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Chapter 1IntroductionLinear graph reduction is a simple computational model in which the cost of namingthings is explicitly represented. Names are costly because communication is costly,and names govern the way computational entities communicate. Linear graph reduc-tion can be used to model computational systems in order to expose the places wherethose systems use names in expensive ways.The key to the linear graph reduction approach to naming is the notion of linearity.Brie
y, a name is linear if it is only used once. With nonlinear naming you can createmore than one outstanding reference to an entity, but with linear naming you cannot.As a result, linear naming is cheaper to support than fully general naming, and it isalso easier to reason about.Programs can be translated into the linear graph reduction model such that linearnames in the program are implemented directly as linear names in the model. Non-linear names can be supported by constructing them out of the more primitive linearnames. We can choose to view this translation as either exposing nonlinearity, sincecertain telltale structures are created by converted nonlinear names, or as eliminatingnonlinearity, since the model itself is entirely linear. In either case, once a programhas been translated into the linear graph reduction model, many problems which areexacerbated by nonlinear naming become more tractable.To demonstrate the utility of the linear graph reduction model, I applied it ittwo di�erent areas. First, I used it to solve some practical problems in the con-struction of a distributed programming environment. By taking advantage of theproperties of linear naming I was able to build a distributed programming environ-ment in which cross-network references are cheap, and all data structures are highlyportable. Furthermore, the controlled linear naming mechanism facilitates the con-struction of heuristics that e�ectively migrate tasks and data around the networkwithout requiring explicit guidance from the programmer.Second, I used linear graph reduction to develop a new theoretical characterizationof the notion of state. System's in which state appears stand revealed as those whichdepend on certain global properties of the system. What we normally think of as stateis merely the way this property is perceived by the observers embedded in the system.State is not a phenomenon that can necessarily be localized, which suggests that ourusual object oriented programming language metaphor for state is 
awed.9



10 CHAPTER 1. INTRODUCTIONThe rest of this chapter introduces the notion of linearity and the linear graphreduction model and describes my two applications. Section 1.1 de�nes linearityand some related notions. Section 1.2 summarizes the current state of the art indistributed programming environments, and then describes how I used linear graphreduction to solve some fundamental problems in that area. Section 1.3 explains howI used linear graph reduction to investigate the origins of the phenomenon of state.1.1 Linearity1.1.1 What is it?Linearity1 is a property of names. A name is linear if it is only used once. Byextension, things that use names, such as expressions and programs, are linear if allof the names they use are linear. For example(define (shorter? x y)(< (length x) (length y)))is a linear Scheme [RC92] procedure because X and Y are both used exactly once.(For simplicity, assume that global identi�ers such as LENGTH and < are some kind ofconstant, rather than being ordinary names.)(define (length l)(if (null? l) 0 (+ 1 (length (cdr l)))))is nonlinear because L is used twice in the case where its value is nonempty. Notethat (define (f l x)(if (null? l) (x) (car x)))is linear because X is only used once (because only one arm of a conditional or casestatement is ever executed). In other words, it isn't syntactic occurrences of a namethat matter, it is the number of times that the name must be resolved during execu-tion.An interpreter could be written that checks for linearity by keeping a count foreach variable in every environment. Initially, each count is zero. Each time thevalue of a variable is retrieved, the associated count is incremented. If a count fora particular variable ever exceeds one, that variable is a nonlinear name. Variableswhose count never exceeds one are linear names.Notice that this de�nition of linearity has little to do with the familiar meaningof \linear" from algebra.2 The procedure1Whenever I de�ne a new term I will set it in bold type.2But see the discussion in section 1.1.2.



1.1. LINEARITY 11(define (discriminant a b c)(- (expt b 2) (* 4 a c)))computes a nonlinear function over the numbers, but it ful�lls our de�nition of alinear procedure because the names A, B and C are all used exactly once in its body.Similarly(define (double x)(+ x x))computes a linear function in the algebraic sense, while the procedure de�nition isnonlinear because the name X is used twice.A data structure is just a bunch of names bundled together, so a data structureis linear if everything that manipulates it uses those names linearly, and if the struc-ture itself is only manipulated once. This is really just the dual of the observationpreviously made about conditional and case statements. Imagine gathering up all thepieces of code that manipulate instances of the given structure and assembling theminto a giant case statement that dispatches on the operation that is to be performed.3If we treat not only identi�ers, but also accesses to structure components as names,then if that case statement is linear we will say that the original data structure waslinear.A reference is a low-level name|examples are memory addresses and networkaddresses. A nonlinear reference is a reference that can be freely duplicated. Mostfamiliar references are nonlinear. In contrast, a linear reference is a reference thatcan not be duplicated. If all names in a program are linear names, then all thereferences manipulated at run-time can be linear references.Linear graph reduction (which is described completely in chapter 2) is a graphreduction system in which the reduction rules are linear. In a graph reduction sys-tem edges are references, so for a graph reduction system to be linear means thatthe number of edges incident to a given vertex cannot change as a result of graphreduction (e.g. if a vertex is created with 3 incident edges, it will have 3 incidentedges throughout its lifetime).This is in contrast to typical graph reduction systems where the number of edgesincident to a vertex can change during the vertex's lifetime. In such systems theedges are directed, and it is the number of inbound incident edges that can change.In particular, the number of inbound edges is normally allowed to grow withoutbound.Since the all reduction rules in a linear graph reduction system are linear, itfollows that the vertices are linear data structures in the sense de�ned above. Weare guaranteed that at all times, all structures only have edges connecting them to a�xed number of other structures.3In e�ect, convert the program into the object oriented style of Scheme programming found in[AS85].



12 CHAPTER 1. INTRODUCTIONIt is possible to translate an arbitrary computer program into a set of rules fora linear graph reduction system. (The complete translation process for a particularwell-known language is described in chapter 3.) In the process of this translation,something must be done in order to implement nonlinear names that appear in theprogram, using only linear reductions and linear vertices. Fortunately, it proves pos-sible to build structures that support the behavior of nonlinear names. Importantly,it proves possible to do this in a way such that the linear names are implementeddirectly in terms of edges (the native reference mechanism in the linear graph reduc-tion model). This translation process thus \squeezes out" the nonlinearities in theoriginal program, exposing them to view.Another important di�erence between linear graph reduction and most traditionalgraph reduction systems is the way vertices are used. Traditionally graph reductionhas been used to represent the process of normalizing an expression, and so ver-tices typically correspond to expressions taken from the program. In linear graphreduction, we use vertices to represent the familiar data structures found in a typicalprogramming language implementation: records, stack frames, closures, lists, num-bers, etc. The working graph directly represents the state of such an implementationcaptured at a particular point in time. The linear reduction rules model the changesthat occur in the state of the implementation as the computation evolves.1.1.2 Why is it called \linearity"?It may not be immediately obvious why I have chosen to call this property \linearity".In a dictionary, the �rst sense given for \linear" is typically something likeof, relating to, resembling, or having a graph that is a straight line,which is obviously the original meaning of the word, but an additional sense is usuallygiven asof the �rst degree with respect to one or more variables.This second sense represents a fact that mathematicians discovered about functionswhose graph satis�es the �rst sense of the word: Linear functions can be written asexpressions (using only the operations + and � ) in which the relevant variable isonly used once. As a result of this discovery, the de�nition of linear has expanded toinclude this syntactic property.44The de�nition of linear also now includes other consequences of the original de�nition of theword. For example, a function T satisfying relations likeT (x+ y) = T (x) + T (y)T (a � x) = a � T (x)is said to be linear|even though the domain and range of T may be such that it makes little senseto draw a graph of T in order to see if it resembles a straight line.



1.1. LINEARITY 13It is the syntactic property alone that I have in mind when I use the word linear.None of the other senses apply (at least in any way that I have been able to discover).Note that by itself the syntactic property is still enough to prove that compositions oflinear expressions are linear. Substituting a linear expression for every occurrence ofa variable in another linear expression always results in a linear result. This kind ofproof works equally well for the linear functions from algebra as it does for my linearprogramming language expressions.1.1.3 Why is linearity important?The key to the importance of linearity is the observation that nonlinear naming canbe used to create more than one outstanding reference to an entity|and this can beexpensive. As long as an entity is only referred to through linear names, there canonly be one place in the system that refers to it, but as soon as nonlinear names areused, references can multiply. Furthermore, in all traditional programming languagesthis is the only way references can multiply; unnamed entities, such as continuationsand the intermediate values produced during the evaluation of expressions, are onlyreferenced from one location throughout their lifetimes.When references proliferate, many things can happen that would otherwise beimpossible. In general, we must pay some price in order to prepare for these additionalpossibilities. Here are three examples that will play roles of varying importance inthe rest of this dissertation:Garbage collection. In the absence of multiple references, the storage manage-ment problem is easy to solve: The storage associated with an entity can be freed the�rst time it is used, because the �rst time must also be the last time. A garbage col-lector only becomes necessary when nonlinear names allow the references to entitiesto multiply.Programming language implementors have traditionally taken advantage of thisfact in order to stack allocate continuations. Most programming languages don'tprovide a mechanism for naming continuations. In those languages a continuationis only ever referenced from a single location at a time; it is either the \current"continuation, or it is referenced from some more recent continuation. Once such acontinuation is used, it may be immediately discarded.In programming languages that provide a mechanism for naming continuations,such as Scheme [RC92] and Common Lisp [Ste90], allocating continuations on a stackno longer works in all situations. (Common Lisp's approach to this problem is to justallocate continuations on the stack anyway, and then write the resulting limitationsinto the language de�nition.)Distributed computing. In the absence of multiple references, there are no com-munications bottlenecks. If entities refer to each other using only linear names, each



14 CHAPTER 1. INTRODUCTIONentity can only be known about by one other entity. When that single outstandingreference is �nally used to communicate with the entity, that will necessarily be thereference's last use. So the �rst message received will also be the only message re-ceived. There is never any need to worry that a large number of messages may arrivein a short time and swamp the local communications facilities. Indeed, the receiverdoes not even need to continue to listen after the �rst and �nal message arrives.As with garbage collection, implementors are already taking advantage of thisin the case of continuations. When implementing remote procedure calls [BN84] acontinuation is a link between two network locations that will eventually transportsome answer back to the caller. Since a continuation can only be used once, there isnever any need to devote any resources to maintaining that link after the completionof its single intended use.This connection between nonlinear naming and the complexity of communicationsin a distributed environment will be central to both chapter 4 and chapter 5.Side e�ects. In the absence of multiple references, side e�ects are impossible.Again, this results from the inability to use an entity more than once without us-ing nonlinear naming. In this case the notion of side e�ect simply makes no senseunless you can interact with the same entity at least twice. You need to be able toperform one operation that supposedly alters the state of the entity, followed by asecond operation that detects the alteration.This observation will play a central role in chapter 6, where the phenomenon ofstate will be examined.Of course we don't want to give up the language capabilities that make garbagecollection necessary, or that make communications bottlenecks possible, or that allowside e�ects; I am not advocating a \linear style" of programming analogous to the\functional style" of programming. It is practical to program in a functional style,but linearity is too restrictive to ever in
ict it directly on programmers.5 There aretimes when multiple references to the same entity are exactly what the programmerneeds. For example, a communications bottleneck may be a small price to pay inreturn for the ability to share some valuable resource.Fully general naming is a powerful tool. We want to be able to use that powerwhenever we need it. But we don't want to pay for it when we aren't using it. Infact, as many of the examples that follow will demonstrate, typical programs arelargely linear. Most objects are named linearly most of the time. By implementingnaming such that we only pay for nonlinear naming when we actually use it, we canmake the common case of linear naming much cheaper. This is why it is importantthat the translation of a program into linear graph reduction rules implements thelinear names from the program directly in terms of the linear references (edges) in5Although in [Baw84] I did advocate exactly that. I have since come to my senses.



1.1. LINEARITY 15the graph|if those edges are kept cheap, then linear names in the original programwill be cheap.1.1.4 Why not just use �-calculus?�-calculus is a simple model of naming that has traditionally been used in the studyof programming languages. Why can't the study of linear naming be carried out using�-calculus? The problem is that �-calculus itself exhibits the phenomenon we wishto study. �-calculus lets you write an identi�er as many times as you like. �-calculusitself makes no distinction between linear names and nonlinear names.For many purposes, this property of �-calculus is an advantage. For example,a computer's memory system supports nonlinear naming|a computer's memory iswilling to accept the same address over and over again|which conveniently allows acompiler to implement the high-level names from �-calculus directly in terms of thelow-level names from the memory system.This property is what makes translating a program into \continuation-passingstyle" [Ste76, Ste78] an e�ective technique for a compiler. This translation exposesthe unnamed intermediate values and continuations necessary to execute the pro-gram by turning them into explicitly named quantities. This simpli�es working withthe original program by reducing all reference manipulation to the named case. Inparticular, since the memory system supports essentially the same model of naming,compiling the continuation-passing style �-calculus into machine language is relativelysimple.As it happens, all the names introduced when a program is translated into con-tinuation-passing style �-calculus are linear. But nothing in the �-calculus explicitlyrepresents this fact. For this reason it can be argued that the translation has actuallyhidden some important information, since some quantities that were previously onlyreferenced through a special case linear mechanism are now referenced through thegeneral nonlinear naming mechanism.Compiler writers that use continuation-passing style are aware of this loss of ex-plicit information. They generally take special pains to be sure that the compilerstack-allocates continuations (at least in the common cases). See [KKR+86] for anexample. In e�ect they must work to recover some special case information aboutlinearity that the translation into continuation-passing style has hidden.The translation of a program into the linear graph reduction model is closelyanalogous to the translation into continuation-passing style �-calculus. It too ex-poses things that were previously implicit in the program. In addition to exposingcontinuations and intermediate values, it also exposes nonlinear naming. This expo-sure comes about for analogous reasons: just as continuation-passing style �-calculusdoes not support intermediate values and continuations, the linear graph reductionmodel doesn't support nonlinear naming.



16 CHAPTER 1. INTRODUCTION1.2 Application to distributed computingIn order to demonstrate the power of exposing nonlinearity, I went in search of apractical problem that could be solved using this tool. Distributed computing pre-sented itself as the obvious choice because it is an area in which naming problems areparticularly acute. In a distributed environment, the user of a name and the namedentity itself may be separated by the network, a situation which creates problems notpresent in purely local naming.In this section, I will brie
y review the state of the art in distributed computing,discuss some of the problems currently being faced, and then explain how I appliedlinear graph reduction to solve those problems.1.2.1 The state of the artThe remote procedure call (RPC) is well established as a basis for distributed com-puting [BN84]. If what is needed is a single interaction with some remote entity, andif the nature of that interaction is known in advance, then RPC works well. RPCachieves a nice modularity by neatly aligning the network interface with the procedurecall interface.RPC provides a su�cient basis for constructing any distributed application, butperformance can become a problem if the pattern of procedure calls does not representan e�cient pattern of network transmissions. Problems are caused by the fact thatevery RPC entails a complete network round trip. For example, reading a series ofbytes is naturally expressed as a sequence of calls to a procedure that reads a bu�erfull of bytes, but performance will be unacceptable if each of those calls takes thetime of a network round trip. A network stream (such as a TCP connection [Pos81])will achieve the same goal with much better performance, but it is very di�cult toduplicate the way a stream uses the network given only RPC. I will call this the\streaming problem".Additional problems are caused by the fact that the result of an RPC is alwaysreturned to the source of the call. For example, suppose a task running on networknode A wants to copy a block of data from node B to node C. The natural wayfor A to proceed is to �rst read in the data with one RPC to B, and then writeit out with a second RPC to C. The total time spent crossing the network will be4T , where T is the \typical" network transit time.6 The data itself will cross thenetwork twice|once from B to A and again from A to C. Clearly the same job couldbe accomplished in 3T using more low-level mechanisms: �rst a message from A toB describes the job to be done, then a message from B to C carries the data, and�nally a message from C to A announces the completion of the job. Again, it is very6Each RPC call takes 2T , T for the call to travel from caller to callee, and T for the reply toreturn. See [Par92] for a good presentation of the argument why ultimately T is the only time worthworrying about.



1.2. APPLICATION TO DISTRIBUTED COMPUTING 17di�cult to duplicate this behavior given only RPC. I will call this the \continuationproblem".The streaming problem can be solved in a variety of ways. For example, the RPCand stream mechanisms can be combined to allow call and return messages to bepipelined over the same communications channel. In order to take full advantage ofthis pipelining, the originator needs to be able to make many calls before claimingany of the returns. Some additional linguistic support is required to make such \call-streams" as neatly modular as simple RPC [LBG+88, LS88].In many cases the streaming problem can be solved by migrating the client tothe location of the data, instead of insisting that the data journey to the client.Consider the case where the individual elements of the stream are to be summedtogether. Instead of arranging to stream the data over the network to the client,the holder of the data is sent a description of the task to be performed; it thenruns that task and returns the result to the client. This is almost like RPC, exceptthat an arbitrary task is performed remotely, rather than selecting one from a �xedmenu of exported procedures. This requires some language for describing that task tothe remote site. Typical description language choices are Lisp or PostScript dialects[FE85, Par92, Sun90].Neither of these techniques is a fully general solution to the performance problemsof pure RPC. In particular, neither addresses the continuation problem, since bothtechniques always insist on returning answers directly to the questioner. The contin-uation problem could be solved by using a variant of RPC where the call messageexplicitly contained a continuation that said where to send the answer. In the exam-ple above, a continuation that named A as the place to send the answer would bepassed in a call message from A to B; then B would send the data to C in a second(tail-recursive) call message that contained the same continuation; �nally C wouldreturn to that continuation by sending a return message to A.In addition to performance problems, there is another shortcoming shared by RPCand all the improvements described above: They all require the caller to specify thenetwork node where the next step of the computation is to take place. The callermust explicitly think about where data is located. It would be much better if thiswas handled automatically and transparently, so that the programmer never had tothink about choosing between remote and local procedure call. Instead, tasks anddata would move from place to place as needed, in order to collect together theinformation needed for the computation to progress.While RPC aligns the network interface with the procedure call interface it failsto unite the network naming system with the programming language naming system.To bring about such transparency, the references manipulated by the system mustuniformly capture the network location of the referent. Such references cannot besimple pointers, since sometimes the relevant information will be local, and othertimes it will be remote. Using such a reference will necessarily require that these twocases be distinguished. This leads naturally to the slightlymore arm's length approach



18 CHAPTER 1. INTRODUCTIONto references that is characteristic of object oriented programming. An example ofthis is the way \ports" are used as universal references in Mach [YTR+87].1.2.2 A uni�ed approachAll of the various improvements on simple RPC based systems are heading in rea-sonable directions. Eventually these developments, and others like them, may becombined to build e�cient, location transparent, distributed programming environ-ments. But the journey down this road will be a di�cult one until distributed systemarchitects recognize that all of the problems have something in common: They areall ultimately naming issues. Speci�cally:� Solutions to the streaming problem all require mobility of either tasks or data,and mobility is di�cult because it puts pressure on the way entities can nameeach other. Anyone who has ever �led a forwarding address with the post o�ceunderstands how mobility interacts badly with naming systems.� The continuation problem is a result of the way the typical implementation ofRPC fails to explicitly name continuations.� The lack of location transparency is a de�ciency in the naming scheme used forobjects in the distributed environment.In all three cases, the root of the problem is that implementors are reluctant to em-brace fully general naming schemes for remotely located objects. Implementors avoidsuch naming because nonlinear naming can be expensive to support in a distributedenvironment, although in fact linear naming is the common case (for example, linearnaming is all that is ever needed to solve the continuation problem) and linear namingcan be supported quite cheaply.Thus, by using linear graph reduction as the basis for a distributed programmingenvironment, all of the problems discussed in the last section can be addressed at once.The basic strategy is to compile programs written in a familiar programming languageinto the linear graph reduction model, and then execute them on a distributed graphreduction engine. I have constructed such a system|its detailed description makesup the body of this dissertation. In the rest of this section I will describe how thisapproach solves the problems identi�ed above.At run-time, the vertices in the working graph will be parceled out to the variousnetwork nodes that are participants in the distributed graph reduction engine. Recallthat these vertices function as stack frames (continuations), records, numbers, proce-dures, etc., and the edges that join them function as the references those structuresmake to each other. Some edges will join vertices held at the same location, and otheredges will cross the network. As the working graph evolves due to the application oflinear reduction rules, it will sometimes prove necessary tomigrate groups of verticesfrom place to place.



1.2. APPLICATION TO DISTRIBUTED COMPUTING 191.2.3 Continuations and location transparencyThe continuation problem will be solved because in the linear graph reduction modelall data structures refer to each other using the same uniform mechanism (edges).So in particular, continuations will always be explicitly referred to by other entities.In more implementational terms, stack frames will be linked together just as anyother data structures are linked together|there will be no implicit references tocontinuations such as \return to the next thing down on the stack" or \return tothe network entity who asked you the question". A reference to a continuations thatresides on a di�erent network node will be represented in the same way as a referenceto any other remote object.Importantly, since continuations are always manipulated linearly, these referencesto remote continuations will always be cheap. There will never be any need to deploythe additional mechanism necessary to allow there to be multiple references to acontinuation.Location transparency will also be a consequence of using a uniform representationfor all references. Since all references are the same, we can allow the names used in ourprograms to be implemented directly in terms of these references. This will keep thelocations of all entities completely hidden from view in the programming language.In other words, a uniform representation for references allows us to align the networknaming system with the programming language naming system.Linearity facilitates these solutions by minimizing the cost of adopting a uniformrepresentation for references. We could have achieved the same results using nonlinearreferences|at a price. As long as the nonlinear references to local and remote entitieshad the same representation, and as long as continuations were referenced explicitly,we would have solved the continuation problem and achieved location transparency.These nonlinear references would be di�cult, but not impossible, to maintain acrossthe network.However, as I will demonstrate in (almost painful) detail in chapter 4, cross-network linear references are very simple and easy to maintain. This is a direct resultof the fact that linear references cannot be duplicated. Supporting linear referencesfrom remote locations to a local entity is easy because you only need to worry aboutthe whereabouts of one outstanding reference. If that reference ever becomes local,then all network resources devoted to maintaining the reference can be easily dis-carded. If the referenced entity needs to move to a new location, only that singlereference needs to be tracked down and informed of the new location.1.2.4 The streaming problem, demand migration and tasksCheap linear references also play a role in solving the streaming problem. Recall thatthe streaming problem is an instance of the more general problem of mobility: a taskis separated from the data it wants to manipulate next, and so either the task orthe data must be migrated. Since both task structures and data structures contain



20 CHAPTER 1. INTRODUCTIONreferences to, and are referenced by, other entities, using linear references makes bothtasks and data easier to migrate.But that doesn't directly address the issue of which structure to migrate. Shouldwe migrate the data to the task, or the task to the data? Nor does it address themuch harder problem of selecting what to migrate and what to leave behind. If wedecide to migrate a list, should we send the elements of that list along for the ride?If we send a stack frame, what structures directly referenced from that stack frameshould accompany it? Should we also include the next stack frame down?These wouldn't be problems if we simply reverted to the current state of a�airs,where the programmer must explicitly specify everything about a migration. Buthaving successfully hidden the network from the programming language level so far,it would be a shame to surrender at this point. Fortunately, linearity can be usedin a di�erent way to solve this problem as well. The solution is closely analogous tothe way demand paging works to implement virtual memory. When it becomes clearthat a migration must take place, we will handle this \fault" by using some simpleheuristics to select a set of vertices to migrate. Just as demand paging satis�es a pagefault by bringing more words into memory than are strictly necessary to relieve thefault, we will migrate additional vertices beyond those that are immediately needed.This process will be called demand migration.In demand paging, the heuristic is to read in words adjacent to the one thatcaused the fault. This works well because of the property commonly called \locality":addresses referenced in the recent past tend to be close to addresses that will bereferenced in the near future. Using exclusively linear structures enables us to makeanalogous predictions about what structures will need to be close to each other in thenear future, so we can avoid future separate migrations (\faults") by migrating thosestructures together.The migration heuristics work by combining the limited and controlled nature oflinear references with some simple compile-time analysis of the set of linear graphreduction rules. Precisely how this works will be explained in chapter 5, but the basiccontribution made by linearity is to make it easy to know when one entity (A) makesthe only reference to another entity (B). In such a case, if A is de�nitely going tobe migrated, then it is likely that migrating B is a good choice. This observationsimpli�es the problem enough that a few heuristics are able to make migration choicesthat are close to optimal.In fact, the heuristics are so good that they are able to reconstruct the intuitivenotion of a \process" or \task", even though the linear graph reduction model itselfsupports no such notion. Intuitively a task is some locus of ongoing activity alongwith all of the data structures that are directly related to supporting that activity.In other words, a task is exactly the right thing to treat as a unit when migratingthings around a network.In order to take full advantage of programming in a distributed environment, thereneeds to be some mechanism for getting more than one task running at the same time.



1.3. APPLICATION TO THE PROBLEM OF STATE 21For this purpose I have chosen the FUTURE construct as found in MultiLisp [Hal84].(Futures have a particularly elegant implementation in the linear graph reductionmodel.) We will see that the migration heuristics work well at spotting the lineargraph structure that properly \belongs" to the various tasks created when usingfutures, and so the system will be able to migrate those tasks separately around thenetwork. All this from a model that has no native notion of task to begin with.1.2.5 ResultsIn a distributed environment, parts of an evolving computation can become separatedfrom each other. A fundamental problem is bringing these parts back together againwhen the appropriate time arrives. This is precisely what naming is for. We namethings that we are not currently interacting with so that we may track them downlater and interact with them then. Thus, we should expect that something that claimsto be an improved way to think about naming should �nd application in distributedcomputing.Linear graph reduction passes this test. My implementation demonstrates howproper attention to linearity can make cross-network references cheap, can supporthighly mobile data structures, and can facilitate heuristics to e�ectively migrate taskson demand without explicit guidance from the programmer.1.3 Application to the problem of stateAs a second demonstration of linear graph reduction, I will present (in chapter 6) anexamination of the phenomenon of state. In this context, linearity yields an importantinsight rather than immediately practical bene�ts.Most treatments of state start with some primitive elements that support state andthen study mechanisms used to combine those elements in ways that keep the statewell behaved [GL86, SRI91]. My approach di�ers in that I will be creating entitiesthat support state out of nothing. Then a careful examination of the conditionsnecessary for state to emerge will reveal the essence of what state is really all about.Understanding that essence will reveal why the usual approaches to state sometimesgo awry. The rest of this section outlines my approach to state and summarizes theresulting insight.The �rst problem we will face is the lack of a satisfactory preexisting de�nitionfor \state". Typically state is taken to be a property that can be localized to speci�centities|some entities have state and other entities are \stateless"|but as our goal,in part, is to discover whether or not state can be localized, we cannot adopt such ade�nition. Instead, state will not be de�ned at all initially, and we will rely on an ap-proach that pays careful attention to the perceptions of the entities in a computationalsystem. That is, we will examine systems in which some components perceive state inother components. Later, armed with a successfully characterized those systems, we



22 CHAPTER 1. INTRODUCTIONwill be able to supply a de�nition for \state". (This entire enterprise can be viewedas a search for this de�nition.)This is a subtle approach, and it is interesting to consider how it is that thelinear graph reduction model suggested it. Using linear references makes it muchclearer where the boundary lies between a base-level computation and a meta-levelcomputation that manipulates or reasons about it. A linear reference to an entity inthe base-level computation can be held by another base-level entity, but for that samereference to be held by some meta-level entity would imply (because of linearity) thatno base-level entity can be holding that reference. This clearly reveals a confusion oflevels and suggests that some other independent reference mechanism is required forthe meta-level to name the entities in the base-level. Since state is perceived throughthe references to an entity, this suggests that state as perceived from the meta-levelmay not be the same as state perceived from within the base-level. We restrict ourattentions to base-level perceptions because this is the viewpoint that our programsactually possess.At this point in the dissertation we will have seen many examples of linear graphreduction systems in which various components perceive state. We will, for example,have seen the Scheme primitive SET-CAR! implemented in linear graph reductionterms. So by then the reader will have no trouble seeing that all such systems sharetwo common characteristics:� They are all nondeterministic. That is, they all require sets of graph reductionrules in which the outcome of a computation can depend on the order in whichrules are applied.� They all require linear graph structure that contains cycles.These observations, especially the observation of cycles, will motivate us to take anapparent digression into the formal mathematical properties of linear graph structure.In particular we will study homomorphisms between linear graphs as a tool that willenable us to examine local vs. global properties. Then we will prove some theoremsabout the actions of linear graph reduction rule sets when applied to graphs that havethe same local structure but di�erent global structure.At this point I will pull a rabbit out of my hat, for it turns out that linear graphreduction systems that are sensitive to the global structure of the system (in a certainwell-de�ned way) must be nondeterministic and must exhibit cycles|precisely thesymptoms observed empirically in systems that experience state. This implies thatwhat is really going on when the components of a system experience state is that thesystem as a whole has this kind of global sensitivity. I claim that this is how stateshould be de�ned. What we normally think of as state is merely the expression ofa global property of a system in the perceptions of the observers embedded in thatsystem.This insight can be applied to a number of di�erent problems to suggest newapproaches to their solution. Perhaps the most promising is in the area of program-



