On Enabling the WAM with Region Support

Henning Makholm and Konstantinos Sagortas

! DIKU, University of Copenhagen, Denmark
henning@makholm.net
2 Computing Science Department, Uppsala University, Sweden
kostis@csd.uu.se

Abstract. Region-based memory management is an attractive alteertatpar-
bage collection. It relies on a compile-time analysis tocate the program with
explicit allocation and deallocation instructions, whéfetimes of memory ob-
jects are grouped togetherriggions This paper investigates how to adapt the run-
time part of region-based memory management to the WAMmgetthe present
additions to the memory architecture and instruction sethef WAM that are
necessary to implement regions. We extend an optimized Vidaktd Prolog im-
plementation with a region-based memory manager whichatgppacktracking
with instant reclamation, and cuts. The performance oforediased execution is
compared with that of the baseline garbage-collected imetgation on several
benchmark programs. A region-enabled WAM performs contigety and often
results in time and/or space improvements.

1 Introduction

High-level languages like Prolog relieve the programmanfworrying about mundane
programming details like managing the memory which is nddde a program’s ex-
ecution. Memory allocation happens implicitly by simpleating data structures, and
deallocation is the responsibility of the runtime systerhe Traditional means of do-
ing automatic memory managemengisrbage collectiorwhere decisions about what
to deallocate are made at run time. Though very sophisticetbemes for collecting
garbage efficiently now exist, the process is still potdiytime-consuming and hard
to predict. It would be desirable to move some of the workliweithe compiler. Several
proposals for doingompile-time garbage collectidrave been made; see e.qg. [8, 7] and
the references therein.

Region-based memory managemidi® takes this principle to the limit. Here all
deallocation points in the program are determined by a clenijphe analysis, and the
runtime system needs only to carry out the preselectedretidhough not all programs
are well-suited to having their memory usage reasoned aftatitally in this way,
many are. Moreover, each of the preselected actions ogevata single region and
so have a bounded worst-case running time. This makes grdasjuarantee running
times of real-time programs.

Region-based memory management was originally proposestrict functional
languages. Much work has been done trying to enlarge theesabiihe technique to
mainstream imperative languages, but so far the only wordapting it to Prolog has

been a preliminary study by the first author [6]. In this pawertake that work a big
step further by adding region support to a state-of-theA#M-based Prolog imple-
mentation and comparing its performance with the same imeigation when using
a garbage collector. We find that the region-based impleatient performs competi-
tively with garbage-collected ones, and in some casessoffignificantly better time
and/or space behavior.

The next section briefly discusses memory management in &id 8d introduces
region-based memory management in general. Section duntes the flavor of our
region annotations and region-enabled WAM assembler wsisigiple example. Sec-
tion 4 introduces properties of our region model, but we dbdescribe in detail how
to do region inference. Section 5 contains the main cortiohuwof this paper: An ab-
stract machine design for adding region support to the WA&Eti®Bn 6 briefly presents
the current status of our implementation, and in Sect. 7 veduate its performance.
Finally, Sect. 8 concludes.

2 Preliminaries and Related Work

2.1 The WAM: Architecture and Heap Memory Management

Due to space limitations, we assume familiarity with the WAM]. We depart, albeit
only slightly, from the WAM instruction names and adopt tteming convention actu-
ally used in our Prolog system: Depending on their classifioavariables are denoted
ast (temporary)p (permanent), ou (unsafe). Also, instruction names are truncated.
So for example, autpval instruction involves a permanent variable and corresptmds
WAM’s put value instruction.

Besides registers, the WAM memory areas consist of a stacitgoks) where envi-
ronments and choice points are maintained global stackor heapwhere lists, com-
pound terms, and variables that outlive their activatiosord are stored, and theail
that maintains information on variables that need to betnggen backtracking. Upon
backtracking to the topmost choice point, the heap andgegiinents allocated after the
choice point creation can hestantly reclaimedPerhaps due to this cheap reclamation
of memory upon backtracking, the WAM has a reputation of 9aipace-efficient.

However, the instant reclamation provided by the WAM is nqiamacea. In re-
ality, Prolog programs are often mostly deterministic amdl®y systems do require
additional support for automatic memory management. Intrimoplementations this
support comes in the form of heap garbage collection. A lovarfk has already been
done in this area. An excellent account of issues in Prol@gp lgarbage collection can
be found in [1]; a more recent one appears in [3, Section 3p Assult, several Prolog
systems do have a heap garbage collector—in fact, somemfakien have more than
one—and it might appear that the issue of heap memory mareagémthe WAM has
been solved in a satisfactory way. This impression is oftengthened by the effec-
tiveness of Prolog garbage collectors; garbage collestibat recover 90-99% of the
heap space are not unusual. Notice however, that there themeay of interpreting
this figure, namely that heap memaadfocationin the WAM is suboptimal. Regard-
less of the view that one prefers, the garbage collectiongs® penalizes a program’s
execution as it happens during run time rather than stétical

2.2 Region-based Memory Management

Region-based memory managemeas proposed by Tofte and Talpin [10] as an al-
ternative to garbage collection for functional languaddse basic premise of this tech-
nique is that a compile-time analysis calkedion inferencennotates the program with
explicit instructions for allocation and deallocation oémory. These instructions uti-
lize theregion paradigmMemory blocks are grouped togetherragions A new block
can be allocated in a region at any time, but deallocationardy happen for a re-
gion in its entirety. The number of regions varies during éxecution of the program
and is in principle unbounded. However, the grouping-tbgebf allocations allows a
static analysis to keep the number of distinct regions itis¢e reason about down to a
manageable level.

