
STATISTICAL ANALYSIS OF LINEAR ANALOG CIRCUITS USING

GAUSSIAN MESSAGE PASSING IN FACTOR GRAPHS

by

Miti Phadnis

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Engineering

Approved:

Dr. Brandon K. Eames Dr. Chris Winstead
Major Professor Committee Member

Prof. Paul Israelsen Dr. Byron R. Burnham
Committee Member Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2009

ii

Copyright c© Miti Phadnis 2009

All Rights Reserved

iii

Abstract

Statistical Analysis of Linear Analog Circuits Using Gaussian Message Passing in Factor

Graphs

by

Miti Phadnis, Master of Science

Utah State University, 2009

Major Professor: Dr. Brandon K. Eames
Department: Electrical and Computer Engineering

This thesis introduces a novel application of factor graphs to the domain of analog

circuits. It proposes a technique of leveraging factor graphs for performing statistical yield

analysis of analog circuits that is much faster than the standard Monte Carlo/Simulation

Program With Integrated Circuit Emphasis (SPICE) simulation techniques. We have de-

signed a tool chain to model an analog circuit and its corresponding factor graph and then

use a Gaussian message passing approach along the edges of the graph for yield calculation.

The tool is also capable of estimating unknown parameters of the circuit given known out-

put statistics through backward message propagation in the factor graph. The tool builds

upon the concept of domain-specific modeling leveraged for modeling and interpreting dif-

ferent kinds of analog circuits. Generic Modeling Environment (GME) is used to design

modeling environment for analog circuits. It is a configurable tool set that supports cre-

ation of domain-specific design environments for different applications. This research has

developed a generalized methodology that could be applied towards design automation of

different kinds of analog circuits, both linear and nonlinear. The tool has been successfully

used to model linear amplifier circuits and a nonlinear Metal Oxide Semiconductor Field

Effect Transistor (MOSFET) circuit. The results obtained by Monte Carlo simulations

iv

performed on these circuits are used as a reference in the project to compare against the

tool’s results. The tool is tested for its efficiency in terms of time and accuracy against the

standard results.

(104 pages)

v

To my loving family and friends....

vi

Acknowledgments

This research project has been an enriching experience right from the beginning until

its completion. I could not have even dreamed of pursuing my goal this far without the

enduring and inspirational guidance of my mentor, Dr. Brandon Eames. He has been a

constant source of motivation throughout my course of study while pursuing a master’s

degree at USU. I have learned tremendously from the courses taught by him that laid a

strong foundation for my accomplishment in this research project. He has provided me

guidance and support at every step to help me clear all the hurdles encountered on my

way. He has always inspired me to put in my best of efforts in order to achieve my goals.

I am really grateful to him and would like to sincerely thank him for all his guidance and

precious time that he has devoted for this project.

I would also like to thank my committee members, Dr. Chris Winstead and Prof.

Paul Israelson, for their kind support and motivation. I would especially like to extend my

gratitude towards Dr. Chris Winstead for being an active part of this research. His valuable

ideas proved instrumental in paving my path towards the success of this project.

Another name that is worth mentioning here is Mr. Jeremy Goldin for reviewing my

thesis and improving its grammar tremendously.

My sincere thanks to my friends Vidisha, Akshata, Gautam, Sravanthi, and Arti in

Logan who have been a tremendous emotional support for me in my tough times. I have

shared happy, as well as sad, moments with all of them and would always cherish those

memories in my heart. I would especially like to mention Sravanthi who has also been a

colleague and fellowmate in several of my classes. She has helped me immensely in improving

my coding and debugging skills and guided me whenever I was stuck with some problem.

She also reviewed my thesis and helped me improve it at all levels.

And last, but by no means least, I am highly grateful to my family for being the great-

est strength behind all my success. I would like to thank my father, Mr. Arun Phadnis, my

mother, Mrs. Swati Phadnis, and my brother, Mr. Vishal Phadnis, for making me explore

vii

my strengths and apply them towards betterment of my life. Without their blessings, I

could not have become the individual that I am today.

Miti Phadnis

viii

Contents

Page

Abstract . iii

Acknowledgments . vi

List of Tables . x

List of Figures . xi

1 Introduction to the Factor Graph Technique for Modeling Analog Cir-

cuits . 1

1.1 Thesis Objective . 1
1.2 Factor Graphs . 3
1.3 Thesis Organization . 4

2 Related Background and Literature Review . 5

2.1 Related Background . 5
2.1.1 Factor Graphs . 5
2.1.2 GME . 8

2.2 Literature Review . 9
2.2.1 Overview of Different Analog Circuit Simulation Techniques 10
2.2.2 Application Domains of Factor Graphs 16

3 Leveraging Factor Graphs for Statistical Yield Analysis of Analog Cir-

cuits . 19

3.1 Correspondence Between Analog Circuit and Factor Graph Domain 21
3.1.1 Independent Signal Sources . 21
3.1.2 Resistors . 21
3.1.3 Amplifiers . 23
3.1.4 Dependent Sources . 24
3.1.5 Junctions . 25

3.2 Tool Flow . 37
3.3 Tool Structure in Detail . 39

3.3.1 Design Environment to Model Analog Circuits 39
3.3.2 Modeling Paradigm to Design Factor Graphs 44
3.3.3 SPICE Simulator . 49
3.3.4 Translator Interpreter to Obtain a Factor Graph from an Analog Cir-

cuit Model . 51
3.3.5 Factor Graph Interpreter to Organize the Information of the Graph

in a Log File . 53
3.3.6 Final Simulation to Obtain Yield and Parameter Estimates 55

3.4 Monte Carlo Simulator . 55

ix

4 Simulation Results Obtained by the Tool . 57

4.1 Accuracy Results . 57
4.1.1 Inverting and Non-Inverting Configurations of an Amplifier 58
4.1.2 Instrumentation Amplifier . 65
4.1.3 Conclusions Derived from Observed Results 68
4.1.4 MOSFET . 70

4.2 Timing Results . 71

5 Conclusion and Future Work . 75

References . 78

Appendices . 80

Appendix A Equations Guiding Forward and Backward Message Propagation
Through Each Factor Graph Node . 81
A.1 Equations for Forward Message Propagation Along a Factor Graph . 81
A.2 Equations for Backward Message Propagation Along a Factor Graph 82

Appendix B Sample of the C++ Simulation File Generated by the Factor Graph
Interpreter . 85

x

List of Tables

Table Page

4.1 Values of resistors chosen for the set of experiments performed by varying R1. 58

4.2 Values of resistors chosen for the set of experiments performed by varying R2. 59

4.3 Average execution time obtained from tool and Monte Carlo analysis. . . . 71

xi

List of Figures

Figure Page

2.1 Example of a factor graph. 8

3.1 Symbol of a resistor and its equivalent factor graph. 22

3.2 Voltage and current subgraphs in a factor graph. 23

3.3 Symbol of amplifier and its equivalent factor graph. 24

3.4 Circuit fragments with merge junction and their corresponding factor graph
blocks. 26

3.5 Example circuit showing junction of Type 0. 28

3.6 Factor graph equivalent for junction of Type 0. 28

3.7 Factor graph equivalent for junction of Type 0 with one of the output branches
containing a signal source. 28

3.8 Factor graph equivalent for the example circuit shown in fig. 3.5. 28

3.9 Example circuit showing junction of Type 1. 29

3.10 Factor graph equivalent for the example circuit shown in fig. 3.9. 29

3.11 Example circuit showing junction of Type 2. 29

3.12 Factor graph equivalent for the example circuit shown in fig. 3.11. 30

3.13 Example circuit showing junction of Type 3. 30

3.14 Factor graph equivalent for the example circuit shown in fig. 3.13. 30

3.15 Factor graph equivalent for junction of Type 3. 31

3.16 Example circuit showing junction of Type 4. 31

3.17 Factor graph equivalent for the example circuit shown in fig. 3.16. 32

3.18 Example circuit showing junction of Type 5. 32

3.19 Factor graph equivalent for the example circuit shown in fig. 3.18. 32

xii

3.20 Factor graph equivalent for junction of Type 5. 33

3.21 Example circuit showing junction of Type 6. 33

3.22 Factor graph equivalent for the example circuit shown in fig. 3.21. 33

3.23 Factor graph equivalent for junction of Type 6. 33

3.24 Example circuit showing junction of Type 7. 34

3.25 Factor graph equivalent for the example circuit shown in fig. 3.24. 34

3.26 Factor graph equivalent for junction of Type 7. 35

3.27 Example circuit showing junction of Type 8. 35

3.28 Factor graph equivalent for the example circuit shown in fig. 3.27. 35

3.29 Factor graph equivalent for junction of Type 8. 36

3.30 Example of a resistive circuit. 36

3.31 Equivalent factor graph of resistive network shown in fig. 3.30. 36

3.32 Tool flow for the project. 38

3.33 Metamodel for an analog circuit in GME showing the root of the structure
and its inherited components. 42

3.34 Metamodel for analog circuits depicting different kinds of analog circuit com-
ponents such as amplifier and independent signal sources. 42

3.35 Metamodel for analog circuits showing dependent sources and junction. . . 45

3.36 Metamodel for analog circuits depicting dependent sources and resistor. . . 46

3.37 Metamodel for analog circuits showing digital components available in the
design environment. 46

3.38 Example of a linear analog circuit model drawn in GME. 47

3.39 Analog circuit model drawn in GME containing a dependent voltage source. 47

3.40 Metamodel for a factor graph showing the root of the structure and its in-
herited elements. 50

3.41 Metamodel for a factor graph depicting different types of factor graphs. . . 50

xiii

3.42 Metamodel for a factor graph showing different types of factor graphs. . . . 51

4.1 Circuit diagram of an inverting amplifier. 59

4.2 Circuit diagram of a non-inverting amplifier. 59

4.3 Plot of Vout vs statistical variations in R1 for an inverting amplifier. 61

4.4 Plot of Vout vs statistical variations in R1 for a non-inverting amplifier. . . 61

4.5 Plot of Vout vs statistical variations in R2 for an inverting amplifier. 62

4.6 Plot of Vout vs statistical variations in R2 for non-inverting amplifier. . . . 62

4.7 3-D plot of relative error in Vout for inverting amplifier against statistical
variations in resistances R1 and R2. 63

4.8 3-D plot of relative error in Vout for non-inverting amplifier against statistical
variations in resistances R1 and R2. 64

4.9 Plot showing estimated and expected variances of resistance R1 and feedback
resistor R2 of an inverting amplifier for known statistics of Vout. 65

4.10 Plot showing estimated and expected variances of resistance R1 and feedback
resistor R2 of a non-inverting amplifier for known statistics of Vout. 66

4.11 Circuit diagram of an instrumentation amplifier. 66

4.12 Plot of Vout vs statistical variations in R1 for an instrumentation amplifier. 67

4.13 Plot of Vout vs statistical variations in R2 for an instrumentation amplifier. 67

4.14 3-D plot of relative error in Vout for an instrumentation amplifier against
statistical variations in resistances R1 and R2. 69

4.15 Plot showing estimated and expected variances of resistance R1 and feedback
resistor R2 of an instrumentation amplifier for known statistics of Vout. . . 69

4.16 Circuit diagram of MOSFET. 70

4.17 Plot of Vout vs statistical variations in input resistance Rg for MOSFET. . 72

4.18 Plot of Vout vs statistical variations in output resistance Rout for MOSFET. 72

4.19 3-D plot of relative error in Vout for MOSFET against statistical variations
in resistances Rg and Rout. 73

4.20 Plot showing estimated and expected variances of input resistance Rg and
output resistor Rout for MOSFET. 73

1

Chapter 1

Introduction to the Factor Graph Technique for Modeling

Analog Circuits

1.1 Thesis Objective

The impact of statistical parameter variation on yield is an issue of interest in integrated

analog circuit design. Due to the inherent challenges in the constituent processes, device

fabrication introduces random perturbations to circuit parameter values, some of which can

highly affect the performance of a circuit. The performance of analog integrated and mixed

signal circuits heavily depends on the electrical parameters of their components. Often,

two or more devices in an analog integrated circuit require to have identical characteristics

or parameters, however device fabrication techniques introduce random deviations in the

electrical parameters of the components leading to a mismatch in the values and, thus

deteriorating the performance of the circuit. The performance degradation can, sometimes,

be severe, rendering the circuit defective. Several random processes are involved in the

production of analog circuits at different stages of fabrication that make the parameter

values in a particular manufactured instance of a design uncertain, deviating randomly from

their nominal values. Extreme operating conditions are also responsible for inducing such

variations in the parameter values. Noise is another significant factor that causes variability

affecting the operation of a circuit. For example, mismatch in the devices has been found

to have an adverse impact on the digital logic schemes in several memory systems where

uncertainties get introduced in the delay times, thereby causing race conditions to occur [1].

As the size of circuit components decrease, these effects become even more prominent. With

the semiconductor industry advancing towards submicron era, it is becoming increasingly

important to evaluate the tolerance of circuit performance on the parameter fluctuations

2

for reliability [2]. Significant research has been done in this area of statistical yield analysis

for analog circuits [2–7]. Most of the techniques have analyzed the impact of parameter

variation on yield producing results comparable with standard Monte-Carlo/Simulation

Program With Integrated Circuit Emphasis (SPICE)-based simulation methods in terms of

accuracy while utilizing much less Central Processing Unit (CPU) time [2,4, 5].

Monte Carlo and SPICE have been adopted as standard simulation techniques in the

analog circuit community to perform statistical yield analysis of analog circuits. These

techniques perform thousands of simulations runs on several versions of a circuit instanti-

ated to accommodate the component parameter variation range and arrive at the output

statistics, thereby rendering it a very time-consuming process utilizing a lot of CPU cy-

cles. The objective of this thesis is to introduce a novel factor graph-based statistical yield

analysis method that would serve as an alternative to the already adopted techniques in

the market for obtaining yield estimates for a circuit for known parameter variations. It

is aimed to provide similar accuracy comparable to Monte Carlo/SPICE techniques while

utilizing much less CPU time. The advantage of the proposed technique lies in its efficiency

in terms of execution time at the cost of tolerable sacrifice in the accuracy of the desired

results. The tool is capable of solving the traditional problem of estimating the effect of

parameter variations on the yield. However, the uniqueness of the strategy is attributed to

its capability of estimating unknown parameter variation tolerances for known yield statis-

tics. It is this property of the factor graph based analysis that stands it out among other

available techniques producing results comparable to the standard approaches.

Our analysis technique is built on the concepts of the factor graph theory that provides

the basis for obtaining unknown yield and parameter estimates. The outcome of our re-

search is an end-to-end design tool chain that supports the modeling of analog circuits and

factor graphs, as well as the technique for the analysis. Factor Graph models are obtained

by applying a translation algorithm to the circuit models specified by the user, which in

turn are fed to the factor graph simulator to perform the desired analysis. The modeling

environments for analog circuits and factor graphs are designed using Generic Modeling En-

3

vironment (GME). GME has been the fundamental element in the development of the tool

chain and forms the backbone of our tool structure. We have discussed the background in-

formation on GME in Chapter 2. Section 1.2 introduces factor graphs and their significance

in our approach.

1.2 Factor Graphs

Graphical models, like signal flow graphs, trellis diagrams, and a variety of block di-

agrams, have often been utilized by engineers to model their systems [8]. Factor graph

analysis is another emerging technique in modeling theory and has been used in a variety of

domains. It has the ability to model various types of control and signal processing systems.

