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1 Introduction

This paper develops a methodology for characterizing expected revenue from auctions in

which bidders’ types come from an arbitrary distribution. In particular, types may be

multidimensional, and there may be mass points in the distribution. Accommodating

multidimensional types is valuable because actual bidders may differ along many dimensions

such as their risk attitudes and aspects of the financial constraints they face (e.g., cash

holdings, sizes of credit lines, and terms of credit). Likewise, atoms may be relevant if

there is positive probability that bidders will not participate, for example.

Most auction models assume a one-dimensional type space with an atomless distribu-

tion. The well-known revenue-equivalence results concern risk-neutral bidders who differ

only in their valuations of the good (see Myerson (1981) or Riley and Samuelson (1981),

for example). Likewise, a typical model with risk aversion assumes that bidders have the

same von Neumann-Morgenstern utility function, so they again differ only in their valu-

ations (see Holt (1980), Matthews (1983, 1987) and Riley and Samuelson (1981)). When

bidders are completely ordered by their valuations, which are drawn from the same dis-

tribution, standard auctions yield an efficient allocation in equilibrium.1 Hence, revenues

from these auctions can be compared easily if the rents accruing to each valuation type

can be compared. While this approach works in standard models with risk-neutral or risk-

averse bidders, such a comparison does not work if the auctions entail different equilibrium

allocations.

Suppose that bidders differ along multiple dimensions — their valuations and risk at-

titudes, say. If risk attitudes do not affect bidding behavior in a second-price auction, but

do in a first-price auction, then the equilibrium allocations will differ, making the existing

methodology inapplicable. Similarly, when there are atoms in the distribution, the standard

revenue equivalence argument is difficult to apply; in many cases, it does not apply.

We develop a method for characterizing equilibrium revenue in such cases. To illustrate,

fix an auction form (a first- or second-price sealed-bid auction, say) with n ≥ 2 bidders, and

suppose that a symmetric equilibrium exists. Now imagine a fictitious risk-neutral bidder

with valuation v and no financial constraints; she is henceforth referred to as the benchmark

1Incentive compatibility makes equilibrium bidding strategies monotonic in valuations in standard auc-

tions, which means that the allocation is efficient in all such auctions.
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bidder or a type-v bidder. Suppose that the benchmark bidder were to participate in an

auction with n− 1 actual bidders who each employ the equilibrium bidding strategy. Now

assign to each equilibrium bid a benchmark type having that bid as a best response (or

some nearby type if no such type exists). This generates a cumulative distribution function

(cdf), FM , of benchmark types whose best responses mimic the actual equilibrium bidding

behavior. We show that the revenue from the actual equilibrium is no less than the revenue

generated when n risk-neutral bidders with valuations drawn from FM play the same auction

game. This lower bound for the revenue from the actual auction can be calculated from

FM , using a standard envelope theorem argument. An exact representation is available if

two additional conditions are satisfied. Ultimately, our methodology reduces the task of

comparing revenues from alternative auctions to that of comparing induced distributions

of benchmark types.2

We present two applications of the methodology. First, we establish revenue equivalence

for standard auctions when bidders are risk-neutral and face no financial constraints. In

particular, our method establishes revenue equivalence for discrete types in a much broader

class of auction forms than has been shown previously.3 (Our results apply to continuous

and mixed distributions as well.) In the process, we identify the properties of auction

forms that produce revenue equivalence. Second, we apply the methodology to general-

ize the results that a first-price sealed-bid auction generates higher expected revenue than

a second-price sealed-bid auction when bidders are risk-averse expected-utility maximiz-

ers and face financial constraints. The results here allow for arbitrary heterogeneity in

both dimensions. The third application shows that the results hold for a broad class of

non-expected utility preferences. In particular, they are shown using the Gateaux differen-

tiable preference functional, which includes essentially all (possibly non-expected utility)

preference functionals satisfying a minimal smoothness requirement.

The current model encompasses virtually all existing models that incorporate risk

aversion or financial constraints. In particular, it significantly generalizes Che and Gale

2The current method can be seen as aggregating the arbitrary type into a one-dimensional type. This

aggregation method differs from other methods such as the one used for analyzing score-based auctions

(see Che (1993) and Asker and Cantillon (2003)). This latter method applies to quasilinear preferences;

the current method applies to general preferences.
3Maskin and Riley (1985) and Riley (1989) demonstrate that revenue equivalence holds between sealed-

bid auctions and open oral auctions when types are discrete.
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(1998), which considered risk-neutral bidders with private information about their valu-

ations and (one-dimensional) financial constraints.4 In addition to limiting attention to

two-dimensional private information, the earlier paper relied crucially on the assumption

that, for every equilibrium bid, there was an unconstrained type that would make that

bid.5 No such assumption is needed here.

The remainder of the paper is organized as follows. Section 2 contains the revenue

characterization for general auction forms and general payoffs. Section 3 presents the three

applications mentioned above. Section 4 concludes.

2 Revenue Characterization

A seller is holding an auction for a single object. There are n ≥ 2 bidders whose types (i.e.,

preferences and constraints) are independently and identically distributed. We make no

additional assumptions about bidders’ types at this point. Instead, we simply assume that

the auction has a symmetric Bayesian-Nash equilibrium that yields a finite expected revenue

for the seller. We study a class of auction forms that satisfy some natural conditions: Every

bidder makes a single bid in R+, the high bid wins, bidders’ payments are functions of the

bids, and bidders are treated symmetrically. These conditions are satisfied by first- and

second-price sealed-bid auctions, as well as all-pay auctions and wars of attrition, among

others.

Fix a symmetric equilibrium, which we denote “M .”6 Let BM be the random variable

4Che and Gale also assumed that the cost function was submodular in the bidder’s payment and budget

parameter. In addition, they assumed that the distribution of types was continuous and the support of

equilibrium bids had no mass points or gaps. The current paper uses a different approach, which does not

require these features.
5This assumption will not be satisfied if some equilibrium bids are so unattractive that only financially

constrained types would choose them. Fang and Perreiras (2001) have shown that this possibility cannot be

avoided in certain cases. They considered bidders facing absolute financial constraints, with the infimum

budget strictly larger than the infimum valuation.
6Our revenue characterization in this section does not even require M to be an equilibrium. It only re-

quires the profile of strategies to be symmetric. We assume an equilibrium since all subsequent applications

will indeed require bidders to play their equilibrium strategies.
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representing the bid made by an individual bidder in that equilibrium, and let

BM := {b ∈ R | Pr{BM ∈ [b, b + ε)} > 0 and Pr{BM ∈ (b− ε, b]} > 0∀ε > 0}

be its (measurable) support.7

Let xM(b) and tM(b) denote an individual bidder’s probability of winning and his ex-

pected payment, respectively, if he bids b ∈ R+ and all n−1 others employ the equilibrium

strategy.

Now imagine a benchmark bidder (i.e., a risk-neutral bidder who faces no financial

constraints) bidding against n−1 actual bidders who each employ the equilibrium strategy.

We will construct a distribution of benchmark types such that the resulting distribution

of best responses mimics the equilibrium bid distribution, BM . We then characterize the

seller’s expected revenue using this constructed distribution of benchmark types.

Suppose that a benchmark bidder with valuation v ∈ V := [0,∞) were to bid b ∈ R+.

She would receive an expected payoff of πM(b, v) := vxM(b)− tM(b). The supremum payoff

for the type-v benchmark bidder is

ΠM(v) := sup
b∈R+

πM(b, v). (1)

Let

BRM(v) := arg max
b′∈R+

πM(b′, v)

denote the set of best responses, which may be empty for a given v. Now let (XM(v), TM(v))

be a limit point of (xM(b), tM(b)) along a sequence of b that yields ΠM(v) in the limit.8 We

then have ΠM(v) = vXM(v)− TM(v).

For each v ∈ V , let βM(v) := BRM(v) ∩ BM denote the set of best responses that are

also equilibrium bids. We first show that βM is a monotonic correspondence.

Lemma 1 Suppose that b′ ∈ βM(v′) and b ∈ βM(v) for v, v′ ∈ V, with v′ > v. Then, b′ ≥ b.