Several benefits are associated with this scheme:

— During run time, no work is spent on garbage collection (nuyaollecting the
garbage but tracing pointers to find it).

— Because the region inferencer can analyze the possibleefutd the computation
(whereas a garbage collector typically views the mutatoa édack box), it can
sometimes deallocate data that GC would consider live.

— The basic region operations can be implemented to all runoimstant time—
including the deallocation of a region whose size is noicaly known. Because
there are no GC pauses either, it is possible to reason detyuabout the execution
time of a region-annotated program in real-time environteen

— Region-based memory management may lead to better cacheitethan garbage
collection, because it naturally reuses memory for sheed objects in a LIFO
fashion, whereas garbage collectors usually imply a routdi usage pattern for
the nursery.

There are also certain drawbacks, however. Most promirsgttie fact that certain
programs are not at all well-suited to static determinatibabject lifetimes. One such
example is an interpreter, whose source code gives no irfiomabout the lifetime of
the data that represent the interpreted program’s data.

Another drawback of the early Tofte—Talpin proposal is titategion inference is
not strong enough to handle most real programs with sat@facesults. It is based on
the principle that the lifetime of each region must coinoidéh the evaluation of one
source-level expression. In particular, any region thadter at the time of a call must
be live though the execution of the entire function-call egsion, so the arguments
in a tail-recursive call can be deallocated only after thairsion. Several schemes for
relaxing this principle have been proposed; the latest gnddmglein, Makholm, and
Niss [4], henceforth referred to as tAh&N model, is the basis of the region system we
employ.

Regions for Prolog. In [6] (and in more detail in [5]), the first attempt to extergjion-
based memory management to support backtracking and catsiade. The challenge
is that Prolog’s control flow makes it difficult to find meanfatplaces to insert explicit
deallocation operations. In a program such as

main :- (coMPUTE T SOMEHOW), foo(1).

foo(V), / succeeds twice foo(2).
(po somMETHING wiTH T), 0 (DO SOMETHING wITHOUT T),
bar (V). / fails the first time we get here bar(2).

the last use of is when program pointl is reached for theecondime. Ideally, one
would like to deallocate (the region dfjat that point, but in general the code executing
then does not know whether it is running for the first or theosektime. It will not do to
postpone the deallocation until after the possible faiitieer, because in less contrived
examples than this one it will not be apparent where in thecsocode the last relevant
failure is.

The solution to this is that backtracking should be transpiato regions. When-
ever backtracking occurs at run time, it becomes the regianagement library’s job
to restore all regions to the state they had when the choicd mas created. This in-
cludes undoing allocations and region creations made #feechoice point (instant
reclamation for regions) and recovering regions that tlegg@m thought it had deallo-
cated. Algorithms and data structures to do this efficieintihe presence of cuts were
described in [6].

The main problem with [6], which this work remedies, is thatsi not oriented
towards contemporary state-of-the-art implementatiodet®for Prolog. The prelimi-
nary performance measurements used an ad hoc Prolog corijule to integrate the
region operations into a WAM-based Prolog implementatias wot addressed. In par-
ticular, the handling of conditional bindings inside stwres was incompatible with
the WAM'’s data model. In short, although results of [6] showmise, region-based
memory management in Prol@gla [6] requires a fundamental shift from the abstract
machine for Prolog execution: an action which raises carsgfter all, memory man-
agement is just a part of a language’s implementation) ambfore is a path that most
Prolog implementors are probably not willing to take. We r@dd this problem and of-
fer an alternative to [6] which is WAM-based and imposes mialichanges to ‘plain’
WAM.

3 Compiling with Regions: A Step-by-Step Example

The purpose of this section is three-fold: 1) discuss houds®f region-based memory
management translate to the context of WAM-based Prologx@ain our implemen-
tation, and 3) introduce our design decisions which areguesl in a more detailed
manner in Sect. 5.
Consider the familiar naive reverse program shown below:

main :- nrev([1,2,3],X), write(X).

nrev([],[1).

nrev([H|T],L) :- nrev(T,V), append(V,[H],L).

append ([],L,L).

append ([H|L1],L2,[H|IL3]) :- append(L1,L2,L3).
Analyzing this program to infer in which regions data shobidallocated is a process
that requires support from type inference and benefits frolorimation about modes.
However, note that the above program containgprogrammer-supplied annotations

about modes and type# is up to the region inferencer to infer this informatidn.
Such a whole program region analyzer could produce theviitig region- and mode-
annotated Prolog program:
:- mode main.
main :-
‘new R2, nrev(R2-[1|R2:[21R2-[3]1],X)°i(R2)°0(R0), write(X), Crelease RO.
:- mode nrev(i,o0).
nrev([1,[1)°i(R6)°0(R0O) :- °release R6, “new RO.
nrev ([H|T],L)°i(R6)°0(R1) :-
nrev(T,V)°i(R6)°0(R4), °new R1, append(V,R1-[H],L)°c(R1,R4), °release R4.
:- mode append(i,i,0).
append ([1,L,L)°c(R0O,R4).
append ([H|L1],L2,R0- [HIR0-L3])°c(R0O,R4) :- append(L1,L2,L3)°c(RO,R4).