1.4. OUTLINE 23ming language design. Characterizing state in these global terms reveals that theusual programming language metaphor for managing state, the notion of a mutable\objects", contains a 
aw|state is not something that can necessarily be assigned asingle location, state is more of a global tension between a number of entities. Giventhis clearer understanding of what state is all about, we can hope to develop betterprogramming language constructs that more accurately match state's true nature.No such programming language constructs, or other practical derivatives of thisinsight into state, have been developed. So far this new perspective remains a surpris-ing and subtle curiosity. This is in contrast to the distributed linear graph reductionengine, which is a quite straightforward demonstration of the practical advantages ofthinking about linearity. I believe, however, that in the long run this characterizationof the phenomenon of state will prove to be the more important result.1.4 OutlineChapter 2 describes the linear graph reduction model itself, and describes the generalprinciples used whenever linear graph reduction is used as a model to expose linearity.It also introduces the notation used throughout the rest of the dissertation.Chapter 3 is the �rst of three chapters that describe the distributed program-ming environment. It describes the compiler used to translate a Scheme programinto linear graph reduction rules. This chapter should leave the reader with a solidunderstanding of how linear graph reduction can support all familiar programminglanguage constructs.Chapter 4 describes the basic network protocol used to support the distributedlinear graph reduction engine. In this chapter we will see the �rst example wherelinearity has a tangible bene�t. Because it only supports linear naming, the protocolis quite simple and light-weight. This chapter can be skimmed by people who arescared of networks.Chapter 5 describes the algorithms and heuristics used by the individual agentsthat make up the distributed reduction engine. In a second example of a bene�tderived from linearity, these agents use some linearity-based heuristics to furtherimprove the communications behavior of the execution of the program.In chapter 6 linearity is used to examine the phenomenon of state. It develops aninteresting and potentially useful characterization of systems in which state occurs.This chapter only requires an understanding of the the material up through chapter 3.This chapter can be skipped by people who are scared of higher mathematics.Chapter 7 puts this work in context by comparing it to other related (and notso related) work on naming, programming languages, distributed computing, graphreduction, and state. This chapter also discusses future directions that research intolinearity can explore, and it summarizes what I feel are the most important contri-butions of this work.
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Chapter 2Linear Graph ReductionThis chapter introduces the abstract linear graph reduction model. The �rst sectiondescribes a static structure called a linear graph. The second section describes thelinear graph grammar, which is a collection of reduction rules that can be appliedto a linear graph to cause it to evolve. The third section describes a simple andconvenient textual representation for these structures that will be used throughoutthe rest of this dissertation. The �nal section is a brief introduction to the ways inwhich linear graph reduction can be applied to real problems to expose linearity.2.1 Linear graphsIntuitively, a linear graph is similar to the topological structure of an electronic circuit.An electronic circuit consists of a collection of gadgets joined together by wires.Gadgets come in various types|transistors, capacitors, resistors, etc. Each typeof gadget always has the same number and kinds of terminals. A transistor, forexample, always has three terminals called the collector, the base, and the emitter.Each terminal of each gadget can be joined, using wires, to some number of otherterminals of other gadgets.A linear graph di�ers from a circuit chie
y in that we restrict the way terminalscan be connected. In a linear graph each terminal must be connected to exactly oneother terminal. (In particular, there can be no unconnected terminals.)Symmetrical gadgets are also ruled out. Some gadgets found in circuits, such asresistors, have two indistinguishable terminals. In a linear graph all the terminals ofany particular type of gadget must be distinguishable.Some convenient terminology: The gadgets in a linear graph are called vertices.The type of a vertex is called simply a type, and the terminals of a vertex are calledterminals. The wires that join pairs of terminals are called connections. Thenumber of terminals a vertex has is its valence.The type of a terminal is called a label. Thus, associated with each vertex typeis a set of terminal labels that determine how many terminals a vertex of that typewill possess, and what they are called. For example, if we were trying to use a lineargraph to represent a circuit, the type Transistor might be associated with the three25
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car cdrFigure 2-2: A Nonlinear Graphlabels \collector", \base", and \emitter".Given a set of types, each with an associated set of labels, we can consider theset of linear graphs over that set of types, just as given a set of letters called analphabet, we can consider the set of strings over that alphabet. Figure 2-1 shows alinear graph over the two types Transistor and Cons, where type Cons has the threeassociated labels \car", \cdr", and \" (the empty string). This example is a singlelinear graph|a linear graph may consist of several disconnected components.Figure 2-2 is not an example of a linear graph; the \" terminal of the Cons vertexis not connected to exactly one other terminal. The restriction that terminals bejoined in pairs is crucial to the de�nition|it is what makes the graph \linear".2.2 Linear graph grammarsA linear graph grammar is a collection of reduction rules called methods. Eachmethod describes how to replace a certain kind of subgraph with a di�erent subgraph.If the linear graphs over some set of types are analogous to the strings over somealphabet, then a linear graph grammar is analogous to the familiar string grammar.In a string grammar the individual rules are fairly simple, consisting of just anordered pair of strings. When an instance of the �rst string, (the left hand side) is
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28 CHAPTER 2. LINEAR GRAPH REDUCTIONusing linear graph grammars as a model of computation we will have no need of thenotion of a generated language. Furthermore, only one kind of method will appear inthe linear graph grammars described below: methods whose left hand side consists ofexactly two vertices joined by a single connection. Figure 2-3 is an example of sucha binary method. There will never be any need for a method whose left hand sidecontains a cycle, more than one connected component, or other than two vertices.2.3 Graph expressionsGraph expressions are a textual representation for linear graphs that are moreconvenient than the pictures we have used so far. As an example, here is the graphexpression for the graph in �gure 2-1:(graph ()(<Cons> 0 car:1 cdr:1)(<Cons> 0 car:2 cdr:3)(<Transistor> collector:3 base:2 emitter:4)(<Cons> 5 car:4 cdr:5)(<Transistor> collector:6 base:7 emitter:8)(<Transistor> collector:6 base:8 emitter:7))A graph expression super�cially resembles the S-expression representation usedfor �-abstractions. A graph expression is written as a parenthesized list whose �rstelement is the word \graph". The second element is an ordered list of loose ends,and the rest of the elements represent the vertices. Each vertex is written as aparenthesized list whose �rst element is the type of the vertex, and rest of whoseelements are the vertex's terminals. A type is written by enclosing its name betweenangle brackets. Each terminal is written as a label and an index separated by acolon. (If the label is the empty string, then the colon is omitted.)The indices specify how the vertices are connected together. Each index corre-sponds to one connection. An index thus appears in the graph expression exactlytwice, once for each of the two terminals the connection joins. If one or both of theends of a connection are loose ends, then the index appears once or twice in the listof loose ends at the beginning. Indices are typically small non-negative integers, butthe values chosen are arbitrary. Indices are only meaningful within a single graphexpression.In order to generate the graph expression from a linear graph, start by picking anindex for each connection. Each of the two ends of a connection is either joined toa terminal, or it is dangling loose. For each connection attach its index to the twothings at its ends. Every terminal and every loose end now has an attached index,and every index has been attached to exactly two things. The graph expression isconstructed by (1) reading o� the indices attached to the loose ends, and (2) visitingeach vertex and reading o� the indices attached to its terminals.



2.4. MODELING REAL SYSTEMS 29In order to generate a picture from a graph expression, start by drawing all thevertices listed, without drawing any connections between them. Pick a point foreach loose end indicated in the graph expression. Now consider the indices one at atime. Each index will occur exactly twice in the graph expression. Draw a connectionbetween the corresponding two points.A method is written as an ordered pair of graph expressions. The two graphexpressions must have the same number of loose ends. The ordering of the loose endsdetermines the correspondence that is to be used when the method is applied. Thusthe method in �gure 2-3 is written as follows:(graph (0 1 2 3)(<Cons> 0 car:1 cdr:4)(<Transistor> collector:2 base:4 emitter:3))(graph (0 1 1 2)(<Cons> 2 car:0 cdr:3)(<Cons> 4 car:3 cdr:4))With a little practice, it isn't di�cult to read graph expressions directly, butinitially the reader may �nd it helpful to draw the graphs by hand to help visualizethem.2.4 Modeling real systemsLinear graph reduction can be used to model real computational systems by using lin-ear graphs to represent data structures, and using methods to encode algorithms. Theprecise details of how the modeling is done may vary from application to application,but there are some common ideas that are set forth in this section.The basic idea is to translate the program to be executed into a linear graphgrammar|a collection of types and methods. This is di�erent from the originalcombinator model [Tur79] where the program becomes a graph, and the set of vertextypes and reduction rules are �xed from the start.1 All of the properties of theprogram must be encoded somehow in a set of methods.The fact that applicable methods are selected nondeterministically means thatordering constraints in the program must be satis�ed by ensuring that methods onlybecome applicable in the desired order. Typically this is done by having one methodintroduce a certain vertex type into the graph that appears in the left hand side ofanother method. This ensures that the second method can only run after the �rstmethod, since the �rst method must produce a vertex of that type before the secondmethod can consume it. In e�ect, the program counter is represented as the presenceof one of a selected set of vertex types in the working graph.1In some more evolved combinator implementations the compiler does introduce new vertex typesand reduction rules [Pey87].



30 CHAPTER 2. LINEAR GRAPH REDUCTIONA more important problem than representing the sequentiality required in theinput program is representing the nonlinearity it requires. Linear graph reductionitself is linear|the connections that hold the graph together are constrained to behavein a linear fashion (a connection joins a terminal to exactly one other terminal),and methods are de�ned to preserve that property. Thus, when data structuresand algorithms are built from linear graphs and methods, the nonlinear parts of thealgorithms will have to be expressed in terms of more primitive linear elements.2.4.1 Representing linear structuresRepresenting linear data structures is generally quite straightforward. The basic ideais that objects traditionally represented using N -component record structures areinstead represented using vertices of valence N + 1. The extra terminal, called ahandle, is used as a place for other vertices to connect to. So, for example, wherea pointer would be installed in the jth component of record structure A pointing torecord structure B, a connection is made from the jth terminal of vertex A to thehandle terminal of vertex B. (Handle terminals are usually given the empty string astheir label.)All attributes of an object other than its references to other objects are encodedusing the type of the vertex. Integers, for example, make no references to other ob-jects; their only attribute is their numerical magnitude. Thus an integer is representedas a univalent vertex, and each integer is given its own unique type.2Representing nonlinear data structures requires some additional mechanism. Thisis, of course, the goal of this entire exercise. Because we are using a representationthat supports linear data structures directly, but that allows nonlinear structures tobe built explicitly when necessary, the nonlinearities in the original program will beexposed.2.4.2 Representing nonlinear structuresThe exact mechanism used to represent nonlinear structures varies, but it is alwaysbased on the vertex types Copy and Drop. When the program requires a referenceto an object to be duplicated, a trivalent Copy vertex is attached to the object'shandle terminal by its target terminal. The other two terminals of the Copy vertex,labeled a and b, are then available to be used in place of the original handle terminal.As more and more copies of the original reference are made, more and more Copy2This may seem like an excessive number of types to introduce in such an o�hand manner, butthis profusion of types is only for the convenience of the abstract model, and does not translate intoany ine�ciencies in any actual implementation. Note that the notion of vertex type has nothingto do with the notion of data type or variable type encountered in typed programming languages.That notion of type is actually more closely related to the labels placed on the terminals in a lineargraph.
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Figure 2-4: A Copy treevertices accumulate in a tree between the users and the object they wish to reference.Figure 2-4 shows an example of such a tree.Similarly, when the program wishes to discard a reference, it attaches that refer-ence to a univalent Drop vertex. To make Drop work properly in combination withCopy, the following two methods are always assumed whenever both types are in use:(graph (0 1)(<Drop> 2)(<Copy> target:0 a:2 b:1))(graph (0 0))(graph (0 1)(<Drop> 2)(<Copy> target:0 a:1 b:2))(graph (0 0))These methods ensure that if a reference is duplicated, and then one of the copies isdiscarded, the graph will return to its original state. (Methods for balancing the treeof Copy vertices are not needed.)Since the users of an object are no longer directly connected to it, it is more di�cultfor them to interact with the object|some additional protocol must be employed.There are basically two techniques that are used, depending on whether the objector the users take responsibility for handling the situation. The object at the apex ofthe tree can take responsibility by reacting to the Copy vertex by somehow makinga suitable copy of itself. For example, numbers will usually react by duplicatingthemselves as follows:



32 CHAPTER 2. LINEAR GRAPH REDUCTION(graph (0 1)(<Copy> target:2 a:0 b:1)(<Number 9> 2))(graph (0 1)(<Number 9> 0)(<Number 9> 1))Alternatively, the users at the fringe of the tree can take responsibility by climbingup the Copy tree to the object at the apex, using methods similar to these two:(graph (0 1 2 3)(<Car> target:4 tail:2 cont:3)(<Copy> target:0 a:4 b:1))(graph (0 1 2 3)(<Car> target:0 tail:4 cont:3)(<Copy> target:4 a:2 b:1))(graph (0 1 2 3)(<Car> target:4 tail:2 cont:3)(<Copy> target:0 a:1 b:4))(graph (0 1 2 3)(<Car> target:0 tail:4 cont:3)(<Copy> target:4 a:1 b:2))These methods permit a Car vertex to climb up through a tree of Copy vertices toreach the object at the apex. Figure 2-5 shows a Car vertex in the process of makingsuch a journey; after the �rst method above is applied, the Car vertex arrives at theapex of the tree, as shown in �gure 2-6. (Note how the cont terminal is being carriedalong for the ride.)Vertex types, such as Car in this example, which climb through Copy trees inthis fashion are called messages. The two terminals of a message that are used toperform this climb are customarily labeled target and tail, just as they are above.Usually some mix of these two techniques is used to cope with the Copy trees in-troduced by nonlinearities. Small objects, such as numbers, will duplicate themselves,while large objects will respond to messages that know how to tree-climb.2.4.3 Representing objects with stateMessages that tree-climb are also the usual technique used for supporting objects thathave state. For example, the Car message just introduced may interact with a Consvertex using a method like the following:
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Figure 2-5: A Car message in transit

Copy

target

ba
Copy

target

ba

Copy

target

ba

Copy

target

ba

Cons
cdrcar

Car

tail

target

cont

Copy ba

target

Figure 2-6: The Car message arrives



34 CHAPTER 2. LINEAR GRAPH REDUCTION(graph (0 1 2 3)(<Car> target:4 tail:2 cont:3)(<Cons> 4 car:0 cdr:1))(graph (0 1 2 3)(<Cons> 2 car:4 cdr:1)(<Copy> target:0 a:3 b:4))This method returns a copy of the car of the Cons to the continuation object (pre-sumed to be attached to the cont terminal of the Car vertex), and also replaces theCons vertex at the apex of the tree. A similar tree-climbing Set Car message allowsa Cons to be mutated using this method:(graph (0 1 2 3 4)(<Set Car> target:5 tail:2 cont:3 new:4)(<Cons> 5 car:0 cdr:1))(graph (0 1 2 0 4)(<Cons> 2 car:4 cdr:1))This method returns the old car of the Cons to the continuation object, and replacesthe Cons vertex at the apex of the tree with one whose car terminal is connectedto the replacement value (previously attached to the new terminal of the Set Carvertex).Both of the last two methods use a particular protocol for returning a value to thecontinuation object. The choice of continuation protocol is important, and will beexamined in more detail in later chapters; for the moment I have chosen to employ asimple protocol where a continuation is simply attached directly to the return value.It is clear from this example that tree-climbing messages are a fully general proto-col that allows the graph structure at the apex of a Copy tree to react in an arbitraryway to the messages that are funneled up to it. Just how arbitrary this behavior canbe is illustrated by the following example:(graph (0 1 2 3)(<Abracadabra> target:4 tail:2 cont:3)(<Cons> 4 car:0 cdr:1))(graph (0 1 2 3)(<Drop> 0)(<Drop> 1)(<Nil> 2)(<True> 3))Here we have an Abracadabra message that changes a Cons into an empty list! Thisis not something that can occur in an ordinary Lisp implementation,3 where the typeof an object is not something that can be mutated.3Although beginning Lisp students sometimes wish that it could|especially when they are �rstintroduced to the DELQ function.



2.4. MODELING REAL SYSTEMS 35Notice that the Copy tree serves to serialize the messages that arrive at the apex.Choices made about which methods to apply while messages are climbing up the treewill determine the order that those messages arrive at the top.It may seem surprising that you can create side e�ects with something as simpleas linear graph reduction. Other forms of graph reduction are not generally creditedwith this ability. Actually, this has little to do with the nature of graph reductionitself; it is an artifact of how graph reduction is generally viewed as an e�cient wayto perform expression reduction. Here, we are taking a di�erent view, where graphreduction is used to model the data structures that implementors build to supportprogramming languages, rather than modeling the expressions that theorists use tothink about programming languages.2.4.4 Representing input/output behaviorAt some level, something other than graph reduction must take place in order to causecharacters to appear on a terminal. Fortunately, it is possible to avoid confrontingsuch low-level issues directly. Instead, we simply imagine that some other part of thegraph is responsible for performing primitive I/O, and concentrate on how we interactwith it. (This is similar to the way most modern programming languages supportI/O facilities. Instead of providing I/O directly, they specify an interface to a libraryof I/O procedures.)This approach to I/O has an interesting consequence for the linear graph reductionmodel. It means that subgraphs can be discarded if they get disconnected from theparts of the graph that are connected to the I/O facilities. The reason for this isthat no matter what methods may apply to such a subgraph, it can never becomereconnected,4 and thus it is unable to e�ect the output of the computation.Since disconnected components can be discarded from the working graph at run-time, they can also be discarded from the right hand sides of methods to avoidintroducing them in the �rst place. When we compile linear graph grammars forexecution on real hardware, this will be an important optimization. (See section 3.3.)Discarding disconnected components is similar in spirit to conventional garbage col-lection.This completes the introduction to linear graph reduction. A thorough familiaritywith linear graph reduction and especially with the modeling techniques introducedin this section will be assumed in the following chapters. I therefore encourage youto take some time out now to play with some simple grammars and with modelingvarious kinds of data structures.4This is a consequence of the fact that the left hand side of a binary method is connected. Ifmethods with disconnected left hand sides were allowed, then reconnection, and all kinds of othernon-local e�ects, are a possibility.



36 CHAPTER 2. LINEAR GRAPH REDUCTIONYou should resist the temptation to make up new kinds of methods. Only binarymethods will be needed in the following chapters.A good problem is to design a collection of methods that implement a combinatormachine. The challenge comes from the fact that both the S and K combinators arenonlinear: Sxyz ) xz(yz)duplicates the value z, and in Kxy ) xthe value y is discarded. Using Copy trees, as described above, is the obvious solution,but other solutions are also possible.



Chapter 3Compiling SchemeIn the next three chapters I will present a practical implementation of a distributedlinear graph reduction engine. This system allows a programmer to program in astandard sequential programming language (Scheme [RC92]), which is then compiledinto a linear graph grammar, and executed collectively by several processors commu-nicating over a network. The goal of building this system was to demonstrate howlinear graph reduction keeps the implementation simple and e�cient, and allows somepowerful new techniques to be applied to the problems of distributed execution.This chapter explains how Scheme is compiled into a linear graph grammar. It isabout how to correctly capture the semantics of standard Scheme using linear graphstructure and methods. It is not about how to design a programming language thattakes full advantage of being based on linear graph reduction.Chapter 4 describes the fundamental network protocol and data structures usedto maintain distributed linear graph structure. The fact that connections are moreconstrained than full-
edged pointers keeps this protocol cheap and fast.Chapter 5, describes the distributed linear graph reduction engine. It describesthe behavior of the individual agents that hold the vertices that make up the workinggraph. Agents exchange vertices through the network and they apply methods tothe subgraphs composed of the vertices they currently possess. Agents decide whichvertices to migrate, when to migrate them, and who to migrate them to, by using asimple model of the expense of interagent connections.Chapter 4 and chapter 5 are kept distinct because they describe two di�erentways in which linearity is important to the system. Chapter 4 demonstrates how datastructures that only name each other linearly are cheap to support in a distributedenvironment, where traditional non-linear naming mechanisms would be burdensome.Chapter 5 shows how linearity can be further exploited to make decisions aboutmigrating tasks and data in order to make distributed execution more e�cient.Scheme was chosen as the source language as an example of a typical sequentialprogramming language. Scheme is a lexically scoped, call-by-value dialect of Lisp.Scheme is described in [RC92]. Like most other Lisp dialects Scheme is \mostlyfunctional", which means that Scheme programs are mostly written in the functionalsubset of the language|only occasionally are imperative features used. Scheme is alsodeterministic; in particular it makes no concessions to the possibilities of concurrent37



38 CHAPTER 3. COMPILING SCHEMEexecution.In theory FORTRAN or C could have served instead of Scheme (we will not berestricted to the functional subset of Scheme) but since it turns out that functionalconstructs are much more straightforward to compile, a language that is mostly func-tional makes a better choice for expository purposes.Sticking to a purely sequential deterministic programming language fails to demon-strate a number of interesting things about distributed linear graph reduction. Apurely sequential program calls for only a single action to take place at a time; asequential program describes only a single task. Thus, even in a distributed envi-ronment there will only be a single locus of activity|although that locus may moveif the task must migrate in order to access some remote resource. In order to getthings executing concurrently, we need to extend Scheme with some kind of parallelprogramming construct. Fortunately, there is a fairly well-known Scheme extension,the FUTURE special form [Lie81, Hal84, Mil87], that can meet our needs.Of course I didn't have the time to make this a truly complete Scheme imple-mentation. There are many data types, procedures and special forms missing. Inprinciple these missing pieces can all be supplied. One missing piece that you shouldnot be fooled into thinking is a signi�cant omission is the SET! special form. Usingthe technique of assignment conversion [KKR+86] any program that makes use ofassignment statements can be transformed into one that uses mutable objects, suchas CONS-cells, instead. Since I have implemented mutable CONS-cells, I could havedone assignment conversion as well. However, this would probably double the size ofthe current small compiler, so in the interest of simplicity I left it out.3.1 Vertex types for the Scheme run-timeThis section describes the vertex types used by the Scheme run-time world. Many ofthe techniques used by these types were introduced in section 2.4.The vertex types described in this section can be classi�ed according to the hi-erarchy shown in �gure 3-1. This hierarchy will double as the outline for the rest ofthis section.3.1.1 ObjectsAn object is a vertex used in the way ordinary data structures are used in a tra-ditional Scheme implementation. Recall the technique introduced in section 2.4: anN -component aggregate data structure becomes an N +1 terminal vertex, where theextra terminal serves as a handle for users of the object to connect to. The handleterminal is always given the empty string as its label.The following object types are built in to the Scheme run-time system:
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constructors operatorsFigure 3-1: Run-time vertex typesType LabelsCons \", \car", \cdr"Continuation \", \cont"Sum \", \left", \right"Difference \", \left", \right"Product \", \left", \right"Equal? \", \left", \right"Less? \", \left", \right"Greater? \", \left", \right"In addition, the compiler makes more object types as a result of translating the user'sprogram (see section 3.2).All object types have a method for the case where a Drop vertex is connected tothe object's handle. For example, here is the method for the Cons type:(graph (0 1)(<Cons> 2 car:0 cdr:1)(<Drop> 2))(graph (0 1)(<Drop> 1)(<Drop> 0))Similar methods exist for all of the other types in the table above, as well as for allthe compiler-produced object types.Object types speci�cally do not have a method for when a Copy vertex is connectedto the object's handle. Instead, the Copy vertices are allowed accumulate into a tree,with the object vertex at the apex. The message climbing technique described insection 2.4.2 is used to communicate with such vertices. (See also the message typesdescribed in the next section.)



40 CHAPTER 3. COMPILING SCHEMEThe type Cons is used to implement Scheme CONS-cells. Additional methods,described below, support the Scheme procedures CAR, CDR, SET-CAR!, SET-CDR!, andNULL?.The type Continuation is used by the CALL-WITH-CURRENT-CONTINUATION pro-cedure for the continuations that it creates. The cont terminal of a Continuationis connected to a \raw" continuation of the kind generally produced by the compiler.This is explained in more detail in section 3.1.3.1.The types Sum, Difference, Product, Equal?, Less?, and Greater? are used toimplement arithmetic. In order to perform addition, subtraction, multiplication orcomparison, one connects the values to be added, subtracted, multiplied or comparedto the left and right terminals of a Sum, Difference, etc.Of course, simply building a tree that represents the arithmetic to be performedisn't very satisfactory when one wants to compute an actual numeric answer, so theScheme run-time behaves as if methods such as(graph (0 1)(<Sum> 0 left:2 right:1)(<Number x> 2))(graph (0 1)(<Sum x> 0 right:1))and (graph (0)(<Sum x> 0 right:1)(<Number y> 1))(graph (0)(<Number (x+ y)> 0))were de�ned for all numbers x and y. These methods make trees of arithmetic oper-ators and numbers simplify into numbers (or to the boolean values True and Falsein the case of the comparison predicates).This simpli�cation proceeds in parallel with the evaluation of the rest of theprogram. This parallelism must not be exposed to the programmer if the sequentialsemantics of Scheme are to be faithfully reproduced, so the compiler will be careful toconstruct vertices such as Sum at exactly the moment when the sequential semanticscalls for an addition to take place.A useful way to think about this is to imagine that a vertex of a type like Sum isitself a number, so the act of constructing such a vertex is equivalent to performing anaddition. The simpli�cation process merely converts one kind of number into anothermore convenient kind of number.This arithmetic-by-construction-and-simpli�cation scheme is by no means the onlyway arithmetic could have been implemented. Its advantage is that the compileris very good at compiling calls to constructors (because ultimately it must express



3.1. VERTEX TYPES FOR THE SCHEME RUN-TIME 41everything in terms of constructing graph structure), so treating calls to + in the sameway as calls to CONS results in much simpler generated code (i.e. fewer methods). Ithas the practical disadvantage that the arithmetic simpli�cation process may notproceed quicky enough to avoid a \dragging" phenomenon similar to that sometimesexperienced by \lazy" evaluation strategies (see [Pey87]).3.1.2 MessagesA message is a vertex that has target and tail terminals, and the methods neces-sary to allow it to climb through Copy trees in the fashion described in section 2.4.2.Messages are used to model both procedure calling and message passing. Most mes-sages also have a cont terminal that is connected to a compiler-produced continuation.Such messages are called operations.The following message types are built in to the Scheme run-time system:Type LabelsReturn 1 \target", \tail", \0"Call 0 \target", \tail", \cont"Call 1 \target", \tail", \cont", \0"Call 2 \target", \tail", \cont", \0", \1"Call 3 \target", \tail", \cont", \0", \1", \2"Call 4 \target", \tail", \cont", \0", \1", \2", \3"Call 5 \target", \tail", \cont", \0", \1", \2", \3", \4"Car \target", \tail", \cont"Cdr \target", \tail", \cont"Set Car \target", \tail", \cont", \new"Set Cdr \target", \tail", \cont", \new"Null? \target", \tail", \cont"The one message that lacks a cont terminal (and is therefore not an operation) isReturn 1. The reason for this is that Return 1 is used to resume a continuation|typically one that was recently attached to the cont terminal of an operation. The0 terminal of a Return 1 is attached to the value that is to be returned to thecontinuation.11The \1" in the name \Return 1" re
ects the fact that the run-time supports multiple returnvalues. There also exist messages Return 0, Return 2, Return 3, etc., for returning other numbersof values. The current compiler does not make use of these other messages, so they are not describedhere.



42 CHAPTER 3. COMPILING SCHEME3.1.2.1 OperationsThe operations Call 0 through Call 5 are used to invoke objects that representprocedures.2 The arguments to be passed to the procedure are attached to the ter-minals 0 through 4, and the continuation is attached to the cont terminal.The Car operation is generated by calls to the Scheme CAR procedure. (How thishappens is covered below in section 3.1.3.1.) The method(graph (0 1 2 3)(<Car> target:4 tail:2 cont:3)(<Cons> 4 car:0 cdr:1))(graph (0 1 2 3)(<Cons> 2 car:4 cdr:1)(<Return 1> target:3 tail:5 0:6)(<Drop> 5)(<Copy> target:0 a:6 b:4))makes Car behave as it should when it climbs up to a Cons: The car of the Consis copied, one copy is returned in a Return 1 message sent to the continuation, andthe other copy becomes the car of the recreated Cons that will be seen by the nextmessage to arrive. An analogous method is de�ned for the Cdr operation.The Set Car operation is generated by calls to the Scheme SET-CAR! procedure.The method(graph (0 1 2 3 4)(<Set Car> target:5 tail:2 cont:3 new:4)(<Cons> 5 car:0 cdr:1))(graph (0 1 2 3 4)(<Cons> 2 car:4 cdr:1)(<Return 1> target:3 tail:5 0:0)(<Drop> 5))creates a new Cons whose car is the value that was previously attached to the newterminal of the Set Car. An analogous method is de�ned for the Set Cdr operation.The Null? operation is generated by calls to the Scheme NULL? procedure. Themethods2Actually, the operation Call n is de�ned for all non-negative n, but none of the examples herewill require more than 5 arguments.



