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Abstract 1.1 Source-Channel Model
According to Bayes’ decision rule, we can equiva-
We present a framework for statistical |ently to Eq. 1 perform the following maximization:
machine translation of natural languages
based on direct maximum entropy mod- el = argmax {Pr(el) Pr(f]le))} (2
els, which contains the widely used sour- el

ce-channel approach as a special case. All _ _
knowledge sources are treated as feature  1Nis approach is referred to as source-channel ap-

language sentence, the target language ferred to as the ‘fundamental equation of statisti-
sentence and possible hidden variables. Cal MT' (Brown et al.,, 1993). HerePr(e{) is
This approach allows a baseline machine  the language model of the target language, whereas

translation system to be extended easily by ~ Pr(f{ le1) is the translation model. Typically, Eq. 2
adding new feature functions. We show is favored over the direct translation model of Eq. 1

tion system is significantly improved us- Instead of modeling one probability distribution,
ing this approach. we obtain two different knowledge sources that are

trained independently.
The overall architecture of the source-channel ap-

1 Introduction proach is summarized in Figure 1. In general, as
shown in this figure, there may be additional trans-
We are given a source (‘French’) sentenf€ =  formations to make the translation task simpler for
fiso-o . fj,-., 1, which is to be translated into & the algorithm. Typically, training is performed by
target (English’) sentence = e1,... ,¢;,-.. ,er-  applying a maximum likelihood approach. If the
Among all possible target sentences, we will ChOOS%nguage modePr(el) = Pv(f/’{) depends on pa-
the sentence with the highest probabifity: rametersy and the translation modébr(f{|e!) =
¥ o py(fi|el) depends on parametefis then the opti-
éy = argmax {Pr(e|f{)} (1) mal parameter values are obtained by maximizing

I
€1

the likelihood on a parallel training corplf§,ef

The argmax operation denotes the search probler@,rown etal., 1993):

i.e. the generation of the output sentence in the target S

language. H = argmax Hpg(fs|es) (3)
The notational convention will be as follows. We use the s=1

symbol Pr(-) to denote general probability distributions with

S
(nearly) no specific assumptions. In contrast, for modskeba argmax H p7(e S) 4)
probability distributions, we use the generic symp0l). v
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I

s=1
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Figure 1: Architecture of the translation approach basedautce-channel models.

We obtain the following decision rule: instead of Eq. 5 (Och et al., 1999):

~1 1 Jy 1
é1 = argmax{ps(e;) 'p@(f1 1)} 5) .
el ¢1 = argmax{ps (e1) - py(e1lfi)} ()
€1
State-of-the-art statistical MT systems are based on
this approach. Yet, the use of this decision rule has

various problems: Here, we replacedy;(f{'[ef) by py(ef|fi).
From a theoretical framework of the source-
1. The combination of the language moge(e!) channel approach, this approach is hard to jus-
and the translation model;(f{|e]) as shown tify. Yet, if both decision rules yield the same
in Eg. 5 can only be shown to be optimal if the translation quality, we can use that decision
true probability distributiong; (el) = Pr(el) rule which is better suited for efficient search.

andp,(fi'lef) = Pr(f{|el) are used. Yet,

we know that the used models and training

methods provide only poor approximations ofl-2 Direct Maximum Entropy Translation
the true probability distributions. Therefore, a Model

different combination of language model and )
translation model might yield better results. As alternative to the source-channel approach, we

directly model the posterior probabilityr (e!|f{).
2. There is no straightforward way to extend &\n especially well-founded framework for doing

baseline statistical MT model by including ad-this is maximum entropy (Berger et al., 1996). In
ditional dependencies. this framework, we have a set @ff feature func-

tions h,, (el, f{),m = 1,... , M. For each feature
3. Often, we observe that comparable results afenction, there exists a model paramedgs, m =
obtained by using the following decision rulel,... , M. The direct translation probability is given
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Figure 2: Architecture of the translation approach basedimtt maximum entropy models.

by: the following two feature functions:
Pr(eflf{) = puu(ellfi) 7) hi(el, f{) = logps(er) 9)
holel, 11 = logps(f|e! 10
_ quZM Ao, (e{,f]'])] 2(e1, f1) gpg(f] le1) (10)
Dot eXF’[ZM Ambim (1, f1)] and set\; = )\, = 1. Optimizing the corresponding

parameters\; and\, of the model in Eq. 8 is equiv-
This approach has been suggested by (Papineniaent to the optimization of model scaling factors,
al., 1997; Papineni et al., 1998) for a natural lanwhich is a standard approach in other areas such as
guage understanding task. speech recognition or pattern recognition.

