
Supporting User-Centered Design of Adaptive User
Interfaces Via Interface Models

Angel R. Puerta
Stanford University

251 Campus Drive – MSOB x215
Stanford, CA 94305-5479 USA

+1 650 723 5294
puerta@smi.stanford.edu

http://www.smi.stanford.edu/projects/mecano

ABSTRACT
Model-based development is an emerging technology for
the design and specification of interfaces from declarative
interface models. Key benefits of this technology are: (a)
centralization of all knowledge and data for an interface
design in a single representation: the interface model, (b)
definition of a user-centered interface development
software cycle, (c) architectural support for multiple types
of design-time and runtime tools based on the interface
model representation, (d) rational visualization of
abstract and concrete elements of an interface design, and
(e) a framework for the incorporation of decision support
tools to aid the design process. In this paper, we
introduce the key conceptual terms in this technology
along with the architecture and the development cycle of
Model-Based Interface Development Environments.
Furthermore, we survey the state-of-the-art in the field,
illustrate the application of the paradigm with an
example from the logistics domain, and critically analyze
the impact of the technology on creating effective user
interfaces and on the future of software development.

Keywords
Model-Based Interface Development, Interface Models,
User-Interface Development Tools

THE PARADIGM OF MODEL-BASED INTERFACE
DEVELOPMENT
The User Interface is a central element of any modern
application program, one that often determines how well
end users accept, learn, and efficiently work with entire
systems. User Interface software is not only relatively
large and complex, but also difficult to design, to
implement, and to modify. Over the years, a number of
User Interface Software Tools (see box #1 in appendix),
have been created to aid developers in building
interfaces. The trend in these tools is toward the use of
ever more complex interface primitives. We have been
moving from having to program the behavior of a slide
bar to be able to create complete interfaces by picking
self-contained interface elements from a palette, and
arranging them into a desired layout.

Unfortunately, current user interface tools continue to fail
in one important aspect. Whereas there is wide consensus
that the usability and acceptance of an interface are much
improved whenever a user-centered design methodology
is applied, these tools offer instead a developer-centered
environment for interface design. Therefore, in these
environments there is ample support for using and
managing widgets, organizing and arranging layouts,
and testing prototype interfaces. However, there is little
or no support to answer key questions in any user-
centered design, such as how are the widgets in a given
dialog box used to accomplish the intended user tasks.
Those questions can be answered only in the designer’s
head or via loosely connected documents.

In this paper, we introduce an emerging technology for
user-centered design called model-based interface
development (see box #2 in appendix). The basic idea of
the model-based approach is that the development of a
user interface can be supported in a comprehensive
manner by representing all relevant aspects of a design
using declarative interface models. This paradigm offers
a number of key benefits:

• User-centered development cycle. Developers are able
to design interfaces in a structured manner from
abstract objects such as user tasks.

• Centralized interface design knowledge. Abstract
elements of an interface model, such as user tasks and
domain objects, share a representation language with
lower level objects, such as widgets and mouse clicks.
Therefore, a framework is created where all types of
elements in interface models can be related among
themselves. This makes it easier to, for example,
determine and visualize how a given widget in an
interface affects the completion of a user task.

• Design reuse. The availability of complete interface
designs in a declarative form allows the reuse,
indexing, and processing of designs for new
applications.

• Client-server framework. An interface model defines a
client-server framework for user-interface software

tools. Design tools of various types, such as model
editors, design critics, decision support facilities, or
automated interface generators can coexist in a single
environment by communicating via a server: the
interface model.

• Runtime functions. Usability functions and other run-
time user-support activities can be linked to a
declarative model. This feature enables tool-based
analysis and decision support for these activities.

A typical architecture of a model-based development
environment is shown in Figure 1. The interface model
acts as a central repository of knowledge about an
interface design. Developers access and modify the
interface model via tools offering a variety of functions
and levels of automated support. The tools may also
utilize additional knowledge bases about design
guidelines and principles to operate on the interface
model or to provide advice to the developer. An interface
model may be transformed into an executable interface
specification. This specification includes a coupling
mechanism with application-specific code to deliver a
final application.

In the rest of this paper, we will first introduce the
software development cycle for model-based systems. We
will illustrate the principles and use of model-based
technology via an example. Then, we will survey the
state-of-the-art of the technology and assess its
capabilities and limitations. Finally, we will discuss the
improvements that model-based technology brings to user
interface design now and its potential for impact on the
future of interface development.