3.1. VERTEX TYPES FOR THE SCHEME RUN-TIME 43(graph (0 1 2 3)(<Null?> target:4 tail:2 cont:3)(<Cons> 4 car:0 cdr:1))(graph (0 1 2 3)(<Cons> 2 car:0 cdr:1)(<False> 4)(<Return 1> target:3 tail:5 0:4)(<Drop> 5))and (graph (0 1)(<Null?> target:2 tail:0 cont:1)(<Nil> 2))(graph (0 1)(<Nil> 0)(<True> 2)(<Return 1> target:1 tail:3 0:2)(<Drop> 3))allow the Null? operation to distinguish between Cons vertices and Nil vertices: ATrue or False vertex is returned to the continuation, as appropriate, and the originaltarget is recreated for the bene�t of the next message to arrive.3.1.3 AtomsAn atom is a vertex that has a single terminal (its handle) and a method that makesa duplicate of the atom when it is connected to the target terminal of a Copy vertex.For example, the atomic type True has the associated method:(graph (0 1)(<True> 2)(<Copy> target:2 a:0 b:1))(graph (0 1)(<True> 1)(<True> 0))You might expect that a method like(graph ()(<True> 0)(<Drop> 0))(graph ())



44 CHAPTER 3. COMPILING SCHEMEwould be needed to make atoms disappear when they were dropped. However, asdiscussed in section 2.4, disconnected subgraphs can always be discarded without anye�ect on the output of the computation; instead of de�ning such methods, we can relyon disconnected subgraph garbage collection to clean up when atoms are dropped.The following miscellaneous atomic types are built in to the Scheme run-timesystem: Type LabelsDrop \"Nil \"True \"False \"Number x \"Failure \"Sink \"Drop vertices were described in section 2.4. Nil vertices represent the empty list.True and False vertices are used as boolean values. For any number x there is anatomic vertex type named \Number x" that represents that value.Failure and Sink are part of the support for Futures. A Failure is a Future thatcan never become a \real" value, and a Sink is a continuation that simply discardsany value that is returned to it. The implementation of Futures is described moredetail below.3.1.3.1 GlobalsIdenti�ers that occur free in top level Scheme expressions are called global identi�ers.Global identi�ers typically name primitive procedures such as +, CONS, CAR or CALL-WITH-CURRENT-CONTINUATION that have no internal state. In those cases we can makethe values of these global identi�ers be atoms that respond to the appropriate Calloperation. Atoms that are the value of global identi�ers are simply called globals.For any global identi�er G there is a global vertex type named \Global G" that isthe type of its value.Constructors. Many global types respond to the appropriate Call operation byreturning a new vertex of some other type. Such globals are called constructors.The scheme run-time supports the following constructors:



3.1. VERTEX TYPES FOR THE SCHEME RUN-TIME 45Type Constructed typeGlobal CONS ConsGlobal + SumGlobal - DifferenceGlobal * ProductGlobal = Equal?Global < Less?Global > Greater?(The constructed types are all objects introduced in section 3.1.1.)The method that controls what happens when a Global CONS vertex encountersa Call 2 operation is typical of the behavior of constructors:(graph (0 1 2 3)(<Global CONS> 4)(<Call 2> target:4 tail:0 cont:1 0:2 1:3))(graph (0 1 2 3)(<Global CONS> 0)(<Cons> 4 car:2 cdr:3)(<Return 1> target:1 tail:5 0:4)(<Drop> 5))This method constructs a new Cons vertex and returns it to the continuation, ini-tializing its car and cdr from the arguments to the Call 2. It also leaves behind aGlobal CONS vertex in case another message is waiting on the tail of the Call 2.(This is necessary because the caller can't know whether the procedure being calledis an atom or an object, so it must use the same calling convention in either case.)Operators. Many global types respond to the appropriate Call operation by send-ing another operation to the �rst argument. Such globals are called operators. Thescheme run-time supports the following operators:Type Operation sentGlobal CAR CarGlobal CDR CdrGlobal SET-CAR! Set CarGlobal SET-CDR! Set CdrGlobal NULL? Null?The method that controls what happens when a Global SET-CAR! vertex encoun-ters a Call 2 operation is typical of the behavior of operators:



46 CHAPTER 3. COMPILING SCHEME(graph (0 1 2 3)(<Global SET-CAR!> 4)(<Call 2> target:4 tail:0 cont:1 0:2 1:3))(graph (0 1 2 3)(<Global SET-CAR!> 0)(<Set Car> target:2 tail:4 cont:1 new:3)(<Drop> 4))This method creates a Set Car operation and targets it for the Call's �rst argument.The Call's second argument is attached to the Set Car's new terminal, and the Call'scontinuation becomes the continuation for the Set Car. As with the constructors,the Global SET-CAR! operator is reconstructed in case another message is waitingon the tail of the Call 2.Call with current continuation. Many people �nd the procedure CALL-WITH-CURRENT-CONTINUATION to be scary. Those people may safely skip the rest of thissection. On the other hand, I think that this implementation of CALL-WITH-CURRENT-CONTINUATION is particularly nice, so I encourage you to read and understand it.Perhaps afterwards you won't be scared any more!The method(graph (0 1 2)(<Global CALL-WITH-CURRENT-CONTINUATION> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global CALL-WITH-CURRENT-CONTINUATION> 0)(<Copy> target:1 a:4 b:6)(<Continuation> 3 cont:4)(<Call 1> target:2 tail:5 cont:6 0:3)(<Drop> 5))serves to support Scheme's CALL-WITH-CURRENT-CONTINUATION procedure. Recallthat the �rst argument to CALL-WITH-CURRENT-CONTINUATION is a one-argument pro-cedure, which is to be tail-recursively applied to an escape procedure that capturesthe continuation that was originally passed to CALL-WITH-CURRENT-CONTINUATION.This method makes a vertex of type Continuation that holds one copy of the con-tinuation in its cont terminal. The other copy is supplied as the continuation forthe tail-recursive call of the one-argument procedure that was passed to CALL-WITH-CURRENT-CONTINUATION.A Continuation is an object type (see section 3.1.1). Since a Continuation mustbehave as a one-argument procedure, the following method describes the interactionof a Continuation with a Call 1:



3.1. VERTEX TYPES FOR THE SCHEME RUN-TIME 47(graph (0 1 2 3)(<Continuation> 4 cont:0)(<Call 1> target:4 tail:1 cont:2 0:3))(graph (0 1 2 3)(<Drop> 2)(<Continuation> 1 cont:4)(<Return 1> target:0 tail:4 0:3))This method takes the argument passed in the Call, and returns it directly to thecaptured continuation. As usual, the Continuation vertex is reconstructed for thebene�t of any future callers.There are two interesting things to notice about this method. First, observe thatwhen a Continuation is called, the continuation supplied by the Call operation isdropped. This method, and the one immediately preceding it that copied a continu-ation, are the only methods that treat continuations nonlinearly.Second, notice that when the Continuation is reconstructed, no Copy vertex isused to duplicate the captured continuation. Instead, the tail of the Return 1 vertexis used. This works because the captured continuation also obeys the protocol for anobject, so after it has processed the Return 1 it will connect a reconstruction of itselfto the tail terminal. This device will appear many times in subsequent methods|ine�ect, every message contains an implicit Copy that the sender of a message can useif it wishes to retain its access to the target.3.1.4 FuturesOne type fails to �t into the neat categorization of types into objects, messages,and atoms: the Future vertex type. A Future is created by the (extended) SchemeFUTURE special form. A Future has two terminals, labeled \" and \as cont", bothof which can be thought of as handles. The \" terminal is connected to the partsof the working graph that are treating the future as if it were already a full-
edgedvalue. For example, this terminal might be connect to the left terminal of a Sum,or the car terminal of a Cons. The \as cont" terminal is connected to the parts ofthe working graph that are working on computing the future's eventual value. Thisterminal functions as a continuation, so it accepts Return 1 messages through thefollowing method:(graph (0 1 2)(<Future> 2 as cont:3)(<Return 1> target:3 tail:0 0:1))(graph (0 1 1)(<Sink> 0))This method connects the returned value directly to the parts of the graph that haveproceeded on as if the value was already there. In e�ect the Future vertex \becomes"



48 CHAPTER 3. COMPILING SCHEMEthe returned value. This method also replaces the Future with a Sink atom. A Sinkresponds to any additional attempts to return values by simply dropping them:3(graph (0 1)(<Sink> 2)(<Return 1> target:2 tail:0 0:1))(graph (0 1)(<Sink> 0)(<Drop> 1))Of course this can only occur if CALL-WITH-CURRENT-CONTINUATION was used tocapture and duplicate the continuation|normally the Sink atom will be quicklydropped.If no values are ever returned to the \as cont" terminal of a Future, i.e. if it issimply dropped, then this method will apply:(graph (0)(<Future> 0 as cont:1)(<Drop> 1))(graph (0)(<Failure> 0))So the Future vertex becomes a Failure atom. There are no methods that allowa Scheme program to test for such a failed future, this is done purely as a storagereclamation measure.For similar reasons, the method(graph (0)(<Future> 1 as cont:0)(<Drop> 1))(graph (0)(<Sink> 0))handles the case where the \" terminal of a Future is dropped.3.2 Translating Scheme constructsThis section describes how a Scheme program is translated into a collection of meth-ods.The only top-level expressions that are supported are procedure de�nitions. Eachde�nition de�nes a global type (see section 3.1.3.1) and a method for what shouldhappen when the global type is treated as a procedure. For example, given thetop-level de�nition3As a result, the futures described here behave like those in MultiLisp [Hal84]. Other possiblebehaviors are described in [Mil87, KW90].



3.2. TRANSLATING SCHEME CONSTRUCTS 49(define (inc x) (+ x 1))the method(graph (0 1 2)(<Global INC> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global INC> 0)(<Number 1> 3)(<Sum> 4 left:2 right:3)(<Return 1> target:1 tail:5 0:4)(<Drop> 5))is the result. It is easy to see that this method performs the computation called forin the body of the de�nition and returns the answer to the supplied continuation.(Notice that the compiler has integrated knowledge about the meaning of the globalidenti�er + into this method.)De�nitions that call for more complicated computations will require the compilerto generate new object types to represent the required closures and continuations.For example, compiling(define (f x) (lambda (y) (+ x y)))yields the method(graph (0 1 2)(<Global F> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global F> 0)(<Lambda 1583> 3 x:2)(<Return 1> target:1 tail:4 0:3)(<Drop> 4))which creates a Lambda 15834 object to serve as a closure. The value of X is capturedin this closure for later use when the Lambda 1583 handles a Call 1 operation:4This is a badly chosen name. It would be better if the compiler gave such generated types namesthat started with \Procedure" or \Closure" instead of \Lambda".



50 CHAPTER 3. COMPILING SCHEME(graph (0 1 2 3)(<Lambda 1583> 4 x:3)(<Call 1> target:4 tail:0 cont:1 0:2))(graph (0 1 2 3)(<Lambda 1583> 0 x:4)(<Copy> target:3 a:6 b:4)(<Sum> 5 left:6 right:2)(<Return 1> target:1 tail:7 0:5)(<Drop> 7))This adds the argument to one copy of the captured value, and recreates the Lambda1583 using the other copy.Note that the values of the captured variables are held directly by the closureobject itself. There are no separate environment objects as there are in a traditionalScheme interpreter [AS85]. Environments are not needed when there are no localvariable assignments. (Recall that we are pretending that assignment statementshave been eliminated through assignment conversion.)Continuations are created in a similar manner. For example, compiling(define (f g) (+ (g) 1))yields the method(graph (0 1 2)(<Global F> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global F> 0)(<Evarg 1472> 3 cont:1)(<Call 0> target:2 tail:4 cont:3)(<Drop> 4))which creates an Evarg 1472 object to serve as the continuation when the procedureG is called. An Evarg 1472 handles a Return 1message by incrementing the returnedvalue before passing that value back to the original continuation:(graph (0 1 2)(<Evarg 1472> 3 cont:2)(<Return 1> target:3 tail:0 0:1))(graph (0 1 2)(<Evarg 1472> 0 cont:3)(<Return 1> target:2 tail:3 0:5)(<Sum> 5 left:1 right:4)(<Number 1> 4))



3.2. TRANSLATING SCHEME CONSTRUCTS 51Like any object, an Evarg 1472 reconstructs itself for the bene�t of any furtherReturn 1 messages.Note that in order to properly reconstruct itself, this continuation method needsto make a copy of the original continuation it holds. (It does this by using the tailof the Return 1.) This is in apparent violation of my assertion in section 3.1.3.1that only the methods associated with CALL-WITH-CURRENT-CONTINUATION ever treatcontinuations in a nonlinear fashion.However, observe that this copying is only done to cover the case where the Evarg1472 is itself copied. In the absence of CALL-WITH-CURRENT-CONTINUATION everyReturn 1 message has a Drop following close behind on its tail, and these contin-uations are all quickly discarded. If CALL-WITH-CURRENT-CONTINUATION were elimi-nated from the language, continuation methods would not need to engage in all thisuseless duplication.Continuations can also capture variables from the lexical environment and inter-mediate values. Consider the de�nition:(define (bar f) (+ (f) (f)))This compiles into the method(graph (0 1 2)(<Global BAR> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global BAR> 0)(<Evarg 673> 3 cont:1 f:4)(<Call 0> target:2 tail:4 cont:3))which calls the function F with a continuation of type Evarg 673 which holds both theoriginal continuation, and a second copy of the value of F. When a value is returnedto an Evarg 673, the method(graph (0 1 2 3)(<Evarg 673> 4 cont:2 f:3)(<Return 1> target:4 tail:0 0:1))(graph (0 1 2 3)(<Evarg 673> 0 cont:4 f:5)(<Evarg 662> 6 cont:7 0:1)(<Call 0> target:3 tail:5 cont:6)(<Copy> target:2 a:7 b:4))calls the saved value of F (for the second time) with a continuation of type Evarg662 which maintains a hold on the original continuation, and also holds on to thereturned value. When a value is returned to an Evarg 662, the method



52 CHAPTER 3. COMPILING SCHEME(graph (0 1 2 3)(<Evarg 662> 4 cont:2 0:3)(<Return 1> target:4 tail:0 0:1))(graph (0 1 2 3)(<Evarg 662> 0 cont:4 0:5)(<Sum> 6 left:7 right:1)(<Return 1> target:2 tail:4 0:6)(<Copy> target:3 a:7 b:5))adds the returned value value to the saved value and returns the result to the savedcontinuation.The examples presented so far demonstrate how the basic Scheme constructs canbe compiled into methods. Combinations, local and global identi�ers, LAMBDA expres-sions, and constants have all been demonstrated. The following subsections describethe treatment of the Scheme special forms IF, BEGIN, LETREC and FUTURE. (The spe-cial forms LET, LET*, COND, AND and OR are also present. They are de�ned as macros.)This should complete the picture of how an arbitrary sequential Scheme program canbe compiled into a linear graph grammar.3.2.1 BEGINBEGIN is handled in much the same way as a combination. For example,(define (twice f) (begin (f) (f)))generates the method(graph (0 1 2)(<Global TWICE> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global TWICE> 0)(<Evseq 733> 3 cont:1 f:4)(<Call 0> target:2 tail:4 cont:3))which calls the function F with a continuation of type Evseq 733 which holds both theoriginal continuation, and a second copy of the value of F. When a value is returnedto an Evseq 733, the method



3.2. TRANSLATING SCHEME CONSTRUCTS 53(graph (0 1 2 3)(<Evseq 733> 4 cont:2 f:3)(<Return 1> target:4 tail:0 0:1))(graph (0 1 2 3)(<Evseq 733> 0 cont:4 f:5)(<Call 0> target:3 tail:5 cont:6)(<Drop> 1)(<Copy> target:2 a:6 b:4))drops the returned value and calls the saved value of F (for the second time) with theoriginal continuation.3.2.2 IFConditional expressions are somewhat more complicated. There are two cases, de-pending on the nature of the expression which is to be tested. In some cases thecompiler can produce a single type and two methods, while in other cases the com-piler is forced to generate an additional type and an additional method.First, an example of the simple case: The de�nition(define (test n x) (if (< n 2) x 105))generates the method(graph (0 1 2 3)(<Global TEST> 4)(<Call 2> target:4 tail:0 cont:1 0:2 1:3))(graph (0 1 2 3)(<Global TEST> 0)(<Test 1307> 4 cont:1 x:3)(<Less?> 4 left:2 right:5)(<Number 2> 5))which compares N with 2, and connects the result to the handle of a Test 1307vertex. Test 1307 is a compiler generated type, similar to a continuation. It capturesthe continuation and the values of the variables that are used on either arm of theconditional. A Test 1307 is not a continuation, because it does not expect to handlea Return 1 message. Instead it expects to be connected to the value to be tested,so that it may perform a dispatch on the Boolean value. If the value is True, themethod



54 CHAPTER 3. COMPILING SCHEME(graph (0 1)(<Test 1307> 2 cont:0 x:1)(<True> 2))(graph (0 1)(<Return 1> target:0 tail:2 0:1)(<Drop> 2))returns the preserved value of X to the continuation. If the value is False, the method(graph (0 1)(<Test 1307> 2 cont:0 x:1)(<False> 2))(graph (0 1)(<Drop> 1)(<Number 105> 2)(<Return 1> target:0 tail:3 0:2)(<Drop> 3))discards the preserved value of X and returns 105.The previous example was simple because the compiler was able to avoid gener-ating an explicit continuation for the call to <. This won't always be possible. If theexample had been(define (test f x) (if (f) x 105))then the compiler would have generated the method(graph (0 1 2 3)(<Global TEST> 4)(<Call 2> target:4 tail:0 cont:1 0:2 1:3))(graph (0 1 2 3)(<Global TEST> 0)(<Evif 1450> 4 cont:1 x:3)(<Call 0> target:2 tail:5 cont:4)(<Drop> 5))which calls F with a continuation of type Evif 1450. When a value is returned to anEvif 1450 the method(graph (0 1 2 3)(<Evif 1450> 4 cont:2 x:3)(<Return 1> target:4 tail:0 0:1))(graph (0 1 2 3)(<Evif 1450> 0 cont:4 x:5)(<Test 1307> 1 cont:6 x:7)(<Copy> target:2 a:6 b:4)(<Copy> target:3 a:7 b:5))



3.2. TRANSLATING SCHEME CONSTRUCTS 55connects that value to the Test 1307 vertex and (as usual) recreates the continuation.3.2.3 FUTURESince the FUTURE special form is not a standard part of Scheme, we present a briefintroduction of it here. (More complete descriptions can be found elsewhere [Hal84,Mil87].) A FUTURE expression contains a single subexpression. When the FUTUREexpression is evaluated, what was previously a single thread of execution splits, andexecution continues concurrently in two di�erent directions. One thread of executionstarts evaluating the subexpression. The other thread of execution continues theexecution of the rest of the program, taking as the value of the FUTURE expressionsomething called a \future". Execution continues in parallel until one of two thingshappens: If the evaluation of the subexpression yields a value, then the future becomesthat value.5 If, on the other hand, the evaluation of the rest of the program requiresan actual value instead of a future, then that thread simply waits until evaluation ofthe subexpression �nally yields a value.The compilation of the FUTURE special form is quite simple. Consider(define (future-call f) (future (f)))which compiles into the single method:(graph (0 1 2)(<Global FUTURE-CALL> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global FUTURE-CALL> 0)(<Future> 3 as cont:4)(<Return 1> target:1 tail:5 0:3)(<Call 0> target:2 tail:6 cont:4)(<Drop> 5)(<Drop> 6))Almost exactly the same method would have been generated if the call to F had notbeen wrapped in a FUTURE. The di�erence is the additional Future and Return 1vertices strung together between the original continuation and the cont terminal ofthe Call 0. This has the e�ect of immediately returning the Future to the caller,while allowing the call to F to proceed simultaneously.Various methods for Futures were described in section 3.1.4.You might think of Future vertices as anti-particles for Return 1 vertices. Whena FUTURE special form is evaluated, a Return 1 and an anti-Return 1 (a Future)are created. Later, when the expression inside the FUTURE produces a Return 1, theReturn 1 and the anti-Return 1 annihilate each other.5An operation that can prove quite challenging to implement!



56 CHAPTER 3. COMPILING SCHEME3.2.4 LETRECThere are many interesting things to say about the implementation of LETREC, butnone of them is really essential to an understanding of the current system, so thereader can skip this subsection without missing anything important. On the otherhand, Scheme language a�cionados will �nd this stu� right up their alley.Let us start with a simple example: The de�nition(define (make-f)(letrec ((f (lambda (n) (f (+ n 1)))))f))generates the method(graph (0 1)(<Global MAKE-F> 2)(<Call 0> target:2 tail:0 cont:1))(graph (0 1)(<Global MAKE-F> 0)(<Lambda 2101> 2 f:3)(<Return 1> target:1 tail:4 0:5)(<Drop> 4)(<Copy> target:2 a:3 b:5))which creates a closure of type Lambda 2101. One copy of the closure is returnedand the other copy is looped back to become the value of the closed-over variable F.Later, when the closure is called, the method(graph (0 1 2 3)(<Lambda 2101> 4 f:3)(<Call 1> target:4 tail:0 cont:1 0:2))(graph (0 1 2 3)(<Lambda 2101> 0 f:4)(<Number 1> 5)(<Sum> 6 left:2 right:5)(<Call 1> target:3 tail:4 cont:1 0:6))calls one copy of the function F, and makes a second copy for the reconstructed Lambda2101 vertex.So far, this is exactly what one would expect given the usual Scheme de�nition forLETREC and the way Scheme objects are beingmodeled, but the underlying mechanismthat supports this is actually much more general. For example(define (circular-list x)(letrec ((l (cons x l)))l))



3.2. TRANSLATING SCHEME CONSTRUCTS 57generates the method(graph (0 1 2)(<Global CIRCULAR-LIST> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global CIRCULAR-LIST> 0)(<Cons> 3 car:2 cdr:4)(<Return 1> target:1 tail:5 0:6)(<Drop> 5)(<Copy> target:3 a:4 b:6))which returns (one copy of) a Cons whose cdr is (the other copy of) itself.In fact, by using Futures, any expression can appear in a LETREC. For example(define (fixpoint f)(letrec ((x (f x)))x))generates the method(graph (0 1 2)(<Global FIXPOINT> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global FIXPOINT> 0)(<Future> 3 as cont:4)(<Return 1> target:1 tail:5 0:6)(<Call 1> target:2 tail:7 cont:4 0:8)(<Drop> 5)(<Drop> 7)(<Copy> target:3 a:8 b:6))which creates a Future to �ll in for the value of the call to F, and then passes onecopy in to F as its argument, and returns the other copy.The �rst two examples were produced by generating the fully general translation,using Futures, and then optimizing the Futures away (using the techniques describedin the next section). In the usual case, where the expressions in a LETREC are allLAMBDA-expressions, the futures can always be eliminated.The fact that futures can be used to implement a fully general LETREC is not new.See [Mil87].



58 CHAPTER 3. COMPILING SCHEME3.3 Optimization: simulationThe compiler uses one simple technique to optimize linear graph grammars: It appliesmethods to the right hand sides of other methods.To see why this is a safe thing to do, suppose method B applies to the right handside of method A. In other words, the left hand side of B occurs as a subgraph of theright hand side of A. When A is actually applied to the working graph at run-time,its right hand side will be instantiated as a subgraph of the working graph; so B'sleft hand side will now occur in the working graph. When A is applied, B alwaysbecomes applicable immediately afterwards. Applying B to A simply performs thatapplication at compile-time. In e�ect, this does a compile-time simulation of therun-time world.Some possible execution histories are eliminated by making these decisions atcompile-time. After A is applied, B becomes applicable, but the run-time is free tochoose some other applicable method C instead. C might even change the graph sothat B is no longer applicable. By making the choice to apply B at compile-time, thatpossibility is precluded. Fortunately, the compiler takes care to generate grammarsthat work correctly given any scheduling of methods, so this isn't a problem.Simulation turns out to be quite good at cleaning up the rubbish left behind bythe raw source-to-methods translation algorithm. In fact, all the methods presentedin the previous section as examples of compiler output were already optimized in thisway. Unsimulated methods are considerably more di�cult to read. For example, thede�nition(define (invoke f) (f))initially becomes two methods:(graph (0 1 2)(<Global INVOKE> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global INVOKE> 0)(<Evarg 317> 3 cont:1)(<Return 1> target:3 tail:4 0:2)(<Drop> 4))(graph (0 1 2)(<Evarg 317> 3 cont:2)(<Return 1> target:3 tail:0 0:1))(graph (0 1 2)(<Evarg 317> 0 cont:3)(<Call 0> target:1 tail:4 cont:5)(<Drop> 4)(<Copy> target:2 a:5 b:3))



3.3. OPTIMIZATION: SIMULATION 59The object type Evarg 317 is the continuation for the evaluation of the expressionF. The �rst method creates an Evarg 317 and immediately returns the value of F toit. The second method describes what happens when a value is returned to an Evarg317. So the second method can be applied to the right hand side of the �rst methodso that it becomes:(graph (0 1 2)(<Global INVOKE> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global INVOKE> 0)(<Copy> target:1 a:5 b:6)(<Evarg 317> 4 cont:6)(<Call 0> target:2 tail:7 cont:5)(<Drop> 4)(<Drop> 7))Then we can apply the method that applies when a Drop is connected to the handleof a Evarg 317. (Recall from section 3.1.1 that all object types have such a method.)The result:(graph (0 1 2)(<Global INVOKE> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global INVOKE> 0)(<Copy> target:1 a:5 b:6)(<Call 0> target:2 tail:7 cont:5)(<Drop> 6)(<Drop> 7))Now we can apply the method that applies when a Drop is connected to the b terminalof a Copy (see section 2.4) to obtain the �nal result:(graph (0 1 2)(<Global INVOKE> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global INVOKE> 0)(<Call 0> target:2 tail:7 cont:1)(<Drop> 7))Simulation sometimes looks a lot like �-reduction, but it is both more and lesspowerful. It is more powerful because it is able to integrate knowledge of the behaviorof various data types into the generated code. For example, the de�nition



60 CHAPTER 3. COMPILING SCHEME(define (f x) (car (cons x x)))becomes simply(graph (0 1 2)(<Global F> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global F> 0)(<Return 1> target:1 tail:3 0:2)(<Drop> 3))because the compiler has the complete set of methods describing the behavior of CARand CONS available at compile-time. (This example also illustrates how nonlinearitiescan sometimes be eliminated at compile-time.)On the other hand, simulation is less powerful than �-reduction because it isunable to eliminate captured variables from closures. For example(define (7up) ((lambda (x) (lambda () x)) 7))can be �-substituted to become(define (7up) (lambda () 7))but compiles into the following two methods:(graph (0 1)(<Global 7UP> 2)(<Call 0> target:2 tail:0 cont:1))(graph (0 1)(<Global 7UP> 0)(<Lambda 487> 2 x:3)(<Number 7> 3)(<Return 1> target:1 tail:4 0:2)(<Drop> 4))(graph (0 1 2)(<Lambda 487> 3 x:2)(<Call 0> target:3 tail:0 cont:1))(graph (0 1 2)(<Lambda 487> 0 x:3)(<Return 1> target:1 tail:4 0:5)(<Drop> 4)(<Copy> target:2 a:5 b:3))We would prefer for the compiler to eliminate the variable X and generate instead thetwo methods:



3.3. OPTIMIZATION: SIMULATION 61(graph (0 1)(<Global 7UP> 2)(<Call 0> target:2 tail:0 cont:1))(graph (0 1)(<Global 7UP> 0)(<Lambda 487> 2)(<Return 1> target:1 tail:3 0:2)(<Drop> 3))(graph (0 1)(<Lambda 487> 2)(<Call 0> target:2 tail:0 cont:1))(graph (0 1)(<Lambda 487> 0)(<Return 1> target:1 tail:2 0:3)(<Drop> 2)(<Number 7> 3))The problem is that the initial translation decided that the type Lambda 487(used to represent closures of the expression (LAMBDA () X)) needed an x terminal toremember the value of X, and no amount of mere simulation can eliminate a terminal.More complex optimizations would be required to duplicate full �-reduction.Another important function served by simulation is to integrate calls to the con-structors and operators described in section 3.1.3.1 into the code. Calls to +, forexample, are converted into Sum vertex constructions, rather than remaining explicitcalls to Global +. Many of the raw translations also rely on simulation to producereasonable code. For example, the raw translation for a LETREC always makes use offutures, and assumes they will be eliminated in the common cases (section 3.2.4).Simulation remains a valid technique even if the compiler uses only a subset ofthe methods and types that will be present at run-time. In fact, the current com-piler doesn't have complete knowledge of the numeric types and the methods thatimplement arithmetic (although it could, given some more work).The compiler also lacks all knowledge of the vertex types used at run-time toimplement I/O. Such types cannot even occur in any of the methods manipulated atcompile-time. Therefore, in particular, such types cannot occur in any disconnectedcomponent appearing in the right hand side of a method. Thus the compiler knowsthat all disconnected components in method right hand sides will be garbage at run-time (see section 2.4), and so it can discard them immediately.Of course there is a danger in doing such a complete simulation of the program atcompile-time: The compiler might �nd itself running the program to completion usingthe considerably slower compile-time data structures. (For example, if the expression((LAMBDA (X) (X X)) (LAMBDA (X) (X X))) appears in the program.) Compilersthat do �-reduction face this danger as well. To prevent the simulation from getting



62 CHAPTER 3. COMPILING SCHEMEout of hand, no right hand side is ever simulated for more than 250 steps. Thatnumber was picked because a couple of contrived examples really needed to run thatlong, but ordinarily all right hand sides terminate in less than 20 steps.Other optimizations besides simulation are certainly possible. Simulation is par-ticularly easy because it only involves the interaction of two methods (the methodbeing applied, and the method whose right hand side is being modi�ed).3.4 A real exampleSo far, the examples have all been chosen to emphasize some particular aspect ofcompilation. To get a feeling for what compilation will do with a more typical Schemeprocedure, consider the following famous function:(define (fact n)(let loop ((a 1) (n n))(if (< n 2)a(loop (* n a) (- n 1)))))After translation and optimization, four methods remain. One method describes thebehavior of when FACT is �rst called:(graph (0 1 2)(<Global FACT> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global FACT> 0)(<Copy> target:2 a:7 b:10)(<Lambda 642> 3 loop:4)(<Copy> target:3 a:8 b:4)(<Test 520> 6 cont:1 n:7 loop:8 a:9)(<Number 1> 9)(<Less?> 6 left:10 right:5)(<Number 2> 5))Among other things, this method builds a closure (a Lambda 642 object) to representthe internal procedure named LOOP in the source. A picture of this method is shownin �gure 3-2.6 When this closure is invoked, the relevant method will be:6The vertex types in this �gure, and those that follow, have been abbreviated in a straightforwardway. \Lambda 642" becomes \L. 642", \Call 1" becomes \C. 1", etc.
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64 CHAPTER 3. COMPILING SCHEMEin the previous section has the e�ect of open-coding calls to procedures known to thecompiler|the �rst method of such a known procedure, the method that describeswhat happens immediately after the procedure is called, will be integrated into themethod that called it.These methods also both build Test 520 vertices to react to the results of thecomparison. The other two methods describe the two possible outcomes: Either Nwas less than 2:(graph (0 1 2 3)(<Test 520> 4 cont:0 n:1 loop:2 a:3)(<True> 4))(graph (0 1 2 3)(<Return 1> target:0 tail:4 0:3)(<Drop> 4)(<Drop> 1)(<Drop> 2))in which case the current value of A is returned, or another trip around the loop isrequired: (graph (0 1 2 3)(<Test 520> 4 cont:0 n:1 loop:2 a:3)(<False> 4))(graph (0 1 2 3)(<Number 1> 4)(<Product> 5 left:6 right:3)(<Difference> 7 left:8 right:4)(<Call 2> target:2 tail:9 cont:0 0:5 1:7)(<Drop> 9)(<Copy> target:1 a:6 b:8))in which case some arithmetic is performed to obtain new values to be arguments toLOOP. Pictures of these two methods are shown in �gure 3-4 and �gure 3-5. (Notethat simulation was unable to discover that this call to LOOP is the same every time.This demonstrates how simulation is not quite good enough to remove all traces ofLETREC. This failure is similar to the example on page 61, where the compiler failedto perform �-reduction.)Figure 3-6 shows a piece of linear graph structure set up for a call to the FACTprocedure. After applying the method for calling FACT (�gure 3-2), and after copyingthe argument and performing the comparison the result appears in �gure 3-7. Themethod for the false arm of the conditional (�gure 3-5) can now be applied, and aftersome copying and some arithmetic the result appears in �gure 3-8. Notice that theCopy and Lambda 642 subgraph survived this round unchanged.
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Figure 3-11: Returning the result3.5 Code generationCode generation has the following phases:1. Compute which types and methods will be needed at run-time.Starting with the set of types known to be in the initial graph, the compilerlooks for methods that might apply to a graph built from just those types, i.e.methods whose left hand side is made entirely from types in the set. Thenthe compiler adds all the types used in the right hand sides of these methodsinto the set. This operation is repeated until no new types and methods arediscovered. (This \tree shake" will even discard built-in types and methodsdescribed in section 3.1 if they are not needed. If a program doesn't use futuresor CONS-cells, then none of the support for those features will be included.)2. For each type discovered in the �rst phase, decide how vertices of that type willbe represented at run-time.The run-time system uses tagged values to implement the connections betweenvertices. Connections to univalent types are represented as immediate taggedvalues, where the tag identi�es the type of the vertex, and the rest of the valueis ignored. For connections to larger valence types, the tag identi�es the typeof the vertex and which of its terminals is being connected to, and the rest ofthe value is the address of a block of storage that contains values that representthe vertex's other connections.3. Write a C procedure that implements each method.Each method becomes a C procedure that performs surgery on the run-timeworking graph to transform a single instance of the method's left hand side intoan instance of its right hand side. The C code calls various utilities providedby the run-time system to manipulate graph structure, and carefully alerts therun-time system whenever it creates a subgraph to which some other methodmight apply.