7This definition of the support differs from other possible definitions only for measure-zero sets; it

simplifies the proofs of Lemmas 1 and 2.
8The limit point, (XM (v), TM (v)), is well defined. Let {bn}∞n=1 be a sequence such that ΠM (v) =

limn→∞{vxM (bn) − tM (bn)}. Then, since x(bn) lies in [0, 1], a compact set, there exists a subsequence

{bkn}∞n=1 such that xM (bkn) converges to XM (v), say, as n → ∞. Then, tM (bkn) must converge to

vXM (v)−ΠM (v) =: TM (v) as n →∞.
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Proof: Incentive compatibility implies that a type-v benchmark bidder weakly prefers

b to b′, while a type v′ does the reverse. Combining these two conditions yields

(v′ − v)[xM(b′)− xM(b)] ≥ 0.

Since v′ > v, we immediately have xM(b′) ≥ xM(b). Now suppose that b′ < b. Since

b′, b ∈ BM , we have xM(b′) < xM(b), which is a contradiction.9 We conclude that b′ ≥ b.

We next construct a random variable, VM , representing the benchmark bidder’s type.

This will be done in such a way that the resulting distribution of best responses mimics

BM . The first step is to define a function, φM : BM 7→ V , mapping equilibrium bids into

benchmark types. For each b ∈ βM(V),10 let

φM(b) := v such that b ∈ βM(v).

(If there are multiple candidates for a given b, select one of them.11) For each b ∈
BM\βM(V), let

φM(b) :=

{
inf{φM(b′)|b′ ∈ βM(V) ∩ (b,∞)} if βM(V) ∩ (b,∞) 6= ∅,
sup{φM(b′)|b′ ∈ βM(V) ∩ [0, b)} if βM(V) ∩ (b,∞) = ∅,

In words, φM assigns to each equilibrium bid a benchmark type having b as a best response,

if such a type exists; to any remaining equilibrium bid it assigns the infimum type with a

best response exceeding b in BM (or the supremum type with a best response less than b, if

none exists). This mapping is well defined when the former types exist (i.e., βM(V) 6= ∅);
existence will be verified in the applications below. Lemma 1 implies that φM is nonde-

creasing. Hence, the inverse correspondence, φ−1
M (v) := {b ∈ BM |φM(b) = v}, is strictly

increasing in v over its range, VM := φM(BM).

The assigned benchmark type, VM := φM(BM), is then distributed according to the cdf

FM(v) := Pr{φM(BM) ≤ v}. (2)

9This follows from the definition of BM .
10Throughout, a function or correspondence defined over a set connotes the range of the function or

correspondence over that set. For instance, βM (V) :=
⋃

v′∈V
βM (v′).

11We will construct φM precisely in subsequent applications.
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Clearly, FM is nondecreasing and right-continuous. The range of φM , VM , is the support

of FM .

Suppose, hypothetically, that n risk-neutral bidders were to draw valuations according

to FM and bid according to φ−1
M . (In particular, a bidder with valuation v would bid in

a way that matches the conditional distribution of BM in φ−1
M (v).) This scenario would

replicate the equilibrium bidding behavior in the original equilibrium, M , and would yield

the same revenue. We can therefore focus on the revenue generated in this scenario.

Now fix a type, v ∈ VM . For each bid b ∈ φ−1
M (v),

ΠM(v) ≥ vxM(b)− tM(b), (3)

since the bid need not be a best response. If b ∈ βM(v), however, it is a best response for

a type v, so (3) becomes an equality. In fact, (3) holds with equality for all v ∈ VM if the

set of best responses contains every equilibrium bid:

Condition (A1): BM = βM(V).

When this condition holds, every b ∈ φ−1
M (v) is a best response for v, for all v ∈ VM (by

construction of φM), ensuring that (3) holds with equality for all v ∈ VM . Condition (A1)

is satisfied in a second-price auction since any bid b is a best response for a benchmark

bidder of type v = b. When Condition (A1) holds, we are able to get an exact revenue

representation. If it does not hold, we get a lower bound on revenue, based on (3).

We now characterize ΠM(v), using FM(v). By definition,

ΠM(v) = vXM(v)− TM(v) ≥ vXM(v′)− TM(v′)

for all v′ ∈ V . An envelope theorem argument (see Theorem 2 of Milgrom and Segal (2002))

then yields

ΠM(v) = ΠM(0) +

∫ v

0

XM(s)ds. (4)

The supremum payoff can be characterized in terms of FM if an additional condition is

satisfied:

Condition (A2): XM(v) = FM(v)n−1 for almost every v ∈ V.

Given this condition, the probability that a type-v benchmark bidder wins is equal to

the probability that an actual bidder bids weakly less than a type v’s best response. The
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possibility of mass points in the equilibrium bid, BM , and the associated (random) tie-

breaking, make this condition nontrivial. Even with mass points, however, (A2) will hold

in equilibria of first- and second-price auctions, but it may not hold in other auctions.12

When (A2) holds, the expected payoff in (4) takes the form seen in symmetric independent

private values (IPV) auctions.

Let V
(i)
M denote the ith order statistic of n random variables with cdf FM (i.e., the ith

highest of n realizations of VM). We are now able to characterize the expected revenue.

Theorem 1 Suppose that (A2) holds. The seller’s expected revenue from auction equi-

librium M is greater than or equal to E[V
(2)
M ] − nΠM(0). If (A1) also holds, the expected

revenue equals E[V
(2)
M ]− nΠM(0).

Proof: The seller’s expected revenue from auction equilibrium M is given by:

nEBM
[tM(BM)]

= nEVM

[
EBM

[
tM(BM)

∣∣∣BM ∈ φ−1
M (VM)

]]
≥ nEVM

[
EBM

[
VMxM(BM)− ΠM(VM)

∣∣∣BM ∈ φ−1
M (VM)

]]
= nEVM

[
EBM

[
VMxM(BM)

∣∣∣BM ∈ φ−1
M (VM)

]]
− nEVM

[ΠM(VM)]

= EVM

[
V

(1)
M

]
− nEVM

[ΠM(VM)]

= EVM

[
V

(1)
M

]
− nEVM

[∫ VM

0

FM(v)n−1dv

]
− nΠM(0)

= EVM

[
V

(2)
M

]
− nΠM(0). (5)

The first equality follows from the equivalence of the bids generated by the original equi-

librium, M , and the bids generated in the scenario in which n risk-neutral bidders draw

valuations, VM , and bid according to φ−1
M (VM). The inequality follows from (3). The third

equality follows since nEVM

[
EBM

[
VMxM(BM)

∣∣∣BM ∈ φ−1
M (VM)

]]
equals the aggregate gross

surplus accruing to the n risk-neutral bidders in the hypothetical scenario. Since the cor-

respondence φ−1
M (·) is strictly increasing, a bidder with a higher valuation bids strictly

higher than a bidder with a lower valuation in that scenario. Hence, the good is allocated

efficiently among the n risk-neutral bidders, implying that the gross surplus equals the

12An example in Section 3.1 shows that it may not be satisfied in a third-price auction.
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expectation of the first order statistic of VM . The second-to-last equality follows from (4)

and (A2). The last equality follows from integration by parts.

The second statement holds since (A1) implies that, for each v ∈ VM , b ∈ φ−1(v) means

b ∈ βM(v), so the inequality in (3) is an equality for all v ∈ VM , making the inequality in

(5) an equality.

3 Revenue Comparisons of Auctions

This section uses Theorem 1 to compare the expected revenues from different auction

forms. We first impose some structure on bidders’ types and preferences, the features

that ultimately generate the random variable BM . Suppose that each bidder i has a type,

θi, drawn from an arbitrary, compact, non-empty support, Θ. Types are independently

and identically distributed across bidders, and each bidder’s preferences depend only on

his type, which is his private information. The next two subsections compare expected

revenue across standard auctions. First, we consider risk-neutral bidders without financial

constraints and provide a generalized revenue-equivalence result. We then show that first-

price auctions yield greater expected revenue than second-price auctions when risk aversion

and financial constraints are present.

3.1 Risk Neutral Bidders without Financial Constraints

Many auction forms yield the same expected revenue when bidders are risk neutral and

ex ante identical. Revenue equivalence results in the IPV setting typically depend on

assumptions such as connectedness or absolute continuity of the distribution of types (see

Myerson (1981) or Riley and Samuelson (1981), for example). Maskin and Riley (1985) and

Riley (1989) extended the revenue equivalence between first-price sealed-bid auctions and

oral ascending (or second-price sealed-bid) auctions to discrete types. Theorem 1 enables

us to generalize those results for arbitrary type distributions. In the process, we identify

features that make revenue equivalence possible.