In fact, this is exactly the intermediate program producgabr analyzer. The region
inferencer has for example inferred that the [ist 2, 3] will live in a newregion named
R2 which is created before the call taev/2 and is passed to it as amput (i) parame-
ter. The result ohrev/2 will be placed in aroutput(o) regionR0 and can beeleased
after the call torrite/ 1. Finally, there are some regions which amnstant(c). These
are regions that the callee must not release; the callercexpigem to be around even
after the predicate call returns.

We now perform the following Prolog program transformati®ather than pass-
ing the region parameters as annotations to heads and wallpass them as extra
arguments. Also, thénew and °release annotations can be considered new Prolog
builtins which are treated specially by the compiler. Hiypalve also introduce a new
compiler builtin called’return that gets produced whenevefgew region annotation
would need to create a region that is annotated as outpuexXgmnple, since the re-
gion variableR0 is annotated as output in the first clausenoév/2, rather than cre-
ating a call°new(R0), we introduce a new region variabfd and translate the call
as®new(A0), °return(A0,R0). The°return builtin stores the region reference froko
into the region variabl®0 which has been already unified with the region variable in
the caller. We elaborate on need for this in Sect. 5.2. Peiiftg this program transfor-
mation results in the following Prolog program:

:- pragma main.
main :-
°new(R2), ’nrev/2’ (R2,R0,R2: [1|R2:[2|R2-[3]1],X), write(X),°release(R0O).
:- pragma ’nrev/2°(i,0,w,w).
‘nrev/2’ (R6,R0,[1,[]1) :- °release(R6), °new(R0), °return(i0,R0).
*nrev/2’ (R6,R1, [H|T],L) :- ’nrev/2’(R6,R4,T,V), °new(R0), °return(i0,R1),
’append/B’(AO,R4,V,AQ;[H],L), °release(R4).
:- pragma ’append/3’(c,c,w,w,w).
’append/3°’ (RO,R4, []1,L,L).
’append/3’ (RO,R4,[H|L1],L2,R0- [HIL3]) :- ’append/3’(RO,R4,L1,L2,L3).

Note that the above program now contains very few region ttioms. Most of the
information on which argument positions correspond toaagiariables is kept in the

% The only assumption that our analyzer currently makes isthiggprogram contains a zero-arity
“top-level” predicate such asain/0 in our example.

code for main/0 code for 'nrev/2’/4 code for "append/3’/5

allocate switchonlist r3 Ly Ly [Lo: % new clause switchonlist r3 L3 Ly
new trgn rl try 4 Ly allocate try 5 L3
putlist trgn r2 r1 trust 4 Ly getpvar v2 r2 trust 5 L4
Bldnumcon3 ||, getlst 13 .
bldnil Li: % new clause unipvar v3 L3: % new clause

utlist tren r5 rl getnil r3 unitvar r3 getnil r3
puthist_trgn 1> v getnil r4 getpvar v4 rd gettval r4 r5
bldnumcon 2 release trgn rl putpvar v5 r2 proceed
bldtval r2 hew tranrl trgn 11 putpvar v6 ré
putpvar v2 r2 Teturn tiren 1 r2 call 7 'nrev/2'/4 La: % new clause
putlist_trgn r3 r1 return_tirgn r2 re new trgn rl getlist _tvar_tvar r3 r6 r3
bldnumcon 1 proceed return_tprgn rl v2 getlist _trgn r5 rl
bldtval r5 putpval v5 12 uni_tval tvar r6 r5
putpvar v3 r4 putpval v6 r3 execute 'append/3’/5

call 4 "nrev/2'/4 putlist trgn r4 rl
putpval v3 rl - -5 -
call 4 write/1 bldpval v3

release prgn v2 bldnil

dealloc d putpval v4 r5
ealloc_ procee call 7 'append/3'/5

release prgn v5

dealloc proceed

Fig. 1. Generated WAM code for the region-annotatedve reverse program.

form of automatically generated compiler pragmasdgnotes a non-region argument
position; other letters denote region variables and thgmeinformation describes
their use). This program can be seen as the intermediate repilesentation that a
region-enabled WAM compiler uses. Compiling this prograsults in the WAM code
shown in Fig. 1. Instructions added to the WAM are shown ulirdt in the figure.
Notice the correspondence between region builtins anddétheWWAM instructions that
implement their functionality. Also, note that e.g. the atation in the second clause of
’append/3’/5’s last argument has resulted irgetlist _trgn instruction rather than in
agetlist.