A factor graph is defined as a bipartite graph capable of realizing a global mathematical

function as a composition of the factors of several local functions [9] and provides a graph-

ical representation of such factorization. There exists a unique node for every factor and

a unique edge for every variable in the graph; a factor node is connected with an edge

representing some variable only if that factor is a function of that variable [10]. Edges

connecting nodes in the graph model the factorization dependencies of the global function.

Factor graphs are associated with a summary propagation algorithm that operates by pass-

ing messages along the edges of the graph [8]. Several algorithms have been devised as an

instance of this summary propagation algorithm to analyze the factor graphs [11]. It thus

allows one to derive the transfer function of the system represented by the graph through

evaluation of the output for a given set of inputs by message propagation.

Factor graph theory has been applied to the analysis of mixed signal circuits. Loeliger [12]

has explored the potential of the message passing algorithm in a factor graph for the cal-

ibration of analog to digital converters made of low precision components. However, the

work performed to date has examined only a very narrow domain of the application of

factor graphs and the associated sum-product algorithm in the area of analog circuits. In

this thesis, we have attempted to widen the scope of the factor graph theory so as to gen-

eralize the design automation process for different kinds of analog circuit components and

circuits, performing steady state yield analysis. Our focus is to provide the ability to model

4

all kinds of linear and nonlinear circuit elements such as amplifiers and Metal Oxide Semi-

conductor Field Effect Transistor (MOSFET), and to apply factor graph analysis to obtain

time efficient simulation results with appreciable accuracy. The intention is to explore the

potential of the approach in both directions; to be able to solve the traditional problem

of determining yield estimates for known parameter variations; and to perform the uncon-

ventional unknown parameter estimate analysis for known yield statistics, which could be

thought of as a kind of sensitivity analysis. Factor graphs can lead to the formulation of an

efficient technique, in terms of accuracy and execution time, for performing statistical yield

analysis of analog circuits in the presence of random parameter variations in circuit com-

ponents, as well as evaluating the constraints on unknown parameter estimates for known

yield statistics.

1.3 Thesis Organization

The thesis has been organized into the following chapters:

• Related Background and Literature Review: This chapter delves into the background

details of two crucial components involved in the development of the technique: Factor

Graphs and GME. It also discusses different statistical yield analysis techniques and

various application domains of factor graphs.

• Technique of Leveraging Factor Graphs for Statistical Yield Analysis of Analog Cir-

cuits: This chapter gives a detailed explanation of the proposed analysis technique

and the tool with the help of a few circuit examples.

• Simulation Results Obtained by the Tool: This chapter demonstrates experimental

results of the tool for three different operational amplifier circuits and a MOSFET

circuit, and also performs a comparative study between the proposed approach and

the standard Monte Carlo simulation.

• Conclusion and Future Work: The last chapter provides a concluding note on the

proposed technique and also discusses future work.

5

Chapter 2

Related Background and Literature Review

Section 2.1 briefly introduces the two major tools involved in the development of the

factor graph technique proposed in this thesis.

2.1 Related Background

Factor Graphs and GME are the major contributors towards realizing the tool chain

that performs factor graph-based analysis of analog circuits. They form the crux of the

proposed approach and its implementation. A brief discussion of factor graphs and GME

is presented in secs. 2.1.1 and 2.1.2.

2.1.1 Factor Graphs

Factor graphs have gained significant recognition in the engineering community as pow-

erful system modeling tool. As mentioned in Chapter 1, they have been widely explored in

various domains including signal processing and control systems. A factor graph models the

factor dependencies in the transfer function of a system to represent the system output in

terms of user specified inputs. It performs quantitative analysis of a physical system based

on the mathematics involved in the structural components of the graph. A factor graph

resembles older modeling techniques like Tanner graphs and Bayesian networks. Factor

graphs and the sum-product algorithm are considered an easier approach with close cor-

respondence to Tanner graphs for solving marginalized product-of functions problem [11].

A factor graph expressing certain factorization is closely related to a Bayesian network

representing the same factorization. There exists functional similarity between the belief

propagation algorithm that operates by passing messages in a Bayesian network and the

sum-product algorithm passing messages in a factor graph. A generic message passing algo-

6

rithm known as sum-product algorithm that operates on a factor graph has been discussed

by Kschischang, Frey, and Loeliger [11]. This algorithm computes the local factor functions

associated with the global function represented by the graph [11].

The basic building blocks of a factor graph include mathematical entities like adders,

multipliers, equality constraint nodes, coefficient and error source blocks, as well as input-

output nodes representing the inputs and outputs of a system. Factor graph theory defines

equations for calculating means and variances of Gaussian messages that are propagated to

each block in the factor graph model. These equations have been established by Loeliger [10]

with a few exceptions discussed later. Equations are also defined for analyzing Gaussian

mixtures. These equations guide the propagation of signals along all forward paths of the

graph starting with the known inputs. Backward propagation is also defined, which can

be used to arrive at an estimation of an input parameter using known output statistics.

Equations associated with few factor graph nodes that guide the signal propagation in

both, forward and backward directions are described below:

• Adder: This node is responsible for adding or subtracting (depends on the signal

polarity) the two incoming Gaussian input signals. It is defined by the equation

Z = X + Y. (2.1)

The values of Mean(M), Variance(V) and Weight(W) associated with the Gaussian

output message obtained by the forward propagation and Gaussian input messages

obtained by the backward propagation are given below:

1. Forward Propagation

Z.M = X.M + Y.M (2.2)

Z.V = X.V + Y.V (2.3)

Z.W = 1/Z.V. (2.4)

7

2. Backward Propagation

Outgoing Message on X:

X.M = Z.M − Y.M (2.5)

X.V = Z.V + Y.V (2.6)

X.W = 1/X.V (2.7)

Outgoing Message on Y:

Y.M = Z.M − X.M (2.8)

Y.V = Z.V + X.V (2.9)

Y.W = 1/Y.V. (2.10)

• Multiplier: The Multiplier takes the product of the input Gaussian signal with a

multiplication factor attribute to produce an output. The factor can be a scalar, a

vector, or a matrix. It is represented by the equation

Z = A ∗ X. (2.11)

X corresponds to the input signal, A is the multiplication factor, and Y is the output.

The equations illustrating the calculation of forward and backward Gaussian messages

through this node are as follows:

1. Forward Propagation

Y.M = A ∗ X.M (2.12)

Y.V = (A2) ∗ X.V (2.13)

Y.W = 1/Y.V. (2.14)

2. Backward Propagation

X.W = Y.W ∗ A2 (2.15)

8

X.M = A ∗ Y.W ∗ Y.M/X.W (2.16)

X.V = 1/X.W. (2.17)

An example factor graph consisting of basic factor graph blocks is shown in fig. 2.1. In this

example, epsilon represents an error source block, C denotes the coefficient node, I/P1 and

I/P2 correspond to the input nodes of the graph, and O/P represents its output.

2.1.2 GME

GME stands for “Generic Modeling Environment.” It is an academic tool developed at

Vanderbilt University for the purpose of defining modeling languages specific to a domain.

GME is a configurable toolset that facilitates easy creation of domain-specific modeling

environments [13]. The configuration is accomplished through metamodels specifying the

modeling paradigm for the application domain [14]. A paradigm refers to the domain

language that embeds all the constructs for modeling an application within it. It contains

all the information concerning syntax and semantics of the resultant modeling environment.

GME allows to customize modeling paradigms for various application domains. It also

provides inherent support for a handful of paradigms such as UML and MetaGME. UML

defines a graphical user interface to create UML class diagrams. MetaGME is a special

meta modeling paradigm of GME which facilitates the creation of a metamodel, defining a

modeling language for a particular domain. It reflects the meta programmable capability�
I/P2

+ O/PI/P1 C

Fig. 2.1: Example of a factor graph.

9

of GME enabling to generate domain-specific environments that could be used to create

domain models. It is even possible to specify the meta-meta model dictating the syntax

and semantics of a meta model defining a paradigm.

The metamodel provides an impression of UML class diagram representing a hierarchi-

cal structure with a root and several branches. The structure is composed of GME’s basic

building blocks required to specify the design environment. These blocks represent generic

concepts implemented by GME that are abstract enough to be applicable to a wide range of

domains. They include models, atoms, and connections. A model entity in the metamodel

specifies a class data structure that is capable of containing other entities within it. It en-

capsulates all the information about that object’s parents, children, and attributes. On the

contrary, atoms are the fundamental entities of a metamodel contained in a model which

could not be divided further into constituent parts. Connection objects are used to express

relationship between two objects contained in a model. These entities form the structural

basis of the models conforming to the modeling paradigm defined by a metamodel.

The MetaGME interpreter tool of GME facilitates the creation of the modeling paradigm

from a metamodel. It extracts all the syntactic information specified by the metamodel and

embeds it into a configuration file. This file contains multiple API’s to gather model-specific

information. It also allows to define interpreters corresponding to each custom defined mod-

eling paradigm. An interpreter is a user-developed software program that utilizes the API’s

specified by the paradigm to perform structural and semantic analysis of generated models.

It could be dedicated to perform a specific task on the model as per the requirements of the

application. GME supports creation of interpreters in multiple languages including C++,

Visual Basic, Python, etc. [14].

2.2 Literature Review

This section discusses various simulation and yield analysis techniques adopted target-

ing the domain of analog circuit design. It also highlights the significance of factor graphs

as a powerful modeling and analysis tool by describing the wide range of applications to

which it has been applied.

10

2.2.1 Overview of Different Analog Circuit Simulation Techniques

The domain of statistical analysis of yield has captured much attention in the past.

Many techniques have been proposed to perform this analysis which are faster as compared

to the standard Monte Carlo/SPICE simulation techniques.

Variance analysis has emerged as one of the strategies to estimate the effects of ran-

dom device parameter variation on analog integrated circuits [4]. It is particularly effective

when device variations can be accurately modeled as random variables with Gaussian dis-

tributions, and where each such variable is statistically independent. The proposed analysis

involves two steps.

• Linear Variance Calculation- The function of random parameters describing the out-

put is weakly nonlinear, and hence is approximately linearized. In this approximation,

stochastic influences of all random parameters are modeled using a single random vari-

able that randomly deviates from the nominal value of the yield. The random variable

and the yield, both posses a normal distribution.

• Computing the influence of nonlinearities- The second order sensitivity coefficients

account for the nonlinearity of the function of random parameters due to which yield

is no longer normally distributed.

Many analog circuits are weakly nonlinear within their parameter variation range, implying

negligible effects of second order sensitivity coefficients on the output mean and variance.

This has been proved by considering two practical examples of a transconductance amplifier

and analog filter [4]. Taking Monte Carlo simulation as the reference point, the results of

the variance-calculation method match well for both example circuits. Moreover, the linear

approximation results vary only slightly from those obtained with second order sensitivities.

The variance calculation method has proved better than Monte Carlo analysis in terms of

computational efficiency for predicting circuit characteristics with parameter dependencies

with only some small sacrifice in accuracy.

Symbolic analysis is another formal approach developed to evaluate the behavior or a

specific characteristic of linear circuits in which a few or all circuit elements are represented

11

as symbols [7]. Software is used to translate a circuit description into a symbolic expression

modeling the circuit characteristic of interest. This analysis is primarily restricted to linear

circuits. Algebraic (matrix or determinant-based) and graph based methods are two basic

classes of symbolic analysis methods used to analyze the generated symbolic expression. As

the symbolic expression obtained by this method is usually very complicated, it could be

further preprocessed to obtain a less complex and more comprehensible solution which has

only the dominant contributions. Conventionally, graph-based methods have been consid-

ered most suitable for obtaining fully symbolic network functions in the past. The target

application domain of symbolic circuit analysis includes analog integrated circuits. It plays

an important role in the automation process of analog circuit design, as it gives insight into

the behavior and trade offs of analog circuits, and also helps in circuit sizing and testability

analysis. It also bears potential for the development of analog CAD tools. The applications

of symbolic analysis area are as follows:

• Insight into Circuit Behavior- Symbolic simulator generates correct analytic expres-

sions in a much shorter time and for more complex characteristics and circuits which

remain valid even when the numerical parameter values change. It is also useful for

the designers to obtain analytic expressions for second order characteristics. However,

it is limited by the circuit size and the type of analysis.

• Analytic model generation for automated circuit sizing- It can automatically generate

all AC characteristics in the analytic model of a circuit which is then used to size the

circuit in an optimization program.

• Iterative circuit (design space) exploration and topology generation- It is used to

iteratively explore and improve new circuit topologies. Influence of topology changes

do get reflected in the analytic expressions.

• Repetitive formula evaluation- In this case, symbolic expressions for the network func-

tions are only compiled once and then can be evaluated multiple times for particular

values of the circuit and input parameters. Its obvious applications include statistical

12

analysis (Monte Carlo simulations), large-signal sensitivity analysis, yield estimation,

and fault diagnosis of linear and nonlinear analog circuits.

Some of the successful modern simulators include ISAAC, ASAP, SYNAP, SSPICE,

etc. These are targeted towards symbolic analysis of analog integrated circuits with a built-

in small signal linearization and symbolic approximation of the expressions. Unsolved areas

in this field constitute symbolic analysis of large-signal behavior, time domain behavior, and

strongly nonlinear circuits. There also lies potential for the improvement of post processing

capabilities to improve the interpretability of the generated expressions.

There have been efforts to design a simulation-based technique that includes yield as

one of the performance parameters in the optimization process. Ali et al. [6] have proposed

a predictive model to include yield as the cost function in the initial stages of the design

and then use Monte Carlo simulation for its estimation. The two main components of the

synthesis model include Optimizer and Evaluator. The Optimizer finds the best suited

parameters of the circuit that meet all the specifications and provide higher yield. This

circuit specification with all the parameters is fed to the Evaluator which determines the

fitness score and feeds it back to the Optimizer. The algorithm used by the optimizer

to search best possible solution is the global stochastic search algorithm called Genetic

algorithm (GA) technique. In the GA technique, any one of the possible topologies of

an analog circuit that meets specifications is randomly chosen for which a SPICE netlist is

created and desired parameters are generated. These parameters are then parsed to a netlist

and HSPICE simulation is performed on them. The spice result is parsed to the GA and

ranked. The process is stopped when a specified number of generations are reached and the

best solution is chosen according to the rank, otherwise a new generation is created to iterate

the above procedure. This method is slow because Monte Carlo simulations consume a lot

of CPU time. These ideas have been implemented for an operational transconductance

amplifier [6]. The results obtained for this circuit example are compared with the non-

yield predictive approach which showed that the proposed strategy results in higher yield.

However, computational cost is increased in order to achieve greater accuracy. Rodriguez-

13

Macias and Rodriguez-Vazquez [5] have developed a strategy for reducing the time taken to

calculate mean and variance of analog cell specifications in the presence of random variations

in the component parameters. The strategy involves performing AC analysis for analog

circuits. The accuracy of the method is comparable to standard Monte Carlo simulations.

AC analysis is typically preceded by a DC analysis of the circuit in the beginning to obtain

DC operating point for linearizing the device model. Its speed depends on the number of

circuit elements and the number of frequencies to be analyzed. There are two strategies

proposed [5] to reduce this time. The first method reduces the time required to evaluate

specifications at one frequency. The analysis of different circuit configurations requires

solving a system of linear equations for each of those configurations at all the frequencies.