We obtain the following decision rule: The use of an ‘inverted’ translation model in the
unconventional decision rule of Eq. 6 results if we
use the feature functiotbg Pr(e!|f{) instead of
log Pr(f{lel). In this framework, this feature can
o be as good aeg Pr(f{|e!). It has to be empirically
_ verified, which of the two features yields better re-

argmax { 2_ Ambm(el. f7) } sults. We even can use both featutes Pr(e!| f{)
and log Pr(f;|el), obtaining a more symmetric
Hence, the time-consuming renormalization in Eq. §anslation model.
is not needed in search. The overall architecture of As training criterion, we use the maximum class
the direct maximum entropy models is summarize@osterior probability criterion:
in Figure 2.

5
Interestingly, this framework contains as special M _ argmax Zlogp M(e £) % (10)
case the source channel approach (Eq. 5) if we use AT

é]l = argmax {Pr(eﬂf{’)}

I
€1

m=1

1 s=1



This corresponds to maximizing the equivocatior2 Alignment Templates
or maximizing the likelihood of the direct transla-
tion model. This direct optimization of the poste-
rior probability in Bayes decision rule is referred to

as discriminative training (Ney, 1995) because Were Airs of source and target language phrases o
directly take into account the overlap in the proba P 9 guage p
gether with an alignment between the words within

bility distributions. The optimization problem has
y : b Hon p! .. the phrases. The advantage of the alignment tem-
one global optimum and the optimization criterion .
plate approach compared to single word-based sta-

As specific MT method, we use the alignment tem-
plate approach (Och et al., 1999). The key elements
of this approach are thalignment templates, which

iS convex. . . :
tistical translation models is that word context and
1.3 Alignment Modédlsand Maximum local changes in word order are explicitly consid-
Approximation ered.

The alignment template model refines the transla-
tion probability Pr(f;|e!) by introducing two hid-
den variables: X andaf for the K alignment tem-
plates and the alignment of the alignment templates:

Typically, the probabilityPr (f{|e!) is decomposed
via additional hidden variables. In statistical align-
ment modelsPr(f{, a{|el), the alignment{ is in-
troduced as a hidden variable:

r(f{]el) ZPr (fi.aflel) Pr(file)) = 3 Praf)e])-
2K o
The alignment mapping i — 7 = a; from source Pr(zK|al ey . Pr(f]|2K, ol e])

position to target position = a;.
Search is performed using the so-called maximurhlence, we obtain three different probability
approximation: distributions:  Pr(af|el), Pr(zE|af el) and
Pr(f{|2K,af el). Here, we omit a detailed de-
el = argmax Pr(eh) ZPT (f{,a |6]r) scription of modeling, training and sea_rgh, as this is
el " not relevant for the subsequent exposition. For fur-
! ther details, see (Och et al., 1999).
- { To use these three component models in a direct
argmax { Pr(el) - InaxPr(fl ,ailel) : ! _
maximum entropy approach, we define three dif-
ferent feature functions for each component of the
translation model instead of one feature function for
the whole translation model(f; |¢!). The feature
functions have then not only a dependencefgn
ande! but also oz, ot

el af
Hence, the search space consists of the set of all pQs
sible target language sentencegsand all possible
alignmentsa .

Generalizing this approach to direct translation
models, we extend the feature functions to in?
clude the dependence on the additional hidden va Eeature functions

able. Using M feature functions of the form
hm(el, f{,al),m = 1,..., M, we obtain the fol- So far, we use the logarithm of the components of

lowing model: a translation_ model as featur_e functions. Thi§ is a
Pr(el,al|f}) = very copvenlent approach to |mprove_th_e quality c_>f
AR a baseline system. Yet, we are not limited to train
exp (Z;‘Ll Amham (el fi, a'{)) only model scaling factors, but we have many possi-

= bilities:

M
Ze 15 a’J PXp (Zm:] Amhm(el{a fi]’ a"{))

