched network model is 
adopted,  whereas  the  external  network,  which, 
simulating the  Internet,  connects  the  unique  client 
node to the Web switch node and the server nodes to 
the  client  node  is  ideal.  This  configuration 
guarantees that  all  the  cluster’s  ingress and egress 
points are not a performance bottleneck. The GCP is 
characterized by a minimum message size of 200 B; 
GCP  requests  timeout  after  2  ms and  metadata 
updates  occur  every  10  s.  The  simulated  Web 
protocol is the HTTP/1.0.
Input module. Table 3 summarizes the distributions 
adopted  for  the  workload,  together  with  their 
probability mass functions (PMFs) and parameters. 
The  mean  client  inter-arrival  time  is  the  driver 
parameter of the entire test series. Note that the size 
distribution of  Web objects  (both HTML files  and 
embedded objects) is hybrid,  that is,  the body and 
the tail are modeled by two different functions.

Table 3. Workload distribution and parameters

The  simulated  Web content  counts  5000 files  and 
has an average file size of 57 KB, whereas the HTTP 
request stream exhibits a mean request size of 32 KB 
(different  parameters  are  used  for  the  request  size 
distribution).  Since the file  size  follows an heavy-
tailed distribution, to give an idea of the working-set 

size, we may divide the distribution in 4 buckets as 
shown in table 4, where the  min,  max and  average 
values are expressed in bytes.  We refer to working-
set as the total of all  the files accessed during the 
observed period. From this  file  size  discretization, 
by summing up the resulting amount in each bucket, 
we obtain a working-set size of about 280 MB.

Table 4. A discretization of file size distribution

Sooner or later all  files are requested at least once 
during  the  simulation,  but  the  “core”  of  the  most 
accessed ones in the working-set amounts to about 
37 MB, because it contains many small objects. The 
composition  of  the  core-set  is  determined  by  the 
Zipf  distribution,  that  captures  the  locality  of 
references in the whole Web content.

3.2. Performance study

 This section presents a selection of the experimental 
work executed to  evaluate the  performance  of  the 
GCP in different Web scenarios. We focus on two 
informed cooperation  schemes,  adopting  a 
migration-based  and  a  handoff-based  document 
retrieval  mechanism,  respectively;  the  reference 
system  configuration  is  a  non-cooperative  cluster. 
Hereafter, we refer to the three cluster configurations 
as Migration, Handoff and No-coop.
The performance metrics we consider are the sample 
means  of  the  byte  hit  ratio (BHR),  of  the  byte 
throughput and of the page response time. Moreover, 
the  maximum  B/W  consumption over  the  internal 
network is recorded to evaluate the peak cooperation 
overhead. All the reported values are the aggregate 
results  of  multiple  experiments  referring  to  the 
whole cluster.
The goal of this experiments is to evaluate the peak 
performance of the GCP schemes. The system under 
testing is a cluster with eight server-nodes, each of 
them endowed with 5 MB of cache: the global cache 
size  is  sufficient  to  hold  the  whole  working-set’s 
core. The mean number of incoming client process 
per second has been progressively increased from 15 
to  70,  until  the  saturation  point  of  the  best 
performing  scheme has  been reached.  The  system 
performance  is  evaluated  under  a  Web  scenario 
characterized  by  a  static  workload  wherein  all 
requested objects are cacheable. The results of this 
test series are reported in Figure 5.
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As shown in Figures 5(a), 5(b) and 5(c), to obtain a 
significant performance boost, it is  necessary that a 
cooperative scheme yields a BHR improvement of at 
least  13-14%, with respect to the no-coop scheme. 
The poor performance of the Migration scheme is 
due to an excessive cooperation overhead, as shown 
in  Figure  5(d):  the  bandwidth  consumption 
experiences a steep increase until it reaches a peak at 
30-35  clients/s, that corresponds to the knee of the 
throughput and response time curves. On the other 
hand,  the  Handoff  scheme  transmits  only  control 
messages  over  the  internal  network,  thus  it  can 
sustain higher loads.

4.  SIMULATION  OF  WEB  SWITCH 
DISPATCHING POLICIES

In  cluster-based Web services the role  of  the Web 
switch  node  is  fundamental  to  obtain  adequate 
system  performance.  This  section  shows  how 
CWebSim is  instantiated  to  study  the  behavior  of 
dispatching  policies  for  dynamic  Web-based 
services: we focus on the modules of the simulator 
that  are  affected  by  some  modifications  or  by  a 

different configuration with respect to the previous 
case study.
Dispatching module. The components of the Web 
switch node, shown in Figure 6, are described below.