Such calculations are usually very time consuming. The technique of “Increased Principle

Matrix” solves just one system of equations with a bigger range, thus making it faster. The

second strategy called “Grouping of Principal Matrices into Equivalence Classes” groups

principal matrices of the samples obtained from Monte Carlo analysis with similar operating

points into one entity instead of analyzing them separately.

The two approaches discussed above have been implemented in a tool called FASTEST,

and its results have been found to match closely with HSPICE simulations for a large number

of analog cells. The time taken by the tool to evaluate circuit characteristics is much lower

than the surface response method since techniques employed by FASTEST are independent

of the number of parameters undergoing random variations.

A technique to evaluate worst case response of linear analog circuits in the presence of

parameter variation has been suggested by Michael W. Tian and C.-J.Richard Shi [2]. The

authors note that if the yield is monotonic with respect to a particular parameter variation

over the parameter space, worst-case yield analysis considers only the corners of the space

in order to determine upper and lower bounds on circuit response. The main challenge in

this technique is identifying worst-case parameter sets that lead to such a circuit response.

Such algorithms proposed in the past have been categorized into three separate groups;

Monte Carlo simulation, Interval analysis, and Sensitivity-based vertex analysis. Monte

14

Carlo analysis usually underestimates the results and is very time-consuming. Interval

analysis, on the other hand, overestimates the results. Vertex analysis is based on the

assumption that worst case circuit response corresponds to the parameter sets located at

the vertices of the parameter space. General observations indicate that worst case parameter

sets of monotonic parameters are located at their corner values which could be exploited

to reduce the number of uncertain parameters by replacing these parameters with their

corner values. The reduction helps in improving the efficiency of the Monte Carlo analysis.

This paper validates the vertex analysis by proving a theorem which states that “if the

circuit response is monotonic with respect to the changes in any circuit parameter at any

point in the parameter space, then the worst case of the circuit response results from the

parameter space vertices.” Generally in most practical circuits, monotonicity is satisfied

by most uncertain parameters of the circuit, but not all of them. Worst case analysis

of such circuits leads to an uncertainty-reduced circuit simulation instead of a nominal

solution which is close to being accurate. One of the sections of the paper focuses on

calculating a sensitivity band that defines bounds of sensitivity between circuit response

and parameter. It is used to determine the kind of the monotonicity of the circuit. The

worst case tolerance analysis algorithm first calculates the sensitivity band of the circuit

response over all uncertain parameters and then replaces the parameters with their corner

values for each circuit response, depending on the type of monotonicity being satisfied.

These ideas have been implemented in a prototype circuit simulator and a high-sensitive

state variable filter circuit is used to show the results.

Some work has also been done in the development and use of expert systems for auto-

mated analog circuit design. El-Turky and Perry [3] discuss an automated design method-

ology for analog circuits that integrates formal and intuitive knowledge into one program

for the design process. BLADES is a prototype design environment based on this strategy,

and is capable of designing a variety of sub-circuit functional blocks and a limited class

of op-amps. It is based on the expert systems strategy of stored knowledge which can be

either a formal mathematical technique or an intuitive reasoning mechanism applied by

15

human designers. Circuit design knowledge includes both systematic procedures to design

the circuits and special rules to handle special situations. BLADES uses OPS5 production

system to implement this rule base. It is an expert system building tool in LISP that im-

plements the rules in if-then format. If represents the instance of rule application and then

indicates the type of action to be taken. It also undergoes a conflict resolution mechanism

to choose the best applicable rule amongst all those that qualify. There are five main parts

of BLADES system architecture:

• Expert system manager,

• Sub circuit design experts,

• Knowledge base,

• Design consultants,

• Test generation.

The expert system manager is the main design engine of BLADES, which decides

the circuit topology. It determines the specifications for all the sub-circuit blocks into

which the entire system has been partitioned based upon the global specifications given

by the user. Sub circuit experts are responsible for designing each sub circuit block using

design equations and the knowledge base, which is the combination of intuitive and formal

knowledge. Testing is performed to ensure the correctness of the designed circuit in meeting

the input specifications. Design consultants are the circuit simulator programs that aid

BLADES to prove the correctness of the design. ADVICE simulator is used as a major

consultant to BLADES. BLADES uses three different hardware description languages to

communicate knowledge to the system and convey the requirements at each abstraction

level. The authors discuss the case study of an operational amplifier design as a practical

application of expert systems in analog circuit design [3]. BLADES is regarded as the

first successful expert system to design analog circuits. It has strengthened the fact that

artificial intelligence could be used efficiently to apply human reasoning in the design process

of loosely structured domain of circuits.

16

2.2.2 Application Domains of Factor Graphs

Factor graph theory has gained much recognition as a modeling approach in several

areas in the recent past. Signal processing applications such as estimation and detection

problems have extensively exploited the potential of factor graphs. Several algorithms used

in the fields of Artificial Intelligence (AI), Digital Signal Processing (DSP), and commu-

nications like the forward/backward algorithm, Viterbi algorithm, Kalman filter, etc., are

instances of the basic sum-product algorithm [11]. Tabulated forms of computation rules

associated with each building block of the factor graph representation of linear model have

been presented [10,15].

Loeliger et al. [15] discuss a Gaussian message passing approach in the factor graph of

linear models. Message computation rules have been derived for the building blocks of the

linear models that help in designing convenient and less computation-intensive algorithms.

Message passing algorithms on linear Gaussian models can be derived as instances of basic

sum-product algorithm for a variety of problems such as equalization, RLS adaptive filters,

LPC analysis, etc. All the variables in such models are assumed to be Gaussians for which

sum-product algorithm and max-product algorithm coincide. Forney style factor graphs are

used to represent linear state space models in this paper. The approach has been applied

to the problem of equalization of transmitting real symbols over an interfering channel with

white Gaussian noise.

The combination of factor graphs and sum product algorithm has also been applied

to the development of detection algorithms for ISI channels [16]. The technique aims at

determining aposteriori probability distributions of the transmitted symbols in the Inter-

symbol Interference (ISI) channels. It represents an ISI channel with the help of factor

graph and the sum-product algorithm is applied to it to obtain a detection algorithm used

for turbo equalization. The flooding schedule is adopted as the message-passing schedule in

the factor graph where every iteration results in updating and passing new messages from

all the nodes to their neighbors. This schedule is chosen because it is appropriate for the

full parallel implementation of the detectors. The application of sum-product algorithm to

17

an ISI channel is accurate for a cycle-free graph and is independent of the used schedule,

however it produces approximate results for a graph with cycles. Factor graphs describing

channels usually have cycles leading to an iterative detection process and performance of

such algorithms is close to being optimal for the graph of girth 6. The performance of the

proposed technique has been accessed using the values obtained with series BCJR algorithm

as the benchmark for different kinds of channels [16]. BCJR algorithm is a standard ac-

cepted technique to perform maximum aposteriori decoding of error correcting codes. It is

named after its inventors: Bahl, Cocke, Jelinek, and Raviv [17]. The results of the technique

match closely with the exact marginal values obtained by BCJR algorithm. The proposed

algorithms provide a very high-speed detection and their complexity could be reduced more

efficiently as compared to optimal detection schemes. Moreover, combined detection and

decoding is possible with factor graphs due to the inherent parallel structure of sum-product

algorithm unlike the BCJR algorithm.

A technique of parameter estimation in a Gaussian auto-regressive model by message

propagation in a factor graph has been discussed [18]. An auto-regressive (AR) model is a

type of random process that is used to model different types of natural phenomena [19]. It

focuses on the joint estimation of AR parameters, noise variance, and innovation variance

for known observations of the output. Parameters are estimated from the marginals of the

global function obtained by passing messages in the graph. Recursive Least Squares (RLS)

and Cryptographic Message Syntax (CMS) algorithms are shown as the instances of basic

message passing algorithm for estimating AR parameters [18]. The propagation algorithm

works fine with forward-only propagation for zero noise variance and known innovation

variance. However, in the cases of non-zero unknown or known noise variances, messages

have to be propagated back and forth iteratively along the edges of the graph to arrive at

an AR parameter estimate.

The expectation Maximization algorithm has been shown as an instance of the message

passing algorithm [20]. The sum-product algorithm is used to marginalize over the hidden

random variables in the model. EM algorithm estimates unknown parameters in a system

18

by calculating maximum likelihood (ML) parameter estimates. It has been widely applied

to the fields of communication and signal-processing. This paper discusses the technique

of EM algorithm with two example systems, an LDPC code transmitted over a Rayleigh

block fading channel with white noise and block binary source in an LDPC-based slepian-

wolf source encoder. The results of factor graph EM algorithm for these two examples

are compared with a one-stage detector and a detector that assumes memory less Rayleigh

fading and appreciable gain has been observed with the FGEM algorithm.

19

Chapter 3

Leveraging Factor Graphs for Statistical Yield Analysis of

Analog Circuits

The main objective of our technique is to develop an approach, given a linear analog

circuit model, for deriving a factor graph model corresponding to the analog circuit and

applying Gaussian message passing to it to perform yield analysis. An end-to-end tool chain

is implemented to facilitate the translation of the circuit into a factor graph and perform

statistical analysis using parameters specified by the user. The two primary objectives of

this technique are:

• To obtain output signal statistics for known component statistics in an analog circuit;

• To estimate the tolerance limits on statistics of circuit components for a specified

yield.

As with other factor graph analysis approaches, we assume that all statistical parameter

variations are normally distributed and are independent of each other. Our current focus is

the steady state analysis in the presence of circuit parameter variation by simultaneously

evaluating all the circuit instantiations resulting from the fabrication process.

A factor graph consists of well-defined set of building blocks which can be used to model

different physical elements of an analog circuit. There are two major groups of variables

in the factor graph equivalent model of an analog circuit: voltage variables for each node

in the circuit and current variables corresponding to every branch in the circuit contain-

ing a resistor. Kirchhoff’s laws of voltage and current play a guiding role in mapping the

series and parallel combination of circuit elements, particularly resistors, onto their corre-

sponding combination of factor graph blocks. The connections between factor graph blocks

correspond to the topology of the circuit. Gaussian signals with known mean and variance

20

are used to model circuit parameter variations. These messages are propagated along paths

from the input nodes to output nodes of the factor graph. The graph nodes traversed along

these paths represent defined equations which perform transformations on the signals. Fac-

tor graph theory defines equations for both forward and backward propagation of signals

through the interior graph nodes. The established equations of graph theory discussed by

Loeliger in his paper [10] are utilized to develop our analysis technique. These semantics

have been leveraged in our technique for deriving mathematical expressions to quantify the

behavior and performance of analog circuits.

The method proposed in this thesis involves the derivation of a formal representation

of linear analog circuits in terms of factor graphs and applying factor graph theory to carry

out statistical circuit analysis. Analysis is conducted to predict the behavior of a circuit in

the presence of parameter variations. A useful feature of the factor graphs is their ability

to support merged statistical analysis by propagating the messages in both forward and

backward directions in the graph. Forward propagation is the ability to arrive at unknown

output statistics starting with the known input statistics propagated in the appropriate

direction in the graph. Forward propagation of messages along the edges of a factor graph

model of an analog circuit suggests an alternative to the traditional method of determining

the yield as a function of component variation. Conversely, backward propagation carries

information known or imposed on circuit output nodes in the direction opposite to the signal

flow in the circuit, refining the statistics of variables modeling circuit parameters. This

backwards analysis permits the imposition of a yield constraint, in the form of restricted

output variance, on a design in order to determine its impact on the statistics of circuit

parameters. The level of impact provides a measure of parameter sensitivity to yield making

backward propagation a form of sensitivity analysis. This research has provided the ability

to apply the bi-directional nature of factor graph analysis to the determination of parameter

variation’s influence on yield and vice-versa in an analog circuit. Both sets of analysis runs

have been performed to evaluate the tool’s performance in yield calculation by forward

message propagation and unknown parameter estimation by backward message propagation

21

in the graph.

3.1 Correspondence Between Analog Circuit and Factor Graph Domain

Yield estimation of analog circuits using factor graphs is based on the theory that

analog circuit models are strongly analogous to factor graph models for the task of behavior

simulation. In order to accomplish the task of translating an analog circuit into its equivalent

factor graph model, we have defined a set of translation rules for each type of analog circuit

element. The approach is generalized in the sense that every circuit component maps onto

a single or fixed combination of factor graph blocks regardless of the type of the circuit.

The rules for converting different circuit components into factor graph blocks are listed in

the following subsections.

3.1.1 Independent Signal Sources

Ideal input sources of voltage and current in a circuit are represented by the input

nodes of a factor graph and they serve as the starting points of signal flow along the graph.

The Gaussian input signals with known mean and variance are specified by the user in the

circuit model and represent the expected statistics resulting from circuit fabrication. This

information is provided to the factor graph input nodes to act as the starting points for

message propagation.

3.1.2 Resistors

Passive devices such as resistors translate into a fixed combination of two factor graph

blocks connected together in the factor graph model, a coefficient node and an error source

block. A coefficient node models the properties of a resistance in the graph, while an

error source block, which serves as the input to the coefficient node, models the variation

in the fabricated resistance’s value. The variation in the values of a resistance due to

the fabrication techniques is assumed to be linearly distributed. The translation rule for

a resistance is based upon this linear approximation of resistor values in the presence of

parametric variations, neglecting the higher order coefficients. The coefficient node is a

22

two-input node that accepts the input signal to the resistor in the analog circuit domain

and the signal from the error source block as its two inputs. The outcome of the coefficient

node is the scalar product of the two input signals with the resistor value. Mathematically,

the combination of these two factor graph nodes that model a resistor is represented by the

following equation:

Z = X ∗ A ∗ (1 + eps), (3.1)

where X is the input signal to a resistor, Z is the output signal from it, A represents the

resistor value, and eps denotes the error source factoring in the variance associated with

the randomness of the resistance value. The signal initiated from the error source block is

a normally distributed signal with zero mean. Graphically, we capture the resistor and its

equivalent factor graph as depicted in fig. 3.1.

There exists a voltage subgraph and a current subgraph in the factor graph model for

every resistor in the circuit. The two sub graphs have been depicted graphically in fig. 3.2.

They guide the transformation of the signal propagating in the associated branch according

to the electrical laws obeyed by the resistor. The two sub graphs model Ohm’s law and

calculate the voltage drop across the resistor. They are connected by means of an adder

node and this whole combination evaluates the voltage drop across the resistance according

X

Z

R R

є

X Z

Fig. 3.1: Symbol of a resistor and its equivalent factor graph.

23

V

I R1�
+

Fig. 3.2: Voltage and current subgraphs in a factor graph.

to the equation

V = I ∗ R. (3.2)

Here, I denotes the current flowing in the branch with resistance R, and where V is the

input voltage at one of the ends of R. The current subgraph consists of an input current

node I and the combination of coefficient and error source nodes representing the resistor

while the voltage subgraph is either made of an input factor graph node or a combination of

other factor graph nodes representing an input voltage V at one of the ends of the resistance.