3.5. CODE GENERATION 69The set of types and methods computed in the �rst phase are used to computethe \activity" of each terminal of each type. A terminal is active if it occurs on oneend of a connection in the left hand side of any method. An inactive terminal isone that is not active. A terminal is monoactive if it is the sole active terminalamong all the terminals of its type. If an active terminal is not monoactive, then itis polyactive.Recall that all methods are binary methods. The left hand side of a binary methodis entirely characterized by the pair of terminals joined by its single connection. So forexample, the method on page 42 describes what happens when the target terminalof a Car operation is joined to the handle of a Cons object. Those two terminals arethus active whenever this method is present at run-time. Furthermore, since no othermethods or method schema will make any of the other terminals of the types Car andCons active, those two terminals are in fact monoactive.All three terminals of a Copy vertex are polyactive, because every message typehas methods for when its handle is joined to either the a or the b terminal of a Copy,and in addition every atom type has a method for when it is joined to the targetterminal of a Copy.Terminal activity information plays a number of important roles:� The compiler uses terminal activities when it designs the run-time representa-tions used for vertices. More about this below.� The linker uses terminal activities to check that the assumptions made in sepa-rately compiled modules about the characteristics of vertex types held in com-mon are all consistent. Since the current compiler is actually a block compiler,this problem reduces to checking that the compiler agrees with the run-timesystem about the characteristics of a few built-in types. (Most of them, suchas Sum, Product and the Number types, are concerned with implementing arith-metic.)� The run-time system uses terminal activities to help make decisions about howto migrate graph structure around the network during distributed graph reduc-tion. More about this in chapter 5.The layout of the block of storage used to represent a vertex type can be varieddepending on the requirements of the methods that mention that type in either theirleft or right hand side. The code generated for those methods is the only code thatever manipulates that storage, so the format of its contents is entirely up to thecompiler. This leaves a fair amount of room for optimizations, but as this dissertationisn't concerned with the e�cient local execution of linear graph grammars, theseoptimizations are not described here.Instead I will assume that the compiler uses the general case representation forall types. In the general case a vertex of valence N is represented using an array ofN tagged values that indicate for each terminal what other terminal it is connected



70 CHAPTER 3. COMPILING SCHEMEto. Thus every connection is represented using a pair of pointers, one running in eachdirection.The individual method procedures all share a fairly simple structure:1. Allocate the storage needed to represent the vertices in the right hand side ofthe method.2. Move connections between the other terminals of the old pair of vertices andthe appropriate terminals of the newly allocated vertices.3. Create additional internal connections between the newly allocated vertices.4. Free the storage that was used to represent the two left hand side vertices.In steps 2 and 3 connections to old terminals are broken and connections to newterminals are made. If the terminal involved is active, this can cause previouslyapplicable methods to become inapplicable and vice versa. In these cases the methodprocedure makes or breaks the connection by calling an appropriate run-time routinethat does the work necessary to maintain a queue of redexes. (This redex queue willbe a major character in chapter 5.)Methods could be compiled into considerably better code. It should be possibleto produce methods that perform type dispatches and arithmetic directly, ratherthan always relying on the run-time. I see no fundamental obstacles that preventa su�ciently good compiler from producing essentially the same code as any otherScheme compiler for the same source code. Achieving that goal remains a topic forfuture research.The resulting collection of C procedures are compiled by the C compiler7 andlinked together with the run-time system. When the resulting executable �le is startedit initializes the storage system, starts up the network interface routines, loads all themethod procedures into a hash table, builds the initial working graph (based onparsing the command line arguments), and calls the main scheduler loop (describedin the chapter 5).3.6 SummaryIn this chapter I demonstrated how Scheme can be modeled using linear graph reduc-tion. I showed how the various Scheme data types could be represented using lineargraph structure, and how the Scheme language could be faithfully translated into a lin-ear graph grammar. The current system is far from being a complete Scheme system|it lacks many data types and language features|but I tried to include enough of thepicture so that it should be obvious how to �nish the job.7gcc



3.6. SUMMARY 71A key property of this translation is that linear constructs in the original programare translated directly into linearities in the resulting graph grammar. If a procedureuses the value of one of its arguments in a linear manner, then the reference to thatvalue will always be a direct connection|there will be no need for a tree of Copyvertices. In this way, linearities in the original program are exposed in the lineargraph structure model, where we can exploit them during execution.In chapter 5 Scheme programs will be compiled as described above, and executedby a distributed graph reduction engine. That engine will have no understanding ofwhat the various vertex types meant to us in this chapter. In a sense it isn't necessaryto have an understanding of this chapter in order to understand chapter 5, but youcannot truly appreciate the action without it. When the distributed graph reductionengine decides to transport a subgraph containing a vertex of type Call 2 fromone network location to another, you may see why this act is good graph reductionstrategy, but if you understand this chapter, the act acquires additional signi�canceas an example of a remote procedure call.
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Chapter 4Maintaining Connections Acrossthe NetworkThis chapter describes the link abstraction and the network protocol that implementsit. The distributed graph reduction engine is made up of a collection of agents thateach hold a subset of the vertices in the working graph. Links are used to maintainconnections between vertices that are held by di�erent agents. In chapter 5 we willuse the mechanism described in this chapter to support the execution of the codegenerated in chapter 3.1A link has two ends, which can travel independently from agent to agent. A agentthat is currently in possession of one of the two ends of a link can inquire about themost recently known location of the other end. A simple network protocol guaranteesthat each end is promptly informed about changes in the location of the other.The migration of a subgraph from one agent to another will typically cause mul-tiple link ends to pass from agent to agent over the network. As we shall see inchapter 5, this is the only signi�cant cost of subgraph migration. Thus the more ex-pensive it is to move link ends, the more expensive it will be to migrate subgraphs. Itis therefore worthwhile to work at making the implementation of links as light-weightas possible.Fortunately links are able to meet the goal of being light-weight because theyimplement linear references. A nonlinear reference mechanism has to worry about anumber of things that linear references avoid. Nonlinear references can be duplicatedand stored in an arbitrary number of di�erent locations. The target of a nonlinearreference must be prepared to handle multiple requests from reference holders, andmust continue to exist until some separate mechanism determines that there are nomore outstanding references. Any implementation of nonlinear references that crossa network must take these possibilities into account|see [YTR+87] for an exampleof the consequences.In contrast, linear references cannot be duplicated. The entity at the other end1In order to better understand how the link abstraction �ts in to the rest of the system, thereader may �nd it helpful at this point to preview �gure 5-1 on page 94, which shows how therun-time modules support each other. The link module appears fairly low down, supported only bythe reliable message service. 73



74 CHAPTER 4. CONNECTIONS ACROSS THE NETWORKof a linear reference need only be prepared to handle a single request and can thencease to exist. Support for linear references that cross a network only needs to worryabout the whereabouts of one remote entity. If that entity ever becomes local, then allnetwork resources devoted to maintaining the linear reference can be easily discarded.4.1 The contract of a linkLinks capture the essence of the requirements for supporting cross-network connec-tions in a simple abstraction. The following �ve procedures de�ne the completeinterface to the abstraction. Note that these procedures are all invoked by someparticular agent|that calling agent is an implicit argument to them all.create_link() ) Link procedureCreates a new link. The calling agent will be given possession of both ends ofthe new link.destroy_link(Link) procedureDestroys Link. The calling agent must possess both ends of Link before callingdestroy_link.pick_up_link(Link, Agent) ) Descriptor procedureStarts the process of moving one end of Link from the calling agent to Agent.The Descriptor is an identi�er that can be presented to put_down_link (seebelow) to complete the move. The calling agent must possess at least one of thetwo ends of Link before calling pick_up_link, and after the call it will possessone fewer.put_down_link(Descriptor) ) Link procedureFinishes the process of moving a link. The calling agent now has possession ofan additional end of Link. The calling agent must be the agent speci�ed in thecall to pick_up_link that created Descriptor.query_link(Link) ) Agent or NULL procedureQueries Link about the location of its other end. If the calling agent possessesboth ends of the link, then NULL is returned. The calling agent must possess atleast one of the ends of Link before calling query_link.A descriptor can be thought of as the portable representation of a link end.From the point of view of the users of this interface, the only purpose served by adescriptor is to prevent the caller from confusing multiple link ends that are in transitat the same time. (Another way to accomplish the same thing would be to arrangefor link ends to arrive in the same order that they were transmitted.)



4.1. THE CONTRACT OF A LINK 75From within the link layer, descriptors serve a devious additional purpose. Theonly thing the user of the link abstraction can do with a descriptor is carry it tothe destination agent and call put_down_link. The link layer takes advantage ofthis by making information that it wants to transmit to the destination agent partof the descriptor itself. This hack allows the link layer to avoid sending its ownreliable messages in many (but not all) situations. In order to make this work prop-erly an agent that calls pick_up_link accepts responsibility for reliably deliveringthe descriptor to the destination agent and calling put_down_link. In practice thisadditional responsibility is no burden.Note there there is never any need for the calling agent to distinguish between thetwo ends of a link|for example, by labeling them the \left" and \right" ends. Anagent interested in the state of a particular link will either �nd that it is in possessionof both ends, or it will be interested in the location of the other end. No otherdistinguishing characteristics are required.The two ends of a link can be thought of as two virtual tokens. These tokens arepassed from agent to agent as part of the descriptors. At any given moment, eachtoken exists in exactly one place in the network: either it is in the possession of someagent, or it is part of a descriptor. The contract of the link layer is to guarantee that:� Neither of these tokens will be duplicated or lost. (This is easy to accomplishas long as descriptors are delivered reliably.)� If one token stays immobile in the possession of an agent, then that agent willreceive prompt updates about the location of the other token.� If both tokens stay immobile, then after some small number of messages (perhapstwo or three) have journeyed through the network, each possessing agent willlearn the identity of the other.� If neither token is moving, no network tra�c will be required to maintain thelink.� An agent that does not currently possess either token from a given link will beable to easily reclaim all local resources devoted to maintaining that link|eventhough the link continues to exist, and may even pass through this agent againin the future.� When a link is destroyed (via a call to destroy_link), all resources on all agentsdevoted to maintaining that link will be easily reclaimed.A call to query_link does not initiate any network tra�c. query_link always justimmediately returns the most recent local information about the location of the otherend of the link. The link module works in the background to update this informationas quickly as possible, but there is no guarantee that the claimed location of the othertoken re
ects current reality. The other token may have recently departed from the



76 CHAPTER 4. CONNECTIONS ACROSS THE NETWORKclaimed location, or alternatively it may still be part of a descriptor en route to theclaimed location.2Higher level modules must be designed to take the limitations of query_link'sanswers into account. In section 5.3, when graph structure migration is described,this fact will play an important role.4.2 The link maintenance protocolIn this section I will describe the link maintenance protocol in detail. This protocolmeets all the requirements set forth in the previous section, and is clearly good enoughto demonstrate that cross-network connections can be kept light-weight. There arestill some problems with this protocol, and my intuition is that even better protocolsare possible.There are two desires that motivate the design of this protocol. First, there isthe desire to quickly propagate changes in the location of one end of a link to theagent that holds the other end. Second, there is the desire to easily reclaim resourcesdevoted to links whose ends are no longer present at a given agent.The most obvious kind of protocol, where agents forward messages addressed tolink ends that have recently departed, is unsuitable on both counts. First, if bothends of a link are hopping rapidly from agent to agent, then it can take an arbitrarynumber of forwarding steps before the most up-to-date information about one endcan arrive at the other end. Second, it is di�cult for an agent to know when it issafe to forget what it knows about a link if the protocol relies on agents to provideforwarding.The protocol described here solves these problems by using a �xed home agentfor each link that is always kept informed about the locations of the two ends. Thehome agent of a link will be the agent who called create_link to forge the link in the�rst place. The home agent receives status reports from the two ends whenever theymove. Occasionally the home agent will notice that the two ends have potentiallylost track of each other, in which case it will send messages to correct the situation.This guarantees that an agent holding one end of a link will learn the true locationof the other end of the link after at most a single forwarding step. This also allowsany agent other than the home agent to discard all knowledge of any link whose endsare elsewhere.Relying on a third party home agent does have its disadvantages. If the homeagent becomes inaccessible for some reason, then the two ends of a link may losetrack of each other, even through they may be within easy reach of each other. Even2It is in fact possible for an agent to call query_link and �nd that the other end of the link isbelieved to be possessed by the calling agent itself, even though only one token is actually residentlocally. This can happen if the token for the other end is in transit and was overtaken by some ofthe messages that the link layer itself exchanges|once the token for the other end arrives, calls toquery_link will return NULL, as expected.



4.2. THE LINK MAINTENANCE PROTOCOL 77if the home agent remains accessible, the two ends may wander far away from home,so that when the home agent's services are required a lot of long distance networktra�c takes place to correct what should be a purely local problem.These are not particularly bad problems for very short-lived links, but for linksthat last more that a few seconds it would be nice to shift the home agent's responsi-bilities from the original creator to one of the two agents currently holding an end ofthe link. Although the current run-time system does not implement it, I will suggesta technique that addresses this problem below.4.2.1 Link maintenance data structuresThe link layer is built on top of a reliable message layer, which assigns a 64-bitAgent-Id to each agent. Each link is assigned a unique Link-Id when create_linkis called. The 95-bit Link-Id consists of the 64-bit Agent-Id of the home agent (whocalled create_link), plus a 31-bit extension generated by the home agent.3 Thismakes it easy to obtain the Agent-Id of the home agent of a link given an arbitraryLink-Id.Inside the link layer, the two ends are distinguished. They are called the upand down ends of the link. (The up end prefers to travel, although nothing takesadvantage of this fact.)Each agent maintains a table of link records, keyed by Link-Id. A link recordcontains the following �elds:id The Link-Id of this link. Recall that this includes the Agent-Id of the homeagent for the link.up_agentThe Agent-Id of the agent believed to be in possession of the up end of thislink.down_agentThe Agent-Id of the agent believed to be in possession of the down end of thislink.up_sequenceA 16-bit sequence number associated with the information currently stored inup_agent. The way sequence numbers are used is described below.down_sequenceA 16-bit sequence number associated with the information currently stored indown_agent.3The issue of what to do when an agent runs out of 31-bit extensions is not addressed in thisimplementation. Link-Ids could be reused after a suitable timeout.



78 CHAPTER 4. CONNECTIONS ACROSS THE NETWORKup_flagThis 
ag is set if the up end of the link is actually held by the local agent. Ifthis bit is set, then up_agent will necessarily contain the Agent-Id of the localagent. (The converse is not true.)down_flagThis 
ag is set if the down end of the link is actually held by the local agent. Ifthis bit is set, then down_agent will necessarily contain the Agent-Id of the localagent. (up_flag and down_flag record the presence of the tokens discussed insection 4.1.)deleted_flagThis 
ag is set if the link has been destroyed.4.2.2 Link layer communicationThe link layer relies on other layers to transport descriptors, but it also needs toexchange messages within itself. Thus the link module uses the same reliable messageservice used by the migration routines that will be described in section 5.3. Thisintroduces some unnecessary communication in some circumstances since the linklayer doesn't actually need all the power of reliable messages, but it has the virtue ofsimplifying the link layer|making it easier to implement, debug and explain.4.2.3 Creating a new linkWhen an agent calls create_link, a new Link-Id is generated (with the calling agentas home agent), and a new link record for that link is added to the calling agent'slink record table. In that new record the up_agent and down_agent are set to be thecalling agent's own Agent-Id, the up_flag and down_flag are set, the deleted_flagis clear, and the up_sequence and down_sequence are initialized to 0.4.2.4 Destroying a linkWhen an agent calls destroy_link the system �rst checks to be sure that bothup_flag and down_flag are set, otherwise the calling agent does not have permissionto destroy the link. Then, if the calling agent is not itself the home agent, a messageis dispatched to the home agent informing it of the demise of the link.Both the destroying agent and the home agent set the deleted_flag in theirrecords for that link. They could immediately discard these records, but as we shallsee below, there are advantages to holding on to this information for a short time.



4.2. THE LINK MAINTENANCE PROTOCOL 794.2.5 Moving one end of a linkWhen an agent calls pick_up_link the system �rst checks to be sure that one ofup_flag or down_flag is set, otherwise the calling agent does not have permissionto move the link. The system then picks one of the ends that the calling agentpossesses|without loss of generality we can assume that this is the up end|andmodi�es it as follows:� The up_flag is cleared.� The Agent-Id up_agent is set to be the destination where the caller is planningon sending the descriptor.� The number up_sequence is incremented.A copy of this modi�ed link record is sent in a reliable message to the link's homeagent, a second copy is sent via reliable message to the agent named in down_agent,and a third copy is made part of the descriptor that is returned by pick_up_link(which will eventually be delivered to the destination agent now named in up_agent).The up_flag and down_flag in these copies are cleared, except the up_flag in thedescriptor is set in order to tell the recipient which end it is getting.The e�ect of this is to insure that the following four agents all eventually learnabout the new state of the link: (1) the caller of pick_up_link, who just packed theup end into a descriptor; (2) the destination agent, who will soon receive the up endinside that descriptor; (3) the agent believed to be holding the down end; and (4) thehome agent.Of course some of these agents may actually be the same, in which case weavoid sending duplicate messages. For example, it is common for the caller ofpick_up_link, the agent holding the other end of the link, and the home agent,to all be the same agent (this will always be the case for a link newly created bycreate_link). In this case, only the copy of the new link record transmitted as partof the descriptor need actually be sent.Whenever any agent receives a link record, either in a descriptor, or in a messagesent within the link layer, it merges the new information in this update record withwhatever information it has stored in its own link table. If it does not currently havea link record for the link in question, it simply copies the update record into its table.If it already has a record for the link, then it separately merges the up and downhalves by retaining the information with the larger sequence number.If the merging agent is the link's home agent, then there are some additionalconsiderations. First, if the home agent discovers that it no longer has a local recordfor that link, then in the new record the deleted_flag will be set. This ensures thatdestruction of a link is never forgotten, because its destruction is the only way itslink record can ever vanish from its home agent's link table. Thus at any point in thefuture an agent that needs to know if a given link has been destroyed can always ask



80 CHAPTER 4. CONNECTIONS ACROSS THE NETWORKthe link's home agent. Certain rare cases of link record reclamation, described below,make use of this ability.Second, recall that the home agent's main function is to guard against the pos-sibility that the two ends of the link have lost track of each other. For this reasonthe home agent compares the new local record with both the update record and theold local record. If the new record di�ers from both of the others, then it is possiblethat the two ends of the link have become separated. In that case, the two agentsnamed in the up_agent and down_agent of the new local record are each sent a copyof the record. Those two updates will themselves be merged into their recipient'slocal records using the algorithm just described.The proof that this algorithm successfully keeps the two ends of a link informedof each other's location is presented in section 4.3.4.2.6 Reclaiming link recordsPeriodically, agents scan their link tables and attempt to reclaim link records thatno longer serve any useful purpose. A link record can not be reclaimed if any of thefollowing are true:� This is the home agent of the link, and the deleted_flag is not set.The home agent is depended upon to never forget anything it has ever beentold about its own links (until more recent information arrives).� One of up_flag or down_flag is set, and the deleted_flag is not set.Clearly to reclaim such a record would be to permanently lose one of the twoends of the link.� The record has been recently used.This condition is not necessary to the correctness of the algorithm, but it doesimprove performance in a couple of cases discussed below. Clearly there is littleto lose by retaining useful information.4Otherwise the record is a candidate for reclamation.If the deleted_flag is set in a reclamation candidate, then the record is reclaimed.If the deleted_flag is not set in a reclamation candidate, then, because of the threechecks listed above, we know that:� This is not the home agent.4The current implementation won't reclaim a record that has been used in the last 30 seconds.There are many alternatives to this simple approach. For example, agents could wait until their linkrecord table grows beyond a certain size, and then reclaim enough of the oldest records to reducethat size by a given amount.



4.3. PROOF OF CORRECTNESS 81� Neither the up_flag nor the down_flag is set.� The record has not been recently used.In this case the agent compares the up_agent and down_agent in the record with itsown Agent-Id. If neither matches, then again the record is reclaimed. However, ifone does match, then it is possible that the actual end of the link is en route to thisagent, and that this record represents useful information that will be needed once thatend arrives. This might happen if the home agent detected some confusion and sentupdate records to the two ends|such an update might actually arrive in advance ofthe end itself. (Of course this is highly unlikely to be the case if the record has beensitting around untouched for a long time, which is one reason not to reclaim recordsuntil they have gotten a little stale.)So in this one case, the agent must actually correspond with the link's home agentin order to determine whether or not it can reclaim the record. It does this by sendinga message to the home agent requesting that an update message be sent back. Whenthat update arrives it will either reveal that the link has been destroyed, or it willchange the up_agent and down_agent so that they no longer refer to the local agent,or perhaps it will con�rm that the record really is up-to-date information, in whichcase the agent can only hold on to the record and wait for it to prove useful.The safety of this algorithm is proved in the next section.4.3 Proof of correctnessIn this section, I will prove that the link maintenance protocol described in the pre-vious section is correct. There are two things that must be proved:� The two ends of a link can never permanently lose sight of each other. Moreprecisely, if an agent receives a link end and holds on to it, it is guaranteed toeventually learn about the location of the other end.� The algorithm for link record reclamation never discards any useful information.I will start by proving the �rst property under the assumption that agents neverdiscard any link records.Whenever either end of a link changes its location, it always dispatches an updaterecord re
ecting that change in a reliable message to the link's home agent. Thus,the home agent always eventually learns where the ends are located. The algorithmemployed by the home agent guarantees that the following invariant is maintained:An update containing the same up_sequence, up_agent, down_sequenceand down_agent as are contained in the home agent's link record has beensent to both the up_agent and the down_agent named there.



82 CHAPTER 4. CONNECTIONS ACROSS THE NETWORKIn other words, the home agent ensures that precisely what it currently knows hasbeen sent, in a single message, to each of the two agents that it believes need thatinformation.The home agent can usually maintain this invariant without doing any work atall. As described in section 4.2.5, after the home agent performs the merge algorithm,it compares the new local record with the old local record and the update record. Ifthe new local record matches the old local record, then the invariant remains truebecause the local record hasn't changed. If the new local record matches the receivedupdate record, then the invariant remains true because the agent that sent the updatealso sent copies of that record to the two link end holders|it already did the worknecessary to maintain the invariant.Only in the case where the new local record di�ers from both the inputs to themerge will the home agent have to take any action in order to preserve the invariant.In that case, it simply generates the two necessary updates itself. (This case can onlyhappen if the information in one half of the update is strictly newer than what theold local record contained, while the information in the other half is strictly older.This, in turn, can only happen in the presumably rare case where the two link endsmove at almost exactly the same time.)Since all location changes are sent to the home agent, maintaining this invariantguarantees that the ends never completely lose touch with each other. If an agentholds on to a link end for long enough, then eventually the home agent will learn bothwhere this end is, and where the other end is. At that time, the invariant ensuresthat somebody will have sent the agent an update containing what the home agentknows.This completes the proof that the two ends cannot lose each other. This proofassumed that agents never forget anything. Now we have to worry that the link recordreclamation process might foul things up by discarding useful information.There are two cases to consider. In the easy case the deleted_flag is set in therecord. This can only happen if the link has been destroyed, in which case the onlyinformation that needs to be preserved about the link is the news of its destruction.We have already seen that the home agent is always able to reconstruct this fact givena Link-Id.The second case of link record reclamation occurs when (1) the reclaiming agent isnot the home agent of the link and (2) the up_agent and down_agent of the record donot contain the Agent-Id of the reclaiming agent. So the reclaiming agent is neitherthe home agent, nor is it currently holding either end of the link. Such an agent willnever again need to know anything about the link in question unless some other agentdecides to send one of the ends back to it. In that case, we know that the home agentwill work to ensure that the reclaiming agent will be sent a single update record thatcontains everything it needs to know. So our only concern is to avoid reclaiming thecurrent local record after that vital update has arrived.



4.4. EXAMPLES 83That vital update, however, will always mention the reclaiming agent as either themost recent up_agent or down_agent, and the corresponding sequence number will belarger than any sequence number yet associated with the location of that end. If suchan update had arrived locally, the merge algorithm would therefore have preservedthat information. So since neither the up_agent nor the down_agent mention thereclaiming agent, such an update, if it exists at all, has not yet arrived. And it istherefore safe to reclaim the local link record.4.4 ExamplesIn order to give the reader a better understanding of how the link maintenance pro-tocol behaves in practice, this section contains several examples of it in action.Throughout these examples H will be the home agent of the example link and A,B and C will be other agents. Initially H calls create_link and is given possessionof both ends of a newly forged link. A link record is placed in H's link record tablethat describes this situation.As there will be a lot of link records 
ying around in the descriptions that follow, itwill help to have a concise notation for them. Link records will be written as follows:hup_sequence, up_agent, down_sequence, down_agent, Flagsiwhere Flags is a subset of fup; down; deletedg. For example, immediately after Hcalls create_link, the state of the world is:H is holding: h0; H; 0; H; fup; downgiNote that we don't need to specify which link the record describes, since all theexamples only concern a single link.4.4.1 There and back againIn the simplest possible case,H immediately calls destroy_link. That case is neithervery interesting nor very likely, so we pass immediately to the second simplest case,where H sends one end of the link to A, who immediately returns it.First, H calls pick_up_link, passing it the link and the Agent-Id of its intendeddestination, A. Then it sends the resulting descriptor to A. The resulting state:H is holding: h1; A; 0; H; fdowngiIn a descriptor bound for A: h1; A; 0; H; fupgiNote that up end has been chosen to move from H to A, and the sequence numberin the up half of the record has been incremented to re
ect this fact. Since H isthe home agent, and since H is still holding the down end of the link, no additionalupdate records were generated.When the descriptor arrives at A, A calls put_down_link. This creates a newlink record at A:



84 CHAPTER 4. CONNECTIONS ACROSS THE NETWORKH is holding: h1; A; 0; H; fdowngiA is holding: h1; A; 0; H; fupgiAt this point, if either A or H calls query_link, it will be told that the other agentis holding the other end of the link.Now A decides to send its end back to H. A calls pick_up_link and sends theresulting descriptor back to H: H is holding: h1; A; 0; H; fdowngiA is holding: h2; H; 0; H; fgiIn a descriptor bound for H: h2; H; 0; H; fupgiSince A is sending the end back to the home agent, who it also believes to be holdingthe other end, again no additional updates were generated.At this point a call to query_link by H would still claim that A is holding theother end, even though this is no longer the case. But this situation only persistsuntil the descriptor arrives at H and is merged in with the existing record:H is holding: h2; H; 0; H; fup; downgiA is holding: h2; H; 0; H; fgiNow H is holding both ends, so it can call destroy_link. SinceH is the home agent,an update is not needed to inform the home agent of the destruction. The result:H is holding: h2; H; 0; H; fup; down; deletedgiA is holding: h2; H; 0; H; fgiThe algorithm for link record reclamation will recognize that both of these recordsmay be reclaimed whenever the agents that hold them �nd it convenient. (In fact, Acould have reclaimed the record that it holds any time after it send the end back toH.)Note that in this simple case, the link layer did not send any messages at all.All network tra�c was contained in descriptors carried in messages sent by otherlayers. Frequently the link layer can get away with being completely parasitic on themessages sent by other layers.4.4.2 Follow the leaderNow let us return to the state just after A called put_down_link:H is holding: h1; A; 0; H; fdowngiA is holding: h1; A; 0; H; fupgiNow let us suppose that instead of A sending its end back to H, H sends the otherend on to A. So H calls pick_up_link and sends the descriptor o� to A:



4.4. EXAMPLES 85H is holding: h1; A; 1; A; fgiIn a descriptor bound for A: h1; A; 1; A; fdowngiA is holding: h1; A; 0; H; fupgiA merges in the descriptor:H is holding: h1; A; 1; A; fgiA is holding: h1; A; 1; A; fup; downgiNow suppose that this time A calls destroy_link. This requires A to send an updaterecord in a link layer message to H to inform it of the destruction of the link:H is holding: h1; A; 1; A; fgiA is holding: h1; A; 1; A; fup; down; deletedgiIn an update for H: h1; A; 1; A; fdeletedgiAnd �nally after H receives the news:H is holding: h1; A; 1; A; fdeletedgiA is holding: h1; A; 1; A; fup; down; deletedgiAgain we have arrived at a state where either agent can reclaim its record of the linkwhenever it desires.In this case there was only one link layer message sent, due to the fact that thelink was destroyed somewhere other than at its own home agent.4.4.3 Wandering around away from homeAgain let us return to the state just after A called put_down_link:H is holding: h1; A; 0; H; fdowngiA is holding: h1; A; 0; H; fupgiThis time, suppose that A decides to pass its end of the link on to C. So A callspick_up_link and sends the descriptor o� to C:H is holding: h1; A; 0; H; fdowngiA is holding: h2; C; 0; H; fgiIn a descriptor bound for C: h2; C; 0; H; fupgiIn an update for H: h2; C; 0; H; fgiNotice that this required A to send an update record back to H both because H isthe home agent and because A believesH is holding the other end. After H processesthat update, and after C merges the descriptor:H is holding: h2; C; 0; H; fdowngiA is holding: h2; C; 0; H; fgiC is holding: h2; C; 0; H; fupgi



86 CHAPTER 4. CONNECTIONS ACROSS THE NETWORKAt this point A is free to reclaim its record of the link and both H and C are awareof who is holding the other end of the link.This example demonstrates that as long as one end of the link stays at home, theprice of moving the other end is a single link layer message.4.4.4 Everybody leaves homeNow let us consider what happens when both ends leave home for separate destina-tions. After sending one end to A, suppose H calls pick_up_link again and sendsthat descriptor to B: H is holding: h1; A; 1; B; fgiIn a descriptor bound for B: h1; A; 1; B; fdowngiIn an update for A: h1; A; 1; B; fgiA is holding: h1; A; 0; H; fupgiAn update was dispatched to A to keep it informed of the location of the other end.After A processes that update, and after B merges the descriptor:H is holding: h1; A; 1; B; fgiA is holding: h1; A; 1; B; fupgiB is holding: h1; A; 1; B; fdowngiNow suppose A wants to pass its end on to C. It calls pick_up_link and sends thedescriptor: H is holding: h1; A; 1; B; fgiA is holding: h2; C; 1; B; fgiIn a descriptor bound for C: h2; C; 1; B; fupgiIn an update for H: h2; C; 1; B; fgiIn an update for B: h2; C; 1; B; fgiB is holding: h1; A; 1; B; fdowngiTwo update messages were generated, one for the home agent H, and one for B, theagent believed to be holding the other end. Once everything settles down:H is holding: h2; C; 1; B; fgiA is holding: h2; C; 1; B; fgiC is holding: h2; C; 1; B; fupgiB is holding: h2; C; 1; B; fdowngiA is free to reclaim its record, and B and C each know that the other holds the otherend of the link.So we see that when the second end leaves the home agent, one link layer messageis required, and whenever either end moves from there on in, two link layer messagesare required.



