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Abstract

As processor speeds continue to improve relative to main-memory access times,
cache performance is becoming an increasingly important component of program
performance. Prior work on the cache performance of garbage-collected program-
ming languages has either assumed or argued that conventional garbage-collection
methods will yield poor performance, and has therefore concentrated on new collec-
tion algorithms designed specifically to improve cache-level reference locality. This
dissertation argues to the contrary: Many programs written in garbage-collected
languages are naturally well-suited to the direct-mapped caches typically found in
modern computer systems.

Using a trace-driven cache simulator and other analysis tools, five nontrivial,
long-running Scheme programs are studied. A control experiment shows that the
programs have excellent cache performance without any garbage collection at all.
A second experiment indicates that the programs will perform well with a simple
and infrequently-run generational compacting collector.

An analysis of the test programs’ memory usage patterns reveals that the
mostly-functional programming style typically used in Scheme programs, in com-
bination with simple linear storage allocation, causes most data objects to be
dispersed in time and space so that references to them cause little cache inter-
ference. From this it follows that other Scheme programs, and programs written
in similar styles in different languages, should perform well with a simple gener-
ational compacting collector; sophisticated collectors intended to improve cache
performance are unlikely to be effective. The analysis also suggests that, as lo-
cality becomes ever more important to program performance, programs written
in garbage-collected languages may turn out to have a significant performance
advantage over programs written in more conventional languages.

Key words and phrases: Cache memories, dynamic storage management, garbage
collection, programming-language implementation, Scheme.
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