3.1.3 Amplifiers

Amplifiers are modeled as a two-terminal device with the ability to specify inputs at

both the positive and negative input terminals. If one of the terminals is grounded, a

junction node with zero voltage is connected as an input to it. Amplifiers map onto a series

combination of an adder and a scalar multiplier node in the factor graph. The amplifier

node and its factor graph equivalent combination are shown in fig. 3.3. The two inputs to

the adder represent voltages at the two terminals of the amplifier. The resulting sum is fed

to the multiplier node connected to the adder. The output signal of this node is the product

of the incoming signal with the specified open-loop gain of the amplifier that is specified

as the gain attribute of the multiplier node. The fundamental amplifier element offered by

the tool represents an ideal op-amp with a very high open-loop gain, however nonideal op

24

Fig. 3.3: Symbol of amplifier and its equivalent factor graph.

amps could also be modeled by the combination of an ideal amplifier and other available

parts.

3.1.4 Dependent Sources

We have also devised rules to translate dependent current and voltage sources into

factor graph blocks. The ability to represent dependent sources in the factor graph domain

allows modeling and analysis of MOSFET circuits using factor graphs. The tool facilitates

the modeling of the following four kinds of dependent sources.

1. Current Dependent Current Source: This is a dependent current source whose output

current is controlled by an independent current source connected across a resistor in

some branch in the circuit. The factor graph equivalent of such a source includes

a scalar multiplier node. The independent current source controlling the dependent

source provides input to the multiplier block that factors in the amplification factor

of the dependent current source into its gain attribute. The output signal yielded by

the scalar multiplier node is the amplified current signal initiated by the dependent

25

current source.

2. Voltage Dependent Current Source: In this case, the current output of the source is

controlled by the voltage between two nodes in the circuit. This type of a dependent

source maps onto the combination of an adder node connected to the scalar multiplier

node in a factor graph. The voltages at the two controlling nodes serve as the inputs

to the adder, the output of which is fed to the multiplier node. Its gain attribute

corresponds to the conductance offered by the voltage dependent current source and

yields the current initiated by it.

3. Current Dependent Voltage Source: This is similar to the current dependent current

source as its output voltage is controlled by an independent current source in the

circuit. It also maps onto the scalar multiplier node in a factor graph whose gain at-

tribute represents the resistance offered by the source and produces an output voltage

corresponding to the dependent voltage source.

4. Voltage Dependent Voltage Source: This source is translated into the combination

of an adder block connected to the scalar multiplier node, similar to the dependent

current source. The adder output represents the controlling voltage while the output

of the multiplier represents the amplified output voltage produced by the dependent

voltage source.

3.1.5 Junctions

Junctions in a circuit could be of two kinds: one that broadcasts the incoming signal

along all available paths in the circuit, and the other that merges the signals from several

branches into one. Both types of junctions are represented by the combination of a variety

of factor graph nodes in the graph with at least one equality constraint node. Figure 3.4

provides two example merge junctions and their corresponding factor graph blocks. An

equality constraint node distributes the incoming signals approximately equally in all di-

rections. Equality nodes allow the distribution of current and voltage signals over multiple

parallel branches or nodes in the circuit. They play an important role in modeling feedback

26

=

=

Vout

Vin

Fig. 3.4: Circuit fragments with merge junction and their corresponding factor graph blocks.

loops in a circuit and the equations associated with them suitably quantify the effects of

feedback. Junctions are critical points in a circuit and exhibit different rules of translation

guided by the application of Kirchhoff’s laws of voltage and current at those nodes to cor-

rectly model the distribution of voltage and current signals across them. In order to be able

to model most of the circuit topologies, we have defined nine different kinds of junction

possibilities and implemented translation rules for them. The different types of junctions

are categorized based on the number of input and output branches coming into and out

of them, respectively. They range from a junction with zero inputs and two outputs to a

junction with two input and two output branches. They have been devised intuitively such

that they can permit the generalization of the translation algorithm, and can be applied to

a variety of different analog circuits.

All related information about the type of analog elements connected at the inputs

and outputs of a junction according to the circuit topology is encapsulated within a data

structure. For every junction encountered in a circuit, an instance of this data structure

is created. Since junctions are typically the points of voltage equivalence in a circuit, the

basic equivalent factor graph structure for the junctions is comprised of an input node

representing the node voltage connected to an equality constraint node. This combination

results from the application of Kirchhoff’s voltage law to the junction. There may or may

not be an input voltage node depending on the type of the junction. This basic structure

may also include a current subgraph containing an adder node with an input current node

and one of the outputs of the equality constraint node as two inputs to the adder, based

27

upon the number of outgoing branches from the junction that contain a resistor. Merging

voltage and current subgraphs facilitates the application of Ohm’s law across a particular

resistor connected to that junction. The equivalent factor graph models for different kinds

of junctions based on the above described theory are listed below.

• Type 0: It is a junction with zero input branches and three output branches. An

example circuit showing junction of this type is shown in fig. 3.5. Its corresponding

factor graph block is shown in fig. 3.6. In case, if one of the output branches of this

junction contains a signal source, its equivalent factor graph combination reduces to

an input factor graph node connected to an equality constraint node as shown in

fig. 3.7. The equivalent factor graph of the example circuit showing junction of Type

4 is shown in fig. 3.8.

• Type 1: It is a junction with zero input edges and one output edge, represented by

an input factor graph node defining the node voltage in the factor graph domain. It

may be connected to the current subgraph by means of an adder incase the outgoing

branch from it contains a resistor. An example circuit showing junction of this type

and its equivalent factor graph are shown in figs. 3.9 and 3.10, respectively.

• Type 2: This type of junction possesses one input edge and zero output edges. It

translates into an equivalent output factor graph node representing that junction’s

voltage in the factor graph domain. An example circuit showing junction of this type

and its equivalent factor graph are shown in figs. 3.11 and 3.12, respectively.

• Type 3: It has two incoming and zero outgoing branches. An example circuit showing

junction of this type and its equivalent factor graph are shown in figs. 3.13 and 3.14,

respectively. It converts into the combination of factor graph blocks shown in fig. 3.15.

• Type 4: It represents a junction with one input and one output edge. It acts as a

channel directly connecting its input and output analog elements and does not require

any conversion in the factor graph domain. However, if the input analog element

connected to it is an independent current source, it transforms into an input factor

28

Fig. 3.5: Example circuit showing junction of Type 0.

V = =

Fig. 3.6: Factor graph equivalent for junction of Type 0.

Fig. 3.7: Factor graph equivalent for junction of Type 0 with one of the output branches
containing a signal source.

Fig. 3.8: Factor graph equivalent for the example circuit shown in fig. 3.5.

29

Fig. 3.9: Example circuit showing junction of Type 1.

Fig. 3.10: Factor graph equivalent for the example circuit shown in fig. 3.9.

Fig. 3.11: Example circuit showing junction of Type 2.

30

Fig. 3.12: Factor graph equivalent for the example circuit shown in fig. 3.11.

Fig. 3.13: Example circuit showing junction of Type 3.

Fig. 3.14: Factor graph equivalent for the example circuit shown in fig. 3.13.

31

Fig. 3.15: Factor graph equivalent for junction of Type 3.

graph node to represent the junction voltage. Also, in case this junction represents the

output node of a circuit, it is modeled by an output factor graph node representing that

junction’s voltage. An example circuit showing junction of Type 4 and its equivalent

factor graph are shown in figs. 3.16 and 3.17, respectively.

• Type 5: This type corresponds to a junction with two inputs and one output. An

example circuit showing junction of this type and its equivalent factor graph are as

shown in figs. 3.18 and 3.19, respectively. Its equivalent factor graph block combina-

tion is shown in fig. 3.20.

• Type 6: It possesses one input and two output edges. An example circuit showing

junctions of this type and its equivalent factor graph model are shown in figs. 3.21

and 3.22, respectively. Figure 3.23 depicts its corresponding factor graph model.

• Type 7: It is a junction with zero inputs and two outputs. An example circuit showing

junction of this type and its equivalent factor graph are shown in figs. 3.24 and 3.25,

respectively. It transforms into the factor graph block combination shown in fig. 3.26.

Fig. 3.16: Example circuit showing junction of Type 4.

32

Fig. 3.17: Factor graph equivalent for the example circuit shown in fig. 3.16.

Fig. 3.18: Example circuit showing junction of Type 5.

Fig. 3.19: Factor graph equivalent for the example circuit shown in fig. 3.18.

33

Fig. 3.20: Factor graph equivalent for junction of Type 5.

Fig. 3.21: Example circuit showing junction of Type 6.

Fig. 3.22: Factor graph equivalent for the example circuit shown in fig. 3.21.

Fig. 3.23: Factor graph equivalent for junction of Type 6.

34

Fig. 3.24: Example circuit showing junction of Type 7.

Fig. 3.25: Factor graph equivalent for the example circuit shown in fig. 3.24.

Incase, if one of the output branches contain a signal source, its equivalent factor graph

model consists of an input factor graph node representing that junction’s voltage.

• Type 8: This type of junction has two input edges and two output edges. An example

circuit showing junction of this type and its equivalent factor graph are shown in

figs. 3.27 and 3.28, respectively. Its equivalent factor graph model has been depicted

in fig. 3.29.

All the rules discussed above convert the model of a physical circuit into a mathematical

signal flow graph that incorporates all the basic electrical laws obeyed by the circuit in its

structure. The factor graph technique shifts the circuit analysis domain from physical to

mathematical while appropriately preserving the circuit’s behavior. An example of a linear

resistive circuit and its equivalent factor graph model are shown in figs. 3.30 and 3.31,

respectively.

35

Fig. 3.26: Factor graph equivalent for junction of Type 7.

Fig. 3.27: Example circuit showing junction of Type 8.

Fig. 3.28: Factor graph equivalent for the example circuit shown in fig. 3.27.

36

Fig. 3.29: Factor graph equivalent for junction of Type 8.

Fig. 3.30: Example of a resistive circuit.

Fig. 3.31: Equivalent factor graph of resistive network shown in fig. 3.30.

37

3.2 Tool Flow

In this project, we have developed a tool prototype for implementing factor graph-

based analysis of linear analog circuits based on the theory discussed in sec. 3.1. Given an

analog circuit model, the tool chain facilitates the conversion of a circuit into an equivalent

factor graph model and subsequent simulation to arrive at yield and parameter estimates.

Figure 3.32 captures the basic structure of the tool.

The different steps involved in the tool chain are as follows.

• Firstly, the user creates analog circuit models in a design environment developed using

a domain-specific modeling tool, Generic Modeling Environment (GME) discussed in

Chapter 1. The metamodel configuring GME for drawing analog circuit models in the

tool is designed using its Meta GME paradigm. It enforces the syntax dictating the

circuit nodes and connections in the modeling environment.

• The next step in the chain involves running Monte Carlo simulations on the circuit

model being analyzed. It is targeted towards generating thousands of circuit in-

stantiations taking into account all statistical parameter variations and then running

PSPICE simulations on all of them to evaluate the statistics of the circuit’s output.

• The circuit model is simultaneously fed to another interpreter that interprets the

circuit topology to generate a PSPICE input file and then runs SPICE simulator on it

to evaluate initial current and voltage statistics along all the branches and the nodes

in the circuit.

• The values obtained from the SPICE simulator are utilized by the next interpreter

in the chain, which is responsible for translating the analog circuit model into its

equivalent factor graph model. The translator interpreter is developed in C++ and

contains all the previously discussed translation rules for different circuit elements

coded in it. It accepts an analog circuit model as an input and generates corresponding

factor graph output.

38

Analog
Circuit
Model

Translator
Interpreter

Factor
Graph
Model

Tool Simulation
Results

Configures
GME

Configures
GME

Factor Graph
Simulation File

Initial Values
of Current and

Voltage

Monte
Carlo

Simulator

Standard Results

Type 1 Type
2

Base Class

1

SPICE
Simulator

Factor
Graph

Interpreter

Factor Graph
Simulator

Type 1
Type

2

Base Class

1

Analog
Circuit

MetaModel

Factor
Graph

MetaModel

+
-

+
-

Vin * Vout

Fig. 3.32: Tool flow for the project.

39

• The factor graph model obtained from the translator interpreter is then fed as an

input to the factor graph interpreter, which interprets the input factor graph model

in order to realize the type of circuit nodes and their topology. It generates a log file

at the output that contains all the factor graph information. The language used to

develop this interpreter is C++.

• The final step in the tool flow involves executing the log file containing the factor graph

information. A C++ based program for realizing the associated mathematics behind

the factor graph is developed as a part of the tool chain. This program executes the

various equations implementing the basic factor graph nodes, and passes messages as

appropriate for the analysis. The result is a log file again providing the computed

means and variances for each factor graph node.

The simulation results obtained at the end of the tool chain are compared against the

standard results obtained from the Monte Carlo simulator to evaluate the accuracy of the

tool.

Having been acquainted with the factor graph theory and tool structure so far, we

proceed with a discussion of the design strategies for the analog circuit and factor graphs

and the algorithms employed by the interpreters. Section 3.3 discusses these details and

explains the way the tool structure has been implemented.

3.3 Tool Structure in Detail

Each of the five steps involved in the tool chain are discussed in more detail in this

section.

3.3.1 Design Environment to Model Analog Circuits

The first step in the tool chain involves drawing an analog circuit model and embedding

input signal values and parameters in the model such that the circuit specifications are

completely captured. The design environment to model analog circuits is developed using

40

GME by utilizing its meta modeling capability. Figure 3.33 shows the top-level model of

the paradigm for analog circuits.

The metamodel for analog circuits contains a model, named Container, which repre-

sents the container for an analog circuit design. Two model entities inherit from Container:

Hierarchy and Analog Circuit. Analog Circuit contains all the circuit elements and their

interconnections. The Hierarchy model is used to facilitate the partitioning of a design

into subgraphs, where each subgraph is represented on its own sheet in the diagram. It

facilitates better visualization of a large circuit and avoids clutter by dividing its different

subcircuits into partitions. Each subcircuit could be further partitioned into even smaller

sub subcircuits as per the size of the model. The containment relationship of the hierarchy

entity within the container enforces the rule that a partition could be contained in both the

inherited models of the container: Hierarchy and Analog Circuit. Having set the rules for

laying out a circuit in the model, the containment relationship of analog-element within the

container provides the ability to contain an analog element in a partition (or subcircuit)

or an analog circuit in the model. Attributes define the properties of the objects. Users

specify their values at modeling time. The four attributes of an analog element include

MeansOfMixture, DensitiesOfMixture, WeightsOfMixture, and VariancesOfMixture. The

values of these attributes are specified by the user to represent the Gaussian signal asso-

ciated with that element. The connections between different circuit elements are modeled

by the connection objects contained in the container that simulate wires in the physical

circuit. Connectors are the ports residing in an analog element that facilitate the connec-

tion between two elements through them. Sign Neg is an attribute of the connector that

can be set by the user to either a true or false value so as to specify the polarity of the

signal value associated with that connection. Sign Neg is particularly relevant to an analog

element type such as an amplifier to differentiate between its negative and positive input

terminals.

To facilitate connections between two analog elements contained in different partitions,

reference to an element can be created into another element’s partition and connection

41

between these two can be established. A reference is a copy of the element without any

reallocation of memory space to it. In the metamodel, Element Ref is a reference to the

analog element that could be contained within the container. Different types of analog

circuit elements inherit from the base class of Analog Element. These include all kinds of

analog and digital circuit components required to build analog and mixed signal circuits.