4.4. EXAMPLES 874.4.5 Confusion reignsIn the previous example, an interesting case occurs if A passes its end of the link onto C before it receives word that the other end has traveled from H to B. We returnto the state just after H takes that action:H is holding: h1; A; 1; B; fgiIn a descriptor bound for B: h1; A; 1; B; fdowngiIn an update for A: h1; A; 1; B; fgiA is holding: h1; A; 0; H; fupgiNow this time, before any messages are delivered, A calls pick_up_link and sendsthat descriptor to C: H is holding: h1; A; 1; B; fgiIn a descriptor bound for B: h1; A; 1; B; fdowngiIn an update for A: h1; A; 1; B; fgiA is holding: h2; C; 0; H; fgiIn a descriptor bound for C: h2; C; 0; H; fupgiIn an update for H: h2; C; 0; H; fgiSince A is unaware that the other end is on its way to B, it only generated an updatefor H. Let us suppose that that update now arrives at H and is merged:H is holding: h2; C; 1; B; fgiIn an update for B: h2; C; 1; B; fgiIn an update for C: h2; C; 1; B; fgiIn a descriptor bound for B: h1; A; 1; B; fdowngiIn an update for A: h1; A; 1; B; fgiA is holding: h2; C; 0; H; fgiIn a descriptor bound for C: h2; C; 0; H; fupgiThe merge resulted in a record that was di�erent from both the inputs, soH generatedupdates for B and C. Note that A is currently free to reclaim its record.So far, no messages have arrived at either B or C. At B, suppose the descriptorarrives �rst, followed by the update. The result:H is holding: h2; C; 1; B; fgiIn an update for C: h2; C; 1; B; fgiIn an update for A: h1; A; 1; B; fgiA is holding: h2; C; 0; H; fgiIn a descriptor bound for C: h2; C; 0; H; fupgiB is holding: h2; C; 1; B; fdowngiB now believes that C is holding the other end, even though it hasn't actually arrivedthere yet. (Before the update arrived, a call to query_link at B would have claimedthat A held the other end, even though it had already departed.)At C, let us suppose that the update from H arrives �rst. The result:



88 CHAPTER 4. CONNECTIONS ACROSS THE NETWORKH is holding: h2; C; 1; B; fgiIn an update for A: h1; A; 1; B; fgiA is holding: h2; C; 0; H; fgiIn a descriptor bound for C: h2; C; 0; H; fupgiB is holding: h2; C; 1; B; fdowngiC is holding: h2; C; 1; B; fgiNotice that at this point, the record at C is a candidate for reclamation, but sinceC itself appears in the record, C must ask H for another update if it gets anxiousabout that record|and in this situation another update from H will simply reassureC that the record it holds really is important. But this is unlikely to happen, becausethe descriptor sent to C by A will almost certainly arrive long before reclamationbecomes an issue. The result of merging that descriptor will be:H is holding: h2; C; 1; B; fgiIn an update for A: h1; A; 1; B; fgiA is holding: h2; C; 0; H; fgiB is holding: h2; C; 1; B; fdowngiC is holding: h2; C; 1; B; fupgiSo now B and C know all about each other.Only the update destined for A remains to be delivered. Since A is unlikely toget around to reclaiming the record it is currently holding before that happens, theresults after delivery and merging will be:H is holding: h2; C; 1; B; fgiA is holding: h2; C; 1; B; fgiB is holding: h2; C; 1; B; fdowngiC is holding: h2; C; 1; B; fupgiThe updated record that A is now holding is still one that can be reclaimed at will.Notice that if A had reclaimed its previous record before the update was delivered,then that update would have created a new record in which A itself was mentioned.In order to reclaim that new record A would have had to �rst request another updatefrom H. This demonstrates that there are bene�ts to not reclaiming link records tooquickly.The di�erence between this example and the one in the previous section was thatin this case the two ends brie
y lost track of each other. We saw that it took twoadditional link layer messages to correct the situation.We can also see that the worst possible case, in terms of the number of link layermessages needed to support the protocol, is when both ends have traveled away fromthe home agent, and then they both move again nearly simultaneously. In that case,six link layer message will be sent: two each from the two sending agents (one to thehome agent, and one to the other sending agent), and two more from the home agentto the new end holders.



4.5. ANALYSIS AND POSSIBLE IMPROVEMENTS 894.5 Analysis and possible improvementsIn section 4.1, I listed the requirements that the link maintenance protocol was de-signed to meet. The degree to which those requirements have been satis�ed can nowbe evaluated.The basic integrity requirement, that neither of the two ends be duplicated orlost, was never at issue. As long as descriptors are delivered in reliable messages, thisis easy to achieve. Similarly, there was never any question that as long as neither endof a link was moving, no network tra�c would be needed to maintain the link.In order to evaluate how well the requirements have been met that agents receiveprompt updates about locations, consider the case of an agent, A, which has justobtained one end of a link from a descriptor. How long must A wait before it learnsthe location of the other end? A knows that at the time the transmitting agent calledpick_up_link, that agent also sent an update to the home agent to announce thatA was the new location. Once that update arrives, the home agent will know whereto send future updates about the location of the other end. Thus, even if the otherend never learns about A, the updates it sends to the home agent will be relayed onto A.So after an initial short wait, A will start receiving current information that haspassed through at most a single third party. This might not be a particularly quickway to keep in touch, especially if the home agent is located very far away, but it ismuch better than a scheme where an unbounded number of forwarding agents mayintervene.Finally, it was required that link record reclamation be easy. Ideally, any agentthat is not currently holding either of the two ends of a link should be able to reclaimits record of that link whenever it wants|without consulting any other agents. Thisprotocol achieves that goal, with two exceptions.First, as we saw at the end of the last example, in some very rare cases an extremelyold update can arrive at an agent long after that agent had discarded its previousrecord of the same link. The record created by such an update cannot be reclaimedwithout probing the home agent for con�rmation. The longer agents hold on to oldrecords, the more unlikely this case becomes, so the cost here can be made negligible.5Second, the home agent must preserve its link record even after both ends of thelink have left home. This is another instance where relying on a �xed third partyagent is a bit troublesome.One important special case performs particularly well. If there are only two agentsever involved in the history of a link, then no link layer messages will be requiredat all. All the correspondence between those agents about that link can be carriedwithin the descriptors exchanged as part of the higher level protocols. (The �rst twoexamples above demonstrate this.)5It may even be possible to eliminate this case entirely using an argument based on maximumpacket lifetimes.



90 CHAPTER 4. CONNECTIONS ACROSS THE NETWORKThis case is important because it occurs whenever the higher level is behaving asit would for a remote procedure call. That is, if two agents pass subgraphs back andforth that represent procedure calls, call arguments, procedure returns and returnedvalues, then the links created to support the process will all be of this special kind.The obvious way to improve this protocol is to provide some way to move thehome agent. While the home agent continues to hold one of the two ends of the link,there isn't much room for improvement, but as soon as the home agent becomes athird party, we �nd ourselves in a state where many things would perform better ifonly the home agent could be moved to where one of the ends was located.In fact, we can achieve the e�ect of moving the home agent by discarding theold link and replacing it with a new one, forged by the agent that would be a betterhome. This optimization is not done in the current implementation, but it would beeasy to add.For example, if A and B are holding the ends of a link forged by H, and A decidesthat it would be a better home agent for such a link, A can call create_link to forgea new link, and then send B a message containing two descriptors: one descriptorcontains A's end of the old link, and the other contains one of the two ends of thenew link. When B receives the message it checks to see if it still has the other end ofthe old link. If it does, B calls destroy_link to dispose of the old link and starts touse the enclosed end of the new link. If the other end of the old link has departed,then B packs the two ends back up and sends the message o� to chase after it.This technique for home agent relocation operates as a separate layer on top ofthe link layer. The link layer is already built on top of a reliable message layer.The resulting structure is three levels deep, all to accomplish the simple job of linkmaintenance.It is clear that the bottom two layers could pro�t by being combined into a singlelayer. For example, there are occasions where messages sitting in an agent's reliablemessage layer retransmission queue can be abandoned because the link maintenancelayer at that agent now has more up-to-date information to transmit. The fact thatboth the reliable message layer and the link layer maintain their own sequence num-bers suggests how closely related these two layers really are. My intuition is thatusing a third layer for home agent relocation is also a mismodularization; I believethat a better protocol can be designed that combines all three of these layers into asingle uni�ed protocol.4.6 SummaryIn this chapter I described the link abstraction which implements cross-network linearnaming, and I demonstrated that links can be implemented cheaply. Linearity isimportant in keeping links cheap because it guarantees that each end of a link onlyhas to think about one thing: the location of the other end.



4.6. SUMMARY 91In the next chapter links will be used to support the cross-network connectionsnecessary for distributed linear graph reduction. The fact that links are cheap willmean that linear graph structure can be easily moved from agent to agent.



92 CHAPTER 4. CONNECTIONS ACROSS THE NETWORK



Chapter 5Distributed ExecutionThis chapter describes the distributed linear graph reduction engine. It describes thebehavior of the individual agents that hold the vertices that make up the workinggraph. Agents exchange vertices through the network and they apply methods to thesubgraphs composed of the vertices they currently possess.Agents decide which vertices to migrate, when to migrate them, and who to mi-grate them to, by using a few simple heuristics. These heuristics are e�ective becausethe lifetime cumulative cost of maintaining a cross-network link is both predictableand small. The same could not be said of traditional nonlinear, pointer-like referencemechanisms.5.1 Run-time modulesFigure 5-1 depicts how the modules that comprise the run-time system support eachother. At the very bottom lies a module that maintains data structures that representthe local part of the working graph, and a module that provides a reliable messageservice for interagent communication. Other modules are constructed on top of thosetwo, and at the top sits a scheduler that decides what to do next.I will now brie
y describe each module and how it relates to the other modules.Reliable Messages. Agents communicate with each other using a simple reliablemessage service. This service is constructed on top of the Internet's UDP protocol[Pos80], although any unreliable datagram service would serve as well. The reliablemessage service maintains its own sequence numbers, timers, retransmission queues,and delivery queues. It encapsulates its messages and acknowledgments within UDPdatagrams. Each reliable message is transported in one datagram sent to the desti-nation and acknowledged in a second datagram sent back to the source.The reliable message service uses a 64-bit Agent-Id as the address of an agent.Links. The abstraction of a link is used to maintain connections over the network.Chapter 4 described how links are implemented in detail. Recall that every link hasexactly two ends somewhere in the network, and that if an agent is holding one of93



94 CHAPTER 5. DISTRIBUTED EXECUTION
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structureFigure 5-1: Run-time modulesthe two ends, then it will be kept informed about the current location of the otherend. In order to accomplish this, the link module uses the reliable message service toexchange messages with link modules running on other agents.Graph Structure. The graph structure module is partly a storage manager. Itcontains routines that allocate and free the blocks of storage used to represent vertices(as described in chapter 3). This module is also charged with maintaining two queues:The reduction queue contains redexes that are waiting to be reduced locally, andthe migration queue contains redexes that are unable to reduce because one of thetwo vertices is held by a remote agent.Compiled method procedures (the results of the compilation procedure describedin chapter 3) are distributed to all agents. These procedures use utilities in the graphstructure module to alter the working graph. These utilities are careful to deleteentries from either queue if they concern vertices that have been removed, and to addappropriate new queue entries.The tagged values used for connections make it easy to spot redexes whenever anew connection is made. Code that constructs new graph structure calls the procedureconnect_dispatch to make new connections between vertices, passing it the twotagged values that represent the terminals that are to be connected. By extracting thetwo tags, concatenating them, and looking the result up in a table, connect_dispatchcan quickly dispatch to an appropriate routine that knows exactly how to make thedesired connection. For example, when connecting the target terminal of a Caroperation to the handle of a Cons object, connect_dispatch can tell from the two



5.1. RUN-TIME MODULES 95tags alone that a method1 applies whenever those two terminals are connected, so itmakes an entry in the reduction queue.A special tag is used to identify connections to vertices held by agents elsewherein the network. In this case, the rest of the tagged value contains the address of (thelocal part of) a link. Given a link, the system can determine the Agent-Id of theagent holding the vertex at the other end of the connection, and the tag that thevalue would have if it were a connection to a locally held vertex (call this the \truetag").When connect_dispatch is given a value tagged as a connection to a remotevertex, it dispatches to a routine that pulls the true tag out of the link and checks tosee if some method would apply if the two vertices were held by the same agent. Ifso, then we say that the redex is blocked by the network. Blocked redexes are storedin the migration queue.Subgraph Transporter. The subgraph transporter can move arbitrary subgraphsfrom agent to agent. Subgraph transporter modules running on di�erent agents ex-change messages using the reliable message service. Such messages use a simplelanguage to describe graph structure that was recently disassembled by the sender,and that should be reassembled by the receiver. These messages also contain links2that specify how the subgraph is joined to the rest of the working graph.Before sending a subgraph, the transporter calls the graph structure module todisassemble the structure to be sent, and it calls the link module to create linksto support newly created interagent connections. After receiving a subgraph, thetransporter calls the graph structure module to reassemble it, and the link module to�gure out how to connect it to the rest of the locally held graph.The subgraph transporter makes no decisions about what vertices to send or whereto send them. It is perfectly capable of picking up an arbitrary vertex from the middleof the locally held graph, and sending it to an arbitrary agent. It is not necessaryfor the transported graph structure to be connected to anything at the destination.Policy decisions about what to move, where to move it, and when to move it are madeby the network executive.Network Executive. The network executive is invoked by the scheduler to drainentries from the migration queue. Recall that entries are made in this queue whenthe graph structure module discovers that a redex is blocked by the network.The network executive �rst checks the local vertex in the blocked redex to see ifit is also one of the vertices in a redex in the reduction queue. If so, the networkexecutive just puts the blocked redex back on the migration queue. The idea here is toavoid pushing a vertex over the network that local reduction is about to replace with1Speci�cally, the method on page 42.2Carried in descriptors, as described in chapter 4.



96 CHAPTER 5. DISTRIBUTED EXECUTIONa di�erent vertex|let the local redex run �rst, and perhaps the need to communicatewith the remote agent will be eliminated.If the local vertex is not subject to local reduction, then the network executivecalls the link module to determine the Agent-Id of the location of the other vertexin the blocked redex, and then prepares to call the subgraph transporter to move thelocal vertex to that location.Since this commits the system to sending a message, the network executive ex-amines the vertices in the neighborhood of the vertex to be transported to see ifthere might be some bene�t in sending some of them along in the same message.The heuristics used by the network executive to select the subgraph to be migratedare described in detail in section 5.3. The selected subgraph is then �red o� to itsdestination.When the subgraph arrives, the transporter on the destination agent incorporatesit into its local graph structure. If the other vertex in the formerly blocked redex isstill held by that agent, then soon a local reduction will take place. If not, no harm hasbeen done, the working graph is still intact. If the other vertex has moved elsewhere,then the redex is still blocked on the network, and it becomes the responsibility ofthe destination agent's network executive, which may or may not decide to send itchasing after that vertex again.Local Executive. The network executive is invoked by the scheduler to drain en-tries from the reduction queue. Recall that entries are made in this queue when thegraph structure module discovers an unblocked redex. The local executive really hasno intelligence of its own. For each entry in the queue it simply calls the compilergenerated procedure that implements the reduction.Scheduler. The scheduler provides three di�erent services, although the moduledependency diagram that started this section only shows one of them:� The scheduler dispatches incoming network messages to the link module or tothe subgraph transporter. Di�erent agent's link modules exchange messages tokeep every agent that holds one end of a link informed of the location of theother end. The subgraph transporter gets a message when some graph structurearrives from a di�erent agent.� The scheduler provides timer interrupts to the link module and the reliablemessage module. The link module uses these occasions to garbage collect itsinternal data structures (see chapter 4 for details). The reliable message moduleuses these occasions to retransmit unacknowledged messages.� And �nally, as the module dependency diagram indicates, the scheduler callsthe network executive and the local executive to drain their respective queues.



5.2. TWO EXAMPLES 97The only nontrivial part of the scheduler is the way it selects entries from themigration and reduction queues for execution. The algorithm it uses ensures thata certain minimum number of local reductions are made between the time a redex�rst becomes blocked on the network, and the time the network executive �rst seesit. The idea is to give the graph structure in the neighborhood of the newly blockedredex time to settle down before thinking about moving stu� over the network.This heuristic works quite well in practice. As we will see in the examples below,it frequently has the e�ect of delaying remote migration until there are no pendinglocal redexes. This is good, because the agent isn't wasting time using the networkto achieve some goal when purely local computation might have changed or eveneliminated that goal.5.2 Two examplesGiven the brief outline of the run-time system just concluded, some examples of actualexecution can now be presented.5.2.1 The source codeThe complete Scheme source code for the �rst example contains four top-level de�ni-tions. First a familiar procedure:(define (fact n)(let loop ((a 1) (n n))(if (< n 2)a(loop (* n a) (- n 1)))))The methods generated for this de�nition were examined in section 3.4.Second, a somewhat peculiar procedure:(define (force-number n)(if (= n 0) n n))The purpose of this procedure may not be immediately obvious. FORCE-NUMBER isonly needed because of a poor interaction between the way arithmetic is implementedand the way I/O has been left unimplemented. When the initial working graphis constructed it will contain a continuation that handles a Return 1 message bydisplaying the returned value on the console|even if that value happens to still bea Future or a Sum vertex.3 This isn't very informative when one desires a numericvalue, so FORCE-NUMBER can be used to insure that a value is an actual number. Its3Or the a terminal of a Copy vertex!



98 CHAPTER 5. DISTRIBUTED EXECUTIONresult must be a number because a numeric value is required before the comparisonwith 0 can be completed.FORCE-NUMBER is the �rst of three kludges revealed in this section. All three aremechanisms introduced to cover up for missing features that a production implemen-tation would necessarily include. In this case, FORCE-NUMBER helps compensate forthe lack of a true I/O system. A true I/O system would be written in Scheme andwould contain methods that printed just the types the user cares to see (such asnumbers and CONS-cells), and would wait for other types of vertices to metamorphoseinto those known types.The third procedure also requires some explanation:(define (remote-fact host n)(host (lambda () (fact n))))Clearly, the argument named HOST will be a vertex that can be treated as a one-argument procedure. In fact, HOST will always behave as if it was the followingprocedure:(lambda (thunk) (thunk))And so the e�ect will always be to compute and return the factorial of N. The di�erencebetween calling FACT and REMOTE-FACT is that before commencing, REMOTE-FACT mustbrie
y examine its other argument.The reason for this curious protocol is the second of this section's three kludges.The problem is that the distributed linear graph reduction engine lacks any motiva-tion to keep the working graph distributed. Given what I have presented so far, anexcellent reduction strategy would be for all agents to send every vertex they possessto a single central agent, who would then run the entire problem locally. In mostcases this strategy will be optimal in terms of minimizing network tra�c and delay.But in a production implementation, some vertex types would be unable to migratefrom agent to agent. These vertices would be anchored at a particular agent becausethey represent a hardware device (printer, disk drive, keyboard, etc.) that is attachedto that agent.For example, keyboard input might be accomplished by having a Keyboard InputStream vertex that behaved as a zero-argument procedure:(graph (0 1)(<Keyboard Input Stream> 2)(<Call 0> target:2 tail:0 cont:1))(graph (0 1)(<Keyboard Input Stream> 0)(<Return 1> target:1 tail:3 0:2)(<Number x> 2)(<Drop> 3))



5.2. TWO EXAMPLES 99where a di�erent x would be returned each time this method was applied, dependingupon which key had been pressed next. A Keyboard Input Stream vertex refersimplicitly to the keyboard of the agent that is holding it, and thus it cannot bemoved.So there are two special aspects to a Keyboard Input Stream vertex, (1) somelow-level system magic must link it to the actual keyboard, and (2) the run-timesystem must recognize its immobility. In the current system we reproduce only thesecond aspect. A Network Anchor vertex is a vertex that is anchored to whateveragent is holding it, and that can be treated as a one argument procedure:(graph (0 1 2)(<Network Anchor> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Network Anchor> 0)(<Call 0> target:2 tail:3 cont:1)(<Drop> 3))Since the Network Anchor cannot be moved, whenever this method is applicable, theCall 1 vertex will be forced to travel to the agent that holds the Network Anchor.So the purpose of REMOTE-FACT is �nally revealed. It expects to be passed a\host" in the form of a Network Anchor that is anchored at some speci�c agent, aswell as a number. First it touches the Network Anchor by passing it a thunk. Thiswill cause a Call 1 to travel to the designated agent. If, as is likely, the networkexecutive decides to send the thunk (the argument to the call) along in the samenetwork message, then the evaluation of (FACT N) will start execution at that agent.The subsequent computation of N ! will tend to stay on that agent due to the inertiacreated by the strategy of shunning use of the network unless it appears unavoidable.In e�ect REMOTE-FACT performs a remote procedure call to FACT.Fourth and �nally, we have the following procedure:(define (main args)(or (null? args)(force-number(+ (remote-fact (car args) 8)(remote-fact (car (cdr args)) 9)))))A call to the procedure MAIN will be part of the initial working graph. The argumentARGS will contain a list of Network Anchor vertices that result from parsing thecommand line. Each command line argument will be a 64-bit Agent-Id. Those agentswill be contacted during the construction of the initial working graph, and a NetworkAnchor will be created at each one.Reading the code for MAIN we see that if no agents are speci�ed in the commandline, so ARGS is empty, the call to MAIN simply returns True. If two agents are speci�ed,



100 CHAPTER 5. DISTRIBUTED EXECUTIONthen the �rst is asked to compute 8!, the second is asked to compute 9!, the resultsare added, FORCE-NUMBER insures that the sum has reduced to a true number, andthe answer is returned.The third of this section's three kludges concerns the need for the case whereARGS is empty. After the value True has been displayed on the console by the initialcontinuation, the executing agent will �nd that it no longer has any vertices in itspossession whatsoever. At this point, it could simply cease to exist, but instead itcontinues to listen to the network in the hope that some other agent will send itsomething to do. Thus we can use this trivial case to boot up new agents running ondi�erent hosts.5.2.2 First exampleTo test the example program, we �rst run the executable �le, passing no commandline arguments, on the two hosts we wish to use as servers. This creates two agents(call them A and B) that are simply waiting for messages from other agents. Then werun the executable on a third host, passing it the Agent-Ids of A and B as commandline arguments. This creates a third agent (C) who contacts A and B, and togetherthey construct the following initial working graph:(graph ();; A:(<Network Anchor> 10);; B:(<Network Anchor> 9);; C:;; Reduction Queue: 3(<Global MAIN> 3)(<Call 1> target:3 tail:4 cont:8 0:2)(<Drop> 4)(<Cons> 2 car:10 cdr:1)(<Cons> 1 car:9 cdr:0)(<Nil> 0)(<Network Anchor> 8))(I will be using ;;-comments to indicate which agents are holding which vertices.)Only one method can be applied to this graph, the one for the connection numbered\3", and both of the vertices that it joins are held by C, so all queues are emptyexcept C's reduction queue. C's scheduler thus callsC's local executive, which appliesmethods to the subgraph held by C until the working graph becomes:



5.2. TWO EXAMPLES 101(graph ();; A:(<Network Anchor> 10);; B:(<Network Anchor> 9);; C:;; Migration Queue: 10(<Call 1> target:10 tail:5 cont:4 0:6)(<Lambda 894> 6 n:1)(<Number 8> 1)(<Evarg 1262> 4 cont:7 args:3)(<Cons> 3 car:5 cdr:2)(<Cons> 2 car:9 cdr:0)(<Nil> 0)(<Evarg 1305> 7 cont:8)(<Network Anchor> 8))We see that the computation has advanced to the point where A's Network Anchoris about to be called. The argument being passed is a zero-argument procedure whichis a closure with one free variable (whose value is 8). This is the closure from thebody of REMOTE-FACT. The continuation for the call is an Evarg 1262 vertex thatcaptures the original ARGS argument to MAIN. When the call to FACT �nally returnsto the Evarg 1262, it will need the value of this variable in order to start evaluatingthe other argument in the call to +.4 The next continuation down the \stack" isof type Evarg 1305, it is waiting to supply the argument to FORCE-NUMBER. Thebottommost continuation is C's Network Anchor, which will display the �nal valueon C's console.5Again only one redex remains, the one corresponding to connection 10. A stillbelieves that the terminal on the other end of connection 10 is the car terminal ofa Cons (for which there is no method), but C knows the true story, so there is nowan entry in C's migration queue. This is the way responsibility for blocked redexes isalways handled, the burden always falls on the agent who �rst discovers the blockedredex. Usually this is due to local execution at that agent replacing a vertex with oneof a di�erent type.C's scheduler sees that nothing more can be done locally, so it allows C's networkexecutive to run, to see if it can unblock connection 10. The network executive seesthat the remote vertex (the Network Anchor) is not mobile, but there is nothing to4Notice how faithfully this follows the sequential de�nition of the Scheme language. We don'tevaluate any part of the second argument to + until after the �rst argument has actually returnedits value.5A network anchor can also be treated as a continuation. The returned value will be printed onthe console.



