
On Enabling the WAM with Region Support

Henning Makholm1 and Konstantinos Sagonas21 DIKU, University of Copenhagen, Denmarkhenning�makholm.net2 Computing Science Department, Uppsala University, Swedenkostis�
sd.uu.se
Abstract. Region-based memory management is an attractive alternative to gar-
bage collection. It relies on a compile-time analysis to annotate the program with
explicit allocation and deallocation instructions, wherelifetimes of memory ob-
jects are grouped together inregions. This paper investigates how to adapt the run-
time part of region-based memory management to the WAM setting. We present
additions to the memory architecture and instruction set ofthe WAM that are
necessary to implement regions. We extend an optimized WAM-based Prolog im-
plementation with a region-based memory manager which supports backtracking
with instant reclamation, and cuts. The performance of region-based execution is
compared with that of the baseline garbage-collected implementation on several
benchmark programs. A region-enabled WAM performs competitively and often
results in time and/or space improvements.

1 Introduction

High-level languages like Prolog relieve the programmer from worrying about mundane
programming details like managing the memory which is needed for a program’s ex-
ecution. Memory allocation happens implicitly by simply creating data structures, and
deallocation is the responsibility of the runtime system. The traditional means of do-
ing automatic memory management isgarbage collectionwhere decisions about what
to deallocate are made at run time. Though very sophisticated schemes for collecting
garbage efficiently now exist, the process is still potentially time-consuming and hard
to predict. It would be desirable to move some of the workloadto the compiler. Several
proposals for doingcompile-time garbage collectionhave been made; see e.g. [8, 7] and
the references therein.

Region-based memory management[10] takes this principle to the limit. Here all
deallocation points in the program are determined by a compile-time analysis, and the
runtime system needs only to carry out the preselected actions. Though not all programs
are well-suited to having their memory usage reasoned aboutstatically in this way,
many are. Moreover, each of the preselected actions operates on a single region and
so have a bounded worst-case running time. This makes it easier to guarantee running
times of real-time programs.

Region-based memory management was originally proposed for strict functional
languages. Much work has been done trying to enlarge the scope of the technique to
mainstream imperative languages, but so far the only work onadapting it to Prolog has

been a preliminary study by the first author [6]. In this paperwe take that work a big
step further by adding region support to a state-of-the-artWAM-based Prolog imple-
mentation and comparing its performance with the same implementation when using
a garbage collector. We find that the region-based implementation performs competi-
tively with garbage-collected ones, and in some cases offers significantly better time
and/or space behavior.

The next section briefly discusses memory management in the WAM and introduces
region-based memory management in general. Section 3 introduces the flavor of our
region annotations and region-enabled WAM assembler usinga simple example. Sec-
tion 4 introduces properties of our region model, but we do not describe in detail how
to do region inference. Section 5 contains the main contribution of this paper: An ab-
stract machine design for adding region support to the WAM. Section 6 briefly presents
the current status of our implementation, and in Sect. 7 we evaluate its performance.
Finally, Sect. 8 concludes.

2 Preliminaries and Related Work

2.1 The WAM: Architecture and Heap Memory Management

Due to space limitations, we assume familiarity with the WAM[11]. We depart, albeit
only slightly, from the WAM instruction names and adopt the naming convention actu-
ally used in our Prolog system: Depending on their classification, variables are denoted
ast (temporary),p (permanent), oru (unsafe). Also, instruction names are truncated.
So for example, aputpval instruction involves a permanent variable and correspondsto
WAM’s put_value instruction.

Besides registers, the WAM memory areas consist of a stack (or stacks) where envi-
ronments and choice points are maintained, theglobal stackor heapwhere lists, com-
pound terms, and variables that outlive their activation record are stored, and thetrail
that maintains information on variables that need to be reset upon backtracking. Upon
backtracking to the topmost choice point, the heap and trailsegments allocated after the
choice point creation can beinstantly reclaimed. Perhaps due to this cheap reclamation
of memory upon backtracking, the WAM has a reputation of being space-efficient.

However, the instant reclamation provided by the WAM is not apanacea. In re-
ality, Prolog programs are often mostly deterministic and Prolog systems do require
additional support for automatic memory management. In most implementations this
support comes in the form of heap garbage collection. A lot ofwork has already been
done in this area. An excellent account of issues in Prolog heap garbage collection can
be found in [1]; a more recent one appears in [3, Section 3]. Asa result, several Prolog
systems do have a heap garbage collector—in fact, some of them even have more than
one—and it might appear that the issue of heap memory management in the WAM has
been solved in a satisfactory way. This impression is often strengthened by the effec-
tiveness of Prolog garbage collectors; garbage collections that recover 90–99% of the
heap space are not unusual. Notice however, that there is another way of interpreting
this figure, namely that heap memoryallocation in the WAM is suboptimal. Regard-
less of the view that one prefers, the garbage collection process penalizes a program’s
execution as it happens during run time rather than statically.

