
Occam's Razor: The Cutting Edge of Parser Technology

Jonathan P. Bowen � Peter T. Breuer y

Oxford University Computing Laboratory

Programming Research Group

11 Keble Road, Oxford OX1 3QD, UK.

Tel: +44-865-272574. Fax: +44-865-273839.

Email: Jonathan.Bowen@comlab.ox.ac.uk

Peter.Breuer@comlab.ox.ac.uk

Abstract

Yacc is well established in the compiler-compiler �eld, but is beginning to show its

age. Issues which were important when hardware resources were more scarce are now

less critical. Precc is a new compiler-compiler tool that is much more versatile than

yacc, whilst retaining e�ciency of operation on modern computers. It copes with the

context-dependent BNF grammar descriptions and higher order meta constructions that

are naturally encountered in semi-formal concrete syntax speci�cations, building fast

and e�cient in�nite-lookahead tools in the form of ANSI-compliant C code. This paper

provides a demonstration of this state-of-the-art compiler-compiler technology using

the programming language occam as an example. The parsing of occam is particularly

di�cult compared to some programming languages since the indentation is an integral

part of the language. However the precc tool allows a natural implementation of an

occam parser that follows the syntax very closely.

Keywords: Compiler-compiler, parsing, language grammars, occam, in�nite lookahead,

software tools.

William Occam c. 1280{1349

Entia non sunt multiplicanda praeter necessitatatem.

No more things should be presumed to exist than are absolutely necessary.

`Occam's Razor'. Ancient philosophical principle, often attributed to Occam,

but used by many early thinkers [15].

�
Funded by the UK Information Engineering Directorate SAFEMOS project (IED3/1/1036).

y
Funded by the European ESPRIT II REDO project (2487). Currently a Visiting Research Fellow at British Telecom

Research Laboratories, Martlesham Heath, Ipswich, Su�olk, UK.

1 Existing technology

The ubiquitous yacc and lex tools [12] have dominated compiler-compiler technology for the past

decade or more. Yacc uses LALR(1) parsing, which has been understood and promulgated by stan-

dard textbooks for some time (e.g., [1]), primarily because it constructs a �nite state automaton,

and thus the run-time loading can be delimited precisely. This used to be of great importance when

computers generally were limited in memory, but nowadays it is much less important, and more

negative aspects of the yacc technology have started to become increasingly signi�cant instead.

Firstly, both lex and yacc-generated C code is monolithic, and a large language description,

like that for COBOL, with over two hundred keywords, generates such a large virtual automaton

that swapping problems are common at runtime even on modern workstations. This can result in

a poor perceived performance for the application to which the parser is the front end, no matter

how good the application code itself may be.

Moreover, the C compiler itself often has problems with the generated code. The large lexer

and parser routines generated by lex and yacc make for slow compilation and therefore a long

turn-round time when it comes to debugging or altering a speci�cation. Everything has to be

recompiled when just a single change is needed, and this can be a source of intense frustration for

the software engineer seeking to use a speci�cation-driven utility in order to cut development or

maintenance time. On the unloaded HP 9000 series workstation at which this sentence is being

typed, for example, lex takes 35 s to compile a very abbreviated 163-line lexical speci�cation for

COBOL 74 into 2,700 lines of C code. A more complete 300-line speci�cation takes two minutes

to generate 5,000 lines of C code. The full speci�cation for the language about twice this size.

The C compiler took 40 s to compile the small code and 73 s to compile the larger code, giving a

110 Kbyte object module, and the �gures grow super-linearly with size. So a wait of �ve to ten

minutes between making a change to the lexer and testing it can be expected, and there is no real

possibility of using a debugging aid to help the diagnosis and testing because the generated code

changes each time, and is famously opaque anyway. The statistics for yacc are worse because the

scripts are even bigger.