Application Development
Environment

Interactive
Development

Tools

Design Assistants

Design Critics

Model Editors

Automated
Development

Tools

Layout Generators

Specification
Generators

Dialog Generators
Interface Model

Components

Design Relations

User Tasks Domain Objects

PresentationsDialogs

User Types

Knowledge Bases

Interface Guidelines

Styleguides

Executable Interface
Specification

Interface
Developer

End User

Application
Developer

Runtime System

Runtime Tools

Help Generator

Usability Analyzer
Application

Interface
Developer

End User

Figure 1. A generalized architecture for model-based
interface development environments.

BUILDING AN INTERFACE FOR THE LOGISTICS
DOMAIN
The concepts and principles of model-based interface
design are best understood in the context of an example.
In this section, we show how to design an interface for
the logistics domain using a system called Model-Based
Interface Designer (MOBI-D) [8].

MOBI-D is a precursor of an earlier model-based system
called Mecano [6], which generated automatically form-
based interfaces from domain models. MOBI-D
introduces several innovations to the model-based field:
(1) a metalevel modeling language that defines the
components, structure, and relations of interface models,
(2) the identification of design relations as an explicit
component of an interface model, which permits a formal
definition of an interface design in model-based systems
(see box #2), and (3) a philosophy of interface design
based on supporting the decision making of developers
and end users, as opposed to one of automatic generation
of interfaces prevalent in most previous model-based
systems, including Mecano.

The MOBI-D Development Cycle
Figure 2 shows the MOBI-D development cycle. All the
processes are fully interactive and may involve user
participation. The cycle is iterative in nature. Interface
design begins with the elicitation of the user tasks. An
interactive MOBI-D tool allows the user to enter a textual
description of the task. The tool elicits key terms such as
objects and actions and guides the user in editing and
refining the terms into a structured user task description.
Next, The developer takes this description and builds
user-task and domain models with MOBI-D model
editing tools. The models are then integrated so that
domain objects are related to the user tasks for which
they are relevant.

Presentation Design

Task-Domain Integration

Domain Modeling

User-Task Modeling

User Testing

User-Task Elicitation

Dialog Design

Figure 2. The interactive, user-centered development
cycle in MOBI-D.

The decision support mechanisms in MOBI-D use the
user-task and domain models to make recommendations
for presentation and interaction techniques. These rec-
ommendations are displayed to the developer to guide the
design and ensure that all task and data elements are
embodied in the interface. In effect, Mobi-D walks the
developer through the selection and layout of interface
components, providing for each subtask a choice of
optional components pre-configured for the task data. For
example, if the user must enter a number, Mobi-D
provides a choice of slider and text-entry widgets with
labels and range bounds suggested by the model. The
developer could select the slider, position it in the dialog
window, resize it and edit its label, color, etc. The
resulting interface is tested by the end-user.

The Sample Logistics Interface
We will use MOBI-D to design an interface that allows a
requisitions officer to select the best possible supply
sources for a given supply. The officer can view a list of
available suppliers and rank them according to a set of
criteria, such as how much surplus they have and how
quickly they can deliver. At any time, the officer can
select a supply source and evaluate the transportation
risks from source to destination. Once a supplier has been
established, the order can be placed either via e-mail or
by phone. This example is a subset of a much more
complex interface for this domain that is being developed
using MOBI-D.

Eliciting the User Tasks
One of the central activities of any user-centered design
is the construction of a user task model. This process
requires close collaboration between an end user, or
domain expert, and an interface developer. MOBI-D
involves the end user directly in the development of user
task models. Figure 3 (see appendix) shows two steps in
the elicitation phase. The end user first describes the task
informally not worrying how it may eventually be
converted into a computer model. Then, the end user
identifies key “actions” and “things” relevant to the task,
as shown in (a). Finally, in (b) with the help of the
developer, the end user has worked out an outline of the
user tasks.

The development of the task outline serves two purposes.
First, it establishes an organized channel of
communication between end users and developers. This
reduces the chances of misunderstood or incomplete
requirements. Second, it provides a software product that
can be used directly by the developer in the next phase.

User-Task and Domain Modeling
After a user-task outline is completed, the developer
starts interacting directly with MOBI-D to create user-
task and domain models for the interface design. An
skeleton of these models is read directly from the task

outline and is then refined by setting properties for each
subtask and domain object. Further consultation with the
end user is likely during this phase. The user-task and
domain models are the foundation of an interface design.
The decision support tools in MOBI-D provide
recommendations for presentation and dialog design
based on the structure and properties of these models.