2.2 Region-based Memory Management

Region-based memory managementwas proposed by Tofte and Talpin [10] as an al-
ternative to garbage collection for functional languages.The basic premise of this tech-
nique is that a compile-time analysis calledregion inferenceannotates the program with
explicit instructions for allocation and deallocation of memory. These instructions uti-
lize theregion paradigm: Memory blocks are grouped together inregions. A new block
can be allocated in a region at any time, but deallocation canonly happen for a re-
gion in its entirety. The number of regions varies during theexecution of the program
and is in principle unbounded. However, the grouping-together of allocations allows a
static analysis to keep the number of distinct regions it needs to reason about down to a
manageable level.

Several benefits are associated with this scheme:

– During run time, no work is spent on garbage collection (not only collecting the
garbage but tracing pointers to find it).

– Because the region inferencer can analyze the possible futures of the computation
(whereas a garbage collector typically views the mutator asa black box), it can
sometimes deallocate data that GC would consider live.

– The basic region operations can be implemented to all run in constant time—
including the deallocation of a region whose size is not statically known. Because
there are no GC pauses either, it is possible to reason accurately about the execution
time of a region-annotated program in real-time environments.

– Region-based memory management may lead to better cache behavior than garbage
collection, because it naturally reuses memory for short-lived objects in a LIFO
fashion, whereas garbage collectors usually imply a round-robin usage pattern for
the nursery.

There are also certain drawbacks, however. Most prominent is the fact that certain
programs are not at all well-suited to static determinationof object lifetimes. One such
example is an interpreter, whose source code gives no information about the lifetime of
the data that represent the interpreted program’s data.

Another drawback of the early Tofte–Talpin proposal is thatits region inference is
not strong enough to handle most real programs with satisfactory results. It is based on
the principle that the lifetime of each region must coincidewith the evaluation of one
source-level expression. In particular, any region that existed at the time of a call must
be live though the execution of the entire function-call expression, so the arguments
in a tail-recursive call can be deallocated only after the recursion. Several schemes for
relaxing this principle have been proposed; the latest one by Henglein, Makholm, and
Niss [4], henceforth referred to as theHMN model, is the basis of the region system we
employ.

Regions for Prolog. In [6] (and in more detail in [5]), the first attempt to extend region-
based memory management to support backtracking and cuts was made. The challenge
is that Prolog’s control flow makes it difficult to find meaningful places to insert explicit
deallocation operations. In a program such as

main :- h
ompute T somehowi,foo(V), % su

eeds twi
ehdo something with Ti, ❶ hdo something without Ti,bar(V). % fails the first time we get here foo(1).foo(2).bar(2).
the last use ofT is when program point❶ is reached for thesecondtime. Ideally, one
would like to deallocate (the region of)T at that point, but in general the code executing
then does not know whether it is running for the first or the second time. It will not do to
postpone the deallocation until after the possible failureeither, because in less contrived
examples than this one it will not be apparent where in the source code the last relevant
failure is.

The solution to this is that backtracking should be transparent to regions. When-
ever backtracking occurs at run time, it becomes the region management library’s job
to restore all regions to the state they had when the choice point was created. This in-
cludes undoing allocations and region creations made afterthe choice point (instant
reclamation for regions) and recovering regions that the program thought it had deallo-
cated. Algorithms and data structures to do this efficientlyin the presence of cuts were
described in [6].

The main problem with [6], which this work remedies, is that it is not oriented
towards contemporary state-of-the-art implementation models for Prolog. The prelimi-
nary performance measurements used an ad hoc Prolog compiler. How to integrate the
region operations into a WAM-based Prolog implementation was not addressed. In par-
ticular, the handling of conditional bindings inside structures was incompatible with
the WAM’s data model. In short, although results of [6] show promise, region-based
memory management in Prologa la [6] requires a fundamental shift from the abstract
machine for Prolog execution: an action which raises concerns (after all, memory man-
agement is just a part of a language’s implementation) and therefore is a path that most
Prolog implementors are probably not willing to take. We address this problem and of-
fer an alternative to [6] which is WAM-based and imposes minimal changes to ‘plain’
WAM.

3 Compiling with Regions: A Step-by-Step Example

The purpose of this section is three-fold: 1) discuss how issues of region-based memory
management translate to the context of WAM-based Prolog, 2)explain our implemen-
tation, and 3) introduce our design decisions which are presented in a more detailed
manner in Sect. 5.

Consider the familiar naive reverse program shown below:main :- nrev([1,2,3℄,X), write(X).nrev([℄,[℄).nrev([H|T℄,L) :- nrev(T,V), append(V,[H℄,L).append([℄,L,L).append([H|L1℄,L2,[H|L3℄) :- append(L1,L2,L3).
Analyzing this program to infer in which regions data shouldbe allocated is a process
that requires support from type inference and benefits from information about modes.
However, note that the above program containsno programmer-supplied annotations

about modes and types; it is up to the region inferencer to infer this information.3