In fact, in terms of the speci�cation alone, yacc does provide a fairly
exible way of handling

language grammars, with at least a reasonable degree of e�ciency. However it is not ideal for, and

indeed cannot cater for, all languages. This is because it allows for only a single-token lookahead

at runtime in order to decide between alternatives. In a sense, therefore, its runtime semantics

are ill-matched with its speci�cation language, because the BNF (which is what it uses) has no

such restriction commonly associated with it. Moreover, it implements only a simple subset of

the standard BNF description formats, so all BNF speci�cations have to be unfolded out into

their basic components before they can be presented as a yacc script. This results in obscure

speci�cations which are di�cult to maintain, and is at least partly responsible for the excessive

size of the virtual automaton, since much repetition is necessary.

2 Introducing the precc tool

Precc [4] o�ers a very
exible tool, providing in�nite lookahead and handling two-level or van

Wijngaarden grammars [7, 9, 18] with ease. These grammars are very powerful and include

include meta-variables and hyper-rules for the generation of in�nite numbers of productions. The

concept of a `comma separated list of x', for example, can be de�ned in precc, as

@ comma separated list of(x) = x f h','i x g ?

(x followed by arbitrarily many comma-then-x pairs) and di�erent x's can be supplied as parameters

in di�erent parts of the speci�cation, but for yacc, the construction must be expanded out in

terms of the basic constructs at every point in the speci�cation where it is needed, substituting

the required name for x, and using only the alternation and sequential constructors:

phooey : x

j x ',' phooey

;

This yacc speci�cation may also generate a `shift/reduce' con
ict report at compile time, if

any other production rule contains `phooey ','' because yacc does not know whether to begin

looking for an x to follow the comma (shift for more phooey) or to jump with what it already

has into the other production (reduce). Shift/reduce reports are extremely confusing to software

engineers because

1. they refer to the virtual automaton, not the grammar speci�cation script itself, and therefore

rely on an understanding of yacc semantics which the speci�cation language interface ought

to encourage users to forget, and

2. the report is due to the existence of a second production rule, and therefore is generated by

the context, not, in the example above, the phooey rule itself.

The parts of a yacc script may be separately correct, and still fail when combined together.

In contrast, precc speci�cations are declarative and referentially transparent: i.e., it is possible

to substitute any precc parser name by its de�nition anywhere in a script, and obtain the same

semantics. The semantics of each parser de�nition are independent of their context and a precc

parser de�nition can be included in any script, provided it is self-consistent. What happens to the

shift/reduce report? Precc always shifts (looks for more data), and later backtracks if necessary.

Yacc's error reports are a function of yacc's one-token lookahead implementation of the BNF,

and since precc has no such limitation, there are no con
icts between speci�cation language and

implementation semantics to be reported.

One problem often associated with tools which promise to provide extra
exibility is that the

designers fail to ensure that the tool is still e�cient enough to be useful in practice. For example,

the OBJ3 equational logic tool [8] provides parsing of arbitrary mix�x notation (with in�nite

lookahead). Whilst this provides great
exibility, it becomes rather slow for the parsing of large

input programs; so much so that it becomes worthwhile to have a separate more e�cient parser

for more easily parsable languages. But precc, like yacc, maintains e�ciency by translating the

parser description into C code. Moreover, it makes use of the premise that modern C compilers

make function calls fast and e�cient in order to make the C call stack do much of its work. The

precc design assumes that function calls are e�cient in C, and that many small compact functions

are better than a single large one. Happily this conjecture appears to be correct, because precc

runs quickly in practice. Precc compiles a similar description to the COBOL 74 lexical speci�cation,

consisting of 162 lines, into 1,500 lines of C code in 1.1 s on the HP workstation. Its own C code

takes no longer to generate.

The C code takes 22 s to compile, as might be expected, but the most signi�cant bene�t

from using precc is modularity. Both precc speci�cations and generated code can be divided up

into modules in any way that is desired, compiled separately and linked together incrementally,

because the generated functions communicate across the C stack. Provided the C compiler sup-

ports placeholders (prototypes) in place of code, precc speci�cations need not even be complete

before they are capable of running and being tested. This allows greatly reduced turn-round

times in development and maintenance, and renders the �gures for monolithic scripts and C code

meaningless.