4 Our Region Model

The region system for Prolog we employ is based orHkie region model [4] which,
in its original formulation, works for first-order functi@hprograms. In theemn model,
the lifetimes of regions are asynchronous with respect ¢octil/return discipline of
the program. Region handles (the pointers to region cobtoalks which are used to
allocate in, or deallocate, the region) can be passed ampées in function calls but
they cannot be stored in compound terms.

In general, callers pass one or marput regionsas extra argumentsto callees; these
are where the ordinary arguments have been allocated, arghilee is responsible for
deallocating the region after reading the input. Convgrdbk callee returns one or
more output regiongo the caller; the ordinary return value is allocated in thepot
regions, and the caller deallocates them when the retuueves been read. Instead of
deallocating its input regions, a function (or predicat¢hia Prolog setting) may return
them as output regions, such as if the output value contairts pf the arguments.

In addition to the input and output regions, theiN model also has a third kind
of region parameters, callezbnstant regionsThese are passed from the caller to the
callee, but the callee doe®t deallocate them; rather they can be used for allocating

memory for return values. Constant regions are used whetetler needs to be able to
specify a preexisting region for allocating a return valoegarts of it). Operationally, a
constant region is equivalent to an input region that is gvaused by the callee as an
outputregion, but because this reas@ayshappens, the passing-back-as-output can be
optimized away in practice. In the region inference prog¢assl in the specialized type
system that guarantees the safety of the region-annotatepigon) constant regions
play a special role, but due to space limitations we do notrifes those in this paper;
the reader is referred to [4] instead.

A final feature of thedHMN model that ought to be mentioned here is that regions
arereference countedA count of the number of references to each region—not the
number of allocations in the region or pointers into it, bue humber of pointers to
the region control block which can be used to allocate mormarg in it or deallocate
the region—is kept at run time, and when the last referen@s gavay, the region is
deallocated. There is no explicit deallocation primitibvat rather primitives to increase
(alias) and decreasedlease the reference count.

5 WAM with Region Support

We now describe how to extend a WAM-based Prolog system tpatipegions.

5.1 Memory Architecture

Our basic premise is that a regiop _
enabled WAM offers regions as gn —nv.Stack Tral ~ CP Stack
enhancemertb the WAM heap, no
as itsreplacementThis means th
the memory architecture contaifss
both a heap and a region area. TR D
shown in Fig. 2, all other memo E
areas of the WAM are of course stfll

present. Note that, like the heap ahdirection
the trail, regions are also segmentgd’ 9"
according to choice points. Shaded,]
areas denote areas which will be r&!9- 2-Memory areas of a region-enabled WAM.
claimed on backtracking. The figure does not show the datatstres used to imple-
ment backtracking of regions.

In principle, we allow data in the regions to be freely intéred with data on the
heap. A structure on the heap can reference subterms in@egid vice versa. This
design means that existing non-region-annotated codeholiltraries, the compiler,
and the top-level interactive loop can coexist with regismotated code in our imple-
mentation. In a wider perspective, it also means that, givenfficiently smart region
inferencer, a program could be annotated to allocate stved-data in regions but still
be able to revert to using the garbage-collected heap whkgrens cannot give accept-
ably tight lifetimes.

Heap Region Ared

|

Consequences of less structured memory layouOn Fig. 2 the region area is shown
as being divided into two subareas. That is to indicate thatégion area is not neces-
sarily contiguous in memory: New “batches” of memory can tidedd to it as the need
arises, without relocating the existing regions. In faet;leregion does not even need
to be contiguous; regions are implemented as linked listaafswhich might well be
from different “batches”.

One consequence of this is that the abstract machine canfwte a strict spatial
relation between the different memory areas, at least lo¢ifmplementation is written
in (relatively) portable C and does not do its own low-levedmory allocation. It is a
common optimization trick for WAM implementations to makeesthat, say, the local
stack is always allocated at higher addresses than the kBeapat a single test can
determine whether a pointer points into the stack or the hééfh regions around,
there is a third alternative, namely cells pointing into gioa area. These pointers
should usually be treated as those pointing into the heapa lsingle comparison to
determine whether they are region or heap pointers doeauffatessince region areas
can be located on either side of the local stack. Thus, d@ fespointing-into-the-heap
in the implementation need to be updated and in a regionled&#AM become more
expensive. Such tests appear in tiné*val instructions and the unification subroutine.
They are used to enforce the WAM invariant that there shoatdg any pointers from
the heap to the stack. This invariant extends nicely to regjithere should not be any
pointers from the region area to the local stack either.

Instant reclamation and conditional deallocation for regions. We adopt the princi-
ple of [6] that backtracking should be transparent to théoregrea. This means that
recent allocations in the region area (including recenioregreations) must be undone
upon backtracking, as indicated by shaded parts of themsgia Fig. 2. Conversely,
if a failing computation path releases a region, it must bgt ledive and reinstated at
backtracking. Techniques for how to do this were developd€]; they transfer essen-
tially without change to the WAM-based environment. Unfioidtely, space limitations
prevent us from presenting the details, and we refer theeretad 6, 5]. We only note
that the implementation of athoiceinstructions in the WAM must be extended to sup-
port backtracking of the region area. It is not sufficient$e specially enhanced choice
instructions when compiling a region-annotated program.

