
 

 

TurKit: Tools for Iterative Tasks on Mechanical Turk 
 

Greg Little, Lydia B. Chilton, Rob Miller, Max Goldman 
MIT CSAIL 
32 Vassar St 

Cambridge, MA 02139 USA 
{glittle,hmslydia,rcm,maxg}@mit.edu

 

ABSTRACT 
Mechanical Turk (MTurk) is an increasingly popular web 
service for paying people small rewards to do human com-
putation tasks.  Current uses of MTurk typically post inde-
pendent parallel tasks.  This paper explores an alternative 
iterative paradigm, in which workers build on or evaluate 
each other’s work.  We describe TurKit, a new toolkit for 
deploying iterative tasks to MTurk, with a familiar impera-
tive programming paradigm that effectively uses MTurk 
workers as subroutines, such as the comparison function of 
a sorting algorithm.  The toolkit handles the latency of 
MTurk tasks (typically measured in minutes), supports pa-
rallel tasks, and provides fault tolerance to avoid wasting 
money and time.  We present a variety of iterative experi-
ments using TurKit, including image description, copy edit-
ing, handwriting recognition, and sorting. 
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Prototyping. 
General terms: Algorithms, Design, Economics, Experi-
mentation 
Keywords: Human computation, Mechanical Turk, toolkit 
INTRODUCTION 
Human effort is a vital part of many systems.  Computers 
are still less effective than humans at many tasks, such as 
natural language processing and image recognition, and   
humans are clearly more suited to subjective tasks involv-
ing opinions and tastes.  Human effort can be difficult to 
exploit, but systems like Wikipedia, Yahoo Answers and 
MTurk are making it possible to outsource human compu-
tation tasks over the internet. 
Wikipedia, Yahoo Answers and the ESP Game [2] are sys-
tems where users volunteer their human computation be-
cause they value helping others, participating in a commu-
nity, or playing a game.  But these systems aren’t designed 
for arbitrary human computation tasks.  Whereas Yahoo 
Answers is a place where you can easily get romantic ad-
vice, it’s harder to get people to correct the spelling in a 
document or look up 100 restaurant addresses on the web.   
MTurk is an increasingly popular web service for paying 
people to do simple human computation tasks.  Workers on 
the system (turkers) are typically paid a few cents for Hu-
man Intelligence Tasks (HITs) that can be done in under a 
minute.  MTurk has already been leveraged by industry and 
academia for image labeling, verifying addresses, and tag-
ging documents. MTurk will often get work done faster and 
can get work done that people seem not to want to do for 
free. 

Currently, MTurk is largely used for independent tasks.  
Task requesters post a group of HITs that can be done in 
parallel, such as labeling 1000 images.  To deal with mali-
cious, lazy, or erring turkers, requesters generally post mul-
tiple instances of each task. 
This paper considers a different model for employing turk-
ers: iterative work, in which a succession of turkers do 
tasks that build each other.  For example, turkers can take 
turns improving a passage of text; verify each other’s work 
by voting on it; and implement the comparison function of 
an iterative sorting algorithm.  Iteration is a fundamental 
computing concept, which applies equally well to human 
computation.  It is also a fundamental concept in design 
and engineering that leads to higher-quality results.  Other 
human computation systems also use iteration, notably Wi-
kipedia, which is built by humans iterating on each other’s 
work.  As far as we are aware, however, this paper presents 
the first examples in the literature of iterative tasks on a 
for-pay human computation system like MTurk. 
The second contribution of this paper is TurKit, a toolkit 
for programming iterative processes on MTurk.  The Tur-
Kit API contains functions that help write iterative MTurk 
tasks.  The main challenge is making the entire system fault 
tolerant, so that bugs and system crashes do not lead to 
wasted money or time on MTurk. TurKit overcomes this 
challenge while maintaining a straightforward procedural 
programming model.  In this model, HIT generation is a 
simple function call that posts the HIT only once and auto-
matically stores (memoizes) its result in a database.  As a 
result, a TurKit program is idempotent, able to be run re-
peatedly without reposting previously completed work. 
In this paper we present several examples of iterative tasks 
done on MTurk using TurKit.  The first set of examples 
concern iterative text improvement: describing an image, 
turning an outline into prose, editing for specific stylistic 
changes, brainstorming, and handwriting recognition.  The 
second set concern sorting, using turkers as comparison 
functions in a sort algorithm.  Finally, we present the Tur-
Kit API and programming paradigm, and discuss some 
lessons about using MTurk as a programming platform. 
RELATED WORK 
One challenge in writing human computation algorithms is 
motivating humans to do work. One approach is Games 
With a Purpose [1], where humans perform useful compu-
tation as a byproduct of playing computer games. User-
generated content websites such as Wikipedia use human 
computation to generate content, and this content along 