Figure 4 (a) and (b) (see appendix) show views of the
user-task and domain models in the corresponding
MOBI-D editors. The editors are divided into three
panes. The top left pane shows the current model while
the bottom pane shows the properties for the selected
object. The top right pane lists prototype objects available
for use in the current model via a drag-and-drop
operation. An object from the current model can in turn
be made a prototype by dragging it into the top right
pane. Because the prototype objects are organized as
user-task or domain models, they can be saved separately
from the current model and then reused in a future
design.

Figure 4 (c) shows the integration of the user-task and
domain models that the developer has completed. When
a domain element is assigned to a specific user task, a
design relation is created. The set of all design relations
in an interface form an interface design in MOBI-D. The
user-task to domain element relations are later expanded
to include presentation and dialog elements. Because
these relations are stored explicitly in MOBI-D interface
models, a framework for the rational visualization and
reuse of interface designs is created.

Presentation and Dialog Design
The design of the presentation and dialog of an interface
in MOBI-D are parallel activities. Decision support tools
examine the user-task and domain models, along with
perhaps a set of interface guidelines, and make
recommendations for the widgets or interaction elements
(interactors) that should be used to complete each of the
subtasks in the user-task model. The developer, however,
can override any of the recommendations made and
choose different elements.

Figure 5 (see appendix) shows a snapshot of the process
of dialog and presentation design. The right side of the
window depicts the palette of interactors that MOBI-D
has arranged for the developer. The left side is the canvas
where the developer can drop and layout selected
interactors. MOBI-D steps the designer through each of
the subtasks in the user-task model and ranks available
interactors according to guidelines and to the type of data
that must be displayed by each interactor. The developer
is free to choose any of the available interactors. By
following this process, MOBI-D makes sure that each of
the user tasks defined in the user-task model is
appropriately displayed and completed in the resulting
interface.

Because of the clear connection between the presentation
and dialog design and the user-task and domain models,
MOBI-D facilitates obtaining input and advice from the
end user during this phase. The end user can better
visualize how each interactor relates to the task outline
built at the beginning of the development cycle, therefore
allowing informed decisions and a better understanding
of the impact of each interface element on the overall
task. When the interface design is completed, as shown
in Figure 6 (see appendix), the end user can test it and
again provide feedback in a way that is related to the
constructed interface model.

STATE-OF-THE-ART IN MODEL-BASED
DEVELOPMENT
Not surprisingly, the evolution of model-based interface
development environments has closely paralleled that of
interface models. We have moved from early abstract
models and application data models, to partial explicit
models, to current comprehensive ones. Throughout the
same period, we have seen an increased availability of
ever more complex interface primitives, from elementary
toolkit library components (e.g., a slide bar), to basic
textual or graphical editors, to prepackaged elements
such as ActiveX controls that can be used to construct
interfaces piecewise. The confluence of both factors:
comprehensive interface models and complex primitives
gives model-based development a solid foundation for its
paradigm. The technology is by nature limited in
applicability if it does not have rich interface models or
if, because there are no suitable primitives available, it
must model at a very low level of detail (i.e., almost to
the level of regular programming).

Early interface models were in essence abstract and
served the purpose of defining the components of and
interface and their functionality [5]. With few exceptions,
these models have no computational equivalent and were
utilized to guide the design of interfaces and of interface
development environments. One example of a system
based on an abstract interface model is L-CID [5], which
implements a model of an intelligent interface in a
blackboard architecture. L-CID was used to rapidly
prototype machine-learning based interaction techniques
for user interfaces.

Historically, the first type of explicit model that appears
in model-based interface development is the data model.
This model is borrowed directly from the data structures
defined by the application. It proved to be useful in
generating the widgets of an interface by matching data
types with widget types. Systems such as UIDE [1] and
Don [1] employed data models and applied some type of
layout algorithm to produce complete static interface
layouts. However, no specification of the behavior of the
interface could be obtained from the data models. Current

model-based environments typically use data definitions
as a subcomponent of their interface model.

Advances in software engineering allowed model-based
systems to move beyond simple data models. Thus,
systems started to utilize entity-relationship data models
(Genius [2]), enhanced data models (Trident [9]), or
object-oriented data models (FUSE [3]). Eventually, these
models lead to fully declarative domain models (Mecano
[6]) that could express effectively the relationships
among the objects in a given domain. As a consequence,
it was possible to generate automatically partial
specifications of the dynamic behavior of an interface
along with its static layout.