Conditional bindings in regions. The handling of conditional variable bindings that
need to be reset upon backtracking is where we deviate mast [8]. In the WAM,
conditional bindings are recorded on a sepateti stack, which in its basic form is
simply an array of addresses of cells that must be reset.c€hpmiints contain pointers
into the trail that determine which part of it is relevant igimen backtracking opera-
tion. [6] asserted (wrongly) that it would be very compledto make a single global
trail work well with regions. Instead it proposed a privatailtfor each region, orga-
nized as a linked list of bound variables. This required tiaad words be allocated
for each bindable variable, which conflicts with the WAM'seusf interior variables in
compound terms.

In our implementation we stick to the global trail; we evetemmix trail entries for
variables in regions with entries for variables on the WAMcsts. The only care this
requires is that we only trail bindings that really are cdiodhial.

A binding is conditional if the variable being bound was edtedbeforethe most
recent choice point. The WAM mandates that this should beladfor each variable
binding, which can be done with two pointer comparisons.é\theless, some Prolog
systems prefer not to do this checking but to instead recogdyinding in the trail. In
fact, even the trail overflow can be omitted; see [2]. Thiatsfyy is acceptable because
no variable appears twice on the trail, thus the trail nevewg larger than the size of
the WAM heap (and stack).

When regions are present, one cannot avoid checking foritonality anymore.
Because region memory can be reused without backtrackidmgtplace, the trail can
keep growing without bounds when deterministic code runsalso records uncondi-
tional bindings.

Checking accurately whether a binding in a region is reatlyditional is compli-
cated, but an approximation suffices: Instead of checkingtidr thevariableis older
than the most recent choice point, we check whetherdien cardcontaining the vari-
able was added to the region before the most recent choioé fis test may give rise
to a number of “false positives”, but not enough to risk tteél growing unboundedly.
The reason for this is that a choice point created after a wasiadded to the region
prevents all of that card from being used more than once batktracking occurs (or
the choice point is cut away, in which case the not-conditi@mymore bindings should
be purged from the trail anyway).

To make this check possible, we set aside one word in eaclichald a timestamp,
using a “clock” that ticks each time a choice point is creatéden that cards are
properly aligned in memory, the timestamp’s address caetavered from the address
of the variable by a simple bit-masking operation.

5.2 Instruction Set

Instructions for managing regions. Thenew trgn instruction creates a new region
(with a reference count of 1) and puts a pointer to its regimmio| block in a specified

X register. Similarly,new prgn creates a region and puts the handle in a specified Y
register. All the region-specific instruction come in thisdof pairs; henceforth we will
just present instructions as ending withlign and thereby understand a pair ofrgn

and prgn instructions.

Thealias_rgn instruction increases a region’s reference count by one tla@re-
lease rgn decreases the reference count by one, and, if it becomes‘deailocates”
the region. We put “deallocate” in quotes here because it beaypecessary to take
special measures to ensure that the region can reappeaikatduking.

The alias_rgn and release rgn are the only ways for the reference counter to
change value, except that when backtracking occurs, therr@ganager resets all ref-
erence counters to their previous values. Thus, the ndtiarthe counter really counts
referencesis just a convention, but serves as a guidelivefen to use the instructions.

In practice, thealias_ rgn instruction is seldom needed, but the ability to emit it is
important as a fall-back strategy of tleN region inference mechanism. The most
common reason for needing it is code such as

main :- (computE T), a(T), a(T).
a(T) :- (use T), 0 (po SOMETHING THAT DOES NOT INVOLVE T).

wherea/1 canrelease the region foIT after its last use (e.g., at program pdiit Then
main/0 can use an explicilias to keepT alive during the entire first call ta/1, and
pass the (then only) reference to the region to the last@all 1, such that the data will
be deallocated when the last call reaches point

Instructions for allocating data in regions. Next, we add instructions to allocate data
in regions. The principle is that every way to allocate sdrimgt on the heap should
have a corresponding way to instead allocate it in a regionekample, the WAM'’s
puttvar andputuval instructions allocate variables on the heap. Their regitocating
counterparts arputtvar _rgn andputuval _rgn.

Allocation of compound term is not so simple. In the WAM, aitgd instruction
sequence consists ofgatstr or putstr instruction followed by a number afni* or
bld* instructions. Each of the instructions in the sequenceatis a single part of the
compound term by increasing theregister.

In a region, this principle does not work, because subsdcirggle-cell allocations
in a region will not necessarily be contiguous. Insteggtstr rgn andputstr _rgn must
allocate space for the entire compound term in one operafioan the address of the
argument cells must be stored in a register for the subséguétiput* instructions to
know where to place the arguments. Which register? The matstral choice would
be the WAM'sS register which is already used for a similar purpose ReEaD-mode
getstr sequence. But in our baseline implementation,Shegister is already used in
WRITE mode—namely, by being set to zero it signals that we ammiTE mode. So
we have to add a new register for the purpose of filling in fresmpound terms. We
call it the W register.

For simplicity, and to avoid instruction set bloat, we al$moge thenonregion-
awaregetstr andputstr to allocate the entire functor on the heap at once, and put the
argument cell address in the register. Then, sagetstr andgetstr _rgn sequences can
use the same set ahi* instructions, which we change to use Weregister instead
of H.