Let a bidder of type θ ∈ Θ have a valuation θ.13 A bidder’s valuation has a nondecreasing

13Without loss of generality we assume Θ ⊂ R+ here. If actual valuations are a function of multiple
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and right-continuous cdf, F : Θ 7→ [0, 1], which may have mass points and gaps. As above,

a bid b wins with some probability xM(b) in equilibrium M and entails an expected payment

tM(b). Given risk neutrality and no financial constraints, a bidder with valuation θ receives

an expected payoff of θxM(b)− tM(b) when bidding b.

We again consider auctions in which the high bid wins and the bidders are treated

symmetrically (ties are broken randomly). In addition, we assume that a bidder’s payment

depends only on his own bid and the highest competing bid. Formally, bidder i’s payment is

τw(bi, bm(i)) ∈ R+ if he wins and τl(bi, bm(i)) ∈ R+ if he loses, where bi and bm(i) := maxj 6=i bj

denote bidder i’s bid and the highest competing bid, respectively.14 (Since the high bidder

wins, τw is defined for bi ≥ bm(i) and τl is defined for bi ≤ bm(i).) An auction form that

satisfies these conditions will be called a standard auction. A standard auction displays

continuous payments if the following conditions hold:

τw(0, 0) = τl(0, ·) = 0 and τk(·, bm(i)) is continuous for k = w, l, in the relevant domain.

Many familiar auction forms have all of these features: In a first-price auction, the

winner pays τw(bi, bm(i)) = bi and a loser pays τl(bi, bm(i)) = 0; in a second-price auc-

tion, τw(bi, bm(i)) = bm(i) and τl(bi, bm(i)) = 0; in an all-pay auction, τw(bi, bm(i)) = bi and

τl(bi, bm(i)) = bi; and in a war of attrition, τw(bi, bm(i)) = bm(i) and τl(bi, bm(i)) = bi. Many

other auctions forms are allowed. For instance, nothing in the definition precludes non-

monotonic portions in the payment functions.

The restriction to standard auctions is appealing, but it does preclude mechanisms such

as third-price auctions.15 The role of the various conditions will be made precise later.

We now demonstrate revenue equivalence for symmetric equilibria of standard auctions

with continuous payments.16 A preliminary result enumerates some useful properties of

components, what ultimately matters is just the value of that function.
14The need to define two payment functions arises because ties may occur with non-zero probability, and

the bidder’s payment may depend on whether she wins or loses.
15The allowed payment functions also exclude strictly positive entry fees and reserve prices, but these

exclusions are more innocuous. The analysis can be extended to incorporate these features since the

equilibrium with a reserve price will be observationally equivalent to our model with a particular cdf.
16Again, we assume existence of a symmetric equilibrium. Some auction forms with continuous payment

functions may fail to admit an equilibrium. For instance, the degenerate case of τw = τl := 0 will produce

unbounded bids.
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equilibria. Let δM(b) := τw(b, b)− τl(b, b) denote the difference between what a winner and

a loser pay when tying with a high bid of b.

Lemma 2 Suppose that the bidders are risk neutral and face no financial constraints. A

symmetric equilibrium in a standard auction with continuous payments has the following

properties: (a) If BM has a mass point at b ∈ BM , and if b ∈ βM(v) for some v ∈ V, then

v = δM(b) and v ∈ Θ. (b) For any v, v′ ∈ Θ with v < v′, if b ∈ βM(v) and b′ ∈ βM(v′),

then b < b′.

Proof: This proof and several subsequent proofs are in the Appendix.

The second part of the lemma means that a symmetric equilibrium of a standard auction

with continuous payments admits an efficient allocation. While efficiency of IPV auctions is

a familiar result, the result here is significant because the class of auction forms considered

is broad, and we allow for atoms in the distribution of types. The property concerning

mass points is crucial for efficiency and revenue equivalence. (Example 2 below shows that

efficiency is not guaranteed in a third-price auction — which is not a standard auction —

if there are mass points.) Let θ(2) denote the second order statistic of n random variables

with cdf F . We now present the revenue equivalence result.

Proposition 1 Suppose that the bidders are risk neutral and face no financial constraints.

A symmetric equilibrium of a standard auction with continuous payments yields expected

revenue of E[θ(2)].

Proof: Fix a symmetric equilibrium. We first show that ΠM(0) = 0. The continuous

payments property implies that a bidder of type v = 0 can get a payoff of zero by bidding

zero. The payoff cannot be strictly positive, however, since payments are nonnegative, so

ΠM(0) = 0.

The next step is to pin down FM . To that end, we first construct φM . Condition (A1)

holds since βM(Θ) = BM . Hence, for each b ∈ BM , we can set φM(b) = v ∈ Θ for v such

that b ∈ βM(v). Such a v is unique since, by Lemma 2(b), any selection from βM(v) is

strictly increasing in v for v ∈ Θ. Since an actual bidder with θ ∈ Θ chooses a bid in βM(θ)

in equilibrium, and since φM picks v ∈ Θ for b ∈ βM(θ), and such assignment is unique, we

11



must have θ = φM(BM). Consequently,

FM(v) = Pr{φM(BM) ≤ v} = Pr{θ ≤ v} = F (v) (6)

for every v ∈ V .

The last step is to show that (A2) holds. By Lemma 2(b), any v ∈ Θ wins with

probability F (v)n−1 unless F jumps at v. The set of valuations in Θ with mass points has

measure zero. Since F (v)n−1 = FM(v)n−1, we have XM(v) = FM(v)n−1 for almost every

v ∈ Θ. Hence, it now suffices to show that XM(v) = FM(v)n−1 for each v ∈ V\Θ.

Fix v ∈ V\Θ. Either XM(v) = xM(b) for some mass point b ∈ BM , or XM(v) ∈
{F (ṽ−)n−1, F (ṽ)n−1} for some ṽ ∈ Θ, where F (ṽ−) denotes the left-hand limit of F at ṽ.

The former cannot be true; otherwise, Lemma 2(a) would imply v ∈ Θ, which contradicts

v ∈ V\Θ. Hence, we conclude that XM(v) ∈ {F (ṽ−)n−1, F (ṽ)n−1} for some ṽ ∈ Θ.

It remains to show that XM(v) = FM(v)n−1. This requires a preliminary step. Consider

an arbitrary v′ ∈ Θ and some b′ ∈ βM(v′). Incentive compatibility for a type v means

vXM(v)− TM(v) = sup
b∈R+

πM(b, v) ≥ πM(b′, v) = vxM(b′)− tM(b′). (7)

For the type v′, it implies

v′xM(b′)− tM(b′) = sup
b∈R+

πM(b, v′) ≥ v′XM(v)− TM(v). (8)

Combining (7) and (8), we obtain

(v − v′)[XM(v)− xM(b′)] ≥ 0. (9)

Suppose that XM(v) 6= FM(v)n−1. If FM(v)n−1 < XM(v) ≤ F (ṽ)n−1, there exists

v′ ∈ (v, ṽ) ∩ Θ, or else Θ has a mass point at v′ = ṽ and XM(v) = F (ṽ)n−1. Either

way, xM(b′) < XM(v), for some b′ ∈ βM(v′).17 We thus have a contradiction to (9). If

FM(v)n−1 > XM(v) ≥ F (ṽ−)n−1, there must exist v′ ∈ (ṽ, v) ∩ Θ. Since F (ṽ)n−1 < xM(b′)

17In case of a mass point at v′ = ṽ, the probability of winning will be strictly less than F (ṽ+)n−1 if

a type ṽ bids b′ ∈ βM (ṽ) (either because a tie occurs at b′ with positive probability or because a mixed

strategy is adopted by the type ṽ in equilibrium), so the statement holds with v′ = ṽ. If there is not a

mass point at ṽ, there exists v′ ∈ (v, ṽ) ∩Θ, and the statement follows from Lemma 2(b).

12



for all b′ ∈ βM(v′), given Lemma 2(b) and XM(v) ≤ F (ṽ)n−1, we again have a contradiction

to (9). We conclude that XM(v) = F (ṽ)n−1 = FM(v)n−1, proving that (A2) holds.