 

 

with social factors seem to motivate future contributions. 
Bryant [7] makes observations about how people begin 
contributing to Wikipedia, and what tools expert contribu-
tors use to manage and coordinate their work. 
MTurk provides a platform for performing Human Intelli-
gence Tasks (HITs) where humans are motivated by mon-
ey. This platform has been adopted for a variety of uses, 
both in industry and academia. Kittur [8] discusses how to 
run user studies on MTurk, while Sorokin [10] uses MTurk 
to label images. Thus far, the typical usage pattern for 
MTurk involves generating all the HITs that need to be 
completed, posting them to MTurk, and later downloading 
all the results. Several websites focus on managing HITs 
that fit this template (e.g. HIT-builder1). It is currently rare, 
however, to automatically generate new HITs based on the 
results of previous HITs. Sorokin proposes creating voting 
HITs in response to labeling HITs, but does not report any 
experiments using this technique.    
ITERATIVE TEXT IMPROVEMENT 
The iterative text improvement experiments take inspiration 
from the way some Wikipedia articles grow from a simple 
sentence into a fully fledged article as multiple people 
make small contributions [9]. In our experiment, we start 
with a seed of text and ask MTurk workers (turkers) to im-
prove it according to some instructions. After each at-
tempted improvement, additional turkers vote whether the 
change is indeed an improvement. The winning text is fed 
back into the system for further improvement, until a stop-
ping condition is met. Here is a schematic overview of the 
iterative text improvement process: 

 
The boxes labeled “improve” and “vote” represent Human 
Intelligence Tasks (HITs) on MTurk. The improve-HIT 
simply asks a turker to improve a given body of text ac-
cording to some instructions. Turkers are generally given 
one hour from the time they accept an improve-HIT before 
they must submit the result, or release it so that another 
turker may attempt it. 
Voting is meant to prevent turkers from making detrimental 
changes to the text. The vote-HIT asks a turker which of 
two bodies of text is better according to a given criteria. 
Voters are shown the original text and the improved text in 
random order, without any explicit indication as to which 
was the original. The differences between the two texts are 
highlighted in yellow, e.g.: 

a) The quick fox leaped over the dogs. 
b) The quick brown fox jumped over the lazy dogs. 

                                                           
1 http://www.hit-builder.com/ 

The turker who wrote the text being voted on is not allowed 
to vote. No turker is allowed to vote twice between the 
same two texts. Voting HITs must be completed within one 
hour of accepting the HIT. 
The system requests two votes for each improvement. If the 
votes disagree, then a third vote is requested. The winning 
text after each voting stage is fed back into an improvement 
HIT. This process is repeated until a predefined amount of 
money is spent. We spent $0.25-$1 total for each experi-
ment described below, generally paying $0.02-$0.10 for 
each improve-HIT and $0.01 for each vote-HIT. 
Image Description 
Our first experiments involved writing descriptions for im-
ages. These experiments were inspired by Phetch [3], a 
game where humans write and validate image descriptions 
in order to make images on the web more accessible to 
people who are blind.  In our experiments, we pay people 
to write the descriptions and improve on previous descrip-
tions.  
Figure 1 shows an example result from one of these expe-
riments. Turkers were offered $0.02 for the improve-HIT, 
which had the following instructions: 

 
Note that the first improve-HIT had the instructions “Please 
describe this image.”, since we didn’t have a starting de-
scription for them. The character limit was enforced using 
JavaScript, and turkers were shown a count indicating their 
current character usage. 
The vote-HIT had these instructions: 

 
If there was only one description, voters were asked wheth-
er the description was “good” or “not great”. 
The results from the first four improve-HITs for a run of 
this experiment are shown below: 
version 1: 

A parial view of a pocket calculator together with 
some coins and a pen. 

version 2: 
A view of personal items a calculator, and some 
gold and copper coins, and a round tip pen, these 
are all pocket and wallet sized item used for busi-
ness, writting, calculating prices or solving math 
problems and purchasing items. 