Such a whole program region analyzer could produce the following region- and mode-
annotated Prolog program::- mode main.main :-Ænew R2, nrev(R2�[1|R2�[2|R2�[3℄℄℄,X)Æ i(R2)Æo(R0), write(X), Ærelease R0.:- mode nrev(i,o).nrev([℄,[℄)Æ i(R6)Æo(R0) :- Ærelease R6, Ænew R0.nrev([H|T℄,L)Æ i(R6)Æo(R1) :-nrev(T,V)Æ i(R6)Æo(R4), Ænew R1, append(V,R1�[H℄,L)Æ
(R1,R4), Ærelease R4.:- mode append(i,i,o).append([℄,L,L)Æ
(R0,R4).append([H|L1℄,L2,R0�[H|R0�L3℄)Æ
(R0,R4) :- append(L1,L2,L3)Æ
(R0,R4).
In fact, this is exactly the intermediate program produced by our analyzer. The region
inferencer has for example inferred that the list[1,2,3℄will live in a newregion namedR2 which is created before the call tonrev/2 and is passed to it as aninput (i) parame-
ter. The result ofnrev/2 will be placed in anoutput(o) regionR0 and can bereleased
after the call towrite/1. Finally, there are some regions which areconstant(
). These
are regions that the callee must not release; the caller expects them to be around even
after the predicate call returns.

We now perform the following Prolog program transformation: Rather than pass-
ing the region parameters as annotations to heads and calls,we pass them as extra
arguments. Also, theÆnew and Ærelease annotations can be considered new Prolog
builtins which are treated specially by the compiler. Finally, we also introduce a new
compiler builtin calledÆreturn that gets produced whenever aÆnew region annotation
would need to create a region that is annotated as output. Forexample, since the re-
gion variableR0 is annotated as output in the first clause ofnrev/2, rather than cre-
ating a callÆnew(R0), we introduce a new region variableÅ0 and translate the call
asÆnew(Å0), Æreturn(Å0,R0). TheÆreturn builtin stores the region reference fromÅ0
into the region variableR0 which has been already unified with the region variable in
the caller. We elaborate on need for this in Sect. 5.2. Performing this program transfor-
mation results in the following Prolog program::- pragma main.main :-Ænew(R2),'nrev/2'(R2,R0,R2�[1|R2�[2|R2�[3℄℄℄,X), write(X),Ærelease(R0).:- pragma 'nrev/2'(i,o,w,w).'nrev/2'(R6,R0,[℄,[℄) :- Ærelease(R6), Ænew(Å0), Æreturn(Å0,R0).'nrev/2'(R6,R1,[H|T℄,L) :- 'nrev/2'(R6,R4,T,V), Ænew(Å0), Æreturn(Å0,R1),'append/3'(Å0,R4,V,Å0�[H℄,L), Ærelease(R4).:- pragma 'append/3'(
,
,w,w,w).'append/3'(R0,R4,[℄,L,L).'append/3'(R0,R4,[H|L1℄,L2,R0�[H|L3℄) :- 'append/3'(R0,R4,L1,L2,L3).
Note that the above program now contains very few region annotations. Most of the
information on which argument positions correspond to region variables is kept in the

3 The only assumption that our analyzer currently makes is that the program contains a zero-arity
“top-level” predicate such asmain/0 in our example.

ode for main/0
ode for 'nrev/2'/4
ode for 'append/3'/5allo
atenew_trgn r1putlist_trgn r2 r1bldnum
on 3bldnilputlist_trgn r5 r1bldnum
on 2bldtval r2putpvar v2 r2putlist_trgn r3 r1bldnum
on 1bldtval r5putpvar v3 r4
all 4 'nrev/2'/4putpval v3 r1
all 4 write/1release_prgn v2deallo
_pro
eed
swit
honlist r3 L1 L2try 4 L1trust 4 L2

L1: % new
lausegetnil r3getnil r4release_trgn r1new_trgn r1return_ttrgn r1 r2pro
eed
L2: % new
lauseallo
ategetpvar v2 r2getlist r3unipvar v3unitvar r3getpvar v4 r4putpvar v5 r2putpvar v6 r4
all 7 'nrev/2'/4new_trgn r1return_tprgn r1 v2putpval v5 r2putpval v6 r3putlist_trgn r4 r1bldpval v3bldnilputpval v4 r5
all 7 'append/3'/5release_prgn v5deallo
_pro
eed

swit
honlist r3 L3 L4try 5 L3trust 5 L4

L3: % new
lausegetnil r3gettval r4 r5pro
eed
L4: % new
lausegetlist_tvar_tvar r3 r6 r3getlist_trgn r5 r1uni_tval_tvar r6 r5exe
ute 'append/3'/5

Fig. 1.Generated WAM code for the region-annotatednaive reverse program.

form of automatically generated compiler pragmas (w denotes a non-region argument
position; other letters denote region variables and the pragma information describes
their use). This program can be seen as the intermediate coderepresentation that a
region-enabled WAM compiler uses. Compiling this program results in the WAM code
shown in Fig. 1. Instructions added to the WAM are shown underlined in the figure.
Notice the correspondence between region builtins and the new WAM instructions that
implement their functionality. Also, note that e.g. the annotation in the second clause of'append/3'/5’s last argument has resulted in agetlist_trgn instruction rather than in
agetlist.
4 Our Region Model

The region system for Prolog we employ is based on theHMN region model [4] which,
in its original formulation, works for first-order functional programs. In theHMN model,
the lifetimes of regions are asynchronous with respect to the call/return discipline of
the program. Region handles (the pointers to region controlblocks which are used to
allocate in, or deallocate, the region) can be passed as parameters in function calls but
they cannot be stored in compound terms.