Owing to the inheritance relationship, the types share properties of the analog-element

in common and also posses their own additional attributes. The abstract attribute of

Analog Element class is set to true in the metamodel making it invisible in the modeling

environment. Only the inherited types are available to the user in the design catalog to

build circuits. Figures 3.34, 3.35, 3.36, and 3.37 depict the various inherited types of circuit

elements in the metamodel.

ANALOG COMPONENTS

1. Independent Sources: Active devices such as independent current and voltage sources

can be modeled using objects called IndepCurrentSource and IndepVoltageSource. They

possess an attribute named SignalSource which could be specified as true by the user de-

pending on whether a source acts as a starting input to the circuit.

2. Amplifier: Amplifier is used to model a two input terminal amplifier with a gain

attribute to specify the open loop gain of the amplifier.

Figure 3.34 shows these two kinds of analog circuit components in the metamodel.

3. Junction: Junction object represents a node or a junction in an analog circuit. Its

CommonGround attribute indicates whether the junction represents ground voltage and

the IsOutputnode attribute indicates whether the output of the circuit is desired to be ob-

tained at that junction. Both these values are specified by the user in the model according to

the circuit requirement. Its other attributes such as RequiredOutputMeans, RequiredOut-

putVariances, RequiredOutputWeights, and RequiredOutputDensities correspond to the

Gaussian signal that represents the desired yield required to initiate backward propagation

from that junction, in case it is chosen to be an output node. These values are supplied by

the user in order to calculate a parameter estimate starting with the required yield as input.

42

Fig. 3.33: Metamodel for an analog circuit in GME showing the root of the structure and
its inherited components.

Fig. 3.34: Metamodel for analog circuits depicting different kinds of analog circuit compo-
nents such as amplifier and independent signal sources.

43

NodeId and VoltageValue correspond to the attributes that are automatically set by the

interpreter during the translation process. NodeId represents a unique ID associated with

each junction in the network and is utilized by the translator interpreter later while the

voltage value specifies the voltage associated with that junction. This value is read by the

translator interpreter from the SPICE output file obtained by running SPICE simulation

on the circuit model. Figure 3.35 shows the junction metamodel.

4. Resistor: The Resistor class is used to model a resistance in the circuit. A resistor

maps onto the combination of a coefficient block and an error source node in the factor

graph domain. The attribute named Resistance Value represents the value of the resistor.

The user could specify the error tolerance in the value of a resistor as a Gaussian distri-

bution through RFMean, RFVariance, and RFWeight attributes of the resistor. Its other

attributes, that include NodeId, CurrentSourceMean, CurrentSourceVariance, and Cur-

rentSourceWeight are automatically set to appropriate values in the translation process and

need not be specified by the user. The values of CurrentSourceMean, CurrentSourceVari-

ance, and CurrentSourceWeight, corresponding to the Gaussian current signal propagating

in the branch containing that resistor, are obtained from the SPICE output file. These

values are then communicated to the resulting factor graph by the translator interpreter.

Figure 3.36 shows the resistor metamodel.

5. Dependent Sources: The classes named DependentCurrSource and DependentVolt-

Source in the metamodel represent the four types of dependent sources discussed in sec. 3.1.

Both these objects have an attribute termed TypeofDependency, which can be set to volt-

age or current based on the requirement to model voltage-dependent or current-dependent

sources. The Transconductance, Transresistance, and Factor attributes of these sources

allow the user to specify the dependency factor based on the type of dependency. The

dependent sources contain references to the objects: Junction and Resistor, named Junc-

tionRef and ResRef. This allows the user to specify the two junctions whose difference of

voltages determines the output signal values obtained from the voltage dependent sources

by including the references to the junctions within the sources. It also enables specification

44

of the current signal which determines the output values of current dependent sources by

using reference to a resistor object that carries the desired current through it. These are

depicted in figs. 3.35 and 3.36.

DIGITAL COMPONENTS

These include Comparators, Multiplexors, and Switches. There has not been much

exploration in the analysis of digital and mixed signal circuits with this tool and so this

area possesses a lot of potential for research and extensibility. Figure 3.37 shows different

kinds of digital circuit components included in the analog circuit metamodel.

The metamodel discussed above can be further extended to include more circuit com-

ponents and add more attributes to the existing ones to be able to widen the scope of the

tool for modeling varied kinds of circuits. Two examples illustrating the circuit models

designed using the tool are shown in figs. 3.38 and 3.39.

3.3.2 Modeling Paradigm to Design Factor Graphs

The factor graph equivalent of an input circuit model is generated as a result of the

translation process in the tool chain and is abstracted away from the user. This process

conforms to the rules defined in its metamodel. The metamodel for a factor graph is shown

in parts in figs. 3.40, 3.41, and 3.42. It defines all the components of the factor graph

domain in a hierarchical structure with the Parent object at the root of the hierarchy. This

is analogous to the Container object in an analog circuit that serves as the base for de-

signing graphs. The objects named Graph and Partition are inherited from the Parent to

define different levels of hierarchy in the factor graph. A Graph object represents the lay-

out containing all the graph nodes and the connections on it, similar to an Analog Circuit

object. The Partition corresponds to a Hierarchy object in the analog circuit metamodel

that allows one to decompose the graph into different layers to avoid visual clutter. The

Node object contained within a Parent is used to model different types of factor graph

nodes. Its attributes include Means Messages, Variances Messages, Weights Messages, and

Weights Densities that represent the Gaussian signal associated with that node. These

45

Fig. 3.35: Metamodel for analog circuits showing dependent sources and junction.

46

Fig. 3.36: Metamodel for analog circuits depicting dependent sources and resistor.

Fig. 3.37: Metamodel for analog circuits showing digital components available in the design
environment.

47

Con

Vsig

Con Con

J1

Con Con

R2

Con Con

R1

Con

Vout

Con Con

J3

Con Con

J2

Fig. 3.38: Example of a linear analog circuit model drawn in GME.

Con
Con

Con

J2

Con
Con

Con

J4

Con Con

Vin

Con Con

DependentVoltSource

Con
Con

J5

Con Con

R1

Con
Con

J1

Con Con

R2Con
Con

J3

Fig. 3.39: Analog circuit model drawn in GME containing a dependent voltage source.

48

values are populated in the factor graph model by the translator interpreter from the cor-

responding attributes of the analog circuit element in the circuit model. Seven different

kinds of factor graph nodes inherit from the Node object, each of which bears relationship

with an element in the analog circuit domain. The abstract attribute of the Node object

is set to true to make it unavailable and have only the inherited types appear in the factor

graph design environment. The Noderef is a reference object referring to a Node in the

graph that could be contained in a Parent. It enables the connections between two nodes

existing at two different levels of hierarchy. The connections between different node ob-

jects are provided by the Edges contained in the Parent. The Edges connect to the Ports

contained within the Nodes. The Ports map onto the Connector objects in a circuit while

Edges correspond to the Connections in an analog circuit. Negate is an attribute of ports

that defines the polarity of the signal associated with that Connection and depends upon

the user specified value for the Sign Neg attribute of the Connectors in the circuit model.

The different types of factor graph blocks are described below.

1. Input Output: The Input Output block represents either an input or an output

entity of a circuit and typically models all the voltage and current (signal) sources in the

circuit model. It acts as the starting point for the Gaussian message propagation along the

edges of the graph. Its Type attribute indicates the type of the source to be either voltage

or current.

2. Multiplier: This node is a one input block that defines equations to perform mul-

tiplication of the Gaussian signal fed to it as input. It possesses two attributes termed

MultiplierType and Coefficient. The Coefficient represents the multiplication factor while

MultiplierType is an enumerated list with Scalar, Vector, and Matrix as its three members

defining the three different types of the multiplier nodes. In case of a scalar multiplier,

the Coefficient is a scalar value, for the vector multiplier it is a vector and the Coefficient

is a matrix for the matrix multiplier. A scalar multiplier is used to model the amplifier

component of the analog circuit with its Scalar Coefficient representing the gain factor of

the amplifier.

49

3. Equality Constraint: This node allows for the distribution of Gaussian signals almost

equally along different branches in the graph. It could have either one or two inputs and is

typically used to model junctions in an analog circuit.

Figure 3.41 shows these three kinds of factor graph nodes in the metamodel.

4. Coefficient and Error Source: The combination of these two nodes represents a

Resistor in the factor graph modeling the parametric variations in the resistance value. The

Factor attribute of the Coefficient node corresponds to the resistance value specified by the

user in the circuit model.

5. Adder: It is a two input node and defines equations for the addition or subtraction

of its input Gaussian signals depending on the attributes of the ports specified by the user.

It is typically used as a part of the combination that models Ohm’s law obeyed by a resistor

in the circuit and binds the voltage and current subgraphs together.

6. Bit Probability Estimator: This node forms a part of the graph corresponding to

a mixed signal circuit model. It defines equations to obtain the probability of the input

analog Gaussian signal of representing either bit 0 or bit 1 in the digital domain. It is

responsible for converting an analog signal in a particular range to a binary bit.

Coefficient, Error Source, Adder, and Bit Probability Estimator nodes are depicted in

fig. 3.42.

There exist well-defined equations for each of these nodes that guide the forward and

backward Gaussian message propagation through them. They are borrowed from Loeliger’s

work [10] except for the coefficient and error source blocks. The equations for these two

blocks have been devised intuitively based on the mathematics involved in the propagation

of a current signal through a resistor. All these equations are compiled in Appendix A.

3.3.3 SPICE Simulator

The SPICE Simulator is the first interpreter in the tool chain that employs a SPICE

simulation on the user-specified circuit model to ascertain initial mean values for voltages

and currents for each junction and resistor in the circuit. It interprets the input circuit

model to resolve its elements and connections and generates a PSPICE input script file

50

Fig. 3.40: Metamodel for a factor graph showing the root of the structure and its inherited
elements.

Fig. 3.41: Metamodel for a factor graph depicting different types of factor graphs.

51

Fig. 3.42: Metamodel for a factor graph showing different types of factor graphs.

describing the circuit topology. The rules for generating a PSPICE script file in the correct

executable format have been derived from few textbooks and websites on PSPICE [21–24].

The interpreter then executes PSPICE simulator with the generated SPICE file as an input

to obtain a SPICE output file listing the values of current and voltage across each resistor

and node in the circuit. This algorithm is repeated several times to generate multiple

instantiations of the SPICE output file for the same circuit, taking into account parametric

variations. The interpreter finally gathers statistics from all the output files to derive initial

values for the mean and variance of the current and voltage signals at different points in

the circuit. These values are then propagated to the voltage and current attributes of the

resistor and junction objects in the model to be utilized by the translator interpreter later

in the tool chain. The SPICE simulator is particularly useful to determine the initial values

of current signals across each resistor in the circuit.

3.3.4 Translator Interpreter to Obtain a Factor Graph from an Analog Circuit

Model

The next step in the tool chain involves transformation of the circuit model into its

equivalent factor graph, conforming to the translation rules discussed in sec. 3.1. This task

52

is accomplished in software through a translator interpreter program. The program accepts

an analog circuit model as an input and applies a translation algorithm to it to obtain a

corresponding factor graph output. It reflects the basic class structure represented by the

metamodel and utilizes the API’s associated with GME objects to gather information about

the model. The translator interpreter is developed in C++ to utilize its STL library of data

structures to organize a collection of similar objects in the model into discrete sets.

The interpreter starts by resolving the hierarchical structure of the circuit model to

collect the set of all the analog circuits in the root folder that exist at the root of the

hierarchy. It then creates an empty factor graph for each of the circuits in the factor

graph model. It also gathers all the levels of hierarchy in each of the circuits together and

creates partition objects in the corresponding factor graph. In order to keep a record of the

containers in both, the analog circuit and the factor graph domain, the interpreter maintains

a map to insert a pair of analog circuit container objects and their analogous factor graph

parent objects. It then visits each container in the analog circuit individually and collects all

types of analog circuit elements and edges (or connection objects) contained in it into two

separate lists. The list of circuit elements is parsed to create equivalent factor graph blocks

for each of them conforming to the rules of translation discussed before. The factor graph

objects are created in the parent object of the graph which is obtained from the map, using

a container object as a key that contains the analog circuit element analogous to that factor

graph object. The interpreter maintains another map to insert a pair of analog elements

and a list containing their corresponding factor graph block combinations in it. For every

analog circuit element, an entry is made in the map. There are functions defined to specify

the name, mean, variance, weight, and density attributes of the Gaussian signal associated

with the generated factor graph node. This information is gathered from the attributes of

analog circuit element objects and propagated to the corresponding attributes of its factor

graph nodes. It also collects all the references in the circuit at each level of hierarchy and

derives the analog element being referred to by that reference in the circuit. It then obtains

the corresponding factor graph block for that element from the map and creates its reference

53

in the factor graph model. The interpreter processes all circuit elements in the model except

junctions at this point and keeps a record of all the junctions in a separate list. Once all

the circuit elements are processed, it revisits the list of junctions and creates nodes for each

of them. It first sets the type for each junction by exploring its input and output edges and

then creates an object of type “junctionnode structure” to encapsulate all the information

about the junction’s input and output elements within it. The data structure also possesses

a few flags as its members to indicate if a junction is common ground or desired to be an

output node. There is a map that contains a pair of junction objects and their junctionnode

data structures for every junction within it. This is useful later when creating connections

to obtain the corresponding junctionnode structure from the map for a particular junction

object.

After creating factor graph blocks for all circuit components in their respective con-

tainers, the interpreter sets out to establish connections between these blocks according to

the circuit topology. In order to perform this task, it parses the connections in the circuit

and for each connection object, input, and output elements connected to it are determined.

For these elements, it derives the equivalent factor graph blocks from the map and connects

the two in the resulting factor graph by creating an object of class edges in the graph. The

objects named “Ports” are analogous to the connectors in the analog circuit and created

within factor graph blocks to facilitate the connections between them.

3.3.5 Factor Graph Interpreter to Organize the Information of the Graph in

a Log File

When the translator interpreter generates the factor graph, the factor graph interpreter

is run as the next step in the tool chain. It is responsible for resolving the hierarchical struc-

ture of the factor graph model and dumping it into a log file. It adopts a top-down approach

to decompose the graph into its individual elements, similar to the translator interpreter.

To begin with, the factor graph interpreter obtains the set of factor graph objects contained

in the root folder and then proceeds to gather all the constituent components of each of the

graphs. It organizes all the factor graph nodes and partition objects in the graph into two

54

separate sets. It then parses the list of partition objects and adds the factor graph nodes

in each partition to the existing set. After organizing all the nodes of the graph present

at each level of hierarchy, it creates an instance of class structure, named “element,” for

each of them to bind together all the information related to a node . The members of this

class structure include: name of the node, its type among seven inherited types discussed

in the factor graph metamodel and variables storing the values of mean, variance, weight,

and density attributes of the factor graph node. The element class also includes a member

function that resolves the input and output edges of a node into two lists that form a part

of its data members. An element object is created for every factor graph node in the graph.

