
FAST LIKELIHOOD COMPUTATION METHODS FOR CONTINUOUS MIXTUREDENSITIES IN LARGE VOCABULARY SPEECH RECOGNITIONStefan Ortmanns, Hermann Ney and Thorsten Firzla�Lehrstuhl f�ur Informatik VI, RWTH Aachen { University of Technology,D-52056 Aachen, GermanyABSTRACTThis paper studies algorithms for reducing the com-putational e�ort of the mixture density calculationsin HMM-based speech recognition systems. Theselikelihood calculations take about 70 � 85% of thetotal recognition time in the RWTH system for largevocabulary continuous speech recognition. To reducethe computational cost of the likelihood calculations,we investigate several space partitioning methods. Adetailed comparison of these techniques is given on theNorth American Business Corpus (NAB'94) for a 20 000-word task. As a result, the so-called projection searchalgorithm in combination with the VQ method reducesthe cost of likelihood computation by a factor of about 8with no signi�cant loss in the word recognition accuracy.1. INTRODUCTIONA computationally expensive operation in speech recogni-tion systems is the computation of the mixture densitiesof the hidden Markov models (HMMs). Typically, forlarge vocabulary continuous speech recognition tasks witha very large number of mixture densities, the computationof the likelihoods (or strictly speaking log-likelihoods)needs more than 75% of the overall recognition e�ort.Therefore, we investigate in this paper techniques forreducing the computational cost of the mixture density(or state likelihood) calculations. The fast log-likelihoodcomputation techniques are integrated in the time-synchronous beam search algorithm where the searchalgorithm is based on a tree-organized pronunciationlexicon in connection with a bigram language model. Fore�ciency reasons, look-ahead pruning techniques are usedduring the search process as described in [11].In this paper, we present two e�cient likelihoodcomputation techniques which are based on spacepartitioning techniques. In particular, we describea fast likelihood computation algorithm using the k-dimensional binary search tree [1, 6, 7]. In addition,we present a fast log-likelihood calculation techniquewhich is similar to the nearest neighbor search methodas described in [9]. Unlike the k-dimensional binarysearch tree method, this method is based on dynamicpartitioning of the search space. The basic idea ofthe so-called projection search technique is to �nd allprototype vectors within a hypercube centered at a givenacoustic observation vector. A further reduction ofthe computational e�ort can be achieved by integrating

the projection search technique into other fast log-likelihood computation methods. To this purpose, wecombine the projection search technique with two well-known fast log-likelihood computation methods, namelythe Hamming distance approximation (HDA) [2] and avector quantization (VQ) method for mixture densitypreselection [4, 8].The organization of this paper is as follows. InSection 2, we brie
y describe the task of log-likelihoodcalculations using Laplacian mixture densities. InSection 3, we review the fast log-likelihood computationtechnique which is based on a k-dimensional binary searchtree. Further, we present a dynamic space partitioningtechnique for fast log-likelihood calculation. In Section4, we give experimental results on the North AmericanBusiness Corpus (Nov.'94) for a 20 000-word task.2. LAPLACIAN MIXTURE DENSITIESThe emission probability of an HMM state s can beexpressed as the weighted sum of prototype densities:p(xjs) = L(s)Xl=1 p(ljs) � p(xjs; l) ;where the term p(ljs) denotes the mixture weight ofthe lth mixture density component. When using themaximum approximation in connection with Laplacianmixture densities [10], the negative log-likelihood for agiven observation vector x 2 IRD is given by:�log p(xjs) = minl ( � log p(ljs) + DXd=1 jxd � �lsdj�lsd+ DXd=1 log (2 �lsd)) :where �lsd is the dth component of the prototypevector of the component density l of HMM state s.�lsd denotes the deviation of the dth component ofdensity l. The task is now to �nd the density l witha minimal negative log-likelihood with respect to theacoustic observation vector x for each HMM state (ormixture). In a straightforward implementation, this so-called nearest neighbor search requires the calculationof L(s) weighted distances per state. For instance, inour recognition experiments (20 000-word NAB-task) wehave used about 290 000 Laplacian mixture densities per



gender with a single pooled vector of absolute deviations.In this case, the likelihood computation takes about 85%of the total recognition time. In the following section, wepresent two fast likelihood computation methods whichare based on space partitioning techniques.3. LIKELIHOOD COMPUTATIONALGORITHMS3.1. k-d Tree MethodIn this section, we present a static space partitioningtechnique which is based on a k-dimensional binarysearch tree, called k-d tree. The k-d tree is a datastructure which partitions space using hyperplanes wherethe hyperplanes are perpendicular to the coordinate axes[1]. To organize the L(s) densities of a HMM state s as ak-d tree (with k = D), we construct the tree in a similarway as proposed in [6]: A density (or strictly speakingthe prototype vector of a density) is chosen to be theroot node. Densities located on one side of a hyperplanepassing through the root node are added to the left childand the densities on the other side are added to the rightchild. This