In general, callers pass one or moreinput regionsas extra arguments to callees; these
are where the ordinary arguments have been allocated, and the callee is responsible for
deallocating the region after reading the input. Conversely, the callee returns one or
moreoutput regionsto the caller; the ordinary return value is allocated in the output
regions, and the caller deallocates them when the return value has been read. Instead of
deallocating its input regions, a function (or predicate inthe Prolog setting) may return
them as output regions, such as if the output value contains parts of the arguments.

In addition to the input and output regions, theHMN model also has a third kind
of region parameters, calledconstant regions. These are passed from the caller to the
callee, but the callee doesnot deallocate them; rather they can be used for allocating

memory for return values. Constant regions are used when thecaller needs to be able to
specify a preexisting region for allocating a return value (or parts of it). Operationally, a
constant region is equivalent to an input region that is always reused by the callee as an
output region, but because this reusealwayshappens, the passing-back-as-output can be
optimized away in practice. In the region inference process(and in the specialized type
system that guarantees the safety of the region-annotated program) constant regions
play a special role, but due to space limitations we do not describe those in this paper;
the reader is referred to [4] instead.

A final feature of theHMN model that ought to be mentioned here is that regions
are reference counted. A count of the number of references to each region—not the
number of allocations in the region or pointers into it, but the number of pointers to
the region control block which can be used to allocate more memory in it or deallocate
the region—is kept at run time, and when the last reference goes away, the region is
deallocated. There is no explicit deallocation primitive,but rather primitives to increase
(alias) and decrease (release) the reference count.

5 WAM with Region Support

We now describe how to extend a WAM-based Prolog system to support regions.

5.1 Memory Architecture

direction
of growth

Trail

TR

CP Stack Heap

B

HB

H

EB

E

Region AreaEnv Stack

Fig. 2.Memory areas of a region-enabled WAM.

Our basic premise is that a region-
enabled WAM offers regions as an
enhancementto the WAM heap, not
as itsreplacement. This means that
the memory architecture contains
both a heap and a region area. As
shown in Fig. 2, all other memory
areas of the WAM are of course still
present. Note that, like the heap and
the trail, regions are also segmented
according to choice points. Shaded
areas denote areas which will be re-
claimed on backtracking. The figure does not show the data structures used to imple-
ment backtracking of regions.

In principle, we allow data in the regions to be freely intermixed with data on the
heap. A structure on the heap can reference subterms in a region, and vice versa. This
design means that existing non-region-annotated code for the libraries, the compiler,
and the top-level interactive loop can coexist with region-annotated code in our imple-
mentation. In a wider perspective, it also means that, givena sufficiently smart region
inferencer, a program could be annotated to allocate short-lived data in regions but still
be able to revert to using the garbage-collected heap where regions cannot give accept-
ably tight lifetimes.

Consequences of less structured memory layout.On Fig. 2 the region area is shown
as being divided into two subareas. That is to indicate that the region area is not neces-
sarily contiguous in memory: New “batches” of memory can be added to it as the need
arises, without relocating the existing regions. In fact, each region does not even need
to be contiguous; regions are implemented as linked lists ofcardswhich might well be
from different “batches”.

One consequence of this is that the abstract machine cannot enforce a strict spatial
relation between the different memory areas, at least not ifthe implementation is written
in (relatively) portable C and does not do its own low-level memory allocation. It is a
common optimization trick for WAM implementations to make sure that, say, the local
stack is always allocated at higher addresses than the heap,so that a single test can
determine whether a pointer points into the stack or the heap. With regions around,
there is a third alternative, namely cells pointing into a region area. These pointers
should usually be treated as those pointing into the heap, but a single comparison to
determine whether they are region or heap pointers does not suffice since region areas
can be located on either side of the local stack. Thus, all tests for pointing-into-the-heap
in the implementation need to be updated and in a region-enabled WAM become more
expensive. Such tests appear in theuni*val instructions and the unification subroutine.
They are used to enforce the WAM invariant that there should not be any pointers from
the heap to the stack. This invariant extends nicely to regions: there should not be any
pointers from the region area to the local stack either.

Instant reclamation and conditional deallocation for regions. We adopt the princi-
ple of [6] that backtracking should be transparent to the region area. This means that
recent allocations in the region area (including recent region creations) must be undone
upon backtracking, as indicated by shaded parts of the regions on Fig. 2. Conversely,
if a failing computation path releases a region, it must be kept alive and reinstated at
backtracking. Techniques for how to do this were developed in [6]; they transfer essen-
tially without change to the WAM-based environment. Unfortunately, space limitations
prevent us from presenting the details, and we refer the reader to [6, 5]. We only note
that the implementation of allchoiceinstructions in the WAM must be extended to sup-
port backtracking of the region area. It is not sufficient to use specially enhanced choice
instructions when compiling a region-annotated program.