Though elaborate, domain models do not describe
semantic functions belonging to the application
functional core that are associated to objects in a domain.
For this purpose, an application model is introduced in
various forms by some model-based systems, including
among others UIDE [1], Trident [12], and Humanoid
[10]. The purpose of these models is to facilitate the
declaration of interface behavior. For example the UIDE
application model consists of application actions,
interface actions, and interaction techniques.
Parameters, pre-conditions, and post-conditions are
assigned to each action and then used to control the user
interface at runtime.

Application and domain models are considered partial
interface models because they are limited in scope and do
not cover all the relevant aspects of an interface design.
Naturally, other partial interface models have emerged
through the years. Most notably, these include user-task
models, dialog models, and presentation models. Of
these, the most crucial in supporting a user-centered
design philosophy is the user-task model. This model
describes the tasks that an end user performs and for
which interaction capabilities must be designed. It
typically involves elements such as goals, actions, and
domain objects. Goals specify when a desired state is
met, sequences of actions define procedures to achieve a
goal, and domain objects represent elements that must be
displayed in the interface to complete each task in the
model. ADEPT [15], FUSE [3], Tadeus [9], and Trident
[12] all embed various forms of task models. The user-
task model represents a significant advance in the model-
based development field. It establishes a methodology for
task-based design: the user-task model drives the
generation of alternative design solutions to support the
same interactive task. ADEPT provides an integrated
design support environment for this methodology.

A dialog model is used to describe the human—computer
conversation. It specifies when the end user can invoke
functions through various triggering mechanisms (e.g.
push button, commands) and interaction media (e.g.
voice input), when the end user can select or specify

inputs, and when the computer can query the end user
and present information. Many dialog models have been
investigated and showed evidence of success: dialog nets
(Genius [2], Tadeus [9]), attributed grammars (Boss [3]),
state-transition diagrams (Trident [12]), dialog templates
(Humanoid [10]). However, no consensus of an ultimate
dialog modeling technique has emerged.

The presentation model specifies how interaction objects
(or widgets) appear in the different dialog states. This
model generally consists of a hierarchical decomposition
of the possible screen displays into groups of interaction
objects. By definition, presentation and dialog models are
closely inter-related. This is why some model-based
development environments consider them together: ITS

[14] typically falls in this category by providing a style
library. A style is a coordinated set of decisions on
presentation and dialog used consistently throughout a
family of applications.

Other partial models that have been defined but that have
been seldom used in practice include platform models,
user models, and workplace models. In general, these
representations define the characteristics associated with
each of their target elements. Although recognized as
important, little software support has been developed for
interface design based on these models. In practice, many
of the characteristics of these representations are
subsumed into the presentation and dialog models of
some systems.

The wealth of partial interface models has eventually led
to current efforts to define comprehensive interface
models. This is the goal of systems such as MOBI-D [8]
and Mastermind [11]. In particular, MOBI-D has created
a metalevel modeling language to define the structure
and organization of interface models, and has defined a
specific component, called a design model, to specify in a
declarative manner the relations among all the various
elements of an interface model [7]. These comprehensive
interface models are the foundation to build effective
model-based interface development systems that support
a robust development cycle and a broad variety of
interface designs.

THE IMPACT AND FUTURE OF MODEL-BASED
SYSTEMS
There are a number of areas where model-based interface
development can significantly impact the way interfaces,
and consequently applications, are built. We examine
here some of those areas:

User-centered design. Model-based systems such as
MOBI-D establish a clear channel of communication
between the end user, the interface developer, and
between them and the interface design. Most importantly,
this communication is grounded on a computational
model with defined operators and software support. It is

precisely such a context that enables user-centered design
within a rational, well-connected methodology. In many
instances, user-centered design fails because of poorly
understood or weak connections between the task
analysis phase and the implementation phase. A model-
based environment can engage the end user in the
development process always keeping a rational view of
how design decisions affect user tasks.

Usability and user studies. The potential of the model-
based paradigm to provide support beyond the design and
development phases must not be underestimated. One of
the areas where this is particularly true is that of usability
and user studies. The design of experiments, collection of
data, and analysis of results can all be supported and
integrated via interface models. Thus, the actions of an
actual user during an interaction session can be mapped
precisely to a user-task model. Deficiencies in usability
can be corrected more efficiently by examining the
relations between user actions and the elements of an
interface model. In this manner, usability processes can
be integrated into the development cycle and offered
software support.