version 3: 
A close-up photograph of the following items: 
 
A CASIO multi-function calculator 



 

 

A ball point pen, uncapped 
Various coins, apparently European, both copper 
and gold 
 
Seems to be a theme illustration for a brochure or 
document cover treating finance, probably person-
al finance. 

version 4: 
…Various British coins; two of £1 value, three of 
20p value and one of 1p value. … 

Version 2 is struck out to indicate that it was voted down, 
so the turker who wrote version 3 did so as an improvement 
to version 1. Version 3 stood as a template that was incre-
mentally improved, as seen in version 4. Figure 1 shows 
the final version after 8 iterations. 
It was often the case that early iterations would heavily 
influence the structure and tone of the final description. 
Most turkers would add a sentence at the end, or fix gram-
mer mistakes in the text. Turkers were reluctant to remove 
a sentence entirely, though they would add information as 
seen in version 4. 
Turkers frequently speculated about the scene, and often 
introduced external knowledge. In Figure 1, for example, 
one turker speculated that the image is for a finance bro-
chure, and another added the information that the coins 
were British. Since we obtained the images from a public 
domain website, we were generally unable to confirm their 
speculations, but in at least one case, a turker correctly 
identified an image as being an “Iraq-Iran war memorial in 
Bagdad.” 
We hypothesize that paying turkers to iteratively improve 
an image description, given a certain budget for the whole 
process, should yield better results than paying a single 
worker the entire budget.  To test the hypothesis, we ran an 
image-description experiment eleven times. In each run, an 
image was chosen randomly from a set of ten images. All 
taken from www.publicdomainpictures.net and were se-
lected by the author for being scenes with multiple identifi-
able objects in them. We also chose a budget to spend, 
which was either $0.25 or $0.50, chosen randomly for each 
run. For each run, we ran one iterative improvement 
process using the budgeted amount of money, spending 
$0.02 per improve-HIT and $0.01 per vote-HIT.   As a con-
trol, we also posted a single improve-HIT using the same 
image and offering the entire $0.25 or $0.50 budget as its 
reward. Every turker was only allowed to complete one 
HIT in the entire study, to ensure that the results were not 
biased by a particularly zealous turker. 
After running each pair of experiments, we created a HIT 
asking turkers to compare the descriptions generated by 
each method for the given image. Twenty fresh turkers 
voted for each pair.  
The votes favored the iterative method over the single-
worker method 9 of 11 times (82%).  

The rewards in these experiments are small (though typical 
of MTurk tasks), and it’s not clear how the results might be 
affected by larger rewards. It’s also worth comparing the 
iterative method against another crowdsourcing strategy: 
paying multiple turkers to write independent descriptions, 
and then using a vote to choose the best.  These experi-
ments are future work. 
Writing Tasks 
Because the image description experiments indicated that 
turkers are reliable at writing tasks, our next three experi-
ments relied more heavily on writing ability.  The first task 
was to turn an outline of a document into text, the second 
was to change a passage from past to present tense and its 
first person pronouns from singular to plural, and the third 
was to convert a passage from passive to active voice and 
edit for style. 
Outline to Prose 
The first task involved writing a letter negotiating a job 
offer. Turkers were shown the following instructions: 

 

 
Figure 1: MTurk workers describe this image after 
eight iterations as: 

“A close-up photograph of the following items: 

 

A CASIO multi-function, solar powered scientific calcula-
tor. 

A blue ball point pen with a blue rubber grip and the tip ex-
tended. 

Six British coins; two of £1 value, three of 20p value and 
one of 1p value. 

Seems to be a theme illustration for a brochure or docu-
ment cover treating finance - probably personal finance." 



 

 

Voters were shown the same outline with the prompt: 
“Which letter is closer to conveying this outline:”. 
Turkers were paid $0.02 for the improve-HIT as before, but 
we did not hinge their approval on the voting process. 
Likewise, we did not require that voters be in the majority 
for approval, but we did require that they have a 90% ap-
proval rating on other MTurk tasks before voting. Selected 
outcomes of the improve-HIT are shown below: 
version 1: 

I want to thank you for your gracious job offer. 
However, I have had another job offer willing to 
pay me $10,000 more for the same job. But, I am 
willing to forgoe that job offer because working 
with your company would be a great opportunity, 
that is, if you would like to match their offer. 

version 3: 
I would like to thank you very much for your of-
fer, however, I have received a better package 
from another firm. I still would like to work for 
company and would like to speak with you to see 
if there is anyway we could make that occur. 

version 9: 
Thank you very much for your offer. At this time, 
I have a competing offer on the table at a higher 
salary. If the remuneration packages were equal I 
would much prefer to work for yourselves, and I 
am open to discussing the possibility of your 
matching this offer. If this is possible, please con-
tact me at your earliest convenience. 