Since (A1) and (A2) hold, ΠM(0) = 0, and FM(·) = F (·), Theorem 1 indicates that

the expected revenue in a symmetric equilibrium of auction form M equals E[θ(2)].

In the usual case with an atomless distribution, the equilibrium allocation pins down

the rents for all types, up to a constant. The efficiency result in Lemma 2(b), along with the

property that the infimum type receives a payoff of zero, then yields revenue equivalence.

It is important to note that equality of rents may not hold if the types are discrete. To

see why, consider a two-point support, Θ = {θL, θH}, and two auction equilibria, A and B.

Then, (4) implies that an actual bidder of type θH receives rents equal to

ΠM(θH) = ΠM(θL) +

∫ θH

θL

XM(s)ds

in M = A, B. Now suppose that XA(θ) = XB(θ) for θ ∈ {θL, θH} (i.e., the equilibrium

allocation is the same for the actual types) and ΠA(θL) = ΠB(θL). The rents accruing to

a type θH may differ across auction equilibria if XA(v) 6= XB(v) for v ∈ (θL, θH). In other

words, the incentives of benchmark types that are not actual types affect the calculation

of the equilibrium rents accruing to the actual types. One must therefore keep track of

the incentives of all benchmark types in order to compare revenue, even though the actual

types are discrete.

Revenue equivalence obtains in standard auctions with continuous types because bench-

mark types have the same incentives across auction forms. In particular, a benchmark type

will not mimic a neighboring actual type that is a mass point of the distribution (Lemma

2); this non-mimicking behavior implies that XM(v) = F (v)n−1 for almost every v, as re-

quired by Condition (A2). In fact, the restriction to standard auctions with continuous

payments is necessary for the revenue equivalence result, as is illustrated next.

Example 1 (Discontinuous payments) Suppose that n = 2 bidders draw valuations

from Θ = {1, 2} with probability 1
2

each. In a second-price auction, the allocation is efficient

since θ = 2 outbids θ = 1. Benchmark types with v ∈ {1, 2} have best responses in the

equilibrium support. Those with v ∈ (1, 2) would strictly outbid an actual bidder with θ = 1

implying Xs(v) = 1
2

for these types. By Proposition 1, the seller receives expected revenue
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of E[θ(2)] = 5
4
.

Now consider an optimal auction (denoted “M = o”).18 It has τl := 0 and

τw(bi, bm(i)) =


bi if bi ≤ 1
5
3

if bi ∈ (1, 2]

bi if bi > 2.

An actual bidder with θ = 1 will bid 1 in the symmetric equilibrium, while a bidder with

θ = 2 will bid 2, so the allocation will be efficient. But, the seller’s expected revenue is
3
2

> 5
4

here, so revenue equivalence fails even though the equilibrium allocation and the

expected payoff to the lowest type (θ = 1) are the same as in the second-price auction. This

result follows from the failure of the continuous payments property, as the winner’s payment

jumps up at b = 1 and again at b = 2.19 A benchmark bidder with valuation v ∈ (1, 2) would

not wish to outbid an actual bidder with θ = 1, so Xo(v) = 1
4

< 1
2

= Fo(v) for v ∈ (1, 2),

violating (A2). The rent accruing to an actual bidder with θ = 2 is therefore smaller in

the optimal auction, leading to higher revenue there.

Example 2 (Dependence on other bids) Suppose that there are n = 3 bidders with

the same two-point type distribution as in Example 1. In a second-price auction, the second-

highest bid is equally likely to be 1 or 2, so the seller’s expected revenue is 3
2
. A benchmark

type with v ∈ (1, 2) would submit a bid in (1, 2), so Xs(v) = 1
4

= F (v)2.

Now consider a third-price auction (denoted “M = t”); payments clearly depend on bids

other than the own bid and the highest competing bid. There is a continuum of equilibria

indexed by γ ∈ [3.5, 5]; for γ in this interval, it is symmetric equilibrium behavior for each

bidder to bid 1 if θ = 1 and to bid γ if θ = 2. The seller receives γ if all three bidders have

θ = 2, and 1 otherwise, so the expected revenue is γ+7
8

. In particular, the equilibria with

γ < 5 all yield expected revenue strictly less than 3
2
, so revenue equivalence fails.

The revenue nonequivalence is again explained by the incentives of the benchmark types

in (1, 2). Consider the equilibrium in which an actual type θ = 2 bids x = 4. In this

equilibrium, benchmark types with v ∈ (7
4
, 11

5
) would bid 4, just as the type θ = 2 would.20

Thus, Xt(v) = 7
12

> 1
4

= F (v)2 for v ∈ (7
4
, 2), again violating (A2). This time there is

18It is straightforward to confirm directly that this auction implements the optimal mechanism.
19While xo(b) jumps from 1

4 to 1
2 when b exceeds 1, τw also jumps, from 1 to 5

3 .
20The expected payoff is v−1

4 , 7v−10
12 , or v − 7

4 when bidding b ∈ (1, 4), b = 4, or b ∈ (4,∞), respectively.
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more rent for the actual type θ = 2 — and lower expected revenue for the seller — than in

the second-price auction.

Modifying this example also shows that efficiency is not guaranteed in a third-price

auction. Suppose that three bidders each have a valuation drawn from Θ = {1, 2− ε, 2 + ε}
with probabilities 1

2
, 1

4
, and 1

4
, respectively. The above argument implies that there is a

symmetric equilibrium in which actual bidders with θ = 2 − ε and θ = 2 + ε bid 4, for

sufficiently small ε > 0. Given random tie-breaking, this pooling produces an inefficient

allocation with positive probability, which confirms that Lemma 2(b) relies on the dependence

on just the two bids.

3.2 Bidders with Risk Aversion and Financial Constraints

We next compare the expected revenue from first- and second-price auctions when bid-

ders’ payoffs are strictly concave in the payments they make. Risk aversion and financial

constraints constitute two possible sources of concavity. Risk aversion has long been con-

sidered an important determinant of bidder behavior in the theoretical and experimental

literatures.21 The importance of financial constraints, which arise when the marginal cost

of expenditure is increasing, has been recognized in a growing literature.22

Suppose that each bidder i has a type drawn independently and identically from a

nonempty, measurable set, Θ. A bidder of type θ gets von Neumann-Morgenstern utility

of u(x; θ) if he wins the object and pays x ∈ R+. He receives utility of zero if he does not

win. We make two assumptions concerning the utility function:

(U1) For each θ ∈ Θ, u(·; θ) is continuous, strictly decreasing and (weakly) concave.

(U2) For each θ ∈ Θ, u(0; θ) ≥ 0, with u(0; θ) > 0 for a set with positive measure.

Conversely, there exists K > 0 such that u(K, θ) < 0 for all θ ∈ Θ.

Benchmark types v ∈ (1, 7
4 ), v ∈ ( 7

4 , 11
5 ), and v ∈ ( 11

5 ,∞), strictly prefer the first, second, and third

alternatives, respectively.
21Holt (1980), Maskin and Riley (1984), Matthews (1983, 1987) and Riley and Samuelson (1981) are

some of the major theoretical contributions. Kagel (1995) discusses the possible role of risk aversion in

explaining certain anomalies in auction experiments.
22See Benoit and Krishna (2001), Che and Gale (1996, 1998), Fang and Perreiras (2003), Laffont and

Robert (1996), Maskin (2000), Rhodes-Kropf and Viswanathan (2002), and Zheng (2001).
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The concavity requirement of Assumption (U1) is consistent with risk aversion and

financial constraints. Assumption (U2) ensures that some types have an incentive to

participate and that the equilibrium bids are bounded. There may be atoms in preferences

since u(·, θ) could be constant over an interval in Θ, or there may simply be atoms in Θ;

our model is general enough to accommodate many scenarios.

Bidders’ financial constraints fit easily into our model. Suppose u(x; θ) = θ1 − c(x, θ),

where θ1 is the valuation and c(·, θ) is a strictly increasing and convex cost-of-expenditure

function.23 Allowing Θ to be arbitrary enables us to capture different aspects of financial

constraints such as the size of cash holdings and the terms of credit lines. For instance,

suppose that

c(x, θ) =


x if x ≤ θ2

θ2 + (x− θ2) [1 + θ3] if θ2 < x ≤ θ2 + θ4

θ2 + θ4 [1 + θ3] + (x− θ2 − θ4) [1 + θ3 + θ5] if x > θ2 + θ4

A buyer of type θ has a valuation θ1 and cash holdings of θ2. He can borrow up to θ4 at

the interest rate θ3, and he faces a higher interest rate of θ3 + θ5 when exceeding the credit

limit, θ4. This example allows for non-nested constraints as a buyer could face a tighter

constraint than other buyers do in one dimension (e.g., the size of the credit line), but a

looser constraint in another (e.g., the interest rate).