Obviously, we can perform the same step for transla-

e We could add a sentence length feature:

tion models with an even richer structure of hidden h(f!,el) =
variables than only the alignment. To simplify
the notation, we shall omit in the following the de- This corresponds to a word penalty for each

pendence on the hidden variables of the model. produced target word.



e We could use additional language models byt Training

using features of the following form: . ,
g g To train the model parametekg’ of the direct trans-

lation model according to Eq. 11, we use the GIS
(Generalized lIterative Scaling) algorithm (Darroch
and Ratcliff, 1972). It should be noted that, as
e We could use a feature that counts how manwas already shown by (Darroch and Ratcliff, 1972),
entries of a conventional lexicon co-occur inby applying suitable transformations, the GIS algo-
the given sentence pair. Therefore, the weighithm is able to handle any type of real-valued fea-
for the provided conventional dictionary can betures. To apply this algorithm, we have to solve var-
learned. The intuition is that the conventionalious practical problems.
dictionary is expected to be more reliable than The renormalization needed in Eq. 8 requires a
the automatically trained lexicon and thereforesum over a large number of possible sentences,
should get a larger weight. for which we do not know an efficient algorithm.
Hence, we approximate this sum by sampling the
e We could use lexical features, which fire if aspace of all possible sentences by a large set of

h(fi'.e1) = hlei)

certain lexical relationshigf, ) occurs: highly probable sentences. The set of considered
sentences is computed by an appropriately extended
J 1 version of the used search algorithm (Och et al.,
hfilel) =Y (£, 1) | - (Z 5 (e, ei)) 1999) computing an approximaiebest list of trans-
j=1 i=1 lations.

Unlike automatic speech recognition, we do not

have one reference sentence, but there exists a num-
« We could use grammatical features that reIat_Qer of rc_aferepce sentences. Yet, the criterion as it
certain grammatical dependencies of sourc® descr_lbed in Eq. 11 allows for only one r_eference
and target language. For example, using afun(E[anslatlon. Hence, we change the criterion to al-

tion (-) that counts how many verb groups ex-IOW R, refe.rence translations, ,. .. , e g, forthe
ist in the source or the target sentence, we catt LeNCe®s:

define the following feature, which is 1 if each g R,

of the two sentences contains the same number™  —  argmax {Z Ri Z log pym (es,rfs)}
of verb groups: A s=1 "% r=1

h(fi,el) = o(k(f{), k(eh)) (12 \{Ve_usg this _opt_imization c_riterion instead of the op-
timization criterion shown in Eq. 11.

In the same way, we can introduce semantic, In addition, we might have the problem that no

features or pragmatic features such as the d§_|ngle of the reference translations is part of the
alogue act classification best list because the search algorithm performs prun-

ing, which in principle limits the possible transla-

We can use numerous additional features that delipns that can be produced given a certain input sen-
with specific problems of the baseline statistical MTE"NCE- To solve this problem, we define for max-
system. In this paper, we shall use the first three dpum gntropy training egch sentence as reference
these features. As additional language model, v\;éansla_ltlon that has the minimal number of worc_i er-
use a class-based five-gram language model. THRrs with respect to any of the reference translations.

feature and the word penalty feature allow a straights

. o _ Results
forward integration into the used dynamic program-
ming search algorithm (Och et al., 1999). As this id\e present results on thee®#BmMOBIL task, which
not possible for the conventional dictionary featureis a speech translation task in the domain of appoint-
we usen-best rescoring for this feature. ment scheduling, travel planning, and hotel reser-



vation (Wahlster, 1993). Table 1 shows the cor-  of the target sentence, so that the WER mea-
pus statistics of this task. We use a training cor-  sure alone could be misleading. To overcome
pus, which is used to train the alignment template this problem, we introduce as additional mea-
model and the language models, a development cor- sure the position-independent word error rate
pus, which is used to estimate the model scaling fac- (PER). This measure compares the words in the
tors, and a test corpus. two sentences ignoring the word order.