Conditional bindings in regions. The handling of conditional variable bindings that
need to be reset upon backtracking is where we deviate most from [6]. In the WAM,
conditional bindings are recorded on a separatetrail stack, which in its basic form is
simply an array of addresses of cells that must be reset. Choice points contain pointers
into the trail that determine which part of it is relevant in agiven backtracking opera-
tion. [6] asserted (wrongly) that it would be very complicated to make a single global
trail work well with regions. Instead it proposed a private trail for each region, orga-
nized as a linked list of bound variables. This required thattwo words be allocated
for each bindable variable, which conflicts with the WAM’s use of interior variables in
compound terms.

In our implementation we stick to the global trail; we even intermix trail entries for
variables in regions with entries for variables on the WAM stacks. The only care this
requires is that we only trail bindings that really are conditional.

A binding is conditional if the variable being bound was allocatedbeforethe most
recent choice point. The WAM mandates that this should be checked for each variable
binding, which can be done with two pointer comparisons. Nevertheless, some Prolog
systems prefer not to do this checking but to instead record every binding in the trail. In
fact, even the trail overflow can be omitted; see [2]. This strategy is acceptable because
no variable appears twice on the trail, thus the trail never grows larger than the size of
the WAM heap (and stack).

When regions are present, one cannot avoid checking for conditionality anymore.
Because region memory can be reused without backtracking taking place, the trail can
keep growing without bounds when deterministic code runs, if it also records uncondi-
tional bindings.

Checking accurately whether a binding in a region is really conditional is compli-
cated, but an approximation suffices: Instead of checking whether thevariable is older
than the most recent choice point, we check whether theregion cardcontaining the vari-
able was added to the region before the most recent choice point. This test may give rise
to a number of “false positives”, but not enough to risk the trail growing unboundedly.
The reason for this is that a choice point created after a cardwas added to the region
prevents all of that card from being used more than once untilbacktracking occurs (or
the choice point is cut away, in which case the not-conditional-anymorebindings should
be purged from the trail anyway).

To make this check possible, we set aside one word in each cardto hold a timestamp,
using a “clock” that ticks each time a choice point is created. Given that cards are
properly aligned in memory, the timestamp’s address can be recovered from the address
of the variable by a simple bit-masking operation.

5.2 Instruction Set

Instructions for managing regions. Thenew_trgn instruction creates a new region
(with a reference count of 1) and puts a pointer to its region control block in a specified
X register. Similarly,new_prgn creates a region and puts the handle in a specified Y
register. All the region-specific instruction come in this kind of pairs; henceforth we will
just present instructions as ending with_rgn and thereby understand a pair of_trgn
and_prgn instructions.

Thealias_rgn instruction increases a region’s reference count by one, and there-lease_rgn decreases the reference count by one, and, if it becomes zero, “deallocates”
the region. We put “deallocate” in quotes here because it maybe necessary to take
special measures to ensure that the region can reappear at backtracking.

The alias_rgn and release_rgn are the only ways for the reference counter to
change value, except that when backtracking occurs, the region manager resets all ref-
erence counters to their previous values. Thus, the notion that the counter really counts
references is just a convention, but serves as a guideline for when to use the instructions.

In practice, thealias_rgn instruction is seldom needed, but the ability to emit it is
important as a fall-back strategy of theHMN region inference mechanism. The most
common reason for needing it is code such asmain :- h
ompute Ti, a(T), a(T).a(T) :- huse Ti, ❷ hdo something that does not involve Ti.

wherea/1 canrelease the region forT after its last use (e.g., at program point❷). Thenmain/0 can use an explicitalias to keepT alive during the entire first call toa/1, and
pass the (then only) reference to the region to the last call to a/1, such that the data will
be deallocated when the last call reaches point❷.

Instructions for allocating data in regions. Next, we add instructions to allocate data
in regions. The principle is that every way to allocate something on the heap should
have a corresponding way to instead allocate it in a region. For example, the WAM’sputtvar andputuval instructions allocate variables on the heap. Their region-allocating
counterparts areputtvar_rgn andputuval_rgn.

Allocation of compound term is not so simple. In the WAM, a typical instruction
sequence consists of agetstr or putstr instruction followed by a number ofuni* orbld* instructions. Each of the instructions in the sequence allocates a single part of the
compound term by increasing theH register.

In a region, this principle does not work, because subsequent single-cell allocations
in a region will not necessarily be contiguous. Instead,getstr_rgn andputstr_rgnmust
allocate space for the entire compound term in one operation. Then the address of the
argument cells must be stored in a register for the subsequent uni*/put* instructions to
know where to place the arguments. Which register? The most natural choice would
be the WAM’sS register which is already used for a similar purpose in aREAD-modegetstr sequence. But in our baseline implementation, theS register is already used in
WRITE mode—namely, by being set to zero it signals that we are inWRITE mode. So
we have to add a new register for the purpose of filling in freshcompound terms. We
call it theW register.

For simplicity, and to avoid instruction set bloat, we also change thenon-region-
awaregetstr andputstr to allocate the entire functor on the heap at once, and put the
argument cell address in theW register. Then, say,getstr andgetstr_rgn sequences can
use the same set ofuni* instructions, which we change to use theW register instead
of H.