Figure 6. Web Switch node model

Dispatcher: this CSIM process simulates a kernel-
level thread that receives the connection requests 
coming from the Web client nodes, through the 
external  NIC  (an  ideal  zero-delay  queue).  The 
first  connection  request  of  each  session  (see 
Section 2.1.1) is registered in the  Service table, 
so  that  subsequent  requests  belonging  to  the 
same session are properly managed.

Service  table: this  data  structure  is  used  to  relay 
session  control  information,  needed  by  layer-7 
dispatching algorithms,  between the  Dispatcher 
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and the Controller processes. Conversely, layer-4 
algorithms ignore that information.

Controller: this CSIM process simulates the kernel-
level  thread  that  executes  the  dispatching 
algorithm, basing its decision upon the data read 
from the  Service  table  and  upon some  server-
state  information  collected  from  the  server 
nodes.  Two content-aware selection criteria are 
considered:  LARD (see:  [Pai,  1998])  and CAP 
(see:  [Casalicchio,  2001]);  as  a  reference 
algorithm  we  consider  the  WRR  (see: 
[Casalicchio,  2001]),  which  is  a  content-blind 
policy.  The  CAP policy,  in  its  simplest  form, 
does not require to set any parameter other than 
the  choice  of  classes  of  services  that  can  be 
identified  from  the  URL.  The  LARD  strategy 
requires to set only the parameters  Tlow and  Thigh 

indicating the minimum and maximum allowed 
server  utilization.  In  our  experiments  we  set 
Tlow=0.3 and  Thigh=0.7, and we did not observed 
considerable  changes  for  slightly  different 
values,  such as 0.2 and 0.75. According to the 
adopted dispatching algorithm, the CPU is used 
for  a  time  ranging  from  some  tenths  to  some 
hundreds  of  microseconds,  every  time  a 
connection  is  accepted.  Dispatched  requests 
reach the selected server via the internal NIC.

Server  module. A  basic  server  node  model  is 
adopted: the computing flow is the same  described 
in Section 2.1.3 and no caching cooperation protocol 
is  executed.  Besides  the  HTTP Daemon,  another 
CSIM thread simulates a periodical task that samples 
the  node  load  state  and  transmits  it  to  the  Web 
switch over the internal network.
Input module.  Because of the dynamic nature and 
security  requirements  of  e-commerce  transactions, 
the  CWebSim’s  synthetic  workload  generator  is 
configured to issue a certain share of dynamic and/or 
secure requests, according to various parameters. A 
ciphering  algorithm  is  modeled  via  a  single 
throughput parameter defining the CPU’s processing 
speed. For example, we use 38.5  Kb/s for the 256-

bit-key RSA,  46886 Kb/s for  the  Triple  DES and 
331034 Kb/s for  the  MD5.  Secure  requests  are 
considered  CPU-bound  requests.  The  simulator 
allows us to define also dynamic requests that stress 
the server disk, namely, disk-bound requests.

4.1. Simulation results

The  considered  performance  measure  is  the 
cumulative  frequency of  the  page latency time.We 
consider three scenarios where light dynamic CPU- 
and disk-bound requests are mixed in different ways.
In the first set of experiments, we assume that a 40% 
of  the  total  requests  need  secure  connections  and 
cryptography.  This  is  the  most  critical  scenario 
because CPU-bound requests affect the performance 
of  the other  60% of requests that  have to use the 
CPU, even if  for  less intensive operations such as 
parsing a request and building an HTTP response. 
Figure  7(a)  shows how this  very critical  (and,  we 
can  say,  unrealistic)  scenario  deteriorates  the 
performance of all dispatching strategies. However, 
multiple service scheduling allows CAP to achieve 
better results than WRR and LARD.
In the second scenario, we introduce both CPU- and 
disk-bound requests, but CPU-bound requests (20%) 
differ  from  disk-bound  requests  (20%).  In  Figure 
7(b),  we  see  that  the  CAP policy  provides  really 
good  page  latency  times,  while  WRR  reaches  its 
limit and LARD does not guarantee a scalable Web 
cluster.  The  improvement  of  the  CAP strategy  is 
significant, especially if we consider that the WRR 
curve  refers  to  a  WRR  policy  with  optimal 
parameter  setting.  For  example,  CAP  achieves  a 
page  latency  time  of  about  4  seconds  with  0.95 
probability.  For  WRR,  a  similar  latency  time  is 
achieved with a probability of about 0.78, and for 
LARD with a probability of less than 0.5.
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5. RELATED WORK