¢ MWER (multi-reference word error rate): For

Table 1: Characteristics of training corpus (Train), each test sentence, there is not only used a sin-
manual lexicon (Lex), development corpus (Dev),  gie reference translation, as for the WER, but

test corpus (Test). a whole set of reference translations. For each
\ | German| English | translation hypothesis, the edit distance to the
Train Sentences 58073 most similar sentence is calculated (Niel3en et
Words 519523 549921 al., 2000).
\S/mglte)t(I)ns gggg 411232 e BLEU score: This score measures the precision
OC&.‘ utary of unigrams, bigrams, trigrams and fourgrams
Lex  Entries 12779

with respect to a whole set of reference trans-

Ext. Vocab. 11 501| 6867 lations with a penalty for too short sentences
Dev  Sentences 276 (Papineni et al., 2001). Unlike all other eval-

Words_ 3159 3438 uation criteria used here, BLEU measures ac-

PP (trigr. LM) _ 281 curacy, i.e. the opposite of error rate. Hence,
Test  Sentences 251 large BLEU scores are better.

Words 2628 2871

PP (trigr. LM) - 30.5 e SSER (subjective sentence error rate): For a

So far, in machine translation research does not
exist one generally accepted criterion for the evalu-
ation of the experimental results. Therefore, we use
a large variety of different criteria and show that the

more detailed analysis, subjective judgments
by test persons are necessary. Each trans-
lated sentence was judged by a human exam-
iner according to an error scale from 0.0 to 1.0

(Niel3en et al., 2000).

obtained results improve on most or all of these cri- o |ER (information item error rate): The test sen-
teria. In all experiments, we use the following six  tences are segmented into information items.
error criteria: For each of them, if the intended information

e SER (sentence error rate): The SER is com-

is conveyed and there are no syntactic errors,

puted as the number of times that the generated  the Sentence is counted as correct (Niefsen et
sentence corresponds exactly to one of the ref- al., 2000).

erence translations used for the maximum en- |, the following, we present the results of this ap-
tropy training. proach. Table 2 shows the results if we use a direct

WER (word error rate): The WER is computedtr"’mSI‘?)tlon Imodfel (Eq. 6). | d tri
as the minimum number of substitution, inser- As baseline features, we use a normal word tri-

tion and deletion operations that have to be pelgram language model and the three component mod-

formed to convert the generated sentence int%ls of the allg_nment templates. TheT first row shovys
the results using only the four baseline features with

A1 = --- = X\ = 1. The second row shows the

PER (position-independent WER): A short-result if we train the model scaling factors. We see a
coming of the WER s the fact that it requiressystematic improvement on all error rates. The fol-
a perfect word order. The word order of anlowing three rows show the results if we add the
acceptable sentence can be different from thatord penalty, an additional class-based five-gram

the target sentence.



Table 2. Effect of maximum entropy training for alignmeniniglate approach (WP: word penalty feature,
CLM: class-based language model (five-gram), MX: converatiaictionary).

objective criteria [%] subjective criteria [%]
SER\ WER \ PER\ mWER\ BLEU SSER\ IER
Baselineg,, = 1) 86.9| 42.8 | 33.0| 37.7 43.9 || 35.9 39.0
ME 81.7| 40.2 | 28.7| 34.6 49.7 || 325 34.8
ME+WP 80.5| 38.6 | 26.9| 324 54.1 || 29.9 32.2
ME+WP+CLM 78.1| 38.3|26.9| 321 55.0 | 29.1 30.9
ME+WP+CLM+MX | 77.8 | 38.4 | 26.8| 31.9 55.2 || 28.8 30.9
oe o — Table 3: Resulting model scaling factors of maxi-
0.88 s MESWPCLM - 1 mum entropy training for alignment templates;:

trigram language model)y: alignment template
model, A3: lexicon model, \4: alignment model
(normalized such thdl} _| A, = 4).