The interpreter then collects all the edges in the graph and creates edge objects for each of

them. After decomposing the entire graph into its individual components, the interpreter

resolves the topology of the graph to determine the order in which the graph components

are connected so as to arrive at the output node starting with the input. It keeps track

of this generated schedule by storing all the nodes in an ordered list. The last task of the

interpreter involves generating a log file and dumping all the information gathered from the

graph into it. The result of the factor graph interpreter is a C++ based program to realize

the associated mathematics behind the factor graph. This file is executed in the last step

of the tool chain to perform all the forward and backward message calculations for each

component of the graph. The structure of the C++ log file includes array declarations of

type float assigned to the values of mean, variance, weight, and density attributes of each

node in the graph. The array declarations allow specifying multiple Gaussian signals to

form a Gaussian mixture associated with one node. It also comprises of object definitions

of different class types representing each node in the graph and appropriately assigns the

values of node attributes to the corresponding data members of the objects. Finally, func-

tions evaluating the statistics of the signals propagating through the graph nodes are called

for each node in the order determined by the schedule. An example of this file for a circuit

of an inverting amplifier is shown in Appendix B.

55

3.3.6 Final Simulation to Obtain Yield and Parameter Estimates

An entirely separate C++ project is responsible for executing the program to simulate

the factor graph and arrive at the desired results. All the mathematics required to evaluate

signals propagating through the graph is embedded within functions of the classes defined

for every node in the graph. Each class corresponds to an inherited node type in the factor

graph metamodel and inherits from a base class named component. They share in common

the properties of the component class such as floats indicating mean, variance, weight, and

density attributes of the nodes. The other data members include eight message pointer

vectors pointing to the sets of incoming and outgoing edges from a node. The vectors

define message propagation in both directions, forward, and backward. There are separate

vectors to represent messages at the current and next time steps of the simulation. A

message constitutes a class type to encapsulate floats representing mean, variance, weight,

and density attributes of the nodes to be able to specify a Gaussian signal completely. The

classes define member functions to evaluate the mathematical equations associated with

each factor graph node discussed by Loeliger in his paper [10]. These functions allow

message calculation for forward and backward propagation in the graph. The factor graph

simulation algorithm is an iterative scheme employed to arrive at statistics associated with

each node in the graph. During every iteration of the process, forward and backward

message propagation functions are called for every node and new values are assigned to the

next time steps’ message vectors based upon the values of the vectors at current time step.

Once all the nodes are processed, an “UpdateTimeStep” function is called that swaps the

values of the message vectors at current and next time steps and evaluates the difference

between these two sets of values. The process is terminated if the difference lies within a

specified tolerance limit otherwise iterations ensue. The result of the simulator program is

a log file providing the computed means and variances for each factor graph node, which

consists of the results from the tool for yield and parameter estimates.

3.4 Monte Carlo Simulator

There is another interpreter involved in the technique which is completely separate

56

from the tool chain and produces Monte Carlo simulations of the circuit being analyzed. It

accepts an analog circuit model as an input and generates thousands of circuit instantiations,

taking into account all statistical parameter variations. It then runs PSPICE simulations for

all of them to evaluate statistics of the circuit’s output. These results are used as reference

to evaluate the accuracy of the tool.

57

Chapter 4

Simulation Results Obtained by the Tool

This chapter presents the results obtained from the application of the tool to a few

analog circuit models, showing its efficiency in performing the desired analysis. In order

to validate the factor graph-based simulation results for the chosen circuits, corresponding

results obtained from the Monte Carlo technique are taken as a reference. The accuracy

and sensitivity of the analysis is examined with respect to changes in parameter values

and input parameter statistics. The analysis results are plotted in MATLAB to quantify

the comparison. These plots indicate that the tool’s results approximately match with

Monte Carlo simulations. Time efficiency of this method is compared by observing the

execution time. The tool evaluates all the circuits that could result from the fabrication

process simultaneously, while the Monte Carlo technique collects statistics for each circuit

instantiation separately in thousands of simulation runs. The parallel processing of multiple

circuits by the tool reduces the computation time by multiple orders of magnitude. The time

measurements depicted in sec. 4.2 clearly indicate that an execution run of the entire tool

chain requires few seconds as opposed to several minutes taken by Monte Carlo technique

to arrive at yield and parameter estimates of a circuit. The tool thus appreciably surpasses

Monte Carlo simulation on the grounds of total CPU time utilized.

4.1 Accuracy Results

Multiple simulation/analysis runs have been conducted with the tool to compare the

results against Monte Carlo simulations for four different kinds of analog circuits. They

include inverting and non-inverting configurations of an amplifier, an instrumentation am-

plifier and the small signal equivalent model of a MOSFET. All of these circuits were

modeled with the available blocks in the design environment of analog circuits. These cir-

58

cuits follow from the definitions given in the textbook of microelectronics [25]. This section

thoroughly discusses the plots obtained for all of the circuits mentioned above by applying

the tool and Monte Carlo simulation.

4.1.1 Inverting and Non-Inverting Configurations of an Amplifier

The circuit diagrams of the two amplifier circuits are shown in figs. 4.1 and 4.2. In both

of these circuits, the values of resistors R1 and R2 are varied in turn for all the statistical

calculations performed by the tool. Two sets of analysis are conducted in the experiments:

forward runs aimed at calculating output statistics for a specified set of inputs by varying

parameters of resistances, and backward runs targeted at predicting unknown parameter

values for a known yield constraint. The inherent variations in the resistance values owing

to the fabrication process are accounted for by associating a Gaussian signal with each

resistor and varying its variance over a specified range, centered around a zero mean. The

parameter values of the resistors R1 and R2 are statistically varied over the range of 0.1

to 1e-10 for all the experiments performed. The values of the resistors chosen for the set

of plots showing results obtained by varying the variance of resistor R1 are as shown in

table 4.1. Table 4.2 lists the values of the two resistances that yield the results obtained by

the parametric variations in the feedback resistor R2 over the specified range. The values

of the resistors are chosen in such a way that in both the cases, the closed-loop gain of the

inverting amplifier circuit is -10 and that of the non-inverting amplifier is 11. The open-loop

gain of both the amplifiers for all calculations is set at 100K. The plots show the values of

output statistics and parameter estimates as a function of the variance of resistors R1 and

R2. The results obtained from the experiments have been a good measure of the accuracy

of the tool in calculating the unknown yield and parameter estimates.

1. Experimental Results for Forward Propagation to Calculate the Yield: In order to

Table 4.1: Values of resistors chosen for the set of experiments performed by varying R1.
Resistor Value

R1 1K

R2 10K

59

Fig. 4.1: Circuit diagram of an inverting amplifier.

Fig. 4.2: Circuit diagram of a non-inverting amplifier.

Table 4.2: Values of resistors chosen for the set of experiments performed by varying R2.
Resistor Value

R1 100ohm

R2 1K

60

set up a formal mode of comparison, a statistical analysis of the yield is conducted using

both the factor graph technique and the Monte Carlo simulation, by varying the value of

the variance applied to the resistors R1 and R2 in each of the two circuits. Each technique

results in a specific computed mean and variance of the output voltage. The values of

output statistics are plotted against the variation in the parameters of resistances R1 and

R2 for both the techniques. Figures. 4.3 and 4.4 show the plots of mean and variance of

the Gaussian output signal, Vout, against statistical variations in resistance R1 obtained by

each technique for both the circuits. For this set of experiments, the variance of feedback

resistor R2 is fixed at a value of 1e-4. The plots in figs. 4.3 and 4.4 indicate the accuracy

of the tool with respect to the Monte Carlo simulation.

Figures 4.5 and 4.6 depict the mean and variance values of the output signal obtained

by varying R2’s variance over the specified range for a fixed variance of R1. The close

correspondence between the tool and the Monte Carlo results shown in these two plots

reiterates the accuracy of the tool.

The relative error between the results of the two techniques further clarifies the com-

parison. The error is calculated as the difference between the means and the variances of

the output obtained by both the techniques taking Monte Carlo simulation results as the

points of reference. Figures 4.7 and 4.8 plot this relative error in output against statistical

variations in resistors R1 and R2 over the specified range of 0.1 to 1e-10. These plots are

plotted on a 3-D surface and depict the trend in output error with respect to variations

in the parameters of both the resistors. The error curves for the output mean in figs. 4.7

and 4.8 do not exhibit a defined trend; however, the error values are quite negligible in this

case and have no impact on the tool’s accuracy. The variance curves in these figures indicate

that considering a single contour of the 3-D plot with a fixed variance of resistor R2, the

error in the variance of the output increases with the decreasing variance of resistance R1

over the range of values from 0.1 to 1e-10. Likewise, the contour in the other direction that

is obtained for a fixed variance of R1 with R2 being varied over the entire range exhibits

a non-decreasing monotonicity in the output variance error with respect to variations in

61

−25 −20 −15 −10 −5 0
−520

−500

−480

−460

−440

−420
M

ea
n

of
 V

ou
t

ln(Variance of Resistance R1)

Inverting Amplifier

−25 −20 −15 −10 −5 0
0

200

400

600

800

1000

V
ar

ia
nc

e
of

 V
ou

t

ln(Variance of Resistance R1)

Mean of Vout obtained with Monte Carlo Simulation
Mean of Vout obtained with Tool Simulation

Variance of Vout obtained with Monte Carlo Simulation
Variance of Vout obtained with Tool Simulation

Fig. 4.3: Plot of Vout vs statistical variations in R1 for an inverting amplifier.

−25 −20 −15 −10 −5 0
420

440

460

480

500

520

M
ea

n
of

 V
ou

t

ln(Variance of Resistance R1)

Non Inverting Amplifier

−25 −20 −15 −10 −5 0
0

200

400

600

800

1000

ln(Variance of Resistance R1)

V
ar

ia
nc

e
of

 V
ou

t

Mean of Vout obtained with Monte Carlo Simulation
Mean of Vout obtained with Tool Simulation

Variance of Vout obtained with Monte Carlo Simulation
Variance of Vout obtained with Tool Simulation

Fig. 4.4: Plot of Vout vs statistical variations in R1 for a non-inverting amplifier.

62

−25 −20 −15 −10 −5 0
−60

−55

−50

−45

ln(Variance of Resistance R2)

M
ea

n
of

 V
ou

t

Inverting Amplifier

−25 −20 −15 −10 −5 0
−5

0

5

10

ln
(V

ar
ia

nc
e

of
 V

ou
t)

ln(Variance of Resistance R2)

Mean of Vout obtained with Monte Carlo Simulation
Mean of Vout obtained with Tool Simulation

Natural log of Variance of Vout obtained with Monte Carlo Simulation
Natural log of Variance of Vout obtained with Tool Simulation

Fig. 4.5: Plot of Vout vs statistical variations in R2 for an inverting amplifier.

−25 −20 −15 −10 −5 0
54

56

58

60

62

64

ln(Variance of resistance R2)

M
ea

n
of

 V
ou

t

Non Inverting Amplifier

−25 −20 −15 −10 −5 0
−5

0

5

10

ln(Variance of resistance R2)

ln
(V

ar
ia

nc
e

of
 V

ou
t)

Mean of Vout obtained with Monte Carlo Simulation
Mean of Vout obtained with Tool Simulation

Natural log of Variance of Vout obtained with Monte Carlo Simulation
Natural log of Variance of Vout obtained with Tool Simulation

Fig. 4.6: Plot of Vout vs statistical variations in R2 for non-inverting amplifier.

63

-25 -20 -15 -10 -5 0

-25-20-15-10-50
0

0.1

0.2

ln(Variance of Resistor R1)

Inverting Amplifier

ln(Variance of Feedback Resistor R2)

R
el

at
iv

e
E

rr
or

 in
 M

ea
n

of
 V

ou
t

-25 -20 -15 -10 -5 0

-25-20-15-10-50
0

10

20

ln(Variance of Resistor R1)ln(Variance of Feedback Resistor R2)

R
el

at
iv

e
E

rr
or

 in
 V

ar
ia

nc
e

of
 V

ou
t

0.05

0.1

0.15

0

5

10

Fig. 4.7: 3-D plot of relative error in Vout for inverting amplifier against statistical variations
in resistances R1 and R2.

resistor R2. The error in the variance of output decreases with decreasing variance of R2

over the given range which conforms to the expected behavior. It supports the argument

that factor graph calculations are based on the Gaussian assumption of signals associated

with each block and produces results comparable to the Monte Carlo simulations only for

smaller variances in the circuit component parameters. However, the decreasing monotonic

behavior exhibited by the output variance error curve for variations in resistor R1 for a

fixed variance of R2 is unexpected and anomalous. Although it lacks concrete reasoning,

the behavior is assumed to be attributed the fact that the circuit performance possesses

lower sensitivity towards parametric variations in resistor R1 as opposed to feedback resis-

tance R2. These trends in the output error are found to be consistent for both the circuit

configurations.

2. Experimental Results for Backward Propagation to Calculate the Parameter Es-

timates: In order to estimate the unknown input parameters by propagating the known

output statistics in the backward direction, output results obtained by forward propagation

64

-25 -20 -15 -10 -5 0

-25-20-15-10-50
0

0.1

0.2

ln(Variance of Resistor R1)

Non Inverting Amplifier

ln(Variance of Feedback Resistor R2)

R
el

at
iv

e
E

rr
or

 in
 M

ea
n

of
 V

ou
t

-25 -20 -15 -10 -5 0

-25-20-15-10-50
0

10

20

ln(Variance of Resistor R1)ln(Variance of Feedback Resistor R2)

R
el

at
iv

e
E

rr
or

 in
 V

ar
ia

nc
e

of
 V

ou
t

0.02
0.04
0.06

0.08
0.1
0.12
0.14

0

5

10

Fig. 4.8: 3-D plot of relative error in Vout for non-inverting amplifier against statistical
variations in resistances R1 and R2.

of messages in the graph are used as the starting points. In this analysis, firstly output

statistics for known variations in the variance of resistances R1 and R2 over the range of

values 0.1 to 1e-10 are gathered. Then, the output obtained for each of the variances in

the range is used to initiate backward propagation of messages in the graph to arrive at

an estimate of the variance of resistors R1 and R2. The accuracy of the tool is measured

in terms of the error between the estimated parameter variance obtained by the backward

propagation technique and the known parameter variance used for the forward propagation.

The smaller is the error between these two values, the greater is the efficiency of the tool

in predicting unknown parameters accurately.

Figures 4.9 and 4.10 demonstrate the results of the backward analysis for inverting and

non-inverting amplifiers, respectively. The dotted curves in these figures represent known

parametric distributions of the resistances R1 and R2 that lead to the given statistics of

Vout by forward message propagation in the graph as plotted on the X-axis. The solid

curves, on the other hand, show the values of estimated variances of the resistors R1 and

65

0 100 200 300 400 500 600 700 800 900
−25

−20

−15

−10

−5

0
Inverting Amplifier

Variance of Vout

ln
(V

ar
ia

nc
e

of
 R

es
is

ta
nc

e
R

1)

Variance of R1 used for forward propagation
Variance of R1 obtained by backward propagation

0 50 100 150 200 250
−25

−20

−15

−10

−5

0

Variance of Voutln
(V

ar
ia

nc
e

of
 R

es
is

ta
nc

e
R

2)

Variance of R2 used for forward propagation
Variance of R2 obtained by backward propagation

Fig. 4.9: Plot showing estimated and expected variances of resistance R1 and feedback
resistor R2 of an inverting amplifier for known statistics of Vout.

R2 obtained by propagating the calculated output of the circuit along the backward edges

in the graph. The results indicate that the tool could be used to determine the impact of

a given output voltage constraint on the statistics of input parameters.