As a further optimization, we use tt®ister instead oW in the putstr(_rgn)
andbld* instructions, where it is implicit that we are i@RITE mode. This is because
on register-poor architectures, such as the x86, it may bksible to register-allocat®
in the emulator loop, but probably not bdsrandW.

When(get,put)str(__rgn) now need to allocate the entire compound term, they must
know how big it is. The arity of the functor can be found by laakit up in the symbol
table, but we can save that memory reference by giving thebeurdirectly in the
WAM instruction. Finally, the optimized list instructiorfget,put)list are changed and
enhanced the same way as tget,put)str ones.

Instructions for avoiding interior variables. In the WAM, the argument fields of
a structure can be free variables. This is a space-savingaléw the WAM, but is
not always a good thing when regions are around. The reassimaisng. To see the
problem, consider this program fragment (which is somevithedlized, but one can
imagine pointd in the following code to also contain other predicate calls)

main :- blah(P,Q), O (coMpuTE wiTH Q ONLY).
blah(foo (V) ,bar(V)). / ... perhaps other blah/2 clauses ...

Theblah/2 clause creates two structures with te structure containing a pointer to
an interior variable in the&oo structure. This means that even thougls a singleton
variable inmain/1—and is the only reference to teo structure itself—it isnot safe
to deallocate the region containing theo structure before the computation wighis
finished (e.qg., in poini).

This effect means that the region inferencer must take acake¢p thefoo alive
as long as the subterm bar may be referenced. In practice, that need interferes with
other approximations made by the region inferencer, saéroleads to large losses of
space efficiency. Therefore, our design includes anothesipility: The above program
can be automatically annotated by our region analyzer ¢zatkv in a region different
from the one containing theoo structure. Thé1lah/2 clause above can be annotated
and compiled as shown below:

getstr _trgn r4 r1 2 foo/1

:- pragma ’blah/2°(c,c,c,w,w). ”"it‘t’a',tt"g" ;1 3’22 bar/1
r rgnror r

'blah/2’ (R1,R2,R3,R1-foo (R2:V) ,R3-bar (V)). R T @

unitval rl
proceed

Here theunitvar _trgn instruction allocates a variable in regi@2 and fills in a pointer
toitin thefoo structure inR1 that is being added (aside for storing a pointer to the new
variable in X register1, as theunitvar instruction does).

Instructions for output regions. As mentioned in Sect. 4, themN region model
requires that functions can return output regions to thalilecs alongside their normal
return values. A decision needs to be made about how to retutput regions in the
WAM. At first, this may seem trivial. Prolog natively supp®fireturning” multiple
values from a predicate by simply passing unbound varigblagad instantiating them
in the called predicate. Why not use this mechanism for duggions, too? One might.
But doing it naively would be wasteful, because output negido not need the full
generality of Prolog variables. The second clause of thievdhg intermediate code
would compile to:

allocate 2 5
:- pragma ’foo/1’(o,w). getpvar v2 rl
)) . getpvar v3 r2
fooo/l (R,a) : putpval v2 rl
new(R). putpvar v4 r2
’foo/1° (R,T) :- call 5 'foo/1'/2
, , putpval v3 rl
foo/1’(R,V), getstr _prgn rl v2 2 f/1
T = Rf(V). unipval v4
dealloc proceed

Here the caller of foo/1°/2 passes ointerto a free variable (presumably some-
where on the local stack) irl. That pointer is stored at locatior2 in its own stack
frame before calling itself recursively. When the recueseall returnsy? still con-
tains a pointer to the region reference instead of the remgfarence itself; therefore
getstr_prgn and all other region-annotated allocation instructionsiiue prepared to
dereferenceheir region parameters. WAM instructions always dereaieectheir value

arguments, but region inputs and outputs are supposed todmgly moded: We know
exactly when the region variable is bound at compile timewby waste cycles on
testing it again at run time?

For performance reasons we choose the following slightlyencmmplicated so-
lution. The caller still passes in an address to a free lasaksword for each output
region. But in the callee, this address is hever used in nimeg#on operations. Instead
we introduce two new instructionsturn _rgn andunreturn _rgn for moving data to
and from the pointed-to call, respectively. All region \aoies other than formal out-
put parameteralwayscontain a direct region reference (when they contain angthi
meaningful at all).