Simulation frameworks oriented to the evaluation of 
network-based systems have a general scope and do 
not focus on Web cluster systems. Multiple general 
purpose simulators are available in the literature and 
in the industry. For example, the Network Simulator 
ns-2 (see:  [McCanne,  2007])  is  an  example  of  a 
discrete-event  simulator  strictly  conceived  for 
networking-related research,  such as  the testing of 
new communication protocols. Similar to the ns-2, 
are  the  Georgia  Tech  Network  Simulator  GTNetS 
(see: [Lee, 2005]) and  YANS (see: [Lacage, 2006]). 
The  Network  Simulator  is  undergoing  a  new 
development  cycle  that  will  improve  the  general 
design, taking advantage from GTNetS and YANS: 
besides  addressing  scalability  and  code  cleanup 
issues, the new  ns-3 (see: [Henderson, 2006]) aims 
at  simulating  low-level  network  details,  without 
addressing  explicitly  Web  clustering  features.  The 
OPNET  Modeler (see:  [OPNET,  2007])  is  a 
comprehensive  industry-standard  simulation 
environment,  that  can  be  used  to  model 
communication networks and distributed systems: it 
incorporates  tools  for  all  the  phases  of  a 
performance  study,  including  graphical  model 
design, simulation, data collection and analysis.
Another  general  purpose  simulation  and  analysis 
tool is the Tangram II suite (see: [de Souza e Sinlva, 
2006]),  which  allows  the  analysis  of  distributed 
systems  using  a  combination  of  analytical  and 
simulation  models.  However,  like  the  other  tools 
mentioned  above,  Tangram  II  is  not  specifically 
designed for the analysis of Web-based systems.
In the research area of Web systems, simulators are 
typically  created  for  specific  goals,  that  is,  they 
cannot be instantiated over different target systems 
without  significant  modifications.  For  example, 
Cherkasova and Phaal model a single Web server as 
a  service  center  with  a  finite  listen  queue,  to 
investigate  a  particular  admission  control  policy. 
Similarly,  Cherkasova  and  Karlsson  use  a  CSIM-
based simulator that implements a model of a Web 
cluster:  the  goal  of  the  authors  is  to  evaluate  the 
performance  of  a  workload-aware  request 
dispatching policy.
Pai et al. propose a Web cluster model wherein the 
Web switch is ideal, and each Web server is modeled 
through a waiting queue,  simulating  the NIC,  and 
two  service  centers  simulating  the  CPU  and  the 
hard-disk, respectively. Trace-driven simulations are 
executed  to  study  the  performance  of  a  locality-
aware dispatching policy.
A hybrid simulation tool is presented by Wang et al.: 
it  integrates  ns-2  with  Logsim,  a  Web  server 
simulator similar to that adopted in Pai, 1998. The 
goal  is  to  explore  the  performance  of  request 
redirection  mechanisms  in  Content  Delivery 
Networks, that are geographically deployed systems. 
Similarly,  the  trace-driven  discrete-event  tool 
presented by Davison simulates  geographic proxy-
caching  architectures,  with  efficient  network-level 
models, though less detailed than those available in 

ns-2. Typically, the server-side of these simulators is 
not  modeled  with  all  the  details  required  by  the 
complexity of Web cluster systems.

6. CONCLUSIONS

 This paper presents the design and implementation 
of  a  modular  simulation  framework  (CWebSim) 
conceived  for  Web-based  services  deployed  over 
clusters  of  HTTP servers.  The  basic  structure  of 
CWebSim can  be  configured  to  represent  a  broad 
variety of cluster-based Web architectures; also, it is 
possible  to  build  custom  system  models  through 
extensions  to  its  functional  modules.  Particular 
attention  has  been  dedicated  to  the  network  and 
workload  models,  which  are  customizable  with 
different degrees of realism to allow simulations of 
the  most  typical  Web  scenarios.  The  workload 
module  is  capable  of  both  distribution-  and trace-
driven generation modes.
CWebSim  is  written  in  C  and  it  is  based  on  the 
CSIM  library,  which  is  available  for  the  most 
popular platforms, including Linux and Windows.
We  have  presented  a  first  case  study  where 
CWebSim  is  used  to  simulate  global  caching 
systems:  the  simulation  of  these  architectures 
required a careful modeling of the server-to-server 
interaction occurring through the internal  network. 
In a second case study, we focus on the simulation of 
diverse  Web  switch  dispatching  algorithms,  that 
required  a  detailed  modeling  of  the  dispatcher 
components.
CWebSim is being extended to support the modeling 
of low-level network-related issues, so  as to allow 
the  simulation  of  geographically  distributed  Web 
systems.
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