4.1.2 Instrumentation Amplifier

The circuit diagram of an instrumentation amplifier is shown in fig. 4.11. The forward

and backward analysis runs are also performed for an instrumentation amplifier by varying

the variance of its resistors R1 and R2 over a range of 0.1 to 1e-10 similar to the inverting and

non-inverting configurations of the amplifier. The open-loop gain of all the three amplifiers

in this circuit is fixed at a value of 100K.

1. Plots Indicating the Results Obtained by Forward Analysis of the Circuit: Fig-

ures 4.12 and 4.13 depict the values of output statistics obtained for the variations in the

variance of resistances R1 and R2, respectively. The plots indicate that the simulation

results obtained from the tool match approximately with those obtained from Monte Carlo

simulation.

66

0 100 200 300 400 500 600 700 800 900
−25

−20

−15

−10

−5

0
Non Inverting Amplifier

Variance of Vout

ln
(V

ar
ia

nc
e

of
 R

es
is

ta
nc

e
R

1)

0 50 100 150 200 250
−25

−20

−15

−10

−5

0

Variance of Voutln
(V

ar
ia

nc
e

of
 R

es
is

ta
nc

e
R

2)

Variance of R1 used for forward propagation
Variance of R1 obtained by backward propagation

Variance of R2 used for forward propagation
Variance of R2 obtained by backward propagation

Fig. 4.10: Plot showing estimated and expected variances of resistance R1 and feedback
resistor R2 of a non-inverting amplifier for known statistics of Vout.

Fig. 4.11: Circuit diagram of an instrumentation amplifier.

67

−25 −20 −15 −10 −5 0
−210

−200

−190

−180

−170

ln(Variance of Resistance R1)

M
ea

n
of

 V
ou

t
Instrumentation Amplifier

−25 −20 −15 −10 −5 0
0

20

40

60

80

100

ln(Variance of Resistance R1)

V
ar

ia
nc

e
of

 V
ou

t

Mean of Vout obtained with Monte Carlo Simulation
Mean of Vout obtained with Tool Simulation

Variance of Vout obtained with Monte Carlo Simulation
Variance of Vout obtained with Tool Simulation

Fig. 4.12: Plot of Vout vs statistical variations in R1 for an instrumentation amplifier.

−25 −20 −15 −10 −5 0
−230

−220

−210

−200

ln(Variance of Resistance R2)

M
ea

n
of

 V
ou

t

Instrumentation Amplifier

−25 −20 −15 −10 −5 0
0

2

4

6

8

ln(Variance of Resistance R2)

ln
(V

ar
ia

nc
e

of
 V

ou
t)

Natural log of Variance of Vout obtained with Monte Carlo Simulation
Natural log of Variance of Vout obtained with Tool Simulation

Mean of Vout obtained with Monte Carlo Simulation
Mean of Vout obtained with Tool Simulation

Fig. 4.13: Plot of Vout vs statistical variations in R2 for an instrumentation amplifier.

68

Figure 4.14 shows the 3-D plot of the relative error between the output values obtained

by both the techniques against statistical variations in resistors R1 and R2. The error

plots for the instrumentation amplifier indicate similar trends as observed in the circuits

of inverting and non-inverting configurations of the amplifier considering. The error in the

output mean is negligible over the entire range of parameter variation. The error in the

variance of the output exhibits opposite trends for the variations in resistors R1 and R2,

similar to the other amplifier circuits. These trends are observed by considering the single

contours of the plot at fixed variance of resistors R1 and R2 when varying the variance of

the other resistance over the entire range.

2. Simulation Results of Backward Analysis: The backward simulation runs are per-

formed on the circuit to obtain parameter estimates for a known set of values of output

statistics. The plots of the parameter variances obtained by propagating the known out-

put in the backward direction in the graph for the instrumentation amplifier are shown in

fig. 4.15. These plots also depict a close agreement between the estimated and expected

values of the variance of resistors R1 and R2.

4.1.3 Conclusions Derived from Observed Results

An analytic comparison of all the results discussed in the previous subsections estab-

lish the fact that the circuit performance is more sensitive to the statistical variations in

the feedback resistance R2 as compared to the variations in resistance R1. The plots in

figs. 4.5, 4.6, and 4.13 showing the values of output mean obtained by both the techniques

by varying R2’s variance at a fixed value of R1 for all the three amplifier circuits indicate

some amount of discrepancy between the output mean values obtained by the tool and

Monte Carlo technique for larger variances of R2. The bias effect introduced by the Monte

Carlo simulation which is solely a property of Monte Carlo technique is supposed to be

responsible for such behavior. It thus establishes the fact of tool producing more correct

results than the reference technique for larger parametric variations in feedback resistor.

The output results obtained by forward analysis of the circuits conform the efficiency of the

tool in yield estimation for a given set of inputs. The backward analysis plots for all the

69

-25 -20 -15 -10 -5

-25-20-15-10-50
0

0.1

0.2

ln(Variance of Resistor R1)

Instrumentation Amplifier

ln(Variance of feedback resistor R2)

R
el

at
iv

e
E

rr
or

 in
 M

ea
n

of
 V

ou
t

-25 -20 -15 -10 -5

-25-20-15-10-50
0

20

40

ln(Variance of Resistor R1)ln(Variance of Feedback Resistor R2)

R
el

at
iv

e
E

rr
or

 in
 V

ar
ia

nc
e

of
 V

ou
t

0.02

0.04

0.06

0.08

0.1

0.12

5

10

15

20

Fig. 4.14: 3-D plot of relative error in Vout for an instrumentation amplifier against statis-
tical variations in resistances R1 and R2.

0 10 20 30 40 50 60 70 80 90 100
−25

−20

−15

−10

−5

0
Instrumentation Amplifier

Variance of Vout

ln
(V

ar
ia

nc
e

of
 R

es
is

ta
nc

e
R

1)

Variance of R1 used for forward propagation
Variance of R1 obtained by backward propagation

0 50 100 150 200 250
−25

−20

−15

−10

−5

0

Variance of Voutln
(V

ar
ia

nc
e

of
 R

es
is

ta
nc

e
R

2)

Variance of R2 used for forward propagation
Variance of R2 obtained by backward propagation

Fig. 4.15: Plot showing estimated and expected variances of resistance R1 and feedback
resistor R2 of an instrumentation amplifier for known statistics of Vout.

70

three circuits indicate that the tool could also be used to determine the impact of a given

constraint on the statistics of the output voltage on the statistics of circuit parameters.

Similar results were obtained for all the three circuits with different values of resistors, thus

changing the closed-loop gain. This indicates that for all the three circuits examined, the

results obtained are not a function of the circuit parameters used.

4.1.4 MOSFET

In order to display the capability of the tool to design and simulate circuits with

dependent sources, a small-signal equivalent circuit of MOSFET is analyzed by the tool to

obtain yield and parameter estimates. Both types of analysis runs, forward and backward,

are performed on the circuit by varying the variances of its resistances Rg and Rout as

indicated in the circuit diagram of the MOSFET in the fig. 4.16.

1. Forward Simulation Results for MOSFET: The output statistics for the circuit are

gathered by varying the variances of resistors Rg and Rout over the range 0.1 to 1e-10

through forward message propagation in its equivalent factor graph. The results of this

analysis have been plotted in figs. 4.17 and 4.18. The relative errors between the output

values obtained by the factor graph and the Monte Carlo techniques are plotted in fig. 4.19.

An analytic study of these 3-D curves similar to previous example circuits to observe defined

trends in the output values indicate that the error in the mean of Vout increases with the

decreasing variance of resistor Rg while the variance error shows a decrease in value with

decreasing variance of the resistance. The error plots of mean and variance against statistical

Fig. 4.16: Circuit diagram of MOSFET.

71

Table 4.3: Average execution time obtained from tool and Monte Carlo analysis.
Circuit Average Run Average Run Average Run No. of

Time of Time of Time of Factor
Monte Carlo Entire Tool Factor Graph Graph

Chain Simulator Nodes
Technique Simulator

Component
of Tool

Inverting Amplifier 14 minutes 17 seconds <1 second 15

Non Inverting Amplifier 14 minutes 17 seconds <1 second 15

Instrumentation Amplifier 14 minutes 18 seconds 1 second 45

MOSFET 14 minutes 17 seconds <1 second 17

variations in the output resistor Rout, however, show exact opposite trends. The error in

output mean decreases while the error in output variance increases with the decreasing

variance of Rout. The values of errors in mean are very small of the order of 1e-1 and can

be neglected as per the tolerance standards of the user.

2. Backward Simulation Results for MOSFET: The backward message propagation

is performed along the edges of the factor graph equivalent of the MOSFET, taking the

output statistics gathered from the forward propagation as starting inputs. This results in

the estimation of parameter variances for resistors R1 and R2 for known yield constraints.

The plot obtained from this analysis is shown in fig. 4.20. The results indicate that the

tool’s prediction of the unknown variances of the resistors for known output statistics match

closely with the expected values.

4.2 Timing Results

In order to evaluate the efficiency of the tool in terms of total execution time, timing

results obtained from Monte Carlo technique and the entire tool chain were recorded for all

four circuit configurations. Table 4.3 lists the timing results for all the circuits analyzed by

the tool. The time required by the factor graph simulator component of the tool chain to

perform statistical analysis of the resultant factor graph model was also collected separately

to establish fair grounds of comparison between Monte Carlo and factor graph analysis.

These results give a clear indication of the superiority of the tool in computing desired yield

72

−25 −20 −15 −10 −5 0
22

24

26

28

30

32

ln(Variance of resistor Rg)

M
ea

n
of

 V
ou

t

MOSFET

−25 −20 −15 −10 −5 0
0

0.01

0.02

0.03

0.04

0.05

ln(Variance of resistor Rg)

V
ar

ia
nc

e
of

 V
ou

t

Mean of Vout obtained with Monte Carlo Simulation
Variance of Vout obtained with Tool Simulation

Mean of Vout obtained with Monte Carlo Simulation
Mean of Vout obtained with Tool Simulation

Fig. 4.17: Plot of Vout vs statistical variations in input resistance Rg for MOSFET.

−25 −20 −15 −10 −5 0
20

25

30

35

log(Variance of output resistor Rout)

M
ea

n
of

 V
ou

t

MOSFET

−25 −20 −15 −10 −5 0
0

1

2

3

4

log(Variance of output resistor Rout)

V
ar

ia
nc

e
of

 V
ou

t

Variance of Vout obtained from Monte Carlo Simulation
Variance of Vout obtained with Tool Simulation

Mean of Vout obtained from Monte Carlo Simulation
Mean of Vout obtained with Tool Simulation

Fig. 4.18: Plot of Vout vs statistical variations in output resistance Rout for MOSFET.

73

-25 -20 -15 -10 -5 0

-20-15-10-50
0

0.2

0.4

ln(Variance of Resistor Rg)

MOSFET

ln(Variance of Resistor Rout)

R
el

at
iv

e
E

rr
or

 in
 M

ea
n

of
 V

ou
t

-25 -20 -15 -10 -5 0

-20-15-10-50
0

10

20

ln(Variance of Resistor Rg)
ln(Variance of Resistor Rout)

R
el

at
iv

e
E

rr
or

 in
 V

ar
ia

nc
e

of
 V

ou
t

0.1

0.2

0.3

5

10

15

Fig. 4.19: 3-D plot of relative error in Vout for MOSFET against statistical variations in
resistances Rg and Rout.

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−25

−20

−15

−10

−5

0
MOSFET

ln
(V

ar
ia

nc
e

of
 R

es
is

ta
nc

e
R

g)

Variance of Vout

Variance of Rg used for forward propagation
Variance of Rg obtained by backward propagation

0 0.5 1 1.5 2 2.5 3 3.5
−25

−20

−15

−10

−5

0

ln
(V

ar
ia

nc
e

of
 R

es
is

ta
nc

e
R

ou
t)

Variance of Vout

Variance of Rout used for forward propagation
Variance of Rout obtained by backward propagation

Fig. 4.20: Plot showing estimated and expected variances of input resistance Rg and output
resistor Rout for MOSFET.

74

over Monte Carlo technique.

75

Chapter 5

Conclusion and Future Work

This thesis examines an approach of using factor graphs and message passing to im-

plement statistical analysis of linear analog circuits. An approach for translating a linear

analog circuit into a factor graph has been presented. The factor graphs have been examined

as a means for implementing statistical analysis of circuit behavior in the presence of pa-

rameter variations. Several simulation and analysis results have been presented, comparing

the factor graph approach against Monte Carlo simulation for a small number of circuits,

which demonstrate the level of effectiveness of the factor graph technique in terms of a small

observed error between the tool and Monte Carlo results. The factor graph approach has

been analyzed both from the perspective of determining circuit output statistics, as well as

a tool for determining the impact of yield constraints imposed on circuit outputs as it affects

circuit parameters. The analysis results do reflect certain anomalies in the behavior of the

tool with respect to Monte Carlo simulations. There exist accuracy issues at certain obser-

vation points within the specified variance range of the resistors in the all the four circuit

configurations. These unexpected behaviors have been just reported in this thesis without

any explanation. They probably open a new dimension of research towards mathematically

analyzing their causes and effects in this analysis. Despite of the inaccuracies exhibited by

the tool simulations, it could be used in the early stages of the design process to evaluate

different possible design configurations for the same circuit. Moreover, the plots showing

output results obtained from the tool and Monte Carlo technique in Chapter 4 indicate

that the error in the output results from both the techniques is optimistic for majority of

observation points. The tool produces larger variances in output as compared to Monte

Carlo simulations at approximately 66.75% of the total observation points which include

variances of the two resistors over the specified range of 0.1 to 1e-10 for all the circuit

76

configurations. Considering this fact of Monte Carlo technique producing improved values

of output variances as compared to the tool, it is possible to rely on the tool’s results to

provide a bound on the worst case performance of the circuit.

Nevertheless, the greatest advantage of our technique lies in its ability to produce yield

analysis results at a much quicker rate than the standard Monte Carlo technique. The

execution time of the analysis in our approach is reduced by several orders of magnitude.

The tool is approximately fifty times faster than Monte Carlo technique in performing

yield analysis of analog circuits. This claim follows from the timing results indicated in

Chapter 4. These results demonstrate a linear increase in time shown by factor graph

technique in simulating instrumentation amplifier circuit that contains thrice as many factor

graph nodes as other circuits. Our technique is particularly useful for simulating large scale

circuits consisting of many circuit components in which case the run time growth of Monte

Carlo technique is polynomial and in certain cases, even exponential. However, the factor

graph approach follows a linear rise in the execution time with the number of factor graph

nodes in the equivalent factor graph model. Thus, it is possible to perform faster analysis

of analog circuits using factor graph approach.

This tool possesses scope for enhancements in several dimensions. The possible areas

of the tool that hold potential for extension have been listed below.

• Although, the tool’s scope is currently limited to perform steady-state analysis of

analog circuits, it possesses the potential for enhancements for modeling frequency

dependent components like capacitors and inductors to handle transient analysis. The

tool could be extended to derive generalized voltage and current sub graph models

similar to a resistor representing electrical laws of charge and flux obeyed by these

components.

• The tool is able to handle nine basic kinds of junctions discussed in Chapter 3. It

is possible to explore more types of junctions based upon their number of incoming

and outgoing branches, and devise rules of translation for them using the existing

equivalent factor graph block combinations for the nine primitive types of junctions.