Model-based environments as advice tools. Recent and
future model-based environments promote the idea of
supporting interface design as opposed to automating it.
They should be thought of as a computer-aided design
tools, i.e. advice tools that provide assistance to designers
of interfaces: for each design option, the system proposes
accurate and reliable values by relying on design
knowledge. The recommendations, however, do not limit
the flexibility of the designer but rather organize the
decision making process of that designer. Throughout the
development cycle, the designer remains free to control
each step by deciding which is the right value for each
design option. Tedious or repetitious tasks, on the other
hand, are automated so that efficiency is increased.

Model-based technology and the Internet. As we
remarked earlier, one of the keys to the success of model-
based technology is the availability of interface primitives
that can be treated by the systems during interface design
as encapsulated objects with predefined functionality.
This feature makes model-based development
environments a particularly good fit for Internet-based
user interfaces that rely on elements such as Java applets
or ActiveX controls. The modularity of those elements
suggests a component-based framework for interface
development that model-based systems can exploit to
establish a methodology for distributed interfaces.

CONCLUSIONS
The model-based technology and the development cycle
established by MOBI-D address two current key problem
areas in user-interface development: (1) The need for
user-centered design environments, and (2) the lack of
comprehensive software systems that support all major

stages of development. Most of the shortcomings of
current user-interface software tools can be traced to one
or both of those problems. In contrast, MOBI-D
implements the model-based paradigm in a manner that
defines a clear life cycle for user-interface development
where user-centered design and end-user participation
are central elements. As we have seen, MOBI-D is the
most recent step in the evolution of model-based systems.
We expect that this technology will continue to evolve
and that it will play an important role in the future of
interface and application development.

ACKNOWLEDGMENTS
The work on MOBI-D is supported by the Defense
Advanced Research Projects Agency (DARPA) under
contract N66001-96-C-8525. David Maulsby has
contributed significantly to the design of the MOBI-D
tools. Our thanks to Eric Cheng, Kjetil Larsen, Justin
Min, and Chung-Man Tam for their work on the
development of MOBI-D.

REFERENCES
1. J.D. Foley, History, Results and Bibliography of the

User Interface Design Environment (UIDE), an Early
Model-based Systems for User Interface Design and
Implementation, Proc. of 1st Eurographics Workshop
on Design, Specification, Verification of Interactive
Systems DSV-IS’94, F. Paternó, ed., Focus on
Computer Graphics Series, Springer-Verlag, Berlin,
1995, pp. 3-14.
http://www.info.fundp.ac.be/~jvd/dsvis/dsvis94.html

2. C. Janssen, A. Weisbecker, and J. Ziegler,
 Generating User Interfaces from Data Models and
Dialogue Net Specifications, Proc. of the ACM
Conference on Human Factors in Computing Systems
INTERCHI'93, ACM Press, New York, 1993,
pp. 418-423.

3. F. Lonczewski and S. Schreiber, The FUSE-System:
an Integrated User Interface Design Environment, in
[16], pp. 37-56.

4. B.A. Myers, User Interface Software Tools, ACM
Trans. Computer-Human Interaction, Vol.2, No.1,
March 1995, pp. 64-103.

5. A. Puerta, The Study of Models of Intelligent
Interfaces, Proc. of the 1993 International Workshop
on Intelligent User Interfaces, Orlando, Florida, Jan
4-7,1993, ACM Press, pp. 71-78.

6. A. Puerta, Model-Based Automated Generation of
User Interfaces, Proc. of the Twelfth National
Conference on Artificial Intelligence, Seattle,
Washington, July 31 - August 4, 1994, MIT Press, pp.
471-477.

7. A. Puerta, The MECANO Project: Comprehensive and
Integrated Support for Model-Based Interface
Development, in [16], pp. 19-35.

8. A. Puerta, Management of Interface Design
Knowledge with MOBI-D, Proc. of the 1997
International Conference on Intelligent User
Interfaces, Orlando, Florida, Jan 6-9,1997, ACM
Press, (in press).

9. E. Schlungbaum and T. Elwert, Automatic User
Interface Generation from Declarative Models, in
[16], pp. 3-18.

10. P. Szekely, P. Luo, and R. Neches, Beyond Interface
Builders: Model-Based Interface Tools, Proc. of the
ACM Conference on Human Factors in Computing
Systems INTERCHI'93, ACM Press, New York, 1993,
pp. 383-390.