The initial improve-HIT made a first pass at turning the 
entire outline into prose.  Subsequent improve-HITs mostly 
refine the language. 
It’s interesting that turkers voted to reject both the first and 
second version (not shown), which mentioned “$10,000” 
explicitly. It is also interesting to observe how the descrip-
tion of the other firm’s offer progresses from “$10,000 
more” to “better package” to “far more competitive offer” 
to “more competitive offer” to simply “competing offer”.  
We didn’t ask for reasons for particular edit could be that 
the turkers were not attending to the outline, but it’s possi-
ble that turkers thought mentioning the dollar amount was 
not professional. 
Active Voice 
In many cases, stylistic changes can be made to a document 
by an editor without external knowledge about the content.  
For this task we focused on encouraging a succinct writing 
style and converting passive voice to active voice – for 
instance, using the active “We made mistakes” instead of 
the passive “Mistakes were made”. We presented workers 
with the following instructions: 

 

The instructions were similar for voters, except the prompt 
was: “Select the paragraph which steps toward these 
goals:” 
Selected iterations are shown below, starting with version 
0, which was the original passage. 
version 0: 

The earthquake was positively and utterly devas-
tating to San Francisco.  The worst things were 
that homes were destroyed, fortunes were lost, 
people were generally destitute.  And by all mod-
ern standards the economy went into shock as the 
cost of simple home items such as bread and salt 
and nails tripled over night. Rebuilding the city 
took at least a decade.  Repairs to buildings, roads 
and infrastructure such as plumbing were urgent 
and many.  After all was said and done, the lesson 
in all this was to rebuild the city with earthquakes 
in mind. 

version 5: 
The earthquake utterly devastated San Francisco. 
It destroyed homes and left people destitute. By 
modern standards, it forced the economy into 
shock, as the cost of everyday items tripled over-
night. It took at least a decade to rebuild the city to 
withstand future earthquakes, most importantly 
buildings, roads and infrastructure. 

version 8: 
The earthquake devastated San Francisco. It de-
stroyed homes and left people destitute. It forced 
the economy into shock, tripling the cost of every-
day items overnight. It took a decade to rebuild the 
city to withstand future earthquakes, especially 
buildings, roads and infrastructure. 

By the fifth version, the three instances of passive voice 
(“homes were destroyed”, “fortunes were lost”, “repairs 
were urgent”) were replaced with active voice or eliminat-
ed.  Further iterations removed many superfluous words 
and phrases. 
We ran several experiments involving making a passage 
more succinct. In some of these trials, turkers would alter 
the meaning of the passage, a common risk of copy editing. 
Voters did not know which passage was the original, and so 
they could not know for sure if the meaning had changed. 
They could only vote on which adhered more to the crite-
ria. In future trials, we will try keeping the original passage 
present in both the improve- and vote-HITs. 
Changing Grammatical Tense 
Occasionally a passage is written in past tense, and needs to 
be changed to present tense to match the style of another 
document. This is another stylistic change that can largely 
be made without external knowledge. In this experiment, 
we ask turkers to change a passage from past tense to 
present tense, and use plural rather than singular pronouns. 
We presented workers with the following instructions: 



 

 

 
The instructions were similar for voters, except the prompt 
was: “Select the paragraph stepping toward the goals:” 
Here are selected iterations of the passage, starting with 
version 0, which was the original passage. 
version 0: 

I took my bag and proceeded to climb the moun-
tain. I thought to myself that it would rain later. I 
was worried, but I tried not to let it discourage me. 
I figured that if it did rain, I could always build a 
shelter of some sort using rope. Of course, after 
climbing for a few hours, I discovered that I had 
forgotten any rope. I'm not sure how I was able to 
make this mistake. Fortunately, it didn't rain. 