A fuller description of the precc tool may be found in [4, 6].

3 The parsing process

Using the C stack and function-calling to do the work instead of a virtual automaton is not a

liability. As a realistic demonstration, a signi�cant portion of the concrete syntax for the occam

programming language [11] has been investigated and part of this is presented in this paper. The

philosophical Occam's razor is a maxim that the acceptable principle can be distinguished from

the unacceptable one by its simplicity and we propose to use the language occam as a razor which

separates acceptable parser technology from unacceptable parser technology.

occam can be divided into eleven modules which follow the headings in the concrete syntax,

as shown in Figure 1. Only the occam and token modules are extra to the concrete syntax; the

former contains some useful meta-constructions and the latter does duty for a lexical analyzer.

The modules are associated with a precc grammar speci�cation script foo.y, the C code that precc

generates from it, foo.c, and the object module foo.o produced by the C compiler. Linking all the

object modules together with the precc kernel library gives one the executable parser. There are

104 separate de�nitions in all, in 400 lines, and they generate 2,600 lines of C code (60 Kbytes),

and not much more object code.

occam

j

j j j j j

abbreviation construction declaration element expression

j

j j j j j

procedure process scope type token

Figure 1: The modular structure of the occam syntax and parser.

Experiments with the precc parser for occam show that a C stack of 4 Kbytes can accommodate

about 300 nested function calls (therefore averaging 12 bytes each) from the precc kernel, and

that this size corresponds to occam constructs which are nested �ve layers deep. The maximum

nesting is 40 (that is, 80 columns divided by the 2-space indentation increment imposed by the

language), so the runtime stack cannot grow beyond about 32 Kbytes in size in practice. This is

an acceptable overhead, and not at all the bugbear that might have been feared for a recursive

in�nite state machine. The sixty recursive calls per occam nesting layer are composed of about

45% reduce-equivalents, 45% instructions which attach provisional `actions' to the parse for later

execution, and 10% shift-equivalents, each shift usually being associated with an input token, and

a context-save of about 20 bytes which permits backtracking. The other calls push only their own

return addresses and zero, one or two parameters onto the stack, so the load introduced by the

precc in�nite lookahead and backtracking technology is not very high.

occam is not an easy language to parse. In particular, it requires the lexical indentation of

constructs from the left hand edge to be recognized by the parser since this often delimits their

scope, in place of the perhaps more familiar BEGIN/END delimiters of Pascal and other block

structured languages (or `{' and `}' of C). As a result, knowledge of the current indentation may

be needed at many points during parsing, and backtracking to an alternative interpretation may be

necessary as the scope of (possibly several) constructs is ended. For example, the two programs

below from [17] di�er only in the indentation of one line, but the program on the left gives y=10,

and that on the right, y=0:

SEQ SEQ

x,y,z := 10,1,0 x,y,z := 10,1,0

WHILE x>0 WHILE x>0

SEQ SEQ

z := z+x z := z+x

x := x-1 x := x-1

y := y*x y := y*x

The scope of the second SEQ is terminated by the `o�side' (less indented) statement.

occam could theoretically be handled by a LR(40) grammar, with a 40 token lookahead since

the indentation may be limited to 80 columns (2 spaces per indentation). So yacc could handle

all practical occam programs, once the LR(40) speci�cation were expanded out into LR(1) form.