As a further optimization, we use theS register instead ofW in theputstr(_rgn)
andbld* instructions, where it is implicit that we are inWRITE mode. This is because
on register-poor architectures, such as the x86, it may be possible to register-allocateS
in the emulator loop, but probably not bothS andW.

When(get,put)str(_rgn) now need to allocate the entire compound term, they must
know how big it is. The arity of the functor can be found by looking it up in the symbol
table, but we can save that memory reference by giving the number directly in the
WAM instruction. Finally, the optimized list instructions(get,put)list are changed and
enhanced the same way as the(get,put)str ones.

Instructions for avoiding interior variables. In the WAM, the argument fields of
a structure can be free variables. This is a space-saving device for the WAM, but is
not always a good thing when regions are around. The reason issharing. To see the
problem, consider this program fragment (which is somewhatidealized, but one can
imagine point❸ in the following code to also contain other predicate calls):

main :- blah(P,Q), ❸ h
ompute with Q onlyi.blah(foo(V),bar(V)). % : : : perhaps other blah/2
lauses : : :
Theblah/2 clause creates two structures with thebar structure containing a pointer to
an interior variable in thefoo structure. This means that even thoughP is a singleton
variable inmain/1—and is the only reference to thefoo structure itself—it isnot safe
to deallocate the region containing thefoo structure before the computation withQ is
finished (e.g., in point❸).

This effect means that the region inferencer must take care to keep thefoo alive
as long as the subterm ofbar may be referenced. In practice, that need interferes with
other approximations made by the region inferencer, so it often leads to large losses of
space efficiency. Therefore, our design includes another possibility: The above program
can be automatically annotated by our region analyzer to allocateV in a region different
from the one containing thefoo structure. Theblah/2 clause above can be annotated
and compiled as shown below::- pragma 'blah/2'(
,
,
,w,w).'blah/2'(R1,R2,R3,R1�foo(R2�V),R3�bar(V)). getstr_trgn r4 r1 2 foo/1unitvar_trgn r1 r2getstr_trgn r5 r3 2 bar/1unitval r1pro
eed
Here theunitvar_trgn instruction allocates a variable in regionR2 and fills in a pointer
to it in thefoo structure inR1 that is being added (aside for storing a pointer to the new
variable in X registerr1, as theunitvar instruction does).

Instructions for output regions. As mentioned in Sect. 4, theHMN region model
requires that functions can return output regions to their callers alongside their normal
return values. A decision needs to be made about how to returnoutput regions in the
WAM. At first, this may seem trivial. Prolog natively supports “returning” multiple
values from a predicate by simply passing unbound variablesin and instantiating them
in the called predicate. Why not use this mechanism for output regions, too? One might.
But doing it naïvely would be wasteful, because output regions do not need the full
generality of Prolog variables. The second clause of the following intermediate code
would compile to::- pragma 'foo/1'(o,w).'foo/1'(R,a) :-Ænew(R).'foo/1'(R,T) :-'foo/1'(R,V),T = R�f(V).

allo
ate 2 5getpvar v2 r1getpvar v3 r2putpval v2 r1putpvar v4 r2
all 5 'foo/1'/2putpval v3 r1getstr_prgn r1 v2 2 f/1unipval v4deallo
_pro
eed
Here the caller of'foo/1'/2 passes apointer to a free variable (presumably some-
where on the local stack) inr1. That pointer is stored at locationv2 in its own stack
frame before calling itself recursively. When the recursive call returns,v2 still con-
tains a pointer to the region reference instead of the regionreference itself; thereforegetstr_prgn and all other region-annotated allocation instructions must be prepared to
dereferencetheir region parameters. WAM instructions always dereference their value

arguments, but region inputs and outputs are supposed to be strongly moded: We know
exactly when the region variable is bound at compile time, sowhy waste cycles on
testing it again at run time?

For performance reasons we choose the following slightly more complicated so-
lution. The caller still passes in an address to a free local stack word for each output
region. But in the callee, this address is never used in normal region operations. Instead
we introduce two new instructionsreturn_rgn andunreturn_rgn for moving data to
and from the pointed-to call, respectively. All region variables other than formal out-
put parametersalwayscontain a direct region reference (when they contain anything
meaningful at all).