process is applied recursively on the left andright child nodes until all densities are assigned to a treenode. Thus, the complete tree partitions the space intohyper-rectangular regions. However, the described treegeneration process generally leads to an unbalanced tree.To generate a balanced tree, each tree node is assignedto the median of densities, i.e. the median of prototypevector components passing this speci�c node [6]. Fig. 1shows an example of the space partitioning using a k-dtree (k = 2). To determine the density with the shortestdistance to an observed vector, the search in the k-d treeis organized as follows: The k coordinates of the observedvector are used to �nd the hyper-rectangular regionsin which the vector is located. All prototype vectorswithin these regions are collected. Thus, the likelihoodcomputation is only performed for these vectors.3.2. Projection Search AlgorithmUnlike the k-d tree approach, the projection searchalgorithm (PSA) is based on dynamic space partitioning.The idea of the algorithm is to �nd all prototype vectorslocated inside a hypercube centered at a given acousticobservation vector. The prototype vectors within thehypercube can be determined as follows: First, we �ndthe prototype vectors that are between a pair of parallelhyperplanes. These vectors are then added to a list of`candidates'. Note, the planes are orthogonal to the�rst coordinate axis and are located on either side ofthe observation vector at a distance �. Next, we reducethe list of candidates by removing vectors that are notlocated between a second pair of parallel planes beingorthogonal to the �rst planes and so on. These slicingprocess results in a D-dimensional cube containing allprototype vectors that are closest to the observed vectorwithin a distance of �. For D = 3, the slicing process isillustrated in Fig. 2 [9]. To determine points within thehypercube, we start with a list containing all prototypesthat are sandwiched between the two parallel planes HX1and HX2 . The planes are located on either side of theobservation vector x at a distance of �. Then, we reduce
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Figure 1. Space partitioning using a k-d tree (withk = 2); a) space tesselation, b) associated k-d tree.the list by eliminating prototypes that are not betweenthe planes HY1 and HY2 which are perpendicular to HX1and HX2 . After repeating this slicing step for the planesHZ1 and HZ2 , the list includes all prototypes within thehypercube of edge size 2�. Finally, all prototype vectorswithin the hypercube are then evaluated in the likelihoodcomputation routine. It should be mentioned that thecomputation of the list of candidates can be done in ane�cient way [9]. In a preprocessing step, each coordinateof the prototype densities is sorted so that binary searchcan be performed coordinate-wise to �nd the prototypesbetween a pair of parallel planes. For practical aspects,we consider only the �rst, say 7 vector componentsinstead of all components of the prototype vectors afterLDA transformation. Moreover, only the �rst componentof all prototype vectors is stored in an ordered set. Afurther speedup can be achieved by state 
ooring [8]. Ifno prototype (or density) from a certain state belongs tothe hypercube, an approximative log-likelihood score willbe assigned to this speci�c state. Note, state 
ooring willbe applied in all methods presented in this paper.3.3. Hybrid TechniquesDue to the simplicity of the projection search algorithmand for further speeding up the log-likelihood calcula-tions, we have combined the projection search with thefollowing well-known fast log-likelihood techniques:� preselection (VQ) method [4],� Hamming distance approximation (HDA) [2].The idea of these so-called hybrid fast log-likelihoodtechniques can be viewed as a two-step selection process.
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Figure 2. Illustration of the slicing process usingthe projection search algorithm.In a �rst step for example, we use the VQ methodto get a coarse preselection of prototypes. Then, ina second step, the list of candidates can be furthercon�ned by applying the projection search algorithm onthe preselected prototype vectors.Preselection VQ MethodTo reduce the memory requirement depending on thesize of the VQ cells (or codebooks), the preselectionVQ method proposed in [4] has been slightly modi�ed.Instead of selecting the cell with the closest distance tothe observation vector for the log-likelihood calculation,we determine now the �rst, say 3 or 5 closest cells tothe observation vector. After merging these n closestcells, the exhaustive log-likelihood calculation can beperformed. Thus, this strategy allows the constructionof smaller VQ cells.HDA MethodThe combination of the projection search with the HDAmethod [2] works in a similar way as described before.When considering the l1 norm, the distance d(x; y)between vectors x and y can be de�ned asd(x; y) = DXd=1 jxd � ydj= DXd=1 �jxdj+ jydj� � 2min(jxdj; jydj) ; xd � yd > 00 ; otherwise ��= kxk1 + kyk1 � 2 � Xxd�yd>0min(jxdj; jydj) :The assumption is now that the correction term2 � Pxd�yd>0min(jxdj; jydj) is approximated by2D min(kxk1; kyk1) Xxd�yd>0 1 :