However, this would be very wasteful of space for the automaton's tables, much of which would

be duplicated. The use of purely synthetic attribute grammars is in any case slightly problematic

because several syntactic constructs may be terminated by a single lexical group. For example, in

SEQ

SEQ

SEQ

x:=y

y:=z

the group y:=z belongs to the outermost SEQ by virtue of its indentation position, which terminates

the two innermost SEQ constructs, so it is not clear what token type it should present. A prior pass

may be necessary to insert BEGIN and END tokens which can serve as an unambiguous delineation

process = SKIP j STOP j construction j . . .

construction = sequence j conditional j loop j . . .

conditional = IF

f choices g

choice = guarded.choice j conditional

guarded.choice = boolean

process

loop = WHILE boolean

process

Figure 2: Sample from occam 2 syntax summary.

of the block structure, but this amounts to admitting that yacc-type technology is not well-suited

to this kind of parsing problem.

Another area of concern, particularly for safety-critical systems, is the correctness of the parsing

process [16, 17], and here precc also scores heavily. High-level languages, rather than assembler,

are now being recommended for safety-critical applications since it is increasingly recognized that

programmers make fewer errors as a result. However, high-level language compilers are much

more complicated than assemblers and need a higher degree of validation before they can become

acceptable in these applications. Much current research into compiler veri�cation concentrates on

the compilation process from an abstract tree representation of the language to the object code

(e.g., for a subset of occam [10]).

Indeed, many declarative programming languages, such as Prolog, provide explicit support for

in�x and other operators, with variable precedence, etc. The input to programs (e.g., compilers)

written in such languages can be supplied in an `abstract' tree form that is su�ciently readable to

be used directly by human programmers, at least for prototyping purposes [2]. This can obviate

the need to supply any explicit parser at all. Alternatively, precc may be used to generate the

abstract tree input to such tools, thus allowing the input language to use the true concrete syntax,

even in a prototype compiler, if this is required.

However the initial parsing phase from a concrete representation of the language to an abstract

parse-tree is an important link in the whole compilation process in any practical and realistic

implementation. Precc can make this phase amenable to validation, because precc implements a

well-understood higher-order model directly in C, and the semantics is associated with a set of

proof rules that will demonstrate exactly when a given stream will satisfy (or will not satisfy) a

given parse speci�cation. But precc scripts themselves correspond almost verbatim to the concrete

grammar speci�cation, so there is at least a case for arguing that once the precc constructors have

been validated and understood, no more proof is required.

In summary, then, precc attempts to provide a tool that

1. is
exible and e�cient in practice,

2. provides an easy means to generate correct parsers for languages that cannot be dealt with

conveniently by many current compiler-compiler tools, and

3. o�ers the possibility of a validated front-end.

4 A realistic parser for Occam

This section presents a precc parser for a signi�cant subset of occam 2, and demonstrates how

closely the parser can be related to the BNF-style semi-formal syntax provided in Appendix G of

[11], a sample of which is given in Figure 2. The indentation of constructs is speci�ed by presenting

the BNF description in indented form where appropriate.

The corresponding speci�cation in precc is shown in Figure 3. This is one of the more compli-

cated and therefore more interesting parts of the speci�cation as far as parsing is concerned. The

@ process(n) = SKIP j STOP j construction(n) j . . .

@ construction(n) = sequence(n) j conditional(n) j loop(n) j . . .

@ conditional(n) = IF $!

@ [choices(n+2)]

@ choice(n) = [speci�cations(n)] indent(n,chosen)

@ chosen(n) = guardedchoice(n) j conditional(n)

@ guardedchoice(n) = boolean $

@ clause(n+2)

@ loop(n) = WHILE somespace boolean

@ clause(n+2)

@ clause(n) = indent(n,process)

Figure 3: Corresponding precc speci�cation.

precc speci�cation di�ers in several respects. Firstly and most obviously, the majority of the con-

structions are parameterized. They take the parameter n, which denotes the absolute indentation

of the concrete representation, so that

conditional(5)

denotes an IF construct with the initial I in column 5. Where the concrete speci�cation denotes

extra indentation by spacing, the precc speci�cation uses an incremented parameter instead. Thus

choices(n+2)

is included where the concrete syntax instead has choices two spaces further to the right than the

governing IF keyword.