77

The translation rules for the junctions discussed in Chapter 3 form the basis for

deriving equivalent factor graph models for other kinds of junctions. There lies scope

in extending the capability of the translator interpreter to code the translation rules

for converting various other kinds of junctions into factor graph domain. This would

widen the scope of the analog circuits being handled by the tool.

• The tool possesses the ability to model digital and mixed signal circuits using digital

circuits components available in the analog circuit modeling environment. However,

it still lacks the ability to convert digital circuits into their equivalent factor graph

blocks. The translator interpreter could be extended to accommodate the translation

rules for the digital circuit components, incorporating the ability to analyze digital

and mixed signal circuits by the tool.

The proposed methodology has explored a new dimension of the application of factor graphs

as a modeling tool and will continue to be a topic of interest in future.

78

References

[1] A. Marshall and M. Thornton, Mismatch And Noise In Modern Ic Processes. Dallas,
TX: Morgan & Claypool Publishers, 2009.

[2] M. W. Tian and C.-J. R. Shi, “Worst case tolerance analysis of linear analog circuits
using sensitivity bands,” IEEE Transactions on Circuits and Systems, vol. 47, p. 8,
2000.

[3] F. El-Turky and E. E. Perry, “BLADES: An artificial intelligence approach to analog
circuit design,” IEEE Transactions on Computer-aided Design., vol. 8, p. 13, 1989.

[4] A. Graupner, W. Schwarz, and R. Schuffny, “Statistical analysis of analog structures
through variance calculation,” Circuits and Systems I: Fundamental Theory and Ap-

plications, IEEE Transactions, vol. 49, no. 8, pp. 1071–1078, Aug. 2002.

[5] R. Rodriguez-Macias and A. Rodriguez-Vazquez, “A technique for fast ac statistical
analysis of analog circuits,” Electronics, Circuits and Systems, 1998 IEEE Interna-

tional Conference, vol. 2, pp. 81–84, 1998.

[6] S. Ali, P. Wilson, and A. Brown, “Yield predictive model characterization in analog
circuit design,” Integrated Circuits, 2007. International Symposium, pp. 289–292, Sept.
2007.

[7] G. Gielen, P. Wambacq, and W. Sansen, “Symbolic analysis methods and applications
for analog circuits: a tutorial overview,” Proceedings of the IEEE, vol. 82, no. 2, pp.
287–304, Feb. 1994.

[8] H.-A. Loeliger, “An introduction to factor graphs,” Signal Processing Magazine, IEEE,
vol. 21, no. 1, pp. 28–41, Jan. 2004.

[9] B. J. Frey, F. R. Kschischang, H.-A. Loeliger, and N. Wiberg, “Factor graphs and al-
gorithms,” [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.4388], 1998.

[10] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. Kschischang, “The factor
graph approach to model-based signal processing,” Proceedings of the IEEE, vol. 95,
no. 6, pp. 1295–1322, June 2007.

[11] F. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product
algorithm,” IEEE Transactions on Information Theory, vol. 47, pp. 498–519, 2001.

[12] H.-A. Loeliger, “Calibration of analog-to-digital converters with low-precision compo-
nents,” in The 2007 Analog Decoding Workshop, 2007.

[13] Vanderbilt University, “GME User’s Manual,” 2004.

[14] “Gme:generic modeling environment,” [http://www.isis.vanderbilt.edu/Projects/gme],
2008.

79

[15] H.-A. Loeliger, J. Hu, S. Korl, Q. Guo, and L. Ping, “Gaussian message passing on
linear models: An update,” Turbo-Coding-2006, pp. 1–7, 2006.

[16] G. Colavolpe and G. Germi, “On the application of factor graphs and the sum product
algorithm to isi channels,” IEEE Transactions on Communications, vol. 53, p. 8, 2005.

[17] “Bcjr algorithm,” [http://en.wikipedia.org/wiki/BCJR algorithm], 2009.

[18] S. Korl, H. Loeliger, and A. Lindgren, “Ar model parameter estimation: from factor
graphs to algorithms,” in Acoustics, Speech, and Signal Processing, 2004. Proceedings.

IEEE International Conference, vol. 5, pp. V–509–12, May 2004.

[19] “Autoregressive model,” [http://en.wikipedia.org/wiki/Autoregressive model], 2009.

[20] A. Eckford, “The factor graph em algorithm: applications for ldpc codes,” in 2005

IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, pp.
910–914, 2005.

[21] P. W. Tuinenga, SPICE: A Guide to Circuit Simulation & Analysis Using PSpice.
Englewood Cliffs, NJ: Prentice Hall, Inc., 1992.

[22] “ecircuit center,” [http://www.ecircuitcenter.com/Circuits/opmodel1/opmodel1.htm],
2003.

[23] “Pspice tutorials,” [http://www.uta.edu/ee/hw/pspice/], 2009.

[24] J. Keown, MicroSim PSpice and Circuit Analysis. Columbus, OH: Prentice Hall, Inc.,
1998.

[25] A. S. Sedra and K. C. Smith, Microelectronic Circuits. New York: Oxford University
Press, Inc., 2004.

80

Appendices

81

Appendix A

Equations Guiding Forward and Backward Message

Propagation Through Each Factor Graph Node

Sections A.1 and A.2 discuss the equations transforming the signals propagating through

each node in a factor graph. All messages are assumed to be Gaussian mixtures with a mean,

variance, weight, and density attribute associated with them. The notations used for rep-

resenting the mean, variance, weight, and density attributes of a Gaussian mixture are m,

V, W, and p, respectively.

A.1 Equations for Forward Message Propagation Along a Factor Graph

This section illustrates the equations guiding the forward message propagation along

the edges of the graph. Below is a list of all the factor graph nodes and their associated

equations.

• Adder: Z=X+Y

Z.p = X.p ∗ Y.p (A.1)

Z.m = X.m + Y.m (A.2)

Z.V = X.V + Y.V (A.3)

Z.W = 1/Z.V (A.4)

• Coefficient: Z=X*A*(1+eps)

Z.p = X.p ∗ eps.p (A.5)

Z.m = A ∗ X.m (A.6)

82

Z.V = (A ∗ X.m)2 ∗ eps.V + (A2) ∗ X.V (A.7)

Z.W = 1/Z.V (A.8)

• Scalar Multiplier: Y=A*X

Y.p = X.p (A.9)

Y.m = A ∗ X.m (A.10)

Y.V = (A2) ∗ X.V (A.11)

Y.W = 1/Y.V (A.12)

• Equality: Z=Y=X

Z.p = X.p ∗ Y.p (A.13)

Z.W = X.W + Y.W (A.14)

Z.m = (X.W ∗ X.m + Y.W ∗ Y.m)/Z.W (A.15)

Z.V = 1/Z.W (A.16)

A.2 Equations for Backward Message Propagation Along a Factor Graph

This section presents the equations associated with each factor graph node that guide

the transformation of the signals along the backward edges of the graph.

• Adder: Z=X+Y

1. Outgoing Message on X:

X.p = Y.p ∗ Z.p (A.17)

X.m = Z.m − Y.m (A.18)

83

X.V = Z.V + Y.V (A.19)

X.W = 1/X.V (A.20)

2. Outgoing Message on Y:

Y.p = X.p ∗ Z.p (A.21)

Y.m = Z.m − X.m (A.22)

Y.V = Z.V + X.V (A.23)

Y.W = 1/Y.V (A.24)

• Coefficient: Z=X*A*(1+eps)

1. Outgoing message on X:

X.p = Z.p ∗ eps.p (A.25)

X.m = Z.m/A (A.26)

X.V = Z.V/(A2) + eps.V ∗ (Z.m/A)2 (A.27)

X.W = 1/X.V (A.28)

2. Outgoing message on eps:

eps.p = Z.p ∗ X.p (A.29)

eps.m = 0 (A.30)

eps.V = Z.V/((A ∗ X.m)2) + X.V ∗ ((Z.m/(A ∗ X.m2))2) (A.31)

eps.W = 1/eps.V (A.32)

• Scalar Multiplier: Y=A*X

X.p = Y.p (A.33)

84

X.W = Y.W ∗ A2 (A.34)

X.m = A ∗ Y.W ∗ Y.m/X.W (A.35)

X.V = 1/X.W (A.36)

• Equality: Z=Y=X

1. Outgoing Message on X:

X.p = Z.p ∗ Y.p (A.37)

X.W = Z.W + Y.W (A.38)

X.m = (Z.W ∗ Z.m + Y.W ∗ Y.m)/X.W (A.39)

X.V = 1/X.W (A.40)

2. Outgoing Message on Y:

Y.p = Z.p ∗ X.p (A.41)

Y.W = Z.W + X.W (A.42)

Y.m = (Z.W ∗ Z.m + X.W ∗ X.m)/Y.W (A.43)

Y.V = 1/Y.W (A.44)

85

Appendix B

Sample of the C++ Simulation File Generated by the Factor

Graph Interpreter

#include “Message.h”

#include “component.h”

#include <iostream>

#include <list>

#include <fstream>

using namespace std;

int main(int argc, char* argv[])

{

bool done=false;

ofstream output txt;

list <component*>allobjs;

component *comp=new component();

bool oport0[]=0;

double mean0[]=0;

double variance0[]=0.1;

double weight0[]=10;

double wght densities0[]=1;

bool oport1[]=0;

double mean1[]=0;

double variance1[]=1e-4;

double weight1[]=1e+4;

double wght densities1[]=1;

86

bool oport2[]=0;

double mean2[]=5;

double variance2[]=1e-8;

double weight2[]=1e+8;

double wght densities2[]=1;

bool oport3[]=0;

double mean3[]=0.042325;

double variance3[]=8.85062e-006;

double weight3[]=112986;

double wght densities3[]=1;

bool oport4[]=0;

double mean4[]=0.000E+00;

double variance4[]=1e-18;

double weight4[]=1e+18;

double wght densities4[]=1;

bool oport5[]=0;

double mean5[]=0.042325;

double variance5[]=8.85062e-006;

double weight5[]=112986;

double wght densities5[]=1;

bool iport6[]=0,0;

bool oport6[]=0;

double mean6[]=0;

double variance6[]=0.001;

double weight6[]=1000;

double wght densities6[]=1;

bool iport7[]=0,0;

bool oport7[]=0;

87

double mean7[]=0;

double variance7[]=0.001;

double weight7[]=1000;

double wght densities7[]=1;

bool iport8[]=1,0;

bool oport8[]=0;

double mean8[]=0;

double variance8[]=0.001;

double weight8[]=1000;

double wght densities8[]=1;

bool iport9[]=0;

bool oport9[]=0,0;

double mean9[]=0;

double variance9[]=0.001;

double weight9[]=1000;

double wght densities9[]=1;

bool iport10[]=1,0;

bool oport10[]=0;

double mean10[]=0;

double variance10[]=0.001;

double weight10[]=1000;

double wght densities10[]=1;

bool iport11[]=0,1;

bool oport11[]=0;

double mean11[]=0;

double variance11[]=0.001;

double weight11[]=1000;

double wght densities11[]=1;

88

bool iport12[]=0;

bool oport12[]=0;

double mean12[]=0;

double variance12[]=0.001;

double weight12[]=1000;

double wght densities12[]=1;

bool iport13[]=0,0;

bool oport13[]=0;

double mean13[]=0;

double variance13[]=0.001;

double weight13[]=1000;

double wght densities13[]=1;

bool iport14[]=0;

double mean14[]=1;

double variance14[]=1000;

double weight14[]=0.001;

double wght densities14[]=1;

errorsource *es2=new errorsource(“ES1”, 0, 1, mean0, variance0, weight0, wght densities0,

oport0);

allobjs.push back(es2);

errorsource *es4=new errorsource(“ES2”, 0, 1, mean1, variance1, weight1, wght densities1,

oport1);

allobjs.push back(es4);

input *i7=new input(“Vsig1”, 0, 1, mean2, variance2, weight2, wght densities2, oport2);

allobjs.push back(i7);

input *i11=new input(“I2”, 0, 1, mean3, variance3, weight3, wght densities3, oport3);

allobjs.push back(i11);

input *i13=new input(“V3”, 0, 1, mean4, variance4, weight4, wght densities4, oport4);

89

allobjs.push back(i13);

input *i14=new input(“I1”, 0, 1, mean5, variance5, weight5, wght densities5, oport5);

allobjs.push back(i14);

coefficient *c1=new coefficient(“R1”, 2, 1, mean6, variance6, weight6, wght densities6,

iport6,oport6, 100, 0, 1);

allobjs.push back(c1);

coefficient *c3=new coefficient(“R2”, 2, 1, mean7, variance7, weight7, wght densities7,

iport7, oport7, 1000, 0, 1);

allobjs.push back(c3);

adder *a15=new adder(“adder”, 2, 1, mean8, variance8, weight8, wght densities8,

iport8, oport8);

allobjs.push back(a15);

equality *e10=new equality(“equality junction1”, 1, 2, mean9, variance9, weight9,

wght densities9, iport9, oport9);

allobjs.push back(e10);

adder *a6=new adder(“adder ampr Amplifier”, 2, 1, mean10, variance10, weight10,

wght densities10, iport10, oport10);

allobjs.push back(a6);

adder *a9=new adder(“adder junction1”, 2, 1, mean11, variance11, weight11,

wght densities11, iport11, oport11);

allobjs.push back(a9);

scalarmultiplier *m5=new scalarmultiplier(“Amplifier”, 1, 1, mean12, variance12,

weight12, wght densities12, iport12, oport12, 100000);

allobjs.push back(m5);

equality *e12=new equality(“equality junction2”, 2, 1, mean13, variance13,

weight13, wght densities13, iport13, oport13);

allobjs.push back(e12);

output *o8=new output(“Vout”, 1 ,0, mean14, variance14, weight14, wght densities14,

90

iport14);

allobjs.push back(o8);

comp->CreateConnection(es2,0,c1,0);

comp->CreateConnection(es4,0,c3,0);

comp->CreateConnection(i7,0,a15,1);

comp->CreateConnection(i11,0,c3,1);

comp->CreateConnection(i13,0,a6,1);

comp->CreateConnection(i14,0,c1,1);

comp->CreateConnection(c1,0,a15,0);

comp->CreateConnection(c3,0,a9,1);

comp->CreateConnection(a15,0,e10,0);

comp->CreateConnection(e10,0,a9,0);

comp->CreateConnection(e10,1,a6,0);

comp->CreateConnection(a6,0,m5,0);

comp->CreateConnection(a9,0,e12,0);

comp->CreateConnection(m5,0,e12,1);

comp->CreateConnection(e12,0,o8,0);

list<component*>::iterator cmpit;

int i=1;

for(cmpit=allobjs.begin();cmpit!=allobjs.end();cmpit++)

{

component *cp=*cmpit;

cp->SetInitialCurrentMessages();

}

while(!done)

{

for(cmpit=allobjs.begin();cmpit!=allobjs.end();cmpit++)

{

91

component *cmp=*cmpit;

cmp->forward message propogate();

cmp->backward message propogate();

}

done=comp->UpdateTimeStep(allobjs);

}

output txt.open(“out.txt”, std::ios base::out);

for(cmpit=allobjs.begin();cmpit!=allobjs.end();cmpit++)

{

component *cp=*cmpit;

cp->PrintAllMessages(output txt);

}

output *txt.close();

out<<“completed processing”;

return 0;

}

