LABORATORY FOR MASSACHUSETTS
INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TR-581

CACHE PERFORMANCE OF
GARBAGE-COLLECTED
PROGRAMMING LANGUAGES

Mark B. Reinhold

September 1993

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139



This blank page was inserted to preserve pagination.



545 w

Cambridge,

Mark B. Reinhold

Technical Report 581
S’ !’ y) !}H'.i!l!' lm




Copyright (© 1993, Massachusetts Institute of Technology. All rights reserved.

This report is a revised version of the author’s doctoral dissertation of the same
title, which was supervised by Professor John V. Guttag and submitted to the
Department of Electrical Engineering and Computer Science of the Massachusetts
Institute of Technology in August 1993.

This research was supported by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval Research under contracts
N00014-89-3-1988 and N00014-92-3-1795.

Author’s current address: NEC Research Institute
Four Independence Way
Princeton, NJ 08540
mbr@research.nj.nec.com



Abstract

As processor speeds continue to improve relative to main-memory access times,
cache performance is becoming an increasingly important component of program
performance. Prior work on the cache performance of garbage-collected program-
ming languages has either assumed or argued that conventional garbage-collection
methods will yield poor performance, and has therefore concentrated on new collec-
tion algorithms designed specifically to improve cache-level reference locality. This
dissertation argues to the contrary: Many programs written in garbage-collected
languages are naturally well-suited to the direct-mapped caches typically found in
modern computer systems.

Using a trace-driven cache simulator and other analysis tools, five nontrivial,
long-running Scheme programs are studied. A control experiment shows that the
programs have excellent cache performance without any garbage collection at all.
A second experiment indicates that the programs will perform well with a simple
and infrequently-run generational compacting collector.

An analysis of the test programs’ memory usage patterns reveals that the
mostly-functional programming style typically used in Scheme programs, in com-
bination with simple linear storage allocation, causes most data objects to be
dispersed in time and space so that references to them cause little cache inter-
ference. From this it follows that other Scheme programs, and programs written
in similar styles in different languages, should perform well with a simple gener-
ational compacting collector; sophisticated collectors intended to improve cache
performance are unlikely to be effective. The analysis also suggests that, as lo-
cality becomes ever more important to program performance, programs written
in garbage-collected languages may turn out to have a significant performance
advantage over programs written in more conventional languages.

Key words and phrases: Cache memories, dynamic storage management, garbage
collection, programming-language implementation, Scheme.



i







T K
R P N e




Acknowledgements

Without John Guttag’s enthusiasm, encouragement, and advice, my graduate ed-
ucation likely would have ended five years and one degree earlier. John frequently
saved me from sinking in a sea of too-detailed thoughts, usually by reminding me
to think about the big picture but, at least once, by simply insisting that it was
time to start writing. He brought the keen eye of an English major to my prose,
and proved an invaluable coach in the hunt for a research job. I learned much of
what I know about garbage collection while trying to explain it all to John; I hope
that I managed to teach him half as much about garbage collection as he taught
me about doing research.

Bert Halstead and Butler Lampson were ideal thesis readers, asking incisive
questions at just the right times. Helpful comments came from many others, includ-
ing Alan Bawden, Mark Day, Steve Garland, Daniel Jackson, David Kranz, Scott
Nettles, Nate Osgood, Jim O’Toole, Tim Shepard, Ellen Spertus, Raymie Stata,
Yang-Meng Tan, Mark Vandevoorde, Carl Waldspurger, and Jeannette Wing.

Several existing software systems were essential to this work. David Kranz
answered questions about the internals of the T system and helped me port ORBIT
to big-endian MIPS machines. Josh Guttman spent an afternoon demonstrating
IMPS and helped me get it running at MIT. Mark Hill provided his cache simulator,
TYCHO, which T used to validate my own cache simulator. Tom Simon contributed
the NBODY code.

This document was prepared with Donald Knuth’s TEX system, a source of
both programming frustration and typographical delight. The graphical style as-
pires to the standards set by Edward Tufte’s wonderful books on visual design;
most of the graphs were created with Jim Plank’s JGRAPH program.

Finally, I thank my dear friends in Bryn Mawr, for warm company and good
movies; my siblings, for making me laugh and making me think; and my parents
and grandparents, for giving me life and helping to make this work possible.

Arlington, Massachusetts MBR
September 1993
























































































































































































