Our model also allows for bidder risk aversion with more complex risk characteristics

than is the case in existing models. Bidders may differ in both valuations and the degree

of risk aversion, as with the CARA utility function:

u(x; θ) = 1− exp[−θ2(θ1 − x)],

where θ1 represents the valuation and θ2 represents the degree of absolute risk aversion.

More general preferences are also possible, with non-CARA utility functions and a general

θ. For example, bidders could differ in their attitudes toward risk, and risk aversion could

vary with income. There could also be financial constraints in addition to risk aversion.

The revenue comparisons rely on certain properties of symmetric equilibria in each

auction form, given (U1)-(U2). We begin with a second-price auction. In a symmetric

23As noted, Che and Gale (1998) considered a case in which Θ was two-dimensional, with u(x; θ) =

θ1 − c(x, θ2); they made several additional assumptions.
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equilibrium of a second-price auction, it is optimal for a bidder to raise b until u(b; θ) = 0

since he gets utility of zero if he does not win. More precisely, it is a weakly dominant

strategy for a bidder of type θ to bid

Bs(θ) := max{x | u(x; θ) ≥ 0}.24 (10)

Given (U2), Bs is bounded since the supremum bid is bs := supθ∈Θ Bs(θ) < K. In fact,

the next lemma shows that this is the unique symmetric equilibrium strategy. Moreover,

(A1) holds since each equilibrium bid, b ∈ Bs, is a best response for a benchmark bidder

of type v = b. To apply our methodology, we construct the mapping φs such that φs(b) = b

for each b ∈ Bs. With φs constructed this way, (A2) holds.

Lemma 3 Assume (U1)-(U2) hold. In any symmetric equilibrium of a second-price auc-

tion, each bidder bids according to the strategy Bs(·) with probability one. In addition, with

φs(b) = b for all b ∈ Bs, (A2) holds, and Fs(v) = Pr{Bs(θ) ≤ v}, for all v ∈ V.

For a first-price auction, we assume existence of a symmetric equilibrium in pure strate-

gies in which a bidder with θ ∈ Θ bids Bf (θ). While assuming existence of a symmetric

equilibrium is a restriction, any mixed-strategy equilibrium can essentially be rendered

pure by introducing artificial types with the same preferences as existing types that employ

mixed strategies. That is, one can generate the same distribution of bids in a pure-strategy

equilibrium with artificial types as in the original mixed-strategy equilibrium.25 In that

sense, our comparison applies to a general distribution that could involve atoms (in the

usual sense) and multiple dimensions. While equilibria of first-price auctions cannot be

24The maximum is well defined, given continuity of u(·; θ).
25Let Θm be the set of types playing mixed strategies in the symmetric equilibrium. For each θ ∈ Θm,

let Bθ denote the support of bids for that type. Now augment the types for θ ∈ Θm. Specifically, create

types of the form (θ, b), with b ∈ Bθ, such that the distribution of types coincides with the distribution

of bids in the original equilibrium. It is now a symmetric pure-strategy equilibrium for each θ ∈ Θ\Θm

to make its original equilibrium bid and for each (θ, b), with θ ∈ Θm and b ∈ Bθ, to bid b. This pure-

strategy equilibrium has the same equilibrium bid distribution and the same expected revenue as the

original equilibrium. Meanwhile, this change to the type space would have no effect on the equilibrium of

the second-price auction since the last component is not payoff-relevant. Hence, the revenue comparison

between the first- and second-price auctions for the original type space follows trivially from the revenue

comparison for the extended type space, which will be established in Proposition 2.
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explicitly characterized, we can establish several properties of the equilibria that will help

us to apply Theorem 1.

Lemma 4 Given (U1)-(U2), any symmetric equilibrium of a first-price auction has the

following properties: (a) inf Bf = inf Bs =: b, Pr{Bf (θ) ≤ b} = Pr{Bs(θ) ≤ b}, and

bf := supBf < K; (b) Bf is an interval and it has no mass points at any b > b; (c) There

exist v̂ ≥ b and v̂′ ≥ v̂ such that v < b implies Xf (v) = 0 and βf (v) = ∅; v ∈ (b, v̂) implies

BRf (v) = ∅; v ∈ (v̂, v̂′) implies βf (v)\{b} 6= ∅; and v > v̂′ implies BRf (v) = {bf}. (d)

The set βf (V) is nonempty, so φf is well-defined. (e) (A2) holds.

Our revenue comparison then follows.

Proposition 2 Given (U1)-(U2), a symmetric equilibrium of a first-price auction yields

(weakly) higher expected revenue than the symmetric equilibrium of the second-price auction

in (10). The revenue ranking is strict if bs > b and u(·, θ) is strictly concave for all θ ∈ Θ.

Proof: Fix symmetric equilibria for the first-price auction (M = f) and the second-

price auction (M = s). It is straightforward to establish that Πf (0) = Πs(0) = 0 (just as

in the proof of Proposition 1). Lemmas 3 and 4 have shown that (A1) and (A2) hold

in the equilibrium of a second-price auction and that (A2) holds in the equilibrium of a

first-price auction. Hence, by Theorem 1, to get the revenue ranking it suffices to show that

Ff (v
∗) ≤ Fs(v

∗) for every v∗ ∈ V . Note that Fs(v
∗) = Pr{Bs(θ) ≤ v∗} for each v∗ ∈ V , by

Lemma 3.

Now turn to the first-price auction. Once again, βf (·) is nondecreasing, by Lemma 1,

and it is bounded above by K (by Lemma 4(a)), so βf (v) is a singleton for almost every v

for which it is nonempty. By Lemma 4(c), βf (v) 6= ∅ for every v ∈ (v̂, v̂′), so βf (v) contains

a unique best response for almost every v ∈ (v̂, v̂′). Fix a valuation, v∗ ∈ (v̂, v̂′), with a

unique best response, which we denote bf (v
∗). Then,

Ff (v
∗) = Pr{φf (Bf (θ)) ≤ v∗} = Pr{Bf (θ) ≤ bf (v

∗)} = Pr{Bf (θ) < bf (v
∗)},

where the first and the second equalities follow from (A.4), and the last follows from

there being no mass at bf (v
∗) > b (by Lemma 4(b)). Hence, a sufficient condition for

Ff (v
∗) ≤ Fs(v

∗) to hold is that Bs(θ) ≤ v∗ whenever Bf (θ) < b∗ := bf (v
∗).
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Fix θ such that Bf (θ) =: b < b∗. We will show that this implies Bs(θ) ≤ v∗. Observe

first that v∗ ∈ (v̂, v̂′) and v̂ ≥ b. This means that v∗ > b∗ and xf (b
∗) > 0 since a benchmark

bidder of type v∗ > b can get a strictly positive expected payoff by bidding b′ ∈ (b, v∗). If

a type-θ actual bidder finds it optimal to bid b in a first-price auction, then

xf (b)u(b; θ) ≥ xf (b
∗)u(b∗; θ). (11)

Meanwhile, a type-v∗ benchmark bidder has b∗ as a best response, so

xf (b
∗)[v∗ − b∗] ≥ xf (b)[v

∗ − b]. (12)

There are now two subcases. Suppose, first, that either xf (b) = 0 or u(b∗; θ) ≤ 0. In

this case, (11) implies u(v∗; θ) < u(b∗; θ) ≤ 0 since v∗ > b∗. Hence, Bs(θ) ≤ v∗, as was to

be shown.