We can now rewrite the above example to use auxiliary vaggbthere the origi-
nal used a formal output region for a region operation. Therinediate code and the
region-enabled WAM code it compiles to are shown below.

try 2 Ls Le: % new clause
:- pragma ’foo/1’(o,uw). trust 2 Lg allocate 2 5
’foo/1’(R,a) :- getpvar v2 rl
Onew(KO) , Ls: % new clause getpvar v3 r2
o getcon r2 a putpval v2 rl
return(f0,R). new trgn r2 putpvar v4 r2
’foo/1’(R,T) :- return_ttrgn r2 rl call 5 'foo/1'/2
proceed unreturn ptrgn v2 rl
"foo/1’ (R,V), putdval v3 r2
°unreturn(R,0), getstr_trgn r2 r1 2 f/1
T = AO-f(V) . unipval v4
- dealloc proceed

6 Our Implementation

Our implementation is based on XXX, a WAM-based Prolog syst¢hich is a light-
weight derivative of the XSB system. XXX is a full Prolog ingphentation, features
a jump-table based bytecode emulator, and comes with botlar&-&slide and a
mark-&-copy heap garbage collector; see [3]. However, jifmuts tabling exclusively
based on CHAT, follows some of the advice on implementinddgremulators given
in [9] and [2], and its compiler performs instruction mergimore aggressively than
XSB's. As aresult, XXX is a reasonably fast system: On the ad@ on the set of stan-
dard Prolog benchmarks, XXX (in the settingthoutregion support) is comparable in
speed to SICStus 3.8 #4.

A design decision was to do region inference as a sourcetces transformation.
Our region inferencer works on a whole program at a time; nterdwegion inference
is not currently supported. The original Prolog progranrasformed into a region-
annotated program in the syntax of the example in Sect. 3. $&eregion inference
algorithms from the originaHMN prototype [4f, adapted to work with Prolog input
instead of an SML subset.

The second transformation, which converts region paraméteProlog-level pa-
rameters and introduces auxiliary A variables for outpgion manipulation, is also
a separate source-level operation. After that, the anedtatogram is compiled into
bytecodes by an enhanced version of the XXX compiler whidogaizes the region

4 About half of the 12,000 lines of code in our region inferamae from thedMN prototype.

annotations. Because of the source-level preprocesselsantic changes to the struc-
ture of the compiler were necessary. Our runtime system &éas bxtended as described
in Sect. 5. In addition to the 45 new instructions for regiaeveral changes to existing
code were necessary:

— A newW register has been added.

— Certain pointer comparisons become more complex becaesegfion area may
be discontiguous; see Sect. 5.1.

— Choiceandcut instructions must test whether it is necessary to invokebtek-
tracking/cut code in the region manager.

— Choice points take up four more cells than in XXX, to store adstrative data for
the region manager.

These changes in general make region-less programs ruh 5%cio 10% slower than
on the original XXX emulator (although one benchmark swipdly runs 5%fastel).

The region manager code, based on [6], required no majorgeisaapart from inte-
grating it into the XXX runtime system and adapting it to WAMe trailing. It uses a
region card size of 32 words (128 bytes) of which 30 are alklgléor allocation, and
allocates cards in batches of 100 cards usiafjloc ().

7 Performance Evaluation

We conducted our experiments on a dual processor Penti@dfpermine) 933 MHz
machine with 1 GB of RAM and 256 KB of cache running Linux.

To measure the performance of the region-enabled XXX systerits plain WAM
variant, we used standard Prolog benchmark programs ormgmgpreviously used
to measure performance of Prolog garbage collectors. Indfvthem, browse and
dnamatch, we also slightly modified the code to be more region-frigntie modified
programs are referred ¥browse andrdnamatch respectively.

Tables 1 and 2 contain results of our experimental evaloafior the region-enabled
system, we used two configurations: one where the regiomegnéer insists on using
the interior variable convention of the WAM (identified withW), and one where it
does not. As mentioned, XXX features two garbage collectonson-segment order
preserving mark-&-copy (default), and a mark-&-slide eglior which traditionally is
the one used in the WAM-based Prolog world. In our time corispass, we use both
settings. Times spent in GC are also shown in Table 1.

The queens program naturally reclaims heap space by backtracking @ed$ no
GC. sitill, the region-enabled system executes it in aboaisime time as the WAM,
while actually requiring less memory space (data shown bi€ra).

A very bad case for regions occurs in the origidaamatch program. In this pro-
gram, the size of the live data is quite small (climbsxt65,000 words and then de-
creases); GC manages to make this program run without the reading expansion.
Our current region inferencer ends up placing everythingria region (cf. Table 2). As
a result, it needs an enormous amount of space, and getszeehial execution time
as well. The region-friendly versiomdpamatch) exhibits a much better space behavior
which however comes at a time cost.

Table 1. Time performance comparison (in ms). The rows labeled WAKespond to thein-
modifiedXXX system (i.e., without region support), and include Ges.

| lqueens[dnamatch|rdnamatch]browse|rbrowse|serial|gsort |nreverse|

Regions -W 630 8260 8380 6010 5360 1540 1660 135(Q
Regions 630 9230 9920 5940 5410 15791950 1350
WAM —sliding 600 7550 7560 5330 531017302170 2130
WAM —copying 620 7290 7360 5160 5010 16302060 188(Q

gctime —sliding 0 690 730 690 1290 600 680 750
gctime —copyin 0 480 540 490 890 490 550 400

Table 2. Space performance comparison (in words resp. thousanderasv

| [queens [dnamatch[rdnamatch| browse | rbrowse | serial | gsort [nreverse]
Regions —W 19615,751,504 85,2591,434,6962,548,8222,085 K6,179 K 20 K|
Regions 196/10,471,636 76,1111,439,576 285,546 500k 500 K 20 K
WAM 379 194,53(194,533 391,11% 391,1471,571 k3,144K 195K
Allocations [|556,32415,751,50415,756,5047,744,6668,858,7923,028 k6,179 k 25,015 K

The situation is somehow reversed in tafbrowse Set: rbrowse runs faster than
browse (the region-improved algorithm is inherently faster thlaa original), and region-
based execution is competitive in time with that based on WAMreover, without
support for WAM's internal variables, the region-basedtegsresults in the program
having significantly lower space needs.