102 CHAPTER 5. DISTRIBUTED EXECUTIONprevent the local vertex (the Call 1) from traveling, so it resolves to send a subgraphcontaining that vertex from C to A.The network executive now applies its migration heuristics to determine which,if any, other local vertices should accompany the Call 1 to its destination. Theseheuristics have yet to be described, but understanding them is not essential to under-standing the example. It is su�cient to know that the heuristics decide that it lookslike a good bet to pick up all the vertices that C is holding (except, of course, C'sNetwork Anchor) and send them along to A. Later, in section 5.3, we will see howthis advice was computed.So the network executive calls the subgraph transporter to perform the migration.One message is sent from C to A containing the description of the migrating graphstructure, and three link end descriptors:� one end of the link that carries connection 10,� one end of the link that carries connection 9,� one end of a new link that carries connection 8.After A's subgraph transporter reassembles the structure we have the following situ-ation: (graph ();; A:;; Reduction Queue: 10(<Network Anchor> 10)(<Call 1> target:10 tail:5 cont:4 0:6)(<Lambda 894> 6 n:1)(<Number 8> 1)(<Evarg 1262> 4 cont:7 args:3)(<Cons> 3 car:5 cdr:2)(<Cons> 2 car:9 cdr:0)(<Nil> 0)(<Evarg 1305> 7 cont:8);; B:(<Network Anchor> 9);; C:(<Network Anchor> 8))As the subgraph transporter installed the new structure at A it discovered the nowunblocked redex corresponding to connection 10, which is now sitting in A's reductionqueue.When the link layer was informed that one end of the link for connection 9 wasmoving fromC to A, it dispatched an update message from C to B, where it suspected



5.2. TWO EXAMPLES 103the other end was located. Also, when the link that used to carry connection 10 wasdestroyed by A, a message was sent to C, the link's home agent. So the entire act ofmigration involved three messages, plus some acknowledgments.6Now A's local executive gets to work applying methods to the subgraph held byA until the working graph becomes:(graph ();; A:;; Migration Queue: 9(<Call 1> target:9 tail:0 cont:3 0:1)(<Drop> 0)(<Lambda 894> 1 n:2)(<Number 9> 2)(<Evarg 1251> 3 cont:7 0:4)(<Number 40320> 4)(<Evarg 1305> 7 cont:8);; B:(<Network Anchor> 9);; C:(<Network Anchor> 8))This situation resembles the situation at C just before the previous migration. Againthere is a single blocked redex, which is a call on a remote Network Anchor. Theargument is a closure of the same type, although this time the closed over value is thenumber 9. The Evarg 1305 continuation hasn't been touched, but the continuationabove it on the stack is now of type Evarg 1251. This continuation is holding thevalue 40320, with the intent of adding it to the returned value.A similar scene unfolds: The network executive resolves to send the Call 1 vertexto rendezvous with the Network Anchor at B, and the migration heuristics suggestthat all of the vertices held by A should accompany it. A message containing adescription of the graph structure and two descriptors is dispatched from A to B.The descriptors are for the ends of the links for connections 8 and 9.This time the link module sends two updates to C, since it is the home agent forboth links, and because it is also the current location of the other end of the link forconnection 8. Also, the link for connection 9 is destroyed at B, generating a messagefrom B to C. Total messages sent for this migration: 4.The working graph after the migration:6The acknowledgment for the structure migration message from C to A can be piggybacked ontop of the notice of destruction sent from C to A. The existing reliable message module does notmake this optimization, but it should.



104 CHAPTER 5. DISTRIBUTED EXECUTION(graph ();; B:;; Reduction Queue: 9(<Network Anchor> 9)(<Call 1> target:9 tail:0 cont:3 0:1)(<Drop> 0)(<Lambda 894> 1 n:2)(<Number 9> 2)(<Evarg 1251> 3 cont:7 0:4)(<Number 40320> 4)(<Evarg 1305> 7 cont:8);; C:(<Network Anchor> 8))And after more purely local reduction:(graph ();; B:;; Migration Queue: 8(<Return 1> target:8 tail:0 0:1)(<Drop> 0)(<Number 403200> 1);; C:(<Network Anchor> 8))This time instead of calling a remote Network Anchor, we are trying to return a valueto it, but the e�ect is much the same: The Return 1 must migrate from B to C.The migration heuristics again suggest sending the whole show along for the ride. Amessage is dispatched from B to C containing the graph structure and a descriptorfor the link end. This time, the link layer sends no additional messages of its own.Total messages sent for this migration: 1. The result:(graph ();; C:;; Reduction Queue: 8(<Network Anchor> 8)(<Return 1> target:8 tail:0 0:1)(<Drop> 0)(<Number 403200> 1))which reduces to the empty graph, after printing the number 403200 on C's console.



5.2. TWO EXAMPLES 105In all, 8 messages were sent and acknowledged. The current simple-minded re-liable message module sends 16 UDP datagrams to transport these messages andacknowledgments. A better reliable message module, which knew how to combinemessages and acknowledgments bound for the same destination, could reduce this to8 datagrams.7More important than counting messages (or the underlying unreliable datagrams)is the total delay introduced by network travel. Three times the entire \task" packedits bags and moved to a new location. Thus the total delay is 3T , where T is the\typical" network transit time. This is the best possible delay for executing a singletask that must visit two remote locations in order to complete its job.8In a system that supported only the standard remote procedure call (RPC) mech-anism, where each remote call evokes a reply from the callee back to the caller, theanalogous program would run with a delay of 4T , 2T for each of the two remotecalls. (Recall that for the moment we are restricting ourselves to purely sequentialexecution.)The additional delay of T in an RPC system is an instance of the continuationproblem introduced in chapter 1. This example thus demonstrates how my systemis able to solve that problem. The crucial moment occurred when the task migratedfrom A to B. At that time the connection to the continuation on C was passed fromA to B along with the rest of the migrating structure. This enabled the task tomigrate directly from B to C with the �nal result. In an RPC system, where there isno explicit representation for a continuation, this would be impossible to accomplish.Of course the migration heuristics also played a role in this victory over RPC.Things could have gone very badly if the heuristics hadn't made such good choicesabout what vertices to migrate each time. In section 5.3 we will see why the heuristicsare so good at gathering together vertices that correspond to our intuitive notion ofa task.5.2.3 Second exampleNow let us make a small change in our example program. Suppose the procedureREMOTE-FACT is modi�ed to become:(define (remote-fact host n)(future (host (lambda () (fact n)))))Recall that the FUTURE special form starts executing its subexpression, but immedi-ately returns to its caller. Thus this new version of REMOTE-FACT will return a Futureto its caller that will eventually become the result of calling the FACT procedure onthe speci�ed host.7The fact that the number of datagrams in the best case works out to be the same as the numberof messages is purely a coincidence.8[Par92] takes the trouble to prove this fact!



106 CHAPTER 5. DISTRIBUTED EXECUTIONEverything else about the program and the startup procedure stays the same.The same initial working graph is constructed, and local reduction takes place at Cuntil the working graph becomes:(graph ();; A:(<Network Anchor> 16);; B:(<Network Anchor> 17);; C:;; Migration Queue: 16, 17(<Call 1> target:16 tail:0 cont:1 0:2)(<Drop> 0)(<Lambda 1661> 2 n:3)(<Number 8> 3)(<Future> 13 as cont:1)(<Call 1> target:17 tail:4 cont:5 0:6)(<Drop> 4)(<Lambda 1661> 6 n:7)(<Number 9> 7)(<Future> 14 as cont:5)(<Sum> 15 left:13 right:14)(<Copy> target:15 a:8 b:9)(<Equal?> 11 left:8 right:10)(<Number 0> 10)(<Test 746> 11 cont:12 n:9)(<Network Anchor> 12))Since futures have been introduced, this initial computation at C is able to advancefurther before it must involve the network. Both calls to REMOTE-FACT returnedfutures, and the two subgraphs responsible for supplying values for those futures ranuntil they blocked calling the remote Network Anchor vertices located at A and B.Meanwhile, the rest of the graph ran until it got blocked in the code for FORCE-NUMBER.In e�ect, the working graph forked into three separate tasks (re
ected by thegrouping of the vertices in the graph expression above), which then ran independentlyuntil they blocked. This is what one would expect, given how futures are normallyimplemented [Mil87, Hal84], but remember that there is no explicit notion of \task" inlinear graph reduction. Tasks here are an emergent phenomenon that arises naturallyfrom a more primitive model of computation.The network executive on C now gets to work on the two blocked redexes: Aschance would have it, it �rst considers connection 17, whose other end is held by B. It



5.2. TWO EXAMPLES 107determines that the Call 1 vertex must migrate to B to rendezvous with the NetworkAnchor there. The migration heuristics are consulted, and they suggest sending thesubgraph consisting of the Call 1 vertex, the directly attached Drop, Future, andLambda 1661 vertices, and the Number 9 vertex.These vertices are gathered up and sent in a message to B. A new link is created tosupport connection 14. When the graph structure arrives at B, the link for connection17 is destroyed, generating a message back to that link's home agent, C. Totalmessages sent for this migration: 2.Next the network executive considers connection 16, whose other end is held by A.Again, the Call 1 vertex must migrate, and this time the heuristics suggest sendingattached Drop, Future, and Lambda 1661 vertices, the Number 8 vertex, and the Sumvertex.These vertices are gathered up and sent in a message to A. A new link is created tosupport connection 15. Since the other end of the link just recently created to supportconnection 14 is now moving to A, the link layer sends an update to B announcing themove. When the graph structure arrives at A, the link for connection 16 is destroyed,generating a message back to that link's home agent, C. Total messages sent for thismigration: 3.In section 5.3, we will see why the heuristics chose to partition the graph in exactlythis manner. For now, simply note that they almost selected exactly the \tasks" thatwe previously identi�ed intuitively. The decision to send the Sum vertex to A, insteadof keeping it on C, may seem peculiar|in fact, it will cause minor trouble lateron|but even that can be defended as a reasonable choice.After the two migrations the working graph becomes:



108 CHAPTER 5. DISTRIBUTED EXECUTION(graph ();; A:;; Reduction Queue: 16(<Network Anchor> 16)(<Call 1> target:16 tail:0 cont:1 0:2)(<Drop> 0)(<Lambda 1661> 2 n:3)(<Number 8> 3)(<Future> 13 as cont:1)(<Sum> 15 left:13 right:14);; B:;; Reduction Queue: 17(<Network Anchor> 17)(<Call 1> target:17 tail:4 cont:5 0:6)(<Drop> 4)(<Lambda 1661> 6 n:7)(<Number 9> 7)(<Future> 14 as cont:5);; C:(<Copy> target:15 a:8 b:9)(<Equal?> 11 left:8 right:10)(<Number 0> 10)(<Test 746> 11 cont:12 n:9)(<Network Anchor> 12))The local executives on A and B now work in parallel applying methods locally untilthe working graph becomes:(graph ();; A:(<Number 40320> 13)(<Sum> 15 left:13 right:14);; B:;; Migration Queue: 14(<Number 362880> 14);; C:(<Copy> target:15 a:8 b:9)(<Equal?> 11 left:8 right:10)(<Number 0> 10)(<Test 746> 11 cont:12 n:9)(<Network Anchor> 12))



5.2. TWO EXAMPLES 109The network executive on B clearly has no choice but to send the Number 362880vertex to A. Since C is the home agent for the link supporting connection 14, thiswill involve a link layer message from B to C announcing the move, and another fromA to C when the link is destroyed. Total messages sent for this migration: 3. Theresult: (graph ();; A:;; Reduction Queue: 14(<Number 40320> 13)(<Number 362880> 14)(<Sum> 15 left:13 right:14);; C:(<Copy> target:15 a:8 b:9)(<Equal?> 11 left:8 right:10)(<Number 0> 10)(<Test 746> 11 cont:12 n:9)(<Network Anchor> 12))A's local executive reduces this to:(graph ();; A:;; Migration Queue: 15(<Number 403200> 15);; C:(<Copy> target:15 a:8 b:9)(<Equal?> 11 left:8 right:10)(<Number 0> 10)(<Test 746> 11 cont:12 n:9)(<Network Anchor> 12))A's network executive then sends the Number 403200 back to C. Since the homeagent for the link supporting connection 15 is also C, no link layer messages areneeded. Total messages sent for this migration: 1. The result:



110 CHAPTER 5. DISTRIBUTED EXECUTION(graph ();; C:;; Reduction Queue: 15(<Number 403200> 15)(<Copy> target:15 a:8 b:9)(<Equal?> 11 left:8 right:10)(<Number 0> 10)(<Test 746> 11 cont:12 n:9)(<Network Anchor> 12))which reduces to nothing, after printing the number 403200 on C's console.In all, 9 messages were sent and acknowledged. The current simple-minded re-liable message module sends 18 UDP datagrams to transport these messages andacknowledgments, but as before, a better reliable message module could reduce thisto 8 datagrams.The network induced delay is again 3T , because of the critical path from C to Bto A and back to C. This is where the decision to migrate the Sum vertex gets us introuble. If the Sum had remained behind on C, then when the computations on Aand B completed they would have both sent their results directly to C, where theywould have been added and immediately printed. In this case the delay would havebeen only 2T .In a standard RPC system that also supported some kind of futures (such as thosedescribed in [LS88]) the analogous program would in fact run with a delay of 2T|soin this case RPC wins. The migration heuristics had to guess about the best placeto compute the sum (which is computed after a delay of 2T in either case), and theygot it wrong. RPC is too in
exible to even consider the possibility of computing thesum elsewhere, and so in this case it happens to do the right thing.I could have �ddled with the heuristics to make the optimal thing happen in thisexample as well, but the goal of this second example was to illustrate the e�ect ofintroducing futures, not to beat RPC a second time. It also helps to have an exampleof the heuristics performing less than perfectly in order to emphasize that they are,after all, only heuristics.5.3 Migration heuristicsUntil now I have avoided explaining the heuristics employed by the network executiveto select migratory subgraphs. I did this to emphasize how these heuristics are not inany way essential to the system as described so far. As long as the network executivemigrates the vertex necessary to unblock a blocked redex, the heuristics can do verylittle to prevent the computation from making at least some progress. (That is, aslong as they don't create new blocked redexes|fortunately this is easy to forbid.)



5.3. MIGRATION HEURISTICS 111Of course good heuristics can improve matters a great deal by anticipating wherea vertex is going to be needed, and sending it there in advance. In the examplesof the last section it was clearly bene�cial for the arguments attached to a migrat-ing Call to accompany the Call to its destination. But I make no claim that theheuristics described here are the right set of heuristics; I've only experimented with afew variations|the current set work acceptably well|but much better heuristics areclearly possible.These heuristics are interesting, not because of exactly what they do, but becauseof the kind of reasoning that went into creating them. The key idea is to take advantageof the fact that linear connections behave in a more predictable fashion than nonlinearreference mechanisms.These heuristics examine graph structure and make judgments about the conse-quences of moving bits of it from agent to agent. They have no understanding of whatthe vertex types meant to the compiler (as procedure calls, closures, continuations,or whatever), all they know about the vertices is the terminal activity information(described in chapter 3). They compare di�erent distributed con�gurations of graphstructure by comparing the links required to support each con�guration, and reason-ing about the expense likely to result from each link.The costs associated with each link are easy to estimate in part because of thepains we took in chapter 4 to limit the expense of each link level operation (creating,moving and destroying them). More importantly, link costs are easy to estimatebecause a typical link is used exactly once. An agent will use a link to track downthe location of some remote vertex, and will then send the local vertex it holds tothat location. When the migrating vertex arrives, the link will be destroyed, as itis no longer needed. (This was the fate of every single link in the two examples inthe last section.) To a �rst approximation every link represents exactly one futuremigration, so a strategy for minimizing the number of migrations is to try to minimizethe number of links.Another way to understand why this works is to think of a link as representing acapability to send one message between a pair of mobile entities. Limiting the capa-bility to a single message enables us to reclaim the resources devoted to maintainingthe link at the same time the message is sent; this keeps costs incurred by a linkduring its lifetime �xed. If multiple messages are required, multiple links must beforged in advance of those requirements. The result is that the system can anticipateto some extent how many messages the current computation will need to exchange,at least in the near term, by counting the number of extant links.There is a good analogy between the way blocked redexes are handled and the waypage faults are handled by demand paging. In both cases, the possibility of the faultis ignored at compile-time, and instead the fault is detected and handled at run-time.In demand paging, the fault is detected by the memory hardware. In distributedgraph reduction, the blocked redex is detected when connect_dispatch is passed avalue tagged as a connection to a remote terminal. In demand paging, adjacent words



112 CHAPTER 5. DISTRIBUTED EXECUTIONare read into physical memory in addition to the single word that is required to satisfythe fault; this simple heuristic takes advantage of locality of reference to decreases thenumber of future page faults. In distributed graph reduction, the heuristics describedin this section play a similar role; they work to decrease the number of future faults byanticipating redexes and transporting additional graph structure. In both cases therun-time can a�ord to do a certain amount of head-scratching, because it is alreadycommitted to an expensive action to clear up the existing problem.5.3.1 The heuristicsOnce an agent's network executive has decided to migrate a single vertex it workson expanding the migratory subgraph one vertex at a time. Each locally held vertexthat is directly connect to a vertex that will migrate, is considered in turn. If thatvertex satis�es the criteria described below, it is added to the migratory subgraph.This process of examining the fringe of the migratory subgraph is repeated untileventually no vertices satisfy the criteria.Since this algorithm only considers the e�ects of adding one vertex at a time, itperforms a rather myopic hill-climb search for the best subgraph to migrate. It isnot hard to construct cases where adding either of two vertices alone will be rejected,but adding both both vertices at once would be an improvement. This algorithm willnever discover such possibilities.Don't let the message get too large. As the migratory subgraph grows, the sizeof the message that will be sent generally grows. Each vertex to be migrated takes acertain amount of space to describe, and each link end descriptor takes up space. Butvertices are typically somewhat smaller than descriptors,9 so if sending a particularvertex will decrease the number of required links, then the message size will actuallydecrease. Thus, if the algorithm reaches a point where the message is close to themaximum message size, it will only consider additions to the subgraph that actuallydecrease the number of links.Don't migrate unblocked redexes. If a vertex is a member of an unblockedredex, it will never be considered for migration. This prevents agents from exportingun�nished work to other agents|the idea is to let computation �nish running locallybefore getting involved with the relatively expensive network. As a special case, thisrestriction prevents migration from creating new blocked redexes.Monoactive vertices follow their active terminal. Vertices that have only oneactive terminal and vertices that have many active terminals are treated di�erently.9In the current system, on the average, three vertices take up the same amount of space as asingle descriptor.



5.3. MIGRATION HEURISTICS 113The majority of vertices fall into the monoactive case. Such a vertex is added to themigratory subgraph if and only if its active terminal is connected to a vertex alreadyselected for migration.A monoactive vertex cannot participate in any future reductions unless its soleactive terminal gets connected to some appropriate vertex (one for which a methodexists). If a monoactive vertex gets separated from whatever graph structure its activeterminal is connected to, nothing further can happen to it unless it subsequently packsup and follows that structure, or unless that structure happens to return to it. Soletting such a separation take place guarantees that a message must be sent before themonoactive vertex can do anything useful. If we encourage the monoactive vertex tofollow what its active terminal is connected to, many such messages will be avoided.When that structure �nally becomes something the vertex can interact with, thevertex will already be there ready to participate in a local reduction.As an important special case of this heuristic, a vertex with only a single terminalwill always follow whatever structure it is attached to. Thus numbers and other atomswill always stick with the vertices they are connected to.This heuristic is largely responsible for the way the system so successfully extracts\tasks" from the working graph. Continuations are represented using vertices whosesole active terminal is connected to the graph structure that will eventually return avalue. So continuations will tend to tag along after the computations whose valuesthey are waiting for. Continuations linked together to form a \stack" will tend totravel together.An essential ingredient in the way stacks stick together is the fact that continua-tions are almost always treated linearly in Scheme programs. (The only exception iswhen CALL-WITH-CURRENT-CONTINUATION is used. See section 3.1.3.1.) Due to thislinearity, each continuation will be directly connected to the next, without even anintervening tree of Copy vertices. This is a clear example where the linearity in theoriginal program, exposed by the explicit representation as linear graph structure, isexploited to aid in the execution of the program.For polyactive vertices, just avoid creating more links. Polyactive verticesare added to the migratory subgraph as long as doing so does not increase the numberof links. The idea here is that as long as no additional links are required, a vertex ismore likely to be needed at the remote agent, where we know some action is aboutto take place, than it is locally, where things have settled down.Combining all the above heuristics yields the following algorithm:Step 0 Initialize G to contain just the initial vertex that is to be migrated.Step 1 For each local vertex v 62 G, where v is not a member of an unblocked redex,and v is connected to some vertex w 2 G do the following:



114 CHAPTER 5. DISTRIBUTED EXECUTION� If sending v would strictly decrease the number of required links, add v toG.� If the message being assembled is not close to full, and sending v wouldnot increase the number of required links, add v to G.� If the message being assembled is not close to full, and the terminal throughwhich v is joined to w is monoactive, add v to G.Step 2 If any new vertices were added to G in step 1, go do step 1 again.5.3.2 The example revisitedLet us now return to the following situation from the previous section, and examinein detail exactly how the two migratory subgraphs were chosen:(graph ();; A:(<Network Anchor> 16);; B:(<Network Anchor> 17);; C:;; Migration Queue: 16, 17(<Call 1> target:16 tail:0 cont:1 0:2)(<Drop> 0)(<Lambda 1661> 2 n:3)(<Number 8> 3)(<Future> 13 as cont:1)(<Call 1> target:17 tail:4 cont:5 0:6)(<Drop> 4)(<Lambda 1661> 6 n:7)(<Number 9> 7)(<Future> 14 as cont:5)(<Sum> 15 left:13 right:14)(<Copy> target:15 a:8 b:9)(<Equal?> 11 left:8 right:10)(<Number 0> 10)(<Test 746> 11 cont:12 n:9)(<Network Anchor> 12))Recall that the network executive started by considering connection 17, and de-termined that it should send the Call 1 at one end of that connection from C to B.Here is how the migration heuristics work in that case:



5.3. MIGRATION HEURISTICS 1151. The Drop connected to the tail terminal of the Call 1 is sent because its soleactive terminal is connected to the Call 1.2. The Lambda 1661 connected to the 0 terminal of the Call 1 is sent for thesame reason.3. The Number 9 connected to the n terminal of the Lambda 1661 is sent to followthe Lambda 1661.4. The Future connected to the cont terminal of the Call 1 is sent because if itisn't sent, connection 1 will require a link, while if it is sent, connection 13 willrequire a link. So sending it creates no increase in the number of links.5. The Sum vertex is not sent. If it isn't sent, connection 13 will require a link,while if it is sent, connections 14 and 15 will both require links.As the Sum vertex was the only remaining candidate for migration, at this point themigratory subgraph stops expanding.When the network executive considers connection 16 and its Call 1 vertex, every-thing happens in much the same way until the Sum vertex comes up for consideration.This time, if the Sum is not sent, connections 13 and 14 will require links. (Rememberwe made a link for connection 13 because of the previous migration!) If the Sum issent, connections 13 and 15 will require links. Either way, we need two links, so theSum gets migrated.The next step is to consider the Copy vertex. If it is not sent, connection 15continues to need a link, but if it is sent, connections 8 and 9 both require links.Thus the Copy is not sent, and the migratory subgraph stops expanding.It would not be hard to change these heuristics so that in this example the Sumvertex was not migrated; we could insist that in the polyactive case vertices are onlymigrated if they actually decrease the number of required links. This would causethe delay in printing the answer to drop from 3T to 2T . But remember that theinteresting thing about these heuristics is not how they function, but the reasoningthat went into creating them. Rather than patching them so that particular casesfunction in particular ways, we should examine this example to see if it reveals some
aw in the reasoning behind the heuristic.Note that while the delay before the answer is printed is 3T , the delay before theanswer is computed is 2T . In fact, the delay will be 2T whether the Sum vertex ismigrated to A, or remains on C. So the real problem with sending the Sum to A isthat it causes the answer to the call to + to appear in the wrong place, given that therest of the computation calls for that value to be printed by C.Could any heuristic predict this, given the state of the working graph at the timethe migration of the Sum is being considered? The heuristic must choose betweentwo nearly symmetrical situations. In either case, the Sum vertex winds up on oneagent, with one connection to some local structure, and two connections to remote



116 CHAPTER 5. DISTRIBUTED EXECUTIONstructures. In order to make an informed decision about which alternative to select,the heuristic needs to understand more about the future course of the computationthan can be extracted just by counting links. It is possible to construct cases where weare given a similar working graph, but due to the future course of the computation,the best choice is to migrate the vertex. Simply changing the comparison in theheuristic from � to < doesn't actually address the problem.In order to distinguish between the two cases in the Sum example, the heuristicsneed to know more about the universe of methods|they need to know more aboutthe consequences of their actions. The terminal activities are one step in that direc-tion, and we have already seen that the heuristic for monoactive vertices uses thatinformation to good advantage. Perhaps some additional information precomputedfrom the universe of methods can help suggest that it is not really a good idea for aSum vertex to get separated from the structure attached to its handle.The preceding discussion should not in any way belittle the performance of theexisting heuristics. They work quite well at exploiting the existing combination oflinearity and terminal activity information. I'm only suggesting that by continuingto travel in the same direction, the system can be made even better.5.4 SummaryThis completes the presentation of the practical implementation of distributed lineargraph reduction. In chapter 3 I showed how to translate an ordinary sequentialScheme program into a linear graph grammar. A key property of this translation isthat linearities in the original program remain linearities in the resulting grammar.Chapter 4 demonstrated that linear references between distributed entities can bemaintained cheaply. The fact that linear references are more constrained that full-
edged pointers makes this protocol simple, cheap and fast. In this chapter, thepieces were put together to build a system that executes the translated program in adistributed environment. Linear references also helped here by allowing the run-timesystem to make good decisions about how to distribute the graph structure.This system is quite real. The run-time system contains 5400 lines of C code.It runs under several popular versions of Unix. The compiler consists of 2500 linesof Scheme code. It tries to honestly address all of the issues that would arise ina \production" system. This includes issues, many of them quite mundane, that Ihave not even mentioned here. For example, there are interesting techniques usedfor describing graph structure compactly in messages, and for representing graphstructure so as to make local reduction run faster.Many things have been left undone. The rest of this section catalogs some of theissues that would have to be addressed before this system could be used for real.



5.4. SUMMARY 117Fault Tolerance. The current system is not at all fault tolerant. If an agentcrashes, the system breaks completely at all levels from the reliable message layer onup. In a production system, something would have to be done about graph structurethat was temporarily inaccessible due to problems with an agent or the network pathto that agent. For example, graph structure en route to such an agent could bereturned to the sender.Perhaps the same kind of reasoning about linear graph structure that went intothe design of the migration heuristics could help in coping with faults. This might bea fruitful area of future research.Security. Nothing in the current system addresses security concerns. The currentrun-time is even perfectly happy to migrate the company payroll database (repre-sented as linear graph structure) to the workstation sitting on the receptionist's desk.Better Link Protocol. As noted at the end of chapter 4, there are two majorimprovements to be made to the link maintenance protocol. First, the link layershould be able to relocate the home agent when neither end of the link remainsat home. Second, the link layer should be more closely integrated into the reliablemessage layer.Migration. As noted at the end of the previous section, more intelligent migrationstrategies are clearly possible, and probably desirable. Other factors besides blockedredexes and potential links can be taken into consideration. Subgraphs should bemigrated from overloaded agents to underutilized agents. The cost of a link shouldbe weighted according to the estimated network delay between its two ends. Thesestrategies, and others like them, would continue to build on the same basic foundationthat supports the existing migration strategies.Thrashing. Nothing prevents migrating graph structure from chasing other mi-grating graph structure uselessly around the network. In the simplest case of thisproblem two agents holding vertices on opposite ends of a connection simultaneouslydecide to send the vertex they are holding to the other agent. The result is that thetwo vertices change places, and nothing useful has been accomplished.Some simple strategies for preventing such \thrashing" are already built in to thecurrent migration heuristics (this is one reason why the agent who �rst discovers ablocked redex is always responsible for unblocking it), but in a production systemsome additional anti-thrashing mechanisms might well be needed. It is possible thatrandom variations in the behavior of the network will be su�cient to prevent graphstructure from chasing its tail forever, but if reliance of natural randomness provesinsu�cient, some simple tie-breaking strategies can be implemented.This is an example of the kind of issue that can't really be addressed without �rstgaining some experience with running large applications.