Now suppose that xf (b) > 0 and u(b∗; θ) > 0. Multiplying the respective sides of (11)

and (12), and dividing through by xf (b)xf (b
∗), we get

u(b; θ)[v∗ − b∗] ≥ u(b∗; θ)[v∗ − b]. (13)

Concavity of u(·; θ) implies

u(b; θ) ≤ u(b∗; θ) + u1(b
∗; θ)[b− b∗], (14)

where u1(y; θ) denotes an arbitrary sub-derivative with respect to the first argument, eval-

uated at (y; θ). Substituting this bound for u(b; θ) into (13) yields

[u(b∗; θ) + u1(b
∗; θ)(v∗ − b∗)](b∗ − b) ≤ 0. (15)

Concavity of u(·; θ) also gives

u(v∗; θ) ≤ u(b∗; θ) + u1(b
∗; θ)(v∗ − b∗). (16)

Since b < b∗, (15) then implies that u(v∗; θ) ≤ 0, which again means Bs(θ) ≤ v∗. We

conclude that Ff (v
∗) ≤ Fs(v

∗) for almost every v∗ ∈ (v̂, v̂′).

Now consider any v∗ > v̂′. Clearly,

Ff (v
∗) ≤ 1 = Pr{Bf (θ) ≤ bf}.
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Again, it suffices to show that Bs(θ) ≤ v∗ whenever Bf (θ) ≤ bf . Since BRf (v
∗) = {bf}, by

Lemma 4(c), and v∗ > bf , the same argument as before proves the result.

We next consider v∗ ∈ (b, v̂). By Lemma 4(c), v ∈ (b, v∗] implies BRf (v) = ∅, so v 6∈ Vf .

Hence, Ff (v
∗) = Ff (b). In addition, if this region exists, there must be a mass point at b,

implying b ∈ Bf . Furthermore, a benchmark bidder of type v = b has βf (v) = {b}. This

means that, for any v∗ ∈ (b, v̂), we have

Ff (v
∗) = Ff (b) = Pr{Bf (θ) ≤ b},

where the last equality follows from (A.3). But, Lemma 4(a) implies Pr{Bf (θ) ≤ b} =

Pr{Bs(θ) ≤ b}, so

Ff (v
∗) = Pr{Bs(θ) ≤ b} = Fs(b) ≤ Fs(v

∗),

where the inequality follows from v∗ > b.

Finally, for almost every v∗ ∈ [0, b), Lemmas 4(c) and 4(e) imply that Ff (v
∗) = Xf (v

∗) =

0. Since Fs(v
∗) ≥ 0, we have Ff (v

∗) ≤ Fs(v
∗).

The analysis has shown that Ff (v
∗) ≤ Fs(v

∗) for almost every v∗ ∈ V . Since Fs is right

continuous, Fs(v) ≥ Ff (v) for every v ∈ V , as was to be shown. The second statement (the

strict ranking) follows since if bs > b, then bf > b, and strict concavity causes (14) and the

corresponding inequality for v∗ > v̂′ to be strict, proving that Ff (v) < Fs(v) for a positive

measure of v.

The proof has established a stochastic dominance relationship between the induced

distributions (i.e., Ff (·) ≤ Fs(·)), which has an intuitive interpretation: a fictitious risk-

neutral bidder would be more likely to lose to bidders who are risk-averse (or financially

constrained) in a first-price auction than in a second-price auction. This intuition parallels

the familiar one that risk aversion makes bidders more aggressive in a first-price auction

than in a second-price auction.26

Remark 1 (Payoff nonequivalence) The bidders themselves may have a strict prefer-

ence for one auction form over another. To see this easily, suppose that Θ contains a

risk-neutral type. Such a bidder would win with a lower probability in a first-price auction

26With multi-dimensional types, the standard intuition may not work in an absolute sense since risk

aversion in our general form may affect the bidding in a second-price auction.
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than in a second-price auction (see the proof of Proposition 2), so Πf (v) =
∫ v

0
Ff (z)n−1dz ≤

Πs(v) =
∫ v

0
Fs(z)n−1dz. This payoff nonequivalence holds even when all types have CARA

utility, if there is heterogeneity in the coefficient of absolute risk aversion.27

3.3 Risk Averse Bidders with Non-Expected Utility Preferences

To this point we have assumed that bidders are expected utility maximizers. We now

show that our ranking of first- and second-price auctions continues to hold for risk-averse

bidders who are not expected utility maximizers.28 This robustness is important given the

well-documented violations of the predictions of the expected utility model.

The result is shown using the Gateaux differentiable preference functional, which re-

places the independence axiom with a minimal condition of smoothness. Gateaux differ-

entiability does not require continuity of the preference functional in the distribution, and

is thus weaker than Fréchet differentiability (see Machina (1982)). It encompasses many

well-known non-expected utility preferences, such as those satisfying the betweenness axiom

(Dekel (1986)) and rank-dependent expected utility (Quiggin (1982) and Wakker (1994)),

given some additional restrictions.29

To begin, let an actual bidder with type θ = (θ1, θ2) ∈ [0, 1]×Θ2 =: Θ earn a random net

surplus Y = θ1 ·I{win}−c(Z, θ2) where Z is a random variable representing the payment and

I{win} is an indicator function that equals 1 when the bid wins, and zero otherwise; c(·, θ2)

is increasing and continuous, with c(0, θ2) = 0; and Θ2 is arbitrary. We make no particular

27Matthews (1987) found payoff equivalence for bidders with identical CARA utility. The reason for

nonequivalence here is consistent with the logic for nonequivalence with (one-dimensional) non-CARA

preferences there since bidders with different valuations may have different levels of absolute risk aversion

in this latter case.
28Auctions in which bidders are not expected utility maximizers have been studied by Karni and Safra

(1989), and Neilson (1994), for example. Those papers compare second-price and ascending-bid auctions.

In both cases, private information is one-dimensional, and the prize is a lottery. The issues they study

do not arise in our setting where the object’s value is deterministic. Volij (2002) found payoff equivalence

using the dual theory of choice model.
29The betweenness axiom gives rise to an implicit function representation, which is Gateaux differentiable

if the partial derivative of the equation with respect to its second argument is bounded. The rank-

dependent expected utility representation is Gateaux differentiable if its probability transformation function

is differentiable. See Chew and Mao (1995) for details.
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assumptions concerning θ except that, for simplicity, θ1 does not have an atom at zero. Let

∆([0, 1]) denote the set of all probability distributions of the net surplus. We assume that

the type-θ bidder’s preference functional, U(·; θ2) : ∆([0, 1]) 7→ R, is Gateaux differentiable:

For each F ∈ ∆([0, 1]), there exists ξ(·,F ; θ2) : [0, 1] 7→ R such that, ∀G ∈ ∆([0, 1]) and

α ∈ [0, 1],

U((1− α)F + αG; θ2)− U(F ; θ2) = α

∫
[0,1]

ξ(·,F ; θ2)d[G − F ] + o(α).

Note that this functional collapses to an expected utility representation if the Gateaux

derivative, ξ(·,F ; θ2), does not depend on F .30 In general, its dependence on F means

that the preferences do not conform to the expected utility representation, although such

a representation is valid for local directional shifts of the distribution. With Gateaux

differentiable preferences, monotonicity of preferences and risk aversion are represented by

ξ(·,F ; θ2) being strictly increasing and concave, respectively, for all F ∈ ∆([0, 1]) (see Chew

and Mao (1995)).

The monotonicity of ξ(·,F ; θ2) means that an actual bidder prefers a (first-order) sto-

chastically dominating shift of the distribution of Y . This implies that the equilibrium of

the second-price auction takes the same form as before. That is, a type-θ bidder bids

Bs(θ) = max{x | θ1 ≥ c(x, θ2)},

which is equivalent to (10), thus satisfying (A1)-(A2). The associated random payoff

stochastically dominates the random payoff associated with any other bid. A symmetric

(pure-strategy) equilibrium of a first-price auction, assuming it exists, is characterized as

in Lemma 4.

The benchmark bidder has the same characteristics as in the previous section (i.e.,

a risk-neutral, expected-utility maximizer with no financial constraints). The previous

revenue ranking then extends to this environment.

Proposition 3 Given a Gateaux derivative ξ(·,F ; θ2) that is strictly increasing and (weakly)

concave for all (F , θ2) ∈ ∆([0, 1]) × Θ2, a symmetric equilibrium of a first-price auction

30The current framework does not include the one in Section 3.2 as a special case, however. In the

current approach, we are treating the good and the money as perfect substitutes, which is why we focus

simply on the stream of “net surplus.” We do not impose such a condition in Subsection 3.2.
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yields (weakly) higher expected revenue than the symmetric equilibrium of the second-price

auction in (10). The revenue ranking is strict if ξ(·,F ; θ2) is strictly concave for all (F , θ2).