We can now rewrite the above example to use auxiliary variables where the origi-
nal used a formal output region for a region operation. The intermediate code and the
region-enabled WAM code it compiles to are shown below.:- pragma 'foo/1'(o,w).'foo/1'(R,a) :-Ænew(Å0),Æreturn(Å0,R).'foo/1'(R,T) :-'foo/1'(R,V),Æunreturn(R,Å0),T = Å0�f(V).

try 2 L5trust 2 L6

L5: % new
lauseget
on r2 anew_trgn r2return_ttrgn r2 r1pro
eed L6: % new
lauseallo
ate 2 5getpvar v2 r1getpvar v3 r2putpval v2 r1putpvar v4 r2
all 5 'foo/1'/2unreturn_ptrgn v2 r1putdval v3 r2getstr_trgn r2 r1 2 f/1unipval v4deallo
_pro
eed
6 Our Implementation

Our implementation is based on XXX, a WAM-based Prolog system which is a light-
weight derivative of the XSB system. XXX is a full Prolog implementation, features
a jump-table based bytecode emulator, and comes with both a mark-&-slide and a
mark-&-copy heap garbage collector; see [3]. However, it supports tabling exclusively
based on CHAT, follows some of the advice on implementing Prolog emulators given
in [9] and [2], and its compiler performs instruction merging more aggressively than
XSB’s. As a result, XXX is a reasonably fast system: On the x86and on the set of stan-
dard Prolog benchmarks, XXX (in the settingwithoutregion support) is comparable in
speed to SICStus 3.8 #4.

A design decision was to do region inference as a source-to-source transformation.
Our region inferencer works on a whole program at a time; modular region inference
is not currently supported. The original Prolog program is transformed into a region-
annotated program in the syntax of the example in Sect. 3. We use region inference
algorithms from the originalHMN prototype [4]4, adapted to work with Prolog input
instead of an SML subset.

The second transformation, which converts region parameters to Prolog-level pa-
rameters and introduces auxiliary Å variables for output-region manipulation, is also
a separate source-level operation. After that, the annotated program is compiled into
bytecodes by an enhanced version of the XXX compiler which recognizes the region

4 About half of the 12,000 lines of code in our region inferencer are from theHMN prototype.

annotations. Because of the source-level preprocesses, nodrastic changes to the struc-
ture of the compiler were necessary. Our runtime system has been extended as described
in Sect. 5. In addition to the 45 new instructions for regions, several changes to existing
code were necessary:

– A newW register has been added.
– Certain pointer comparisons become more complex because the region area may

be discontiguous; see Sect. 5.1.
– Choiceandcut instructions must test whether it is necessary to invoke theback-

tracking/cut code in the region manager.
– Choice points take up four more cells than in XXX, to store administrative data for

the region manager.

These changes in general make region-less programs run about 5% to 10% slower than
on the original XXX emulator (although one benchmark surprisingly runs 5%faster).

The region manager code, based on [6], required no major changes apart from inte-
grating it into the XXX runtime system and adapting it to WAM-like trailing. It uses a
region card size of 32 words (128 bytes) of which 30 are available for allocation, and
allocates cards in batches of 100 cards usingmallo
().

7 Performance Evaluation

We conducted our experiments on a dual processor Pentium III(Coppermine) 933 MHz
machine with 1 GB of RAM and 256 KB of cache running Linux.

To measure the performance of the region-enabled XXX systemvs. its plain WAM
variant, we used standard Prolog benchmark programs or programs previously used
to measure performance of Prolog garbage collectors. In twoof them, browse anddnamat
h, we also slightly modified the code to be more region-friendly; the modified
programs are referred torbrowse andrdnamat
h respectively.

Tables 1 and 2 contain results of our experimental evaluation. For the region-enabled
system, we used two configurations: one where the region inferencer insists on using
the interior variable convention of the WAM (identified with–W), and one where it
does not. As mentioned, XXX features two garbage collectors: a non-segment order
preserving mark-&-copy (default), and a mark-&-slide collector which traditionally is
the one used in the WAM-based Prolog world. In our time comparisons, we use both
settings. Times spent in GC are also shown in Table 1.

The queens program naturally reclaims heap space by backtracking and needs no
GC. Still, the region-enabled system executes it in about the same time as the WAM,
while actually requiring less memory space (data shown in Table 2).

A very bad case for regions occurs in the originaldnamat
h program. In this pro-
gram, the size of the live data is quite small (climbs to�65,000 words and then de-
creases); GC manages to make this program run without the heap needing expansion.
Our current region inferencer ends up placing everything inone region (cf. Table 2). As
a result, it needs an enormous amount of space, and gets penalized in execution time
as well. The region-friendly version (rdnamat
h) exhibits a much better space behavior
which however comes at a time cost.

Table 1. Time performance comparison (in ms). The rows labeled WAM correspond to theun-
modifiedXXX system (i.e., without region support), and include GC times.queens dnamat
h rdnamat
h browse rbrowse serial gsort nreverse

Regions –W 630 8260 8380 6010 5360 1540 1660 1350
Regions 630 9230 9920 5940 5410 1570 1950 1350
WAM –sliding 600 7550 7560 5330 5310 1730 2170 2130
WAM –copying 620 7290 7360 5160 5010 1630 2060 1880

gctime –sliding 0 690 730 690 1290 600 680 750
gctime –copying 0 480 540 490 890 490 550 400

Table 2.Space performance comparison (in words resp. thousands of words).queens dnamat
h rdnamat
h browse rbrowse serial qsort nreverse
Regions –W 196 15,751,504 85,2591,434,6962,548,8222,085 k6,179 k 20 k
Regions 196 10,471,636 76,1111,439,576 285,546 500 k 500 k 20 k
WAM 379 194,530 194,533 391,115 391,1471,571 k3,144 k 195 k
Allocations 556,32415,751,50415,756,5047,744,6668,858,7923,028 k6,179 k 25,015 k

The situation is somehow reversed in the[r℄browse set: rbrowse runs faster thanbrowse (the region-improvedalgorithm is inherently faster than the original), and region-
based execution is competitive in time with that based on WAM. Moreover, without
support for WAM’s internal variables, the region-based system results in the program
having significantly lower space needs.