So, we have the approximation d(x; y) � d(x; y)HDA withd(x; y)HDA = kxk1 + kyk1 � 2D min(kxk1; kyk1) Xxd�yd>0 1 :Note that this estimation can be e�ciently derived bycomputing the Hamming distance of the two vectors xand y [2].4. EXPERIMENTAL ANALYSIS4.1. Test ConditionsThe experimental tests were carried out on the ARPANorth American Business (NAB'94) H1 developmentcorpus comprising 310 sentences with a total of 7387words spoken by 10 male and 10 female speakers. Weused a 20 000-word vocabulary and a bigram languagemodel with a perplexity (PP ) of 198.4 [12]. 199 of thespoken words were out-of-vocabulary words. The trainingof the emission probability distributions of the underlyinghidden Markov models was performed on the WSJ0and WSJ1 training data as described in [5]. We usedabout 290 000 Laplacian mixture densities with a singlepooled vector of absolute deviations per gender. Theprototype vectors consist of 42 LDA-transformed �lterbank coe�cients. The experiments were performed on aSGI workstation with a R5000 processor (3.4 SpecInt95).In all experiments, we have used the word conditionedtree search method combined with a bigram languagemodel look-ahead pruning technique [11].4.2. ResultsTable 1 summarizes the recognition results. The Tableshows the e�ort of log-likelihood computation in terms ofthe e�ective number of computed densities per mixture(Neff ) and the required CPU time [%] for various log-likelihood computation methods. In addition, the searchspace (average number of active states, arcs and treesper time frame), the recognition errors and the realtime factor are also given. In an initial experiment, weperformed a test without fast likelihood computation. Onaverage, about 90 densities per mixture were computed,which leads to a real time factor of 33 for the beamsearch. Next, a series of experiments was run to studythe e�ect of the fast log-likelihood calculation techniqueson the search e�ort. The results are shown in Table 1.It can be seen that the HDA method reduces the e�ortof the log-likelihood calculations by approximately 40%.The result for the HDA is not as good as reported in[2] because some implementational tricks have not beenconsidered in this work [3]. Then, we have tested thek-d tree method. The k-d tree method works slightlybetter than the HDA method. Considering the results ofthe projection search algorithm, the overall recognitiontime was more than halved as compared to the baselineexperiment. Finally, we have tested the VQ method.In an informal experiment, the size of the VQ cellsand the number of cells evaluating in the log-likelihoodprocedure are adjusted beforehand. In the reportedresults, we have used three cells for the evaluation inthe log-likelihood procedure. The size of each cell canbe expressed by the overlapping factor which was 10:4.In total 512 VQ cells were used. For this conditions,



Table 1. E�ect of various fast log-likelihood calculation methods on the overall recognition e�ort and recognitionresults for a 20 000-word task using a bigram language model (NAB'94 H1 development corpus: 20 speakers, 310sentences, 7 387 spoken words; SGI workstation with a R5000 processor (3.4 SpecInt95)).Method Likelihood calculation Search space Recognition errors [%] Real-timeNeff CPU-time [%] states arcs trees del / ins WER factorbaseline 88 100.0 3312 936 13 2.5 / 2.6 16.5 32.7Hamming distance approx. (HDA) 11 59.5 3175 904 13 2.5 / 2.5 16.4 22.2k-d tree 30 50,7 3047 875 13 2.4 / 2.7 16.5 19.4projection search (PSA) 10 24.6 2903 840 13 2.3 / 2.7 16.5 11.8preselection method (VQ) 11 17.6 3132 894 13 2.4 / 2.6 16.5 10.0PSA & HDA 4 39.4 2642 781 12 2.4 / 2.7 16.5 16.2PSA & VQ 7 12.0 2703 798 12 2.3 / 2.7 16.6 7.5the VQ method leads to a speedup factor of 5:7 of theCPU-time required for the log-likelihood evaluation. Afurther reduction has been achieved by combining the VQmethod with the projection search algorithm. The timefor the computation of the likelihood can be reduced by afactor of 8:3 with virtually no loss in recognition accuracy.CONCLUSIONSIn this paper, we have investigated algorithms for fastlog-likelihood calculation. The results are summarized asfollows:� We compared four di�erent fast log-likelihoodcalculation techniques, namely the HDA method, k-d tree method, VQ method and the projection searchmethod on the NAB'94 H1 development corpus. Wefound that projection search reduced the likelihoodcalculation e�ort by a factor of 4:1. The VQ methodachieved a reduction of 5:7 resulting in an overall realtime factor of 10:0 on a SGI Indy (R5000).� Further, we have combined the VQ method with theprojection search method. As a result, this hybridmethod reduced the e�ort of likelihood computationby a factor of about 8. All in all, the total recognitiontime can be reduced by a factor of 4 � 5 withouta�ecting the word recognition error rate.Acknowledgement. This research was partly fundedby grant 01 IV701T4 from the German Ministry ofScience and Technology (BMBF) as a part of theVERBMOBIL project. The views and conclusionscontained in this document are those of the authors.REFERENCES[1] J.L. Bentley: Multidimensional Binary Search Treeused for Associative Searching. Communications ofthe ACM, 18(9), pp. 509-517, September 1975.[2] P. Beyerlein, M. Ullrich: Hamming Distance Ap-proximation for a Fast Log-Likelihood Computationfor Mixture Densities. Proc. Europ. Conf. on SpeechCommunication and Technology, Madrid, Spain,pp. 1083-1086, September 1995.[3] P. Beyerlein, M. Ullrich: Personal Communication.Philips Research Laboratories, May 1997, Aachen,Germany.[4] E. Bocchieri: Vector Quantization for the E�cientComputation of Continuous Density Likelihoods.
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