Proof: The characterizations of Lemmas 3 and 4 follow, except that we now have

b = 0, and there exists v̂′ such that βf (v)\{b} 6= ∅ if v ∈ (0, v̂′) and βf (v) = {bf} if v > v̂′.

(Since θ1 does not have an atom at 0, Bf forms an open interval and has no atoms, which

implies that BRf (v) is nonempty for all v; the specific characterization follows from the

proof of Lemma 4(c).) Since the proof mirrors that of Proposition 2, we simply highlight

the differences.

Let Bf (θ) denote the equilibrium strategy under a first-price auction. As in the proof of

Proposition 2, the weak ranking holds if the following condition holds: For each v∗ ∈ (0, v̂′)

such that βf (v
∗) has a singleton element, bf (v

∗), Bf (θ) < bf (v
∗) implies Bs(θ) ≤ v∗ ⇔ θ1 ≤

c(v∗, θ2).
31

As before, fix any θ = (θ1, θ2) such that Bf (θ) =: b < bf (v
∗) =: b∗, and let x∗ := xf (b

∗)

and x := xf (b). Then, incentive compatibility for a type-v∗ benchmark bidder implies

x∗[v∗ − b∗] ≥ x[v∗ − b]. (17)

Next, consider an actual bidder with type θ, and let Fb′ denote the distribution of his

surplus when he makes some bid b′. Since Bf (θ) = b, a bid of b must be (weakly) preferred

to any other single bid or any mixed strategy over bids.

Suppose that this bidder randomizes between b and b∗ with probabilities 1− α and α,

respectively. His payoff will be U((1 − α)Fb + αFb∗ ; θ2). Since bidding b with probability

one is optimal, we have

0 ≥ ∂U((1− α)Fb + αFb∗ ; θ2)

∂α

∣∣∣∣
α=0

=

∫
[0,1]

ξ(·,Fb; θ2)d[Fb∗ −Fb]

= x∗ξ(θ1 − c(b∗, θ2),Fb; θ2) + (1− x∗)ξ(0,Fb; θ2)

−[xξ(θ1 − c(b, θ2),Fb; θ2) + (1− x)ξ(0,Fb; θ2)], (18)

where the first equality follows from Gateaux differentiability and the second follows from

the fact that both Fb and Fb∗ involve two-point distributions. We can rewrite (18) as

x[ξ(θ1 − c(b, θ2),Fb; θ2)− ξ(0,Fb; θ2)] ≥ x∗[ξ(θ1 − c(b∗, θ2),Fb; θ2)− ξ(0,Fb; θ2)]. (19)

31Recall that almost every v ∈ Vf has a singleton element.

23



As in the proof of Proposition 2, combining (17), (19) and concavity of ξ(·,Fb; θ2) gives

[ξ(θ1 − c(b∗, θ2),Fb; θ2) + ξ1(θ1 − c(b∗, θ2),Fb; θ2)(v
∗ − b∗)− ξ(0,Fb; θ2)](b

∗ − b) ≤ 0. (20)

By concavity of ξ(·,Fb; θ2),

ξ(θ1 − c(v∗, θ2),Fb; θ2) ≤ ξ(θ1 − c(b∗, θ2),Fb; θ2) + ξ1(θ1 − c(b∗, θ2),Fb; θ2)(v
∗ − b∗),

so (20) implies

ξ(θ1 − c(v∗, θ2),Fb; θ2) ≤ ξ(0,Fb; θ2),

from which it follows that

θ1 ≤ c(v∗, θ2),

or Bs(θ) ≤ v∗, as was to be shown. This gives the weak ranking. Strict concavity makes

the inequalities strict, resulting in a strict ranking.

4 Conclusion

This paper has developed a methodology for characterizing a seller’s expected revenue when

bidders’ types come from an arbitrary distribution. In particular, types may be multidi-

mensional, with mass points and gaps in the distribution, and the support of equilibrium

bids may have mass points and gaps itself. The revenue characterization result was used to

generalize existing revenue equivalence results and to show that first-price auctions revenue-

dominate second-price auctions when bidders are risk averse and face financial constraints.

By considering arbitrary distributions, this paper greatly expands the range of cases for

which revenue comparisons can be made. Our method may therefore have useful applica-

tions for other cases with multidimensional types and general forms of nonlinear payoffs.
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Appendix

Proof of Lemma 2: To prove property (a), suppose that BM has a mass point at b ∈ BM ,

with xM(b+)−xM(b−) =: mb > 0, where xM(b−) and xM(b+) denote the left and right limit

of xM(·) at b, respectively. Consider a benchmark bidder with valuation v ∈ V . By raising

the bid infinitesimally above b, a bidder obtains an expected payoff of

πM(b+, v) = xM(b−)(v − E[τw(b, B
(1:n−1)
M )|B(1:n−1)

M < b]) + mb(v − τw(b, b))

−[1− xM(b+)]E[τl(b, B
(1:n−1)
M )|B(1:n−1)

M > b],

where B
(1:n−1)
M is the first order statistic of n−1 independent draws of BM . (The continuous

payments property gives τk(b+, B
(1:n−1)
M ) = τk(b, B

(1:n−1)
M ) for k = w, l.) A bid of b would

give the benchmark bidder an expected payoff of

πM(b,v) = xM(b−)(v−E[τw(b, B
(1:n−1)
M )|B(1:n−1)

M < b])+mbρb(v−τw(b, b))−mb(1−ρb)τl(b, b)

−[1− xM(b+)]E[τl(b, B
(1:n−1)
M )|B(1:n−1)

M > b],

where ρb denotes the probability of winning conditional on bidding b and tying for the high

bid (i.e., when (bi, bm(i)) = (b, b)). The expected gain from raising bi above b is therefore

πM(b+, v)− πM(b, v) = mb(1− ρb) [v − δM(b)] . (A.1)

Likewise, we have

πM(b,v)− πM(b−, v) = mbρb [v − δM(b)] , (A.2)

for b > 0.

Equations (A.1) and (A.2) imply that a benchmark bidder with a best response of b

must have a valuation v = δM(b); otherwise, the expected payoff would jump when raising

or lowering the bid marginally.32 Since no other actual type can contribute to the mass,

we must have v ∈ Θ, as was claimed in (a).

To prove property (b), fix v′, v ∈ Θ with v′ > v. Lemma 1 showed that we must have

b′ ≥ b if b′ ∈ βM(v′) and b ∈ βM(v). If b′ = b, an interval of valuations must have a best

response of b, but this contradicts (a).33 Hence, we must have b′ > b.

32When b = 0, we have τw(0, 0) = τl(0, 0) = 0, so δM (0) = 0. Given (A.1), b = 0 implies v = 0, so
v = δM (b) again.

33Following footnote 7, if v, v′ ∈ Θ with v < v′, there must be atoms at v and v′ or a positive measure
of types in (v, v′) ∩Θ.
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Proof of Lemma 3: Fix a constant, ε > 0. A bidder ε-overbids if she bids more than

Bs(θ) + ε when her type is θ ∈ Θ; she ε-underbids if she bids less than Bs(θ)− ε. To prove

uniqueness, suppose that there exists a symmetric equilibrium in which a bidder ε-overbids

or ε-underbids with strictly positive probability. In particular, suppose that the probability

of ε-overbidding is positive. Let B+ be the support of equilibrium bids that entail ε-

overbidding, and let b
+

:= supB+.34 Then, for a fixed δ < ε, a given bidder ε-overbids in

(b
+− δ, b

+
] with positive probability. Since all bidders adopt the same strategy, the highest

rival bid lies in that same interval with positive probability. By deviating to Bs(·) whenever

she would have ε-overbid, a bidder will be strictly better off. This is immediate if B+ has a

mass point at b
+
, since ε-overbidding at b

+
would result in a positive probability of winning,

which would give the bidder a payoff of u(b
+
, θ) ≤ u(Bs(θ) + ε, θ) < u(Bs(θ), θ) = 0. If B+

does not have a mass point at b
+
, then b

+
= supB+ means that the highest rival bid lies

in any nonempty subset of (b
+ − δ, b

+
) with positive probability. Then, deviating to Bs(·)

whenever she would have ε-overbid in (b
+− δ

2
, b

+
), say, is strictly profitable. The argument

is analogous when the probability of ε-underbidding is positive.