Region-based execution is a winner for beg¢hial andgsort: By avoiding the cost
of garbage collection, the total execution times are bdiyet0% on average (and up
to 30% if one compares the —W region system with WAM using dirglj collector).
Data in Table 2 clearly show that the space-efficiency of thdWis a myth. With the
most space-efficient region annotation, a region-basddrsysan run in threesérial) to
six times gsort) less space than the WAM. Interestingly enough, space ecpiioes
not seem to pay much in today’s machines. The performandeohemory subsystem
is apparently quite good in our machingert under —W runs faster than without even
though it allocates 12 times more space without ever batgeabout its deallocation.
However, in all machines there is clearly a limit to such spescklessness.

Finally, we examine the familiaireverse program reversing a list of 5,000 integers.
This is a case where region-based execution has the adeahtsghe size of the used
memory is never more than twice the size of the live data, (sdinear to the size of
the input list). On the other hand, WAM-based execution iegugarbage collection
and this penalizes execution times. Moreover, note thabnelgased execution is even
faster than WAM-based execution evercludingtime for GC. This is because the
region area fits within the processor’s cache (whereas WARI+@®uld waste large
amounts of time to achieve this).

8 Concluding Remarks

This paper investigated an alternative to WAM's heap alioca and garbage colec-
tion-based memory management: region-based memory miauesagdn particular, we

presented a complete scheme for adding region support WA and reported on the
performance of the resulting system. In short, our conoluss that region-based exe-
cution is competitive with garbage collected ones, andnofiiéers significantly better
time and/or space behavior.

This does not necessarily imply that Prolog systems mustddrathe WAM frame-
work. It simply means that alternatives for memory managsroélogic programming
languages do exist, they can be nicely and tightly intedrate WAM (or WAM-like)
environment, and their performance characteristics caxtvemely attractive. We hold
that because of this, these memory management schemese@odsrin particular,
should be investigated further.

This paper focussed on the abstract machine extensionetfiahs require: mem-
ory architecture and instruction set additions. An orthmgjdssue is that of the static
analyses that will guide the compiler in generating thesg mstructions. Although
our proposal is not tied to some concrete region inferencinoak it is clear that the
effectiveness of such an analysis also depends on the thiastics of the language that
is being analyzed. Adapting our region inferencer so thiatritore tailored to Prolog is
one direction for future work. Another, perhaps easier tospa, is to explore region-
based memory management in the context of logic programfaimguages where the
concept of static analyses that infer modes and types isoforgign. Languages such
as Ciao Prolog, Mercury, or HAL seem particularly suitedtfus endeavor.

References

1. Y. Bekkers, O. Ridoux, and L. Ungaro. Dynamic memory mamnagnt for sequential logic
programming languages. In Y. Bekkers and J. Cohen Rrdseedings of IWMM'92humber
637 in LNCS, pages 82-102. Springer-Verlag, Sept. 1992.

2. B.Demoen and P.-L. Nguyen. So many WAM variations, skelfiine. In J. Lloydet al, eds,
Proceedings of CL-200@umber 1861 in LNAI, pages 1240-1254. Springer, July 2000.

3. B. Demoen and K. Sagonas. Heap memory management in Rvidhogbling: Practice and
experience.J. of Functional and Logic Programin2001(9):1-56, Oct. 2001.

4. F. Henglein, H. Makholm, and H. Niss. A direct approachdatool-flow sensitive region-
based memory management. Rroceedings of PPDP 200pages 175-186. ACM Press,
Sept. 2001.

5. H. Makholm. Region-based memory management in Prologsté¥fa thesis, University of
Copenhagen, 2000.

6. H. Makholm. A region-based memory manager for PrologPioceedings of ISMM 2000
pages 25-34. ACM Press, 2000.

7. N. Mazur, P. Ross, G. Janssens, and M. Bruynooghe. Pabasigects for a working compile
time garbage collection system for Mercury. In Codognet,Rabceedings of the 17th ICLP
number 2237 in LNCS, pages 105-119. Springer, 2001.

8. A. Mulkers, W. Winsborough, and M. Bruynooghe. Live-sture dataflow analysis for
Prolog. ACM Trans. Prog. Lang. SystL6(2):205-258, Mar. 1994.

9. V. Santos Costa. Optimising bytecode emulation for Rydio G. Nadathur, edRroceedings
of PPDP’99 number 1702 in LNCS, pages 261-267. Springer, Sept./©88.1

10. M. Tofte and J.-P. Talpin. Region-based memory managen&ormation and Computa-
tion, 132(2):109-176, Feb. 1997.

11. D.H.D.Warren. An abstract Prolog instruction set. Techl Report 309, SRI International,
Menlo Park, U.S.A., Oct. 1983.