118 CHAPTER 5. DISTRIBUTED EXECUTIONDynamic Code Distribution. Currently all methods are known by all agentsbefore the system starts running. This makes it impossible to introduce new vertextypes after the program has started running. Unfortunately, this is precisely what anagent that o�ers some general service to the network needs to be able to do. Suchagents cannot possibly come into existence already knowing all the programs thatthey might need to brie
y host. Instead when they see a vertex type that have neverencountered before, they need to go and learn the methods they may need to handlethat type.This requires some straightforward work on the run-time to cause it to noticewhen a method might be missing and search for it. Presumably such a \methodfault" is a rare occurrence, since the results of the search can be cached locally. Theresulting algorithm should closely resemble demand paging.Nonlinear References. There are some situations in which linear references per-form poorly, so a true production system would also include nonlinear reference mech-anisms. For example, an object that represents the root of a �le system might havehundreds of outstanding references. In this case, building a tree of Copy vertices tocollect and serialize operations might be very ine�cient|especially in a distributedimplementation where operations might have to travel over the network from agentto agent tracing connections between widely scattered Copy vertices.A better mechanism might be a true \pointer" data type. Clients would be ableto freely transport and duplicate copies of a pointer, but the target of a pointer wouldremain ignorant of how many copies currently existed and where they were located.The target would therefore �nd it much more di�cult to move to a new location, or toterminate its existence. Pointers would be an alternative to connections that wouldprovide a di�erent, and sometimes more appropriate, allocation of the responsibilitiesand expenses associated with keeping a reference to an object.A good analogy can be made between the \pure" linear graph reduction system Ihave presented and an implementation of \pure" Lisp. A pure Lisp implementationmight only support a Cons data type, but a true production version of Lisp supportsdata structures such as arrays that have e�cient implementations in terms of theunderlying hardware.Garbage Collection. Methods for handling the interaction of vertices with Copyand Drop vertices gives the system the equivalent of a reference-count garbage collec-tor. As with any reference count garbage collector, circular structures can evade thereference count mechanism.Full Scheme. As has already been mentioned, the run-time only supports a limitedsubset of the features of a full Scheme implementation. Much of the work requiredto complete this job is straightforward and dull, but there are interesting language



5.4. SUMMARY 119design issues still waiting to be addressed. Designing an I/O system is one un�nishedjob we have already encountered.Another highly interesting problem is supporting the Scheme procedure EQ?. Thecurrent protocol for representing objects does not include any way to test if tworeferences actually speak to the \same" object. In other words, there is no way totell if two connections are connected to the fringe of the same Copy vertex tree.Any treatment of this issue must address subtle issues about exactly what onemeans when one talks about \the same object". These issues are the subject ofchapter 6.Language Design. Finally, it is worth mentioning that a production system builtaround distributed linear graph reduction would not necessarily want to stick soclosely to a sequential programming language semantics. This demonstration systemuses standard sequential Scheme in part to demonstrate that it could be done, andin part to avoid overloading the reader with too many new concepts.A production system would at least introduce some new programming languageextensions that help promote linearity and that allow parallelism (such as the FUTUREspecial form). But a new programming language could also be designed from scratch,perhaps by using a di�erent protocol for continuations.After presenting a catalog of things left undone and paths still to be explored, letme �nish the chapter in a more positive way with a summary of what the distributedlinear graph reduction engine has demonstrated about the bene�ts of paying attentionto linearity and of using linear graph structure:� All run-time structures (continuations, record structures, procedures, etc.) arerepresented explicitly using linear graph structure, so the proper treatment ofcontinuations in tail-recursive procedure calls is ensured.� Linearity keeps the link protocol simple, so cross-network references are cheap.� Cheap cross-network references permit data structures to be highly portable.� Linearity makes it possible to forecast future network tra�c, so heuristics canbe designed that facilitate the demand migration of tasks and data.Combine these bene�ts and the result is that programs such as the �rst example insection 5.2 can function with the minimum possible network delay.
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Chapter 6StateHaving demonstrated how linear graph reduction functions in a practical setting inthe last three chapters, I would now like to turn to a more theoretical application.In this chapter the notion of linearity and the tool of linear graph reduction will beused to examine one of the most perplexing phenomenon in computer science: thephenomenon of state.As functional programming languages and parallel computing hardware becomemore widespread, understanding the phenomenon of state is becoming increasinglymore important. It is generally agreed that the unrestricted use of state can make aprogram hard to understand, compile, and execute, and that these problems increasein the presence of parallel hardware. The usual approach to controlling these problemsis to impose programming language restrictions on the use of state, perhaps even byruling it out altogether. Others have proposed schemes that accept state as a necessity,and try to minimize its bad e�ects [Bac78, Agh86, GL86, Kni86].I believe that before either outlawing state, or learning to simply tolerate it, weshould try to better understand it, in the hope of eventually being able to reform it.This chapter takes some steps towards such an understanding.Using the linear graph reduction model we will be able to characterize thosesystems in which some components of a system perceive other components as havingstate. We will learn a new way of thinking about state, and we will gain insight intowhy state seems to be such a problem. This insight might one day help us make ourprogramming languages more expressive when we program with state.This excursion into the theory of state may seem quite abstract, especially incontrast to the practical presentation of the distributed graph reduction system justconcluded. The two may seem quite unrelated, but there are at least three importantpoints of contact between them. First, the problem of managing state in a distributedenvironment is quite an important one. A distributed database is chie
y a systemfor providing the useful facility of state to a distributed set of clients. Since lineargraph reduction provides insight into both state and distributed computing separately,it may prove pro�table to apply these ideas in �elds that have both aspects, suchas distributed databases. I will not, however, be demonstrating such a combinedapplication here. This remains a promising research topic.The second point of contact is of a more practical nature. Having seen linear graph121



122 CHAPTER 6. STATEreduction applied in a real system will make much of the following presentation mucheasier to understand. The subtleties of how linear graph structure can be used toreproduce the behavior of more familiar computational systems have already beenexplained in more than enough detail. I will be able to assume that the readerhas gained a certain amount of intuition about how linear graph reduction works inpractice.Third, the contrast between the two applications, one quite practical and applied,and the other quite theoretical and abstract, serves to underscore my contention thatlinearity is an important notion of quite general applicability that deserves to be morewidely appreciated throughout computer science.6.1 What is state?It is not immediately clear to what, if anything, the word \state" refers. We ordinarilytreat state as being a property of some \object". We pretend that state can belocalized in certain portions of the systems we construct. We act as if the question\where is the state?" has an answer. Ordinarily this doesn't get us into any trouble.But, as I will argue below, if we try to analyze systems from a global perspective, thisview becomes untenable.It cannot be the case that state is an attribute possessed by an object independentof its observer. In a system consisting of an observer and some other components, inwhich the observer describes one component as having state, it is often possible toprovide an alternate description in which some other component contains the state.Often the system can be redescribed from a viewpoint in which another component istreated as the observer and the original observer appears to be the component withstate. Sometimes the system can even be described in such a way as to eliminateall mention of state. (In [SS78] Steele and Sussman explore this mystifying aspect ofstate in some depth.)In cases where state cannot be eliminated, it behaves much like a bump in a rugthat won't go away. Flatten the bump out in one place, and some other part of therug bulges up. Any part of the rug can be made locally 
at, but some global property(perhaps the rug is too large for the room) makes it impossible for the entire rug to be
at simultaneously. Analogously, we may be able to describe all the components ofa system in stateless terms, but when the components are assembled together, somecomponents will perceive other components as possessing state.As an example, consider the simple system consisting of a programmer interacting,via a keyboard and display, with a computer. Imagine that the software running onthe computer is written entirely in a functional programming language, the stream ofoutput sent to the display is expressed as a function of the stream of keyboard input.(See [Hen80] for a demonstration of how this can be done.) Thus the description ofthe subsystem consisting of the keyboard, computer and display is entirely free of



6.1. WHAT IS STATE? 123any mention of state, yet from the programmer's viewpoint, as he edits a �le, thecomputer certainly appears to have state.Imagine further that the programmer is actually a robot programmed in a func-tional language, his stream of keystrokes is expressed as a function of the stream ofimages he sees. Now the situation appears symmetrical with respect to programmerand computer, and the computer can claim that it is the programmer that is thecomponent of the system that has state.All components in this system agree that from their perspective there is statesomewhere else in the system, but since each component is itself described in state-free terms, there is no component that can be identi�ed as the location of that state.This does not mean that the phenomenon of state is any less real than it wouldbe if we could assign it a location. It does mean that we have to be careful abouttreating state as anything other than a perceptual phenomenon experienced by somecomponents in their interaction with other components. In particular, we must notexpect to single out components as the repositories of state.Therefore an important aspect of my approach to studying state will be a relianceon observers embedded in the system itself to report on state as they experience it.A more conventional approach would be to treat state as something experiencedby observers external to the system under study. Mine is a much more minimalistapproach, demanding less of state as a phenomenon. State is certainly experiencedby entities within the systems that we construct, but this does not imply that statecan be studied as if it were a property of those entities.This is similar to the stand taken by those physicists who advocate the ManyWorlds interpretation of quantum mechanics [DG73], and I adopt it for similar rea-sons. By dispensing with external acts of observation, and instead treating observa-tion solely as a special case of interaction between the components of a system, theMany Worlds formulation gives insight into why observers perceive e�ects such as theEinstein-Podolsky-Rosen \paradox".The programs we write are really instructions to be followed by little physicistswho inhabit computational universes that we create for them. These embedded ob-servers must react to their environment on the basis of their perceptions of it. Theyare not privy to the god's-eye view that we, as the creators and debuggers of theiruniverse, are given.Since programming languages are designed to facilitate the instruction of theselittle physicists, it is natural that programming languages describe phenomena as theyare perceived by such embedded observers, but that does not mean that we shouldadopt the same terminology when we study the universe as a whole. The notion ofstate is a valid one, in as much as it describes the way one component of a systemcan appear to behave to another, but it would be a mistake to conclude from thisthat state is a intrinsic property that we, as external investigators, can meaningfullyassign to certain components.By carefully restricting the notion of state to apply only relative to embedded



124 CHAPTER 6. STATEobservers, we avoid confusion and achieve additional insight into the conditions thatcause state to appear.6.2 The symptoms of stateExperience using linear graph reduction suggests that all graph grammars that ex-hibit the phenomenon of state share two important characteristics: �rst, they arealways nondeterministic grammars; second, they always construct graphs that con-tain cycles. In this section I shall present some intuitive arguments for why thisshould be so. In the next section I will show why these two characteristics constitutestrong circumstantial evidence that state is a phenomenon caused by the nonlocaltopological structure of linear graphs.It would be nice to be able to prove that the phenomenon of state has this topo-logical origin. Unfortunately this cannot be done because state is not something thatalready has an adequate de�nition. All programmers understand what state is be-cause they have experienced it in the systems they construct. They know it whenthey see it, but they don't have a formal de�nition for it. Thus, the best that wecan hope to do is to demonstrate that this topological property exhibits the samesymptoms that we normally associate with state. We cannot show that some newde�nition of state is equivalent to some known de�nition, but we can give state ade�nition for the �rst time.6.2.1 Symptom: nondeterminismWhy should it be the case that nondeterministic linear graph grammars are neededin order to construct systems with state?Recall once again the protocol for messages, �rst introduced in section 2.4. A pairof methods, such as the two on page 32, permit a message (such as Car) to climb upthrough a tree of Copy vertices, using two terminals customarily labeled target andtail. Such methods are a source of nondeterminism because in a graph such as(graph (0 3 4 5 6 7)(<Copy> target:0 a:1 b:2)(<Car> target:1 tail:3 cont:4)(<Set Car> target:2 tail:5 cont:6 new:7))there is a choice about which message to propagate through the Copy vertex �rst.The result might be either(graph (0 3 4 5 6 7)(<Car> target:0 tail:1 cont:4)(<Copy> target:1 a:3 b:2)(<Set Car> target:2 tail:5 cont:6 new:7))



6.2. THE SYMPTOMS OF STATE 125or (graph (0 3 4 5 6 7)(<Set Car> target:0 tail:2 cont:6 new:7)(<Copy> target:2 a:1 b:5)(<Car> target:1 tail:3 cont:4))Depending on this choice, either the Car message, or the Set Car message will arriveat the apex of the tree �rst|two completely di�erent computational histories maythen unfold. This nondeterminism is possible because Copy vertices are willing tointeract with vertices connected to either their a or b terminals. Intuitively, a Copytree is willing to \listen" to messages arriving from anywhere along its fringe.So nondeterminism is built in to the usual linear graph reduction implementationof objects with state. Of course this does not constitute proof that any implementa-tion of objects with state must contain nondeterminism. Lacking a de�nition of state(constructing such a de�nition is the ultimate goal of this chapter) no such proof ispossible.Still, it is hard to imagine how this nondeterminism can be eliminated. Considerwhat would happen if Copy vertices were only willing to interact through their aterminals. In that case there would only be a single location on the fringe of a Copytree that would be listening for the next message. This single attentive location wouldbe determined at the time the tree was constructed. For each variable that occurredtwice in the body of a LAMBDA-expression, programmers would have to declare whichoccurrence was the a occurrence.In e�ect, programmers would have to specify in advance the order in which readsand writes will take place. It would be impossible to support patterns of reads andwrites that varied dynamically. It is clear that such a system would fall short ofsupporting what most programmers would consider state-like behavior.Instead of simply altering the protocol for Copy trees, perhaps some completelydi�erent technique for translating a programming language can be found. A tech-nique that builds some other form of graph structure when a name is used more thanonce, and such that a deterministic grammar can work on that structure to produceapparent state-like behavior. But no such technique is known; nondeterminism ap-pears in every fully satisfactory linear graph reduction implementation of state-likebehavior.Others have also observed that the need for nondeterminism seems to be a symp-tom of the desire for state. In [Hen80], for example, Henderson must add a nonde-terministic stream merging operator before he can construct an otherwise functionaldescription of an operating system that appears to maintain state.6.2.2 Symptom: cyclesWhy should it be the case that cyclic linear graphs are needed in order to constructsystems with state?
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Figure 6-1: The method for calling EXPERIMENTConsider how an observer embedded in such a system can perceive state. Theremust be some experiment that the embedded observer can perform that will revealthat the part of the linear graph external to him behaves as if it had state.Such an experiment, expressed in Scheme, might look like:(define (experiment x)(begin (set-car! x 1)(= (car x) 1)))The general idea is to detect that the external system, accessed through the variableX, somehow remembers the action performed by SET-CAR!, and this can be detectedby the procedure CAR. The programmer who wrote this procedure probably thoughtin terms of some object (probably a Cons), named by the variable X, whose statecould be written and read by SET-CAR! and CAR.The important thing to notice about the procedure EXPERIMENT is that the variableX occurs in its body twice. The reason for this is that two references to the subsystembeing tested are needed in order to complete the experiment. While one reference ispassed to SET-CAR!, a second reference must be retained so that SET-CAR!'s e�ectscan be observed. When EXPERIMENT is translated in linear graph reduction methods(using the techniques from chapter 3), the �rst method is the following:(graph (0 1 2)(<Global EXPERIMENT> 3)(<Call 1> target:3 tail:0 cont:1 0:2))(graph (0 1 2)(<Global EXPERIMENT> 0)(<Evseq 401> 3 cont:1 x:4)(<Number 1> 5)(<Set Car> target:2 tail:4 cont:3 new:5))A picture of this method appears in �gure 6-1. Notice that two connections jointhe Evseq 401 vertex to the Set Car vertex. The �rst connection is through the



6.2. THE SYMPTOMS OF STATE 127cont terminal of the Set Car, because the Evseq 401 is a continuation waiting forcon�rmation that the call to SET-CAR! has completed. The second connection joinsthe tail of the Set Car to the x of the Evseq 401, because after that con�rmationarrives, the continuation will need that second copy of the reference to the value of Xto continue the experiment.This cycle is not a spurious e�ect of the way the procedure was written, it it aconsequence of the nature of the experiment. Any system that looks for correlationsbetween past actions and future e�ects will have this structure at some point in itshistory.To see this more clearly, it may help to think about the phenomenon of aliasing.Aliasing occurs in traditional programming languages when a given storage locationcomes to have multiple names. Aliasing is often associated with puzzles that involvethe way assignment interacts with di�erent parameter passing mechanisms. Whena location has multiple names, it becomes possible to change the value accessedthrough one name by using a another name. Thus, the behavior of an aliased namecan be altered without ever using that name. It requires at least two names for thisphenomenon to occur: a �rst name whose behavior changes mysteriously, even thoughit wasn't used, and a second name that causes the change because it was used.If a name is viewed as a path for accessing a location, then the analogy with cycliclinear graph structure is revealed. If there are two paths from point A, where theobserver stands, to point B, the observed location, then there is a cycle starting fromA, running down the �rst path to B, and then back up the second path to A again.Traversing the second path in reverse to get from B back to A may seem unnaturalbecause we don't usually travel from objects backwards to the entities that know theirnames, but when modeling such a system using linear graphs it is easier to think interms of cycles, a natural topological property of any kind of graph with undirectededges.The need for cycles in systems with state has been noticed before. Usually it isexpressed as a need for some kind of equality predicate in order to have a sensiblenotion of side e�ect. In [SS78] Steele and Sussman conclude that \the meanings of`equality' and `side e�ect' simultaneously constrain each other"; in particular theynote that it is impossible to discuss side e�ects without introducing some notion ofsameness.The programmer who wrote the EXPERIMENT procedure intended that the variableX should refer to the same object each time it occurred; he was unable to discussside e�ects without using a notion of sameness. To support this notion we have tointroduce cycles into the system. Cycles are thus inevitable when side e�ects are tobe detected.



128 CHAPTER 6. STATE6.3 LocalityIn this section I will demonstrate that the two symptoms ascribed to state in theprevious section occur in systems whose nonlocal topological structure a�ects theirbehavior. This strongly suggests that the various phenomena we have loosely beencalling \state-like behavior" can all be explained in those topological terms. We willtherefore adopt the topological characterization as the de�nition of state. The insightgained into the nature of state will help explain why programming in the presenceof state is sometimes di�cult, and why this di�culty increases as systems becomelarger. It will also suggest where to look for further insights, and how we might designbetter tools for using state.In this section the simplicity of the linear graph model will pay o� in a big way.So far the restricted nature of connections has manifested itself chie
y by forcing usto construct the somewhat clumsy Copy vertices in certain situations. Here we will�nd that the simplicity of connections makes it very easy to de�ne an appropriatenotion of locality.We need to capture the notion of locality because we can only study state as aphenomenon experienced by observers embedded in computational systems, and theonly tool that an observer embedded in a linear graph has for making an observationis the binary method, whose left hand side is matched against a local subgraph. Ifthere were methods whose left hand sides were more complex, perhaps allowing themethod to run only if the entire graph passed some test, then locality would notbe as important, but the left hand side of a binary method only tests a small, localportion of the graph (two vertices and a single connection). Thus, there is no wayfor a running program to learn anything about the nonlocal structure of the lineargraph that it is a part of. With the characterization of locality developed below, thisobservation will be made precise.It is worth recalling, at this point, how message passing and procedure callingwere easily modeled using binary methods. Just as binary methods are unable to gainnonlocal knowledge, so message passing and procedure calling are similarly limited.This limitation is a consequence of the way the processing elements in all computinghardware work. All processing elements have some limit to the amount of statethat can be contained in their private, immediately accessible memory. They areforced to take computational action based solely on this local knowledge of the stateof the entire system. They must trust that other parts of the system|memories,other processing elements, I/O devices|are con�gured as expected. Recognizing thisneed to trust in the global con�guration of the system will be the key to a newunderstanding of state.



6.3. LOCALITY 1296.3.1 Homomorphisms and local indistinguishabilityTo capture the notion of locality, we can de�ne a homomorphism from one lineargraph to another as a map that preserves the local structure of the graph. Moreprecisely, a homomorphism is a map  :G ! H from the terminals of the linear graphG to the terminals of the linear graph H such that:� If a and b are terminals in G, and a is connected to b, then  (a) is connectedto  (b).� If a and b are terminals in G that belong to the same vertex, then  (a) and (b) belong to the same vertex in H.� The label of a terminal a in G is the same as the label of  (a) in H, and thetype of a's vertex is the same as the type of  (a)'s vertex. is an epimorphism if it is onto, a monomorphism if it is one-to-one, and anisomorphism if it is both. If  is an isomorphism, it has an inverse  �1 that is alsoan isomorphism.Since all the terminals of a vertex in G are mapped together to the same vertexin H, a homomorphism also de�nes as a map from vertices to vertices. Thus if v is avertex in G, we can extend our notation and let  (v) be the corresponding vertex inH. In fact, a homomorphism is completely determined by its action on vertices.Figure 6-2 shows an example of a homomorphism.1 The arrows indicate how thevertices of the left hand graph are mapped to the vertices of the right hand graph.This is the only homomorphism between these two linear graphs, although in generalthere may be many.2Imagine what it would be like to explore a maze that was built on the plan of alinear graph: Each vertex becomes a room, each connection becomes a hallway, a signover each doorway gives the label of the corresponding terminal, and sign in the centerof each room gives the type of the corresponding vertex. Unless he turns around andretraces his steps, an explorer can never know that he has arrived in a room that hepassed through before. For all the explorer can tell, the linear graph he is exploringmight well be a (possibly in�nite) tree containing no cycles whatsoever. There wouldbe no way for him to distinguish between the two linear graphs in �gure 6-2. Suchgraphs are locally indistinguishable.Formally, H1 and H2 are locally indistinguishable, written H1 � H2, if thereexists a graph G and two epimorphisms 1:G! H1 and  2:G! H2. It can be shownthat local indistinguishability is an equivalence relation on linear graphs. As a specialcase of this de�nition note that if  :G! H is any epimorphism, then G � H.1This picture resembles a picture of a method since it has a left hand side and a right hand sideand arrows that express a relationship between the two. This resemblance is coincidental|the twonotions will be kept entirely separate.2The category of linear graphs and linear graph homomorphisms has many interesting properties.An entertaining exercise is to determine how to compute products of linear graphs.



130 CHAPTER 6. STATE
Cons

cdrcar

Cons
cdrcar

Frob

x

y

Cons
cdrcar

Cons
cdrcar

Frob

x

y

Cons
cdrcar

Cons
cdrcar

Frob

x

y

Figure 6-2: A Linear Graph Homomorphism6.3.2 MethodsThings become more complicated once we introduce methods into the picture. Inthis section we will prove some theorems about the relationship between linear graphgrammars and homomorphisms and local indistinguishability. The proofs are sketchedrather than being presented in tedious detail, since the results are all easy to see oncethe de�nitions are understood.We will continue to assume that all methods are binary methods. The theoremsin this section are all true even if we slightly relax that restriction and allow anymethod whose left hand side is a tree (a connected graph containing no cycles), butthat additional generality is not needed in anything that follows.We write G ) G0 if the linear graph G0 is the result of applying any number ofmethods to any number of disjoint redexes in G. We write G0 )� Gn when there isa series G0 ) G1 ) � � � ) Gn.Theorem 1 Given a homomorphism  :G ! H, and if H ) H 0, then there existsa linear graph G0 and a homomorphism  0:G0 ! H 0 such that G ) G0. This can besummarized in the following diagram:G  �! Hww� ww�G0  0�! H 0If  is an epimorphism, then  0 can be found so that it is also an epimorphism.



6.3. LOCALITY 131Proof. Each redex in H that is reduced in forming H 0 can be lifted back through  to a set of redexes in G. The set of all such redexes can then be reduced to obtainG0.  0 can then be constructed from  in the obvious way. 2Theorem 2 Given  :G ! H, and if H )� H 0, then there exists G0 and  0:G0 ! H 0such that G )� G0. If  is an epimorphism, then  0 can be found so that it is alsoan epimorphism.Proof. This follows easily from the previous theorem by induction. 2The theorem 2 is true given any linear graph grammar. It is the strongest suchresult I have proven that does not constrain the grammar. For certain classes ofgrammars, and in particular for the class that contains most deterministic grammars,stronger theorems can be proven:A linear graph grammar is preclusive if two redexes can never overlap. Thismeans that if a redex appears in a linear graph G, and if G ) G0, and if that redexwas not one of the ones reduced in forming G0, then that redex still appears in G0.The appearance of a redex in a graph thus precludes the possibility that anything elsewill happen to those vertices before the corresponding method can be applied.For example, any grammar that contains the two methods on page 32 cannot bepreclusive. The reason for this is that, as we showed in section 6.2.1, it is possible toconstruct a graph where the Copy vertex belongs to two di�erent redexes. We havealready identi�ed this property of Copy vertices as a source of nondeterminism. Thefollowing theorem demonstrates that preclusive grammars are in fact deterministic.Theorem 3 If a linear graph grammar is preclusive, then given linear graphs G, G1,and G2 such that G ) G1 and G ) G2, there exists a linear graph G0 such thatG1 ) G0 and G2 ) G0.Proof. Since the grammar is preclusive the redexes in G are all disjoint. We candivide them up into four classes, (1) those that were reduced in forming both G1 andG2, (2) those that were reduced only in forming G1, (3) those that were reduced onlyin formingG2, and (4) those that were reduced in neither case. Redexes in the secondclass must still occur in G2, and redexes in the third class must still occur in G1, soby applying the corresponding methods we can form G0 from either G1 or G2. (Infact, G ) G0 because we can apply the methods that correspond to the �rst threeclasses redexes.) 2Theorem 4 If a linear graph grammar is preclusive, then given linear graphs G, G1,and G2 such that G )� G1 and G )� G2, there exists G0 such that G1 )� G0 andG2 )� G0.Proof. This follows easily from the previous theorem by induction. 2



132 CHAPTER 6. STATETheorem 4 shows most clearly what it is about preclusive grammars that makesthem behave deterministically. It gives us a condition under which we have a Church-Rosser theorem for linear graphs. It shows that no matter what order we choose toapply the methods from a preclusive grammar, we always achieve the same result. Ifit is possible to apply methods until a linear graph is produced to which no furthermethods can be applied, then that graph is unique.The �nal two theorems relate local indistinguishability and preclusive grammars:Theorem 5 If a linear graph grammar is preclusive, then given linear graphs G, H,and H 0 such that G � H and H ) H 0, there exists linear graphs G00 and H 00 suchthat G) G00, H 0 ) H 00 and G00 � H 00.Proof. The most straightforward way to construct G00 and H 00 is to let them be theresults of reducing all redexes in G and H. This is possible because these redexesmust all be disjoint (since the grammar is preclusive). Further, it must be the casethat H 0 is the result of performing some subset of these reductions, so by performingthe remainder we see that H 0 ) H 00. It is clear from the construction that G00 � H 00.2Theorem 6 If a linear graph grammar is preclusive, then given linear graphs G, H,G0, and H 0 such that G � H, G )� G0 and H )� H 0, there exists linear graphs G00and H 00 such that G0 )� G00, H 0 )� H 00 and G00 � H 00. This can be summarized inthe following diagram: G � Hww�� ww��G0 H 0ww�� ww��G00 � H 00Proof. This follows from the previous theorem by induction and by using theorem 3.2 Theorem 6 is very similar in form to theorem 4; their meanings would be iden-tical if we replaced the \�" in theorem 6 with \=". Theorem 6 shows that givena preclusive grammar, not only does it not matter what order we choose to applymethods (theorem 4), it does not even matter which locally indistinguishable lineargraphs we choose to apply them to. A preclusive grammar is completely insensitiveto the nonlocal structure of the system.



6.4. IMPLICATIONS FOR PROGRAMS 1336.4 Implications for programsThe theorems we have just seen have implications for what an embedded observercan learn about the system in which it is embedded.Suppose we are given a pair of linear graphs G and H, where G 6= H, and we areasked to produce a linear graph grammar that can somehow distinguish between thetwo. First, we need to be precise about what we mean by \distinguish". We want tobe able to run the grammar on G or H and then apply some test to determine if thesystem has learned how it was initialized. The test must be local, otherwise we couldsupply the empty grammar and specify that the test is simply graph equality. Thuswe will include two distinguished vertex types, Was-G and Was-H, in our grammar,and specify that if a vertex of type Was-G ever appears in the graph, then it will beunderstood that the grammar has decided that the initial graph was G, and similarlyWas-H will signal that the grammar has decided that the initial graph was H.Now consider the case where there is an epimorphism  :G ! H. Suppose thatgiven some grammar we have H )� H 0 and that H 0 contains a vertex of typeWas-H, then by theorem 2 there is a graph G0 where G )� G0 and an epimorphism 0:G0 ! H 0. Since  0 is an epimorphism,G0 must also contain a vertex of type Was-H.The grammar is thus capable of deciding that the initial graph was H, even thoughit was applied to G. The grammar will therefore be in error. Thus no grammar canever correctly decide that it was initially applied to H (although it is possible that itmight learn that it was applied to G).Putting this observation in somewhat more computational terms: If, in the courseof some computation, a system �nds itself in con�guration H, and there is an epi-morphism  :G! H, then from that point onward there is nothing that the systemcan do that will allow it to discover that it had in fact been in con�guration H andnot in con�guration G. It might discover that it had been in con�guration G, andfrom this it could conclude that it had not been in con�guration H, but it can neverdiscover that it had been in con�guration H. Everything that can happen to H islocally indistinguishable from something that can also happen to G.Looking at this fact from yet another angle: If a system is halted in con�gura-tion H, and recon�gured to be in con�guration G, where there is an epimorphism :G ! H, the system can perhaps \malfunction" by arriving at a con�guration G0(i.e. G )� G0) where there are no con�gurations G00 and H 00 such that G0 )� G00,H )� H 00 and G00 � H 00.There are two conditions under which such malfunctions are impossible:� If the grammar is preclusive, then since G � H theorem 6 guarantees us that ifG)� G0 we can �nd the requisite G00 and H 00.� If H contains no cycles, then any epimorphism  :G! H must be an isomor-phism, so we can let G00 = H 00 = G0.