To prove the second statement, note that almost every v ∈ V is not a mass point in Bs.

Fix any such v. Since it is a best response to bid v, a benchmark bidder with v wins with

probability Xs(v) = (Pr{Bs ≤ v})n−1. Meanwhile, since φs(Bs) = Bs, we have

Fs(v) = Pr{φs(Bs) ≤ v} = Pr{Bs ≤ v},

where the first equality follows from (2). Combining the two preceding facts, we have

Xs(v) = Fs(v)n−1, proving (A2). Further, since Bs = Bs(θ) in the unique symmetric

equilibrium, we have Fs(v) = Pr{Bs(θ) ≤ v}, for all v ∈ V .

Proof of Lemma 4: The first part of (a) claims that bf = bs, where bM := inf BM for

M = f, s. Suppose that bs < bf instead. Then, any type θ with Bs(θ) ∈ (bs, bf ) could

get a strictly positive expected payoff in a first-price auction by bidding Bs(θ) − ε > bs,

for small ε > 0. This means that bf ≤ bs, which gives a contradiction. Now suppose that

bf < bs. Then, the equilibrium payoff for every θ ∈ Θ must be bounded away from zero

34Let P+
δ (b) be the probability that a type-θ bidder bids b′ ∈ [b, b + δ) such that b′ ≥ Bs(θ) + ε when

θ ∈ Θ, and let P−
δ (b) be the probability that b′ ∈ (b− δ, b] such that b′ ≥ Bs(θ) + ε when θ ∈ Θ. Then,

B+ := {b | P−
δ (b) > 0 and P+

δ (b) > 0,∀δ > 0}.
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in the first-price auction. This would mean that there is a mass point at bf , yet those

types putting mass at bf could profitably deviate by raising the mass slightly above bf .

(The deviation raises the probability of winning discontinuously but the (strictly positive)

payoff upon winning decreases continuously, by (U1).) Hence, we have a contradiction,

so bf = bs. In addition, the same actual types will bid b in both formats, so Pr{Bf (θ) ≤
b} = Pr{Bs(θ) ≤ b}. The last claim in (a) holds since bf ≥ K would mean that a positive

measure of θ has a non-zero probability of winning with a bid that entails a strictly negative

payoff, a situation avoided by bidding zero.

We next prove (b). It is easy to see that Bf must be an interval. If there were a gap in

Bf , any bid within ε of the supremum of the gap could profitably be lowered to ε above the

infimum of the gap, for small ε > 0. (The drop in the probability of winning would be of

order ε, but the increase in the payoff upon winning is roughly proportional to the length

of the gap.) Consequently, there cannot be a gap in Bf .

To see that there cannot be a mass point above b, suppose that the equilibrium strategy

called for a particular bid, b > b, to be submitted with positive probability. That bid exceeds

the infimum, so it wins with strictly positive probability, and almost every type that bids

b has u(b; θ) > 0.35 Since the winning probability jumps at b and u(·, θ) is continuous, a

profitable deviation exists when a bidder draws one of these types. Thus, there cannot be

a mass point at any b > b in equilibrium.

In order to prove (c) we make several preliminary observations. First, a benchmark

bidder with v < b will get a negative payoff if she wins. This means that Xf (v) = 0 and

βf (v) = BRf (v) ∩ Bf = ∅ for v < b. Second, for all b > bf and all v, πf (b, v)− πf (bf , v) =

bf − b < 0 since xf (b) = xf (bf ) = 1, given the absence of mass points shown in (b). Third,

for any v > b and b ≤ b, there exists b′ > b such that π(b′, v) > π(b, v).36 These observations

imply that, for any v > b, whenever BRf (v) is non-empty it must be a subset of (b, bf ].

(That is, for each v > b, either BRf (v) = ∅ or BRf (v) ∩ (b, bf ] 6= ∅.) Since πf (b, v) has

increasing differences in (b; v) and is continuous in b for b ∈ (b, bf ], we have two additional

observations: (i) if BRf (v) ∩ (b, bf ] 6= ∅, then BRf (v
′) ∩ (b, bf ] 6= ∅ for v′ > v; and (ii) if

BRf (v) ∩ (b, bf ) 6= ∅ and BRf (v
′) ∩ (b, bf ) 6= ∅, for v′ > v, then BRf (v

′′) ∩ (b, bf ) 6= ∅ for

35If not, a slightly lower bid would win with positive probability, but the payoff upon winning would be
strictly greater, so the expected payoff from this lower bid would be strictly positive.

36This holds since b ≤ b implies that either xf (b) = 0 or else b = b and there is a mass point at b; raising
the bid slightly above b is profitable in the latter case.
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all v′′ ∈ (v, v′). The earlier observations, combined with (i), imply that there exists v̂ ≥ b

such that BRf (v) is empty for v ∈ (b, v̂) and BRf (v) ∩ (b, bf ] 6= ∅ for v > v̂.37 This latter

conclusion, along with (ii), implies that there exists v̂′ ≥ v̂ such that BRf (v) ∩ (b, bf ) 6= ∅
if v ∈ (v̂, v̂′) and BRf (v) = {bf} if v > v̂′. Since (b, bf ) ⊂ Bf , βf (v)\{b} 6= ∅ if v ∈ (v̂, v̂′),

so the proof is complete.

We next prove (d). There are two cases, depending on whether there is a mass point at

b. If there is a mass point, b ∈ Bf and BRf (b) contains b, so βf (v) 6= ∅ for v = b. If there

is not a mass point at b, any v ∈ (b,
xf (bf )

x′f (bf−)
+ bf ) has BRf (v) ∩ (b, bf ) 6= ∅, where x′f (bf−)

denotes a left-hand derivative of xf at bf , which is positive, by (b). Since (b, bf ) ⊂ Bf ,

βf (v) 6= ∅ for such v, which completes the proof.

Last, we turn to (e). Fix any v < b. By (c), Xf (v) = 0 and βf (v) = BRf (v) ∩ Bf = ∅.
The latter fact means that v′ /∈ Vf = φM(Bf ) if v′ ≤ v. Hence, Ff (v)n−1 = Pr{φM(Bf ) ≤
v}n−1 = 0 = Xf (v).

Now consider any v ∈ (b, v̂). Then, (c) implies that BRf (v) = ∅, which can only arise

when Xf (v) = (Pr{Bf (θ) ≤ b})n−1 and b is a mass point. The latter fact implies b ∈ Bf .

Further, by (c), BRf (v
′) = ∅ for each v′ ∈ (b, v], so v′ does not belong to the support of Vf .

It follows that Ff (v) = Ff (b). A benchmark bidder of type v = b has φ−1
f (v) = βf (v) = {b}.

Hence,

Ff (b) = Pr{φf (Bf (θ)) ≤ b} = Pr{Bf (θ) ≤ b}. (A.3)

Combining the results, we have

Xf (v) = (Pr{Bf (θ) ≤ b})n−1 = Ff (b)
n−1 = Ff (v)n−1,

as was to be shown.

Next consider (v̂, v̂′). By (c), βf (v)\{b} 6= ∅ for each v ∈ (v̂, v̂′). Since βf (·) is non-

decreasing, by Lemma 1, and it is bounded above by K (see (a)), βf (v) collapses to a

singleton, say {bf (v)}, for almost every v ∈ (v̂, v̂′). Hence, for such v,

Xf (v) = xf (bf (v)) = (Pr{Bf (θ) ≤ bf (v)})n−1 = (Pr{φf (Bf (θ)) ≤ v})n−1 = Ff (v)n−1.

(A.4)

The first and last equalities follow from the respective definitions, the second follows from

the fact that there is no mass at bf (v) ∈ Bf\{b}, and the third equality is immediate if

bf (·) is strictly increasing at v, or else it follows from the fact that there is no mass at bf (v).

37Either region may not exist if v̂ = b or v̂ = v̂′.
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Finally, consider any v > v̂′. Since there is no mass point at bf (by (b)), we have

BRf (v) = {bf}. It follows that Xf (v) = xf (bf ) = 1. Meanwhile, φf (Bf ) ≤ v̂′, ∀Bf ∈ Bf ,

so Ff (v) = 1 for v > v̂′. Consequently, Xf (v) = Ff (v)n−1 for all v > v̂′. Since we have

established Xf (v) = Ff (v)n−1 for almost every v ∈ V , the proof is complete.
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