ME | +WP | +CLM | +MX
A1 | 0.86] 098] 0.75 | 0.77
Ao | 233 205| 224 | 2.24
A3 | 058| 0.72| 0.79 | 0.75
Ay 022 025 0.23 | 0.24

sentence error rate (SER)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 WP 2.6 3.03 | 2.78
number of iterations CLM . . 0.33 0.34
MX . 2.92

Figure 3: Test error rate over the iterations of the

GIS algorithm for maximum entropy training of

alignment templates. gested by (Papineni et al., 1997; Papineni et al.,
1998). They train models for natural language un-

i o derstanding rather than natural language translation.
language model and the conventional dictionary fea}h contrast to their approach, we include a depen-

tures. We observe improved error rates for using th‘c?ence on the hidden variable of the translation model
word penalty and the class-based language mOde'i"r"\Sthe direct translation model. Therefore, we are

additional features. able to use statistical alignment models, which have

Figure 3 show how the sentence error rate (SER)aan shown to be a very powerful component for
on the test corpus improves during the iterations cgtatistical machine translation systems

the GIS algorithm. We see th"?‘t the_ sentence error |, speech recognition, training the parameters of
rates converges after abotQ00 iterations. We do

N o the acoustic model by optimizing the (average) mu-
not observe significant overfitting.

_ ) tual information and conditional entropy as they are

Table 3 shows the resulting normalized modeliefined in information theory is a standard approach
scaling factors. Multlp_I)_/lng each model scaling fac'(BahI et al., 1986: Ney, 1995). Combining various
tor by a constant positive value does not affect thﬁrobabilistic models for speech and language mod-

decision rule. We see that adding new features al%?ing has been suggested in (Beyerlein, 1997; Peters
has an effect on the other model scaling factors. 50 Klakow, 1999).

6 Redated Work 7 Conclusions

The use of direct maximum entropy translation modwWe have presented a framework for statistical MT
els for statistical machine translation has been sudpr natural languages, which is more general than the



widely used source-channel approach. It allows & N. Darroch and D. Ratcliff. 1972. Generalized itera-
baseline MT system to be extended easily by adding tive scaling for log-linear modelsAnnals of Mathe-
new feature functions. We have shown that a base- Matical Statistics, 43:1470-1480.

line statistical MT system can be significantly im-B. H. Juang, W. Chou, and C. H. Lee. 1995. Statisti-
proved using this framework. cal and discriminative methods for speech recognition.

; ; ; .« In A. J. R. Ayuso and J. M. L. Soler, editorSpeech
. There are two possible mterpretgtlons for a statis Recognition and Coding - New Advances and Trends.
tical MT system structured according to the source- gpringer Verlag, Berlin, Germany.

channel approach, hence including a model for
Pr(e{) and a model forPr(fi’\e{). We can inter- H- Ney. 1995. On the probabilistic-interpretation of

. ) . . neural-network classifiers and discriminative training
pretitas an approximation to the Bayes decision rule - |EEE Trans. on Pattern Analysisand Machine

in Eg. 2 or as an instance of a direct maximum en- |ntelligence, 17(2):107—119, February.

tropy model with feature functionkyg Pr(e!) and _

log Pr(f{|e]). As soon as we want to use modefS: NieBen, F. J. Och, G. Leusch, and H. Ney. 2000.
. . . An evaluation tool for machine translation: Fast eval-

scaling factors, we can only do this in a theoretically | ation for MT research. IProc. of the Second Int.

justified way using the second interpretation. Yet, Conf.on LanguageResourcesand Evaluation (LREC),
the main advantage comes from the large number of pages 39-45, Athens, Greece, May.

addmongl p035|bll!t|es that we obtain by using thq:' J. Och, C. Tillmann, and H. Ney. 1999. Improved

second interpretation. alignment models for statistical machine translation.
An important open problem of this approach is InProc. of the Joint SGDAT Conf. on Empirical Meth-

the handling of complex features in search. An in- 0dSin Natural Language Processing and Very Large

teresting question is to come up with features that Ee%?g:r’kpi/?gs\]i?q_eza University of Maryland, Col-
allow an efficient handling using conventional dy- Y
namic programming search algorithmsl K. A. Paplnenl, S. ROUkOS, and R. T. Ward. 1997.

. L - A Feature-based language understanding European
In addition, it might be promising to optimize the Conf. on Speech Communication and Technology,

parameters directly with respect to the error rate of pages 1435-1438, Rhodes, Greece, September.
the MT system as is suggested in the field of pattern

and speech recognition (Juang et al., 1995; Schiiitr A- Papineni, S. Roukos, and R. T. Ward. 1998. Max-

imum likelihood and discriminative training of direct

and Ney, 2001). translation models. I®roc. Int. Conf. on Acoustics,
Soeech, and Signal Processing, pages 189-192, Seat-
tle, WA, May.
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