11. P. Szekely, P. Sukaviriya, P. Castells, J.
Muthukumarasamy, and E. Salcher, Declarative
Interface Models For User Interface Construction
Tools: The MASTERMIND Approach, in Engineering
for Human-Computer Interaction, Proceedings of
EHCI’95, L. Bass and C. Unger, eds., Chapman &
Hall, London, 1995, pp. 120-150.

12. J. Vanderdonckt and F. Bodart, Encapsulating
Knowledge for Intelligent Automatic Interaction
Objects Selection, Proc. of the ACM Conference on
Human Factors in Computing Systems INTERCHI'93,
ACM Press, New York, 1993, pp. 424-429.

13. J. Vanderdonckt, Computer-Aided Design of User
Interfaces, Proc. of CADUI’96, Presses
Universitaires de Namur, Namur, 1996.
http://www.info.fundp.ac.be/~jvd/dsvis/ cadui96.html.

14. C. Wiecha, W. Bennett, S. Boies, J. Gould, and S.
Green, S., ITS: A Tool for Rapidly Developing
Interactive Applications, ACM Trans. on Information
Systems, Vol. 8, No. 3, July 1990, pp. 204-236.

15. S. Wilson, P. Johnson, Bridging the Generation Gap:
From Work Tasks to User Interface Designs, in [16],
pp. 77-94.

APPENDIX
BREAK-OUT BOX #1: USER INTERFACE SOFTWARE
TOOLS
User interface software tools exist in a number of
different forms, but can be classified generally into two
main groups: Toolkits and higher-level development
tools.

Toolkits are libraries of primitive interface components,
such as menus, buttons, and scroll bars that can be called
by application programs. Toolkits tend to be tedious in
use because they may contain hundreds of procedures. It
is often not clear how to use the procedures to create a

desired user interface. The toolkits are designed to be
used by programmers.

Higher-level development tools, such as user-interface
management systems and interface builders, are built on
top of toolkits. They are primarily developer-oriented
although non-programmers may be able to utilized them
in a limited way. User-interface management systems
normally provide a special purpose language to specify
the user interface syntax (i.e. the sequences of input and
output actions), to make the user interface software
production process easier, and to allow non-programmers
to participate in the creation of a user interface. The
systems are not effective in capturing all the relevant
design knowledge of an interface. With an interface
builder, a developer specifies the components and layout
of a user interface through direct manipulation using a
palette of primitive interface elements. Interface builders
make it easy to specify the static layout of an interface.
However, the specification of user interface behavior is
not well supported.

Reference: B.A. Myers: User Interface Software Tools.
ACM Transactions on Computer-Human Interaction,
Vol.2, No.1, March 1995, pp. 64-103.

BREAK-OUT BOX #2: GLOSSARY OF KEY TERMS IN
MODEL-BASED DEVELOPMENT
Interface model
An interface model is a declarative representation of all
relevant aspects of a user interface, including the
components and design of that interface. It typically
embodies a number of interface objects at different levels
of abstraction: user tasks, domain elements,
presentations, dialogs, user types, and design relations.
These objects are normally organized into submodels
(e.g., a user-task model, or a presentation model).
Interface models are expressed via an interface modeling
language.

Interface modeling language
A language that defines the organization, components
and relationships of interface models. It is used to build
interfaces and interface designs.

Interface
An organized collection of interface objects.

Interface design
A set of relationships among interface objects in an
interface. It answers the question of how, for example, a
given widget relates to a dialog structure, to a
presentation scheme, to a domain element, and to a user
task.

Model-based interface development environment
A software environment that supports the creation of
interface designs under a specific interface modeling

language. Environment tools are typically grouped into
design-time tools, runtime tools, and runtime systems.

Design-time tools
The set of software tools that operates on an interface
model to build an interface design. They may be further
classified into interactive tools (e.g., a model-editor), or
automated tools (e.g., a layout generator).

Runtime tools
The set of software tools that use an interface model to
support end user activities, such as generation of
animated help or collection and analysis of usability data.

Runtime system
A system that takes an executable interface specification
generated from an interface model and allows
previewing, running, and testing of the interface. In some
model-based environments, these functions are provided
in an interpretative fashion (i.e., changes to the interface
model are immediately reflected by the runtime system).
In others, recompilation is needed to update the
executable interface specification.

(a)

(b)

Figure 3. Two steps in the user-task elicitation stage of MOBI-D.

(a)

(b)

Figure 4 (a) and (b). User-task and domain model editors in MOBI-D.

(c)

Figure 4 (c). Integration of user-task and domain models

Figure 5. Designing the presentation and dialog with MOBI-D.

Figure 6. The interface is now ready for user testing.