Secondly, the precc speci�cation employs special matches for the `end of line'. Although precc

can match the literal ascii line feed control character directly, the default lexical analyzer which

comes with precc generates the special zero token at an end of line, and it is this that is matched

by the `$! ' and `$' constructs (see below).

Though precc can use lexers generated by the lex utility directly, in exactly the same way as

yacc does, no special lexical analysis is required for the purposes of this trial, and the default lexer

can be used. This lexer passes every character unchanged, except that it substitutes a line feed

control character with the special zero token. The rationale behind the design of the default lexer

is that `end of line' frequently marks a natural break point at which special action must be taken,

and yacc-compatible lexers conventionally signal special conditions with the zero token. Actions

which check for end of �le conditions can be attached to the match for the zero token.

The `$' is a match for end of line which can be backtracked over, and the `$! ' is a match for

one which cannot. It incorporates the special cut symbol, `! ', which disables backtracking. It is

best to include as many cuts as possible in a precc script, because in the event of an error being

found in the parsed stream, they prevent exponential searches through all the possible alternative

parses. The cut is one of the innovative implementational aspects of precc in comparison with

other LL(1) parsers; the use of the C call stack is another.

It is certain that an IF begins a conditional statement and nothing else, so a cut may be

inserted after the IF, but it is conceivable that it may be necessary to backtrack over the newline

following a boolean expression in case the following stream does not match a `clause(n+2)' after

all. In fact, this is probably never going to be the case, but it is best to allow for such a possibility,

so a `$' is needed at this point.

Thirdly, the precc speci�cation uses the square brackets syntax

[foo]

to indicate an optional inclusion, where the concrete syntax uses curly brackets instead. This is a

trivial syntactic di�erence { precc reserves the curly brackets for use as grouping parentheses.

Fourthly, where the concrete speci�cation has `process', the precc speci�cation includes the

statement `clause(n+2)' instead. The `n+2' indicates extra indentation to the right, but the

clause(n+2) construct has been introduced to stand for

indent(n+2,process)

which might equally well be placed directly in the speci�cation. However, giving a name to

the construction makes the speci�cation more maintainable because it eliminates repetition and

narrows the range over which changes may have to be made at some future point. It also makes

the resulting code more compact, at the cost of a tiny loss in runtime performance which may

even be optimized away by the C compiler. (Experiments have shown that function calls with

simple bodies { which this construction induces { are usually copied into inline code by optimizing

C compilers.) All this is possible because of precc's declarative semantics. An expression may be

substituted by a name for the expression anywhere in the text without altering the semantics.

Why does the precc speci�cation need an indent(n,process) construct at all, when the concrete

syntax includes nothing of the sort? It is because the n spaces which appear to the left must be

remembered. The concrete syntax speci�cation drops these from the representation of succeeding

lines, showing only the relative indentation. Inserting them explicitly gives the concrete speci�cation

the shape

guardedchoice(n)

#
guarded:choice = boolean

t t . . . t t
| {z }

blank ? n

t t process
"
process(n+2)

and the precc guardedchoice(n) de�nition is to represent the construction starting with a boolean

in column n. The full precc speci�cation across the two lines has to include the n blank spaces

before the process part:

@ guardedchoice(n) = boolean $

@ blank ? (n+2) process(n+2)

and the whole lower line of this de�nition is replaced in the actual script by clause(n+ 2).