134 CHAPTER 6. STATEThus, replacing H with the locally indistinguishable G can cause a malfunction onlyif H contains cycles and the grammar is not preclusive. Surprisingly, these are al-most exactly the two symptoms we previously identi�ed as always being present insystems that exhibit state-like behavior. (I say \almost exactly" because I never pre-cisely de�ned what was meant by \nondeterminism" in section 6.2.1. The contentof theorem 4 was that preclusive grammars behave deterministically, but there arenon-preclusive grammars that also behave deterministically, so the two concepts donot align exactly.)We have now arrived at the crucial intersection of our intuitive observations aboutstate-like behavior (section 6.2) with our theorems about locality (section 6.3). Wehave discovered that the two features that always accompany state like behavior arejust the features necessary to make the system dependent on its nonlocal structure.This leads me to propose that systems that exhibit state-like behavior are, in fact,precisely those systems which depend on their nonlocal structure in order to functioncorrectly.Accepting this proposed de�nition of what it means for a system to experiencestate, leaves us with the following picture of the world: Stateless systems have theproperty that they are insensitive to their nonlocal structure|they behave the sameway in all locally indistinguishable con�gurations. State is experienced by the com-ponents in a system when some locally indistinguishable con�gurations of the systemmay evolve in additional unintended ways. Importantly, no test the system can per-form internally can determine that it is properly con�gured.This says a great deal about why programming in the presence of state is di�cult.Programming with state means that there are conditions which the system dependsupon, that it cannot check for itself. The system must trust that it is con�guredas it expects. It must trust that it evolved from known initial conditions throughthe application of known methods, rather than being created spontaneously in somelocally indistinguishable con�guration that could never have been reached naturally.6.4.1 The parable of the robotTo make this more concrete, recall the robot from section 6.1 who was interacting withhis computer via a keyboard and display. Remember that this was a system in whichall components perceived state even though they could all be expressed in functionalterms. Suppose we halt this system and replace it with a locally indistinguishablecon�guration. Speci�cally, replace it with two robots and two computers, where the�rst robot types on one computer's keyboard, but watches the display of the othercomputer, while the second robot types on the other keyboard and watches the �rstdisplay.In order to remain locally indistinguishable from the original con�guration, eachrobot and each computer must be placed in the same internal con�guration as it waswhen the system was still singular. Each robot \believes" that he is alone, and that



6.5. THE OBJECT METAPHOR 135he is interacting with a single computer. Initially both robots continue typing awaysecure in this belief. They are unable to detect that they now operate in a doubledsystem because they both type exactly the same thing at the same time, and thecomputers respond identically with the appropriate output.Suddenly a 
y lands on one of the displays. The robot watching that displaypauses brie
y to shoo it away. The other robot then notices that his display doesn'tre
ect his last few keystrokes, while the �rst robot notices that his display re
ectskeystrokes that he was only planning on making right before the 
y disturbed hisconcentration. Upon further experimentation the robots eventually discover theirtrue situation.The original singular robot had no way of testing that he was part of the singularsystem, nevertheless he depended on this fact in order to act sensibly. He trustedthat there really was a single computer that was responding to his keystrokes, andthat what he saw on the display represented its reactions. He trusted that the �le hetyped in today, really would reappear when he called it up on the display tomorrow.If you asked him to explain just how the rest of the system was able to behave inthat way, he would explain that \the computer has state". That is his explanation ofhow the situation appears to him as an embedded observer, but it isn't a very goodexplanation from our point of view. It even has built into it the presupposition thatthere is only a single computer.We can see that the property of the system that really matters, the property thatthe robot accepts and depends on to function in the system without error, is theuntestable assertion that the system's nonlocal structure is what the robot believesit to be, and not some locally indistinguishable equivalent.6.5 The object metaphorWe have concluded that systems in which state appears are systems whose nonlocaltopological structure is important to their correct functioning. In order to writecorrect programs that describe such systems, programmers must understand, andreason about, nonlocal properties. Unfortunately programming languages do notgive programmers very much help in this job.Most programming languages support only the metaphor of objects for usingstate. The simplest languages give the programmer state variables, simple objectsthat can be read and written. More advanced languages provide abstraction mech-anisms that support the construction of abstract objects [GR83, LAB+81, Moo86,Agh86] which support more complex operations.The object metaphor is that objects serve as containers for state. Each containerdivides the system into two parts, consisting of the users of the container, and thekeepers of the container. If the container is a state variable, the keepers will consistof memory hardware. If the container is some more complex object, the keepers will



136 CHAPTER 6. STATEbe implemented in software just like the users.The users communicate with the keepers by passing notes through the bottle-neck that is the object itself. The keepers are charged with maintaining the objectmetaphor. It is the keepers, for example, who must worry about making operationsappear to happen atomically, should that be required. The keepers are slaves tothe requirements of the users. They labor to maintain the illusion that the state isactually contained in the object.The object metaphor works acceptably in many simple situations. It captures acommonly occurring pattern in which a component of a system serves as a clearing-house of some kind. In order for such a clearinghouse to function, all of its users mustknow that they are using the same clearinghouse. This is an example of the kindof nonlocal structure discussed in the previous section. No experiment performed bythose embedded in the system can determine that the system is con�gured correctly,but careful application of the protocols of the object metaphor con�ne the system tothe correct nonlocal structure.In more complex situations the object metaphor is less useful. If, for example, thekeepers of object Amust operate on object B in order to perform some operation, andthe keepers of B then try to use A, incorrect behavior, such as a deadlock, can arise.The kinds of nonlocal properties that are needed to rule out such incorrect behaviorare not captured well using the object metaphor alone. Additional reasoning (usuallyvery special case reasoning) is required.When we started our investigation of state we adopted the view that programminglanguages are designed for instructing the entities that inhabit the computationaluniverses we create. These embedded observers are the ones that perceive state inthe other components of the universe that surrounds them.Given our identi�cation of state-like behavior as dependence on the nonlocal struc-ture of the system as a whole, there is no apparent reason to suppose that the objectmetaphor is the only way to describe state-like behavior to those embedded observers.The word \object" does not appear anywhere in section 6.4, so perhaps we can dis-cover new metaphors that capture the way state \feels" to an embedded observer,without reference to the notion of object.If our programming languages supported these new metaphors, we could use themwhen appropriate, rather than being forced to phrase everything in terms of objects.Given a programming language that is su�ciently expressive about nonlocal proper-ties, we would no longer need fear programming with state.6.6 SummaryIn this chapter the notion of linearity and the tool of linear graph reduction wasused to examine the phenomenon of state. We concluded that state occurs whensome locally indistinguishable con�gurations of the system may evolve in unintended



6.6. SUMMARY 137ways, and furthermore no test the system can perform internally can determine thatit is properly con�gured. This explains why programming in the presence of stateis di�cult|such systems must trust in untestable properties. My hope is that thisinsight will someday lead to an improvement in the terminology used to describe statein our programming languages.As mentioned in the introduction, I also hope that someday this insight can bepro�tably combined with the more practical application of linear graph reduction todistributed computing.Finally, let me remark once again on the striking contrast between the two ap-plications of linearity presented herein. This chapter used linear graph reduction toachieve a deep theoretical insight, while the previous three chapters used the verysame tool to address some highly practical problems. Linearity is a very 
exible tool.
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Chapter 7ConclusionThis chapter puts linear graph reduction in context by (1) comparing it to relatedand similar work on naming, programming languages, distributed computing, graphreduction and state, and (2) describing some of the future research areas that canbuild on what I have done.7.1 Relation to other workThe importance of linearity in naming has never been explicitly highlighted as I havedone here, but the phenomenon has always existed. Once sensitized to the issue oflinearity, you can �nd instances of it throughout computer science. Some examplesare described below.Variants on linear graph reduction itself have also appeared. Given the simplicityof the basic model, this isn't surprising. I like to imagine that linear graph reductionoccupies a point of minimum complexity in some space of computational models|anyone searching for a simple linear computationalmodel is likely to be drawn towardsit once they get close enough.Distributed and parallel computing are hot topics these days, so it's not surprisingthat there are many connections between the system described here and much recentwork in that area. In contrast, my work on state appears to be almost unique.7.1.1 Linear namingThere are some programming languages that have adopted a linear restriction on theway that variables can be used. Janus [SKL90] is a concurrent logic programminglanguage where only two occurrences of any given variable are allowed in any clause.When one occurrence is used to constrain the value of the variable, the other occur-rence can be used to read that value. This is the logic programming equivalent ofthe notion of a linear name. The authors adopt this restriction because it simpli�esthe semantics of their language so that they can regard variables as point-to-pointcommunication channels. They sometimes call this property being \broadcast-free",a phrase that clearly points to the linear origins of the restriction.139



140 CHAPTER 7. CONCLUSIONIn [Laf90] Lafont presents a notation for his Interaction Nets in which names canonly be used linearly. It is unclear to what extent this notation can be thought of as aprogramming language rather than as a direct notation for reduction rules similar tothe graph expressions I have used above. (I will have more to say about InteractionNets in the section on other graph reduction systems that follows.)In [Baw84], I proposed a programming language with only linear names. At thetime I was still reluctant to introduce nondeterminism into the formalism, and soeach vertex was restricted to have only one active terminal which trivially rendersall grammars preclusive. This ruled out the kind of Copy vertices I have used hereto support nonlinear names. Lacking any other way to support nonlinear names, Ideclared them illegal. Since I'm now reconciled with nondeterminism, I no longeradvocate this approach to programming languages.Backus, in his famous paper [Bac78], identi�es names as one of the problematicfeatures of current programming languages. Interestingly, he doesn't make any di-rect connection between names and the now-famous von Neumann bottleneck|he isinterested in a di�erent problem caused by the presence of names: the consequentneed for an abstraction mechanism and the di�culties that abstraction would causehis proposed algebra of programs. The language he advocates, while perfectly freeof names, still allows references to be duplicated through the use of data structureselectors. The resulting programs are still as full of nonlinearities as those written inany other language. I would argue that names are actually much more central to theproblem he is trying to address, for it is through nonlinear naming that bottlenecksare formed.Back in section 1.1.3 I pointed out that the standard techniques for stack allo-cating continuations work precisely because references to continuations are treatedlinearly in any programming language that does not allow continuations to be named.This may well be the oldest unconscious application of the notion of linearity in com-puter science. With the advent of compilers that translate programs into a contin-uation-passing style intermediate code [Ste78, KKR+86], compiler writers are forcedto become more aware of the fact that there is something lost in that translation.Of course, they have not yet recognized that the missing information is in fact aninstance of a much more general class of information, namely linearity.Linearity pops up all over the place once you start looking for it. For example, in[HW91] the authors advocate a \swapping style" of programming that treats valuesin a linear fashion. They argue that the usual \copying style" causes software engi-neering problems. Even if you don't agree with their argument,1 they have put their�nger on nonlinearity as something worth thinking about.Another example: In [Wat89] Waters develops a theory of \optimizable seriesexpressions" that are written as if they manipulate arrays, but that can be compiledinto e�cient loops. Not surprisingly, it is the occurrences of nonlinear names thatcause all the trouble. Expressions free of nonlinear names are trivially optimizable,1I don't entirely.



7.1. RELATION TO OTHER WORK 141while other expressions require more work to determine whether or not they areoptimizable.These last two examples are not unusual|they are representative of many othersimilar examples where nonlinearity has been making itself felt for years.7.1.2 Graph reductionThere is not a strong connection between linear graph reduction and most othergraph reduction systems, because the key notion of linearity is generally missing frommore traditional systems [Tur79, Pey87]. In traditional graph reduction systems allvertices represent either values or expressions that will soon normalize into values.When linear graph reduction is used to model a real system, such as the Schemesystem constructed above, vertices are used for a wide variety of purposes beyondjust representing values. (consider Copy and Return 1 vertices, or the vertices thatrepresent continuations.) The only real commonality is that in all kinds of graphreduction there is an emphasis on having a simple execution model.There are some other graph reduction systems that are linear. Both Janus andInteraction Nets are explicitly based on such systems. Lafont's illustrations evenresemble the pictures I drew in chapter 2.2 Both systems have an explicit direction-ality associated with the links in their graphs, and Interaction Nets imposes a typediscipline on terminals. I have never felt a need for these additional constraints inmy applications of linear graph reduction, although it is true that usually there isa directionality (and even a type discipline) implicit in the conventions adopted forbuilding graph structure.Interaction Nets arose out of attempts to bring functional and logic programmingtogether with Linear Logic. (It is from this source that I originally borrowed theword \linear".) In Interaction Nets there is an interesting invariant (called semi-simplicity) on the form of the working graph, and all reduction rules must preserveit. This invariant serves to prevent deadlock in the unfolding computation. Semi-simplicity is a very interesting notion to explore because it succeeds in achieving aglobal goal (lack of deadlock) through purely local means (maintaining an invariant ineach method). Given my characterization of state as a global property of the workinggraph, perhaps there is some variant of semi-simplicity that will prove relevant to thephenomenon of state.Another graph reduction system with linear rules appears in Lamping's algo-rithm for optimal �-calculus reduction [Lam90]. In this case a speci�c grammar ispresented|that is, the set of methods is �xed and the program is encoded in the ini-tial graph, just as it would be for a simple SK-combinator implementation. Optimal�-calculus reduction is an interesting problem because nonlinear names cause expres-2The authors of Janus are particularly interested the graphical presentation of their graphs, andespecially in animating them. They have also worked on animating both Lafont's Interaction Netsand my linear graph reduction system.



142 CHAPTER 7. CONCLUSIONsions to be duplicated when �-reduction is applied. To avoid this duplication, andinstead to share the graph structure representing the substituted expression, Lampinguses \fan nodes" in very much the same way as I have used Copy vertices. Lamp-ing has resorted to linear graph reduction for precisely the reason I have advocatedit here: in order to study a system with nonlinear naming (�-calculus) he needs toexpose the nonlinearities by using a linear model.7.1.3 Distributed computingIn the area of distributed computing there is much work that bears some relation tomine. These systems can be roughly grouped according to how they name objectsand locations in their distributed environments.7.1.3.1 Explicit locationsOne group of systems share with basic remote procedure call (RPC) [BN84] the factthat the programmer must explicitly name the network locations of remote objectsand services. Some examples of such systems are NCL [FE85], REV [Sta86], NeFS[Sun90] and Late-Binding RPC [Par92]. These systems generalize RPC by allowingthe programmer to specify an expression to be executed and the location to executeit. Typically a new keyword such as AT is added to the language and the programmerwrites something like:(at location expression)The Mercury system [LBG+88, LS88] is not as general as these others, but it istargeted at the same performance problems with RPC. Mercury's call-streams supporta form of remote execution where the control structure continues to execute locally,generating a stream of instructions, which are sent to the remote site, which executesthem and returns a stream of results.All these systems address the performance problems of pure RPC (including the\streaming problem" I mentioned in chapter 1) by allowing a process to move toa more appropriate location for the duration of some chore, potentially reducingmultiple network round trip delays to a single round trip delay. I have addressedthe same problems using demand migration, which avoids burdening the programmerwith keeping track of explicit locations. (Of course, demand migration relies onheuristics, so it may sometimes perform worse than a well tuned system in which theprogrammer explicitly speci�ed the optimal locations.)In [Par92], Partridge presents a process migration scheme that he proves willalways perform optimally in terms of network delay. Unfortunately, his proof onlyapplies when there is a single task|his observation is of no help in deciding how tomigrate data that may be shared by multiple tasks. My demand migration heuristicsare designed to deal with precisely this problem.



7.1. RELATION TO OTHER WORK 143None of these systems deals with tail-recursive calls properly (the \continuationproblem" from chapter 1), although Partridge is aware of the de�ciency in his system.My system has no problems with tail-recursive calls.7.1.3.2 Location independent object namesMany distributed operating systems support a location independent naming mecha-nism for network objects. Examples are ports in Mach [YTR+87], UIDs in Chronus[STB86], and links in DEMOS/MP [PM83]. These systems all support an objectoriented interface to the network objects referenced by such names, where the pro-grammer manipulates objects by sending them messages. Messages are automaticallyrouted to wherever the object is actually resident. Messages can include the namesof other network objects, and such names will be usable by the recipient.None of these systems explicitly address the performance problems of RPC, as theprevious group did, but the use of location independent names does permit them tomigrate tasks around to equalize processor load or to bring tasks closer to the objectsthey manipulate. In principle these systems could migrate a task whenever it wasabout to send a message to a remote network object|moving the task to the objectso that the actual message send was always local. This would minimize the numberof network trips. However, the tasks themselves are too unwieldy for implementors totake this option seriously. Instead, task migration is viewed as more of an occasionalor periodic resource management problem.The mechanisms necessary to make such location independent nonlinear namingwork in these systems carry more overhead than light-weight links I used to supportlinear naming.7.1.3.3 Uni�ed namingAll the systems in the previous group use a di�erent mechanism for naming remoteobjects than they do for local objects. A reference to a local object is typicallya simple program variable, while a reference to a remote object is some distinctlydi�erent device that must be manipulated using some special facilities. In order tounify local and remote naming completely, remote naming must be accomplished fromwithin the programming language.3The Actor languages [Agh86], applied to distributed computing, are intended tobe languages with such a uni�ed naming system. A distributed Actor engine wouldlook very much like my system. I could have chosen an Actor language instead ofScheme as my source language, but there would have been no real advantage in this,given that naming in an Actor language is no more or less linear than it is in Scheme.3It would also be possible to to accomplish the same goal at the low level by building hardwarethat treated local memory addresses and remote references on an equal footing.



144 CHAPTER 7. CONCLUSIONJanus [SKL90] is also intended as a language for distributed computing with therequisite uni�ed naming system. Furthermore its authors are aware of the bene�ts oflinearity, and so Janus only supports linear naming. Janus is also a good candidateas a source language in place of Scheme|but I wanted to show what it was liketo expose nonlinearities in a programming language by translating it into the lineargraph reduction model, and that wouldn't have been possible using a language thathad no nonlinearities!I hope that the implementors of Janus or any of the Actor languages will derivesome bene�t from my experience applying linearity to the problem of building asimilar system.7.1.4 Programming language semanticsThe programming language used in this dissertation is almost ordinary Scheme. Theonly exception was the addition of the FUTURE construct in order to introduce con-currency. The proper semantics for FUTURE is currently a subject of debate withinthe Scheme community. The issues revolve around futures and continuations createdby expressions such as(future(call-with-current-continuation(lambda (cont): : : )))If such a continuation is invoked in an unexpected way|more than once, or fromwithin some foreign process|what should happen to the corresponding future? Ihave adopted the semantics found in MultiLisp [Hal84], where the �rst invocationof the continuation always determines the value of the corresponding future andadditional values are simply discarded.Another possibility is described in [KW90], where additional values are returnedfrom the original FUTURE form. This alternate behavior would be easy to accomplishwithin my existing system.Not so easily accommodated is the behavior of futures in MultiScheme [Mil87].MultiScheme supports explicit \tasks", which are used to control resource allocation.Tasks are intimately related to futures because the MultiScheme garbage collectoruses tasks to determine what processor resources can be reclaimed in the event afuture becomes garbage. When a continuation such as the one created by the ex-pression above is invoked, the value is returned to the future associated with thecurrent task, even if that future is not the future that was created to correspond tothe continuation. This simpli�es a resource management problem but in return ithorribly complicates the semantics of futures. The linear graph reduction approachof garbage collecting disconnected components addresses the same problems withoutthe troublesome explicit tasks.



7.1. RELATION TO OTHER WORK 1457.1.5 The target/tail protocolThe following method originally appeared in section 2.4 to demonstrate how a tree-climbing Set Car message allows a Cons to be mutated:4(graph (0 1 2 3 4)(<Set Car> target:5 tail:2 cont:3 new:4)(<Cons> 5 car:0 cdr:1))(graph (0 1 2 0 4)(<Cons> 2 car:4 cdr:1))In e�ect two continuations, carried by the cont and tail terminals, are delivered tothe site of the computation. The cont continuation is to receive the result of the call,and the tail continuation is to receive the next version of the mutable object.The same protocol for achieving mutability is employed in Actor systems [Agh86].The language used to specify actor behaviors typically has two commands, replyand become, which correspond to the actions of returning values to cont and tailrespectively. This protocol also appears in [Her90] as part of a larger program to con-struct concurrent data structures from sequential speci�cations. It is also essentiallythe same technique used in [Hen80] to construct state-like behavior from within afunctional programming language. This protocol is the natural outcome of the mostobvious approach to state in a functional framework: view each new con�gurationand output as a function of the previous con�guration and inputs.In the linear graph reduction Scheme system described in this dissertation, thefact that objects are implemented using this protocol is not in any way exposed tothe user, as it is the the other systems just mentioned. However, this would not be adi�cult feature to support. All that is needed is a new special form, similar to LAMBDA,that puts the the act of reconstructing the object after a call under the control ofthe user (instead of having the compiler supply the reconstruction automatically, asit does for the procedures created by LAMBDA).7.1.6 Thinking about stateDixon [Dix91] approaches the phenomenon of state in a manner that is similar inspirit to mine. Dixon is interested in improved programming language support for\embedded" programs|programs that are part of, and must interact with, a largercomputational environment. He develops an alternative approach to programminglanguage semantics that focuses on the way the rest of the system is perceived by anembedded program, rather than attempting to describe the system as a whole. Thisis the essence of the approach to state I adopted in chapter 6.4This method uses the alternate, simpler, continuation protocol where a value is returned to acontinuation by direct attachment.



146 CHAPTER 7. CONCLUSIONIt may be that his language Amala would be a good place to begin the search forbetter metaphors for state that I advocated at the end of chapter 6. Amala has adistinctly imperative 
avor that I �nd hard to reconcile with the kind of �ne controlI imagine would be required of a language with a true understanding of state. Still,it might prove enlightening to work on translating Amala programs into linear graphgrammars to see what might be revealed.7.2 Future researchThis section contains a sampling of research directions that build on the work de-scribed here.7.2.1 LinearityIt is not hard to �nd new places where the notion I have called \linearity" appears.Once you get the knack of thinking about whether a name is being used linearly ornot, it becomes the natural approach to any problem in which there is a bottleneck tosome resource, a di�culty with state, a question of garbage collection, or any situationwhere multiple references to an entity may be involved. Since naming systems appearin almost every corner of computer science, and since such systems rarely restrict thenames so as to keep them linear, there is a lot of territory that needs to be revisitedwith linearity in mind. I hope that after reading this dissertation the reader is inspiredto watch out for this ubiquitous phenomenon in his own area of interest.7.2.2 Linear graph reductionIn this dissertation we have seen linear graph reduction used as� a compiler's intermediate representation for a program,� a virtual machine (for distributed computing), and� a mathematical tool for modeling real systems.Each of these uses can be further explored on its own.In the area of compilers, a lot of interesting work on static analysis and optimiza-tion of linear graph grammars is possible. The simulation technique I employed inchapter 3 is only the �rst step in this direction. An example of another technique isthe formation of what might be called macro-vertices. A macro-vertex is a singlevertex which can be used in place of a complex subgraph that the compiler guesseswill occur frequently at run-time. This technique could be used, for example, to elim-inate the cycles that are commonly introduced by the translation of Scheme's LETRECconstruct.



7.2. FUTURE RESEARCH 147A related technique is to compute the set of pairs of terminal labels that canpossibly be found on opposite ends of a connection at run-time. This can be doneusing a straightforward transitive closure algorithm over the set of known methods.This information could be used to select likely candidate subgraphs for macro-vertices,or to design special case run-time representations for certain connections.The linear graph reduction virtual machine has the advantage of being extremelysimple. This makes it easy to build reduction engines for it, but more work can bedone to make such engines e�cient. For example, the existing compiler compiles everymethod into code that operates at the level of rearranging vertices and connections,but it should be possible for the compiler to detect many situations in which thenext reduction will invoke an arithmetic primitive, and so the compiler can insteaddirectly output native code for performing arithmetic. Similarly, it should be possibleto generate native control structures (dispatches and conditionals) instead of alwaysrelying on the general method lookup.As a mathematical tool I'm sure linear graph reduction has more surprises still instore. The results presented in chapter 6 were discovered after only a fairly shallowexamination of the category theory of linear graphs.5 Since linear graph reductionis intended to �ll the role of �-calculus when linearity is important, any place that�-calculus is used is a candidate for reinterpretation using linear graph reduction.For example, it would be interesting to construct the equivalent of denotational se-mantics in the linear graph reduction world. I don't know what this would look like,but perhaps it would reveal a deeper connection to the familiar algebraic notion oflinearity.7.2.3 Programming languagesNaming issues are central in programming language design, but existing languageshave not been designed with linearity in mind. Programming languages constructs canbe designed which promote linearity. For example, consider the Scheme procedure:(define (append x y)(if (null? x)y(cons (car x) (append (cdr x) y))))The variable X is not linear since in the case where it's value is not the empty listit will be used three times. We can add a DISPATCH special form to Scheme thatcombines type dispatch with appropriate destructuring:(define (append x y)(dispatch x('() y)((cons a d) (cons a (append d y)))))5You should be glad I stripped out the category theoretic overhead before presenting it!



148 CHAPTER 7. CONCLUSION(DISPATCH looks a lot like the kind of pattern directed invocation one �nds in ML orProlog.) Now there are four variables (X, Y, A, and D) which are all linear. This in notjust hiding the nonlinearity inside the implementation of DISPATCH, for DISPATCH canbe translated directly into the method dispatch inherent in linear graph reduction.There are also alternate strategies to be explored for translating programminglanguages into linear graph reduction. The compiler described in chapter 3 wasdesigned to be faithful to the well-known, essentially sequential, semantics of Scheme.Alternate languages are possible that have a more parallel semantics|languages inwhich all the expressions in a procedure application are evaluated in parallel. Idescribed such a language in [Baw86]. The chief di�erence between the two languagesturns out to be the protocol used for continuations: the language in [Baw86] lacksReturn 1 vertices, instead continuations are simply attached directly to the returnedvalue.6Finally, do not overlook the possibility of using linear graph reduction for pedagog-ical purposes. When explained in linear graph reduction terms the FUTURE construct isparticularly clean, and the mechanics of a call to CALL-WITH-CURRENT-CONTINUATIONare easy to see. Pictures of linear graph structure can capture more than the tra-ditional \box-and-pointer" diagrams, because linear graph structure also representsthe executing processes (e.g. using Call vertices and continuation vertices).7.2.4 Garbage collectionReclamation of the resources devoted to linear graph structure has many di�erentaspects, only some of which have been explored in the system I built. The existingsystem uses Drop and Copy vertices to achieve the same e�ect as a reference countgarbage collector. This works at both compile-time and run-time. The existingsystem also collects unobservable disconnected components at compile-time duringsimulation, but at run-time such structure is not detected|storage and processorresources can be wasted. Detecting unobservable disconnected components in thedistributed environment is an interesting variant on the distributed garbage collectionproblem.A related resource issue is the detection of stymied subgraphs. A stymied sub-graph is a subgraph bounded by inactive terminals that contains no redexes. Thesimplest example is a pair of monoactive vertices connected by their active termi-nals, to which no method applies. Such subgraphs are connected to the rest of theworking graph, but are incapable of interacting with it. It is unclear exactly what todo about stymied subgraphs, but one possibility is to reclaim the storage devoted tothem. (Another possibility is to treat the appearance of a stymied subgraph as an er-ror.) Detecting stymied subgraphs, even in the non-distributed case, is an interestingalgorithmic challenge.6Two methods that use this simple protocol were shown on page 34.



7.2. FUTURE RESEARCH 149There might be further generalizations of the notion of stymied subgraph that relyon an analysis of the universe of methods that is deeper than the simple classi�cationof terminals into active and inactive.7.2.5 Distributed computingAt the end of chapter 5 I listed a number of things that could be done to make theexisting graph reduction engine more practical. Many of those tasks are suitabledirections for future research.The most important and di�cult item on that list is probably fault tolerance. Abrute force approach to fault tolerance is to equip every agent with its own stablestorage to store a recent checkpoint of the local part of the working graph and a logof activity since then. Careful attention to the order of events such as stable storagewrites, message transmissions, and message acknowledgments, can probably makesuch a scheme workable. However, it is certainly unnecessary for every agent to havestable storage|there is interesting ground to be explored here.I imagine that there might be people who are somewhat skeptical that the localgraph reduction part of the existing system can ever be made as e�cient as the outputof the best C compilers. Such people may be tempted to reject this entire exercise onthose grounds. I invite those people to consider the possibility that the linear graphreduction view of the world could be used as just a network protocol. Inner loopscould still be coded up in C or assembler, but when it came time to interact withthe network, everything (pointers, stack frames, record structures, etc.) would beconverted into linear graph structure. Linear graph structure would be the networklingua franca. Such a system would still bene�t from linearity in the two ways thatthe current system does (i.e. cheap links and workable demand migration).7.2.6 StateThis is an area where I expect linear graph reduction to produce more surprises. Theperspective on state presented in chapter 6 is radically di�erent from the way stateis normally viewed, and perhaps a little di�cult to get used to, but its embeddedobserver approach to the phenomenon is really the only approach that can get a�rm grip on what state really is. It is possible that the results of chapter 6 can bephrased in terms of some other nonlinear model of computation, but I suspect thatthe di�culties in dealing with nonlinear references would overwhelm the rest of theargument and obscure the fundamental insight.In the area of state the research direction most likely to bear fruit is probablythe search for better programming language metaphors and constructs discussed atthe end of chapter 6. Possibly this can be approached by designing a programminglanguage from the ground up based on linear graph reduction. If this approachproved successful, the next step would be to consider adding the new ideas to existing



150 CHAPTER 7. CONCLUSIONlanguages.Perhaps related to such programming language research is the search for betterways of managing state in a distributed environment. (This area is one of the pointsof contact between the two applications of linear graph reduction described in thisthesis.) Better programming language metaphors could also be useful metaphors forthinking about distributed state. Or perhaps the characterization of state will helpin the development of a fault tolerant linear graph reduction engine.Many compiler-oriented applications for the new characterization of state suggestthemselves. For example, imagine a compiler that notices which methods have righthand sides that introduce cycles into the working graph, and which methods have lefthand sides that make the grammar non-preclusive. Such a compiler may be able touse this knowledge to recognize when the apparent use of a side e�ect is not visibleoutside of some block, or is in some other way not an \essential" side e�ect. Perhapssuch non-essential side e�ects can then be optimized out of the program. Such ananalysis might be useful for even a FORTRAN compiler to perform, if it can learnsomething useful about the program.Finally, the characterization of state needs to be pushed further. The insight thatsystems in which state occurs are systems which depend on (untestable) global prop-erties of the system as a whole, doesn't yet feel complete to me. More investigation isneeded into the nature of those global properties. One possible approach is to thinkabout the Interaction Net notion of semi-simplicity, which is a di�erent kind of globalproperty. Perhaps it would be fruitful to investigate methods that fail to to maintainsemi-simplicity as an invariant, or the interaction of semi-simplicity with linear graphhomomorphisms.7.3 ContributionsFinally, a review of the contributions made by this work:Linearity. This notion was key to everything that followed. Linear names can onlybe used once, and thus cannot be used to create more than one outstanding referenceto an entity. Thus, linear naming is cheaper to support than fully general naming,and it is also easier to reason about.The linear graph reduction model. A simple computational model in whichall references are linear. Translating a program onto a linear graph grammar canexpose nonlinearities, just as translating it into continuation-passing style �-calculuscan expose unnamed quantities.Translating Scheme into a linear graph grammar. Scheme is representativeof a typical sequential programming language. I demonstrated how arbitrary Scheme



7.3. CONTRIBUTIONS 151programs, including those that use side e�ects, can be compiled into a linear graphgrammar. I also demonstrated how to support the FUTURE construct.To demonstrate the power of linear graph reduction I presented two applicationsthat both build on this translation: a distributed programming environment, and anew theoretical characterization of state.Linear graph structure as a universal distributed representation. For thedistributed programming environment, all run-time structures (continuations, recordstructures, procedures, etc.) are represented explicitly using linear graph structure.This ensures the proper treatment of continuations in tail-recursive procedure calls.Linear network references: links. By taking advantage of the properties of linearnaming I was able to build a distributed programming environment in which cross-network references are cheap. Cheap cross-network references permit data structuresto be highly portable.Demand migration heuristics. Linear naming also facilitates the construction ofheuristics that migrate tasks without requiring explicit guidance from the program-mer. This works in a way that is analogous to demand paging.An embedded approach to state. In order to properly approach the phenomenonof state it is important to think about how state is perceived by observers embeddedin the system itself.A characterization of state. State occurs when some locally indistinguishablecon�gurations of a system may evolve in unintended ways. Furthermore, no test thesystem can perform internally can determine that it is properly con�gured. Thisexplains why programming in the presence of state is di�cult.The 
awed object metaphor. Since state is not a phenomenon that can neces-sarily be localized, the usual object metaphor for state may be fatally 
awed.
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