Region-based execution is a winner for bothserial andqsort: By avoiding the cost
of garbage collection, the total execution times are betterby 10% on average (and up
to 30% if one compares the –W region system with WAM using a sliding collector).
Data in Table 2 clearly show that the space-efficiency of the WAM is a myth. With the
most space-efficient region annotation, a region-based system can run in three (serial) to
six times (qsort) less space than the WAM. Interestingly enough, space economy does
not seem to pay much in today’s machines. The performance of the memory subsystem
is apparently quite good in our machine:qsort under –W runs faster than without even
though it allocates 12 times more space without ever bothering about its deallocation.
However, in all machines there is clearly a limit to such space-recklessness.

Finally, we examine the familiarnreverse program reversing a list of 5,000 integers.
This is a case where region-based execution has the advantage that the size of the used
memory is never more than twice the size of the live data (i.e., is linear to the size of
the input list). On the other hand, WAM-based execution requires garbage collection
and this penalizes execution times. Moreover, note that region-based execution is even
faster than WAM-based execution evenexcludingtime for GC. This is because the
region area fits within the processor’s cache (whereas WAM+GC would waste large
amounts of time to achieve this).

8 Concluding Remarks

This paper investigated an alternative to WAM’s heap allocation- and garbage colec-
tion-based memory management: region-based memory management. In particular, we

presented a complete scheme for adding region support to theWAM and reported on the
performance of the resulting system. In short, our conclusion is that region-based exe-
cution is competitive with garbage collected ones, and often offers significantly better
time and/or space behavior.

This does not necessarily imply that Prolog systems must abandon the WAM frame-
work. It simply means that alternatives for memory management of logic programming
languages do exist, they can be nicely and tightly integrated in a WAM (or WAM-like)
environment, and their performance characteristics can beextremely attractive. We hold
that because of this, these memory management schemes, and regions in particular,
should be investigated further.

This paper focussed on the abstract machine extensions thatregions require: mem-
ory architecture and instruction set additions. An orthogonal issue is that of the static
analyses that will guide the compiler in generating these new instructions. Although
our proposal is not tied to some concrete region inference method, it is clear that the
effectiveness of such an analysis also depends on the characteristics of the language that
is being analyzed. Adapting our region inferencer so that itis more tailored to Prolog is
one direction for future work. Another, perhaps easier to pursue, is to explore region-
based memory management in the context of logic programminglanguages where the
concept of static analyses that infer modes and types is not so foreign. Languages such
as Ciao Prolog, Mercury, or HAL seem particularly suited forthis endeavor.

References

1. Y. Bekkers, O. Ridoux, and L. Ungaro. Dynamic memory management for sequential logic
programming languages. In Y. Bekkers and J. Cohen, eds,Proceedings of IWMM’92, number
637 in LNCS, pages 82–102. Springer-Verlag, Sept. 1992.

2. B. Demoen and P.-L. Nguyen. So many WAM variations, so little time. In J. Lloydet al, eds,
Proceedings of CL-2000, number 1861 in LNAI, pages 1240–1254. Springer, July 2000.

3. B. Demoen and K. Sagonas. Heap memory management in Prologwith tabling: Practice and
experience.J. of Functional and Logic Programm., 2001(9):1–56, Oct. 2001.

4. F. Henglein, H. Makholm, and H. Niss. A direct approach to control-flow sensitive region-
based memory management. InProceedings of PPDP 2001, pages 175–186. ACM Press,
Sept. 2001.

5. H. Makholm. Region-based memory management in Prolog. Master’s thesis, University of
Copenhagen, 2000.

6. H. Makholm. A region-based memory manager for Prolog. InProceedings of ISMM 2000,
pages 25–34. ACM Press, 2000.

7. N. Mazur, P. Ross, G. Janssens, and M. Bruynooghe. Practical aspects for a working compile
time garbage collection system for Mercury. In Codognet, ed., Proceedings of the 17th ICLP,
number 2237 in LNCS, pages 105–119. Springer, 2001.

8. A. Mulkers, W. Winsborough, and M. Bruynooghe. Live-structure dataflow analysis for
Prolog.ACM Trans. Prog. Lang. Syst., 16(2):205–258, Mar. 1994.

9. V. Santos Costa. Optimising bytecode emulation for Prolog. In G. Nadathur, ed.,Proceedings
of PPDP’99, number 1702 in LNCS, pages 261–267. Springer, Sept./Oct. 1999.

10. M. Tofte and J.-P. Talpin. Region-based memory management. Information and Computa-
tion, 132(2):109–176, Feb. 1997.

11. D. H. D. Warren. An abstract Prolog instruction set. Technical Report 309, SRI International,
Menlo Park, U.S.A., Oct. 1983.