We may de�ne the higher order construction

@ indent(n,p) = blank ?n p(n)

because the pattern is frequently reused in the occam speci�cation. Note that `blank ?n' is the

precc syntax for `blank repeated n times', and a `?' without a following expression means ` repeated

zero or more times'. One example of the use of indent is in the de�nition of clause(n):

@ clause(n) = indent(n,process)

The script can be made even more
exible if required. The precc parser can allow process to start

beyond the mandatory two spaces farther to the right, and can compute any indentations to come

relative to the actual position in which process starts (although this
exibility is disallowed by the

standard occam language, perhaps because of the extra complexity of handling it). This may be

achieved by including

indented(n,p)

instead of p(n), and de�ning the indented grammars so that they detect any extra blanks and

incorporate them into the indentation count:

@ indented(n,p) = blank indented(n+1,p)

@ j p(n)

@ indent(n,p) = blank ?n indented(n,p)

There is some ine�ciency introduced here, because a malformed p following some blanks may

be (partially) scanned twice or more, but it may be considered worthwhile because of the extra

exibility in the acceptable syntax that it a�ords. There are also good reasons for inserting a test

into the speci�cation to ensure that n does not grow too large:

@ indented(n,p) = blank)n<80(indented(n+1,p) . . .

include "occam.h"

@ key(word) =)EMPTY(word)(

@ j h HD(word) i key(TL(word))

@ blank = quietblank :PRINTSPACE;:

@ quietblank = h ' ' i

@ whitespace = quietblank ?

@ somespace = quietblank whitespace

@ name = loweralpha+ digit ?

@ loweralpha = (islower) :printf("%c",$1);:

@ IF = key("IF")

. . .

Figure 4: The token de�nitions and actions.

This will prevent arbitrary indentations, which are not allowed by the occam folding editor in any

case. Nearly all the recursion in the parser is introduced by this one construction. Note that

the out-turned parentheses, which denote a parse-time test, may contain any valid C expression

returning a one-or-zero integer result, following the C convention for boolean values. There is a

danger of destroying the declarative semantics here, since C expressions may be used to implement

side-e�ects, but this possibility will only rarely be required, since the cost in terms of maintainability

is great. Side-e�ects may also be incorporated into parameters, since these may be arbitrary C

expressions too. But side-e�ects in actions (see below) attached to the parse can have only limited

e�ect on the parse itself, because precc discharges actions after parsing, not during, at the `cut'

points marked in the speci�cation script.

The concrete syntax and the precc speci�cation di�er in one �nal point. The precc speci�cation

allows each choice case in an IF statement to be preceded by an optional set of speci�cations. In

fact, the concrete syntax speci�es this too, but elsewhere, with the recursive alternate production:

choice = speci�cation choice

In this respect, precc is de�cient. All the production rules for a given target must appear

together, as alternates, or equivalent, in the one de�nition and cannot be scattered across a script,

or across several scripts. This is a necessary requirement for modularity and is good practice

anyway.

5 Tokenisation and actions

As mentioned above, the precc parser speci�cation includes a token module which acts as the

lexical analyzer to the rest of the parser. There is no need to use precc as its own lexer, but

there is no disadvantage in doing so either. The module consists of eight de�nitions of various

sorts of white space, one meta-production which helps with the recognition of keywords, and the

keywords themselves. This module illustrates the remaining parts of precc's language quite well.

The module is shown in Figure 4. All the other `terminals', like digit, were de�ned in the literal

section of the concrete syntax, and appear in the literal.y precc speci�cation �le.

The �rst point to note about this script is that any line which does not begin with an `@' is

passed through as unchanged C code, since precc scripts are literate in the sense of Donald Knuth

[13]. Thus the C preprocessor directives may be used to include �les. The occam.h �le contains

the de�nitions of the C macros EMPTY which tests for an empty string, HD which returns the head

of a non-empty string, and TL which returns the tail of a string.

Secondly, the C macros are quite valid as parameters to the grammatical rules, or as a boolean

test (inside the out-turned parentheses). But C macros and C code have a more important use, in

the actions which one can attach to a parser. The actions appear between colons anywhere in the

rule, and logically `occur' in a sequence corresponding to their positioning, just as yacc attached

actions do. The actions will be discharged whenever a cut point (`! ') is reached in the parse

speci�cation, and cuts disable backtracking.

The actions can make use of the synthetic attributes which are attached to each terminal and

non-terminal in a rule. Again, the syntax is exactly as in yacc (and thus is compatible for existing

users, although perhaps not ideal). `$1' refers to the �rst component of the sequence to the left of

the action, `$2' to the second, and so on. A value can be attached to the whole rule by assigning

it to `$$'. No assignments are made here, because this parser was only intended to generate a

tree representation, properly scoped with the block structure. Thus the loweralpha rule outputs

the character which is held as the $1 value using the C printf("%c",$1) library call. Precc has

to dive into the C expressions in order to translate these references, so it is not possible to hide

them within C macros, but otherwise $1, $2, etc may be treated like (volatile) C variables of an

integer type.

That character value was assigned by the default lexer, which placed it in the yylval variable

when precc requested a token. This is the standard mode for lexers generated by lex, and the

precc default lexer conforms to this de facto standard, even though it is noticeably less e�cient

than it might be (the fast way to pass tokens and values to precc is to write them directly, a line

at a time, into the yybuffer address that it presents). The

(islower)

expression is a predicate. It tests the incoming tokens using the C islower() library call. A

matching token will have its yylval value scanned and attached as the attribute of the (islower

) expression. In this manner, precc can handle arbitrary amounts of tokenizing itself without the

need for a separate tool like lex.

6 Trials

It proved possible to write the concrete occam syntax down as a precc speci�cation script directly

from the documentation, maintaining the same structure as the syntax document presented. It

took the author of precc about ten days of on-o� e�ort to get everything up and working.

The resulting script is remarkably readable, as may be observed from the portions presented

above. Inspection has nearly always been su�cient to clarify points of doubt about the parser's

behaviour, and on the one or two points where the debugger has been resorted to, it has turned out

to be remarkably easy to follow the precc semantics in action, because all the declarations in the

syntax script correspond to C functions of the same name in the compiled C code (unfortunately,

this has meant that one or two changes of name from the concrete syntax have been required {

there cannot be an int declaration, for example, because it clashes with the C type name), and

they are conserved over recompilations.

Much of the work was done on a portable PC, since the precc code is portable to any ansi-

compliant C programming environment. The precc compiler-compiler itself is `written' in self-

generated C code, so it ports across too. The resulting code also compiled at once when transferred

back to a networked, workstation environment, and the occam parser itself runs quite fast even

on the PC (although it took a while to discover that the PC only allocates 4Kbytes for the C call

stack by default).

Unfortunately a yacc occam parser was not available to the authors (and may be theoretically

problematic anyway, as previously discussed), so no direct comparison is possible. However, expe-

rience with the programming language Oberon-2 indicates that the speed of precc is comparable

or better than yacc; the input speci�cation is certainly more readable and compact, and therefore

should be more maintainable. [4, 6] contain further details.

7 Conclusion

Precc provides a balance of e�ciency and
exibility that may be useful for handling programming

languages that are not conveniently catered for by currently available compiler-compiler tools.

Surprisingly, these include many older languages, which were developed before the lex and yacc

tools became available and therefore made no special concessions to the LR(1) technology.

BNF-like descriptions, arranged in modules, may be provided to precc which then generates

C code for the parsing phase of a compiler or translator for the input language. Modules may

be recompiled separately and linked in incrementally. The description language both supports the

use of ordinary parameters, and meta-variables, which may hold the names of other grammar

descriptions.

As well as occam, precc has been successfully applied to the full de�nition of ansi COBOL 74

for use on the collaborative REDO project, which is concerned with reverse engineering of pro-

grams written in COBOL and other programming languages [14]. Here it is required to translate

the program to a higher-level form of representation in the �rst step towards re-engineering the

program. This project has also considered decompilation as well, thus allowing the possibility of

generating high-level programs from low-level object code [5, 3]. Precc is currently being used to

generate a practical decompiler-compiler in support of this technique.

For those interested, [4] and [6] include details of how to access a copies of precc for use under

Unix and MS-DOS.

References

[1] A.V. Aho and J.D. Ullman. Principles of compiler design. Addison-Wesley Publishing Company, 1977.

[2] J.P. Bowen. From programs to object code using logic and logic programming. In R. Giegerich and

S.L. Graham (eds.), Code Generation { Concepts, Tools, Techniques, Proceedings of the International

Workshop on Code Generation, Dagstuhl, Germany, 20{24 May 1991. Springer-Verlag, Workshops in

Computing, pp. 173{192, 1992.

[3] J.P. Bowen and P.T. Breuer. Decompilation. In H. van Zuylen (ed.), The REDO Compendium of

Reverse Engineering for Software Maintenance, chapter 9, John Wiley & Sons Limited, 1992. (To

appear)

[4] P.T. Breuer. A PREttier Compiler-Compiler: higher order programming in C. In Proc. TOULOUSE'92,

1992. (This volume)

[5] P.T. Breuer and J.P. Bowen. Decompilation is the e�cient enumeration of types. In M. Billaud et

al. (ed.), Journ�ees de Travail WSA'92 Analyse Statique, BIGRE 81{82, IRISA-Campus de Beaulieu,

F-35042 Rennes cedex, France, pp 255{273, 1992.

[6] P.T. Breuer and J.P. Bowen. A PREttier Compiler-Compiler: Generating Higher Order Declarative

Compiler-Compilers in C. Technical Report PRG-TR-20-92, Oxford University Computing Laboratory,

Programming Research Group, 1992. (Submitted to Journal of Functional Programming)

[7] P. Deussen and L.M. Wegner. A bibliography of the van Wijngaarden grammars. Bulletin of the

European Association of Theoretical Computer Science (EATCS), 6, 1978.

[8] J.A. Goguen and T. Winkler. Introducing OBJ3. Technical Report SRI-CSL-88-9, SRI International,

Menlo Park, California, USA, August 1988.

[9] D. Grune. How to produce all sentences from a two-level grammar. Information Processing Letters,

19, pp. 181{185, 1984.

[10] C.A.R. Hoare, He Jifeng, J.P. Bowen and P.K. Pandya, An algebraic approach to veri�able compiling

speci�cation and prototyping of the ProCoS level 0 programming language. In Directorate-General of

the Commission of the European Communities (ed.), ESPRIT '90 Conference Proceedings, Brussels

pp. 804{818, Kluwer Academic Publishers B.V., 1990.

[11] INMOS Limited. Occam 2 reference manual. Prentice Hall International Series in Computer Science,

1988.

[12] S.C. Johnson and M.E. Lesk. Language development tools. The Bell System Technical Journal, 57(6)

part 2, pp. 2155{2175, July/August 1978.

[13] D.E. Knuth, Literate programming, The Computer Journal, 27(2), pp. 97{111, May 1984.

[14] K.C. Lano and P.T. Breuer. From programs to Z speci�cations. In J.E. Nicholls (ed.), Z User Workshop,

Oxford 1989, pp. 46{70, Springer-Verlag, Workshops in Computing, 1990.

[15] The Oxford Dictionary of Quotations. 3rd edition, Oxford University Press, 1979.

[16] D. Weber-Wul�. A (vW)-grammar for concrete PL0 syntax and parser correctness. ESPRIT BRA

3104 ProCoS project document [Kiel DWW 2/2], Christian-Albrechts Universit�at zu Kiel, Germany,

May 1990.

[17] D. Weber-Wul�. Proven correct front-end speci�cation. In B. von Karger (ed.), Compiler Development,

chapter 5. In ESPRIT BRA 3104 Provably Correct Systems ProCoS Draft Final Deliverable, volume 3,

October 1991. (Available from Dept. of Computer Science, Technical University of Denmark, Building

344�, DK-2800 Lyngby, Denmark)

[18] L.M. Wegner. On parsing two-level grammars. Acta Informatica, 14, pp. 175{193, 1980.