version 1: 
We take our bags and proceed to climb the moun-
tain. We think to ourselves that it will rain later. 
We are worried, but we try not to let it discourage 
us. We figure that if it did rain, ee could always 
build a shelter of some sort using rope. Of course, 
after climbing for a few hours, we discover that 
we have forgotten any rope. We're not sure how 
we were able to make this mistake. Fortunately, it 
doesn't rain. 

version 3: 
… We figure that if it did rain, we can always 
build a shelter of some sort using rope. … 

version 4: 
… We figure that if it does rain, we can always 
build a shelter of some sort using rope. … 

Although we asked workers to make small improvements, 
observe that the first turker made practically all of the ne-
cessary changes. The benefits of iteration may be seen in 
two subsequent iterations which correct a typo and change 
two remaining past-tense verbs into present tense. 
It is worth noting that versions 2, 5 and 6 were all rejected 
for the same mistake: the turker converted all “we”’s back 
into “I”’s. We speculate that because most of the work was 
done in version 1, subsequent workers were confused about 
what to do. Fortunately the voters were not confused. 
Brainstorming 
Brainstorming is a technique for generating ideas. We ran 
several experiments using the iterative text improvement 

technique for brainstorming. We chose a topic that required 
no expert knowledge. In a task titled “Brainstorm Plot 
Ideas”, we provided the instruction: 

 
The voting task had the instructions:  

 
Here is version 6 of the brainstorm: 
version 6: 

He has to go into a witness protection program. 
He is being investigated for photographing nude 
girls. 
He has been accepted for NASA training. 
His parents died in a car accident, and he had to 
take over the family business. 
She was bitten by, and turned into, a vampire. 
The new dean is the mother of the boy whose 
heart was broken (and not nicely) by the student. 

The formatting is interesting—turkers followed the conven-
tion selected by the second turker of leaving a blank line 
between each idea. In this and two other brainstorming 
trials, turkers were reluctant to modify existing ideas. Most 
people added a single idea at the end. A few turkers ex-
panded ideas already present, usually by adding text to the 
end of them. For instance, a subsequent version of the 
brainstorm above takes the idea “He has to go into a wit-
ness protection program” and adds the text “and finds out 
that everyone in his new neighborhood also left college for 
the same reason.” 
Handwriting Recognition 
Most OCR software focuses on recognizing printed fonts. 
The reCAPTCHA project applies human computation to 
correct errors in OCR [4]. Software for handwriting recog-
nition typically requires access to the sequence of pen 
strokes that form characters, as supplied by a device like a 
digital tablet. Recognizing handwriting is difficult for com-
puters. It can even be difficult for humans. Many students 
receive feedback on papers that they cannot decipher. A 
common solution to this problem is to show the bit of text 
to multiple people. 



 

 

We wrote a passage with purposefully bad handwriting and 
in cursive, see Figure 2. Turkers were shown this image, 
and offered $0.05 to follow these instructions: 

  
Voters also saw the image, and had these instructions: 

 
All iterations of a single run of this experiment are shown: 
version 1: 

You (?) (?) (?) (work). (?) (?) (?) work (not) 
(time). I (?) (?) a few grammatical mistakes. Over-
all your writing style is a bit too (phoney). You do 
(?) have good (points), but they got lost amidst the 
(writing). (signature) 

version 2: 
You (?) (?) (saved) (work). (?) (?) (?) work (not) 
(time). I (?) (?) a few grammatical mistakes. Over-
all your writing style is a bit too (phoney). You do 
(?) have good (points), but they got lost amidst the 
(writing). (signature) 

version 4: 
You (misspelled) (several) (words). (?) (?) (?) 
work next (time). I also notice a few grammatical 
mistakes. … 

version 5: 
You (misspelled) (several) (words). (Plan?) (spell-
check) (your) work next time. I also notice a few 
grammatical mistakes. Overall your writing style 
is a bit too phoney. You do make some good 
(points), but they got lost amidst the (writing). 
(signature) 

version 6: 
You (misspelled) (several) (words). Please spell-
check your work next time. I also notice a few 
grammatical … 

The final version is shown in its entirety in Figure 2. As 
noted in the figure, only four words were deciphered incor-
rectly, though some are still in parentheses. Workers did 
make good use of the parentheses, and it is interesting to 
see how the words in them change between iterations. 
Performance 
Figure 3 shows time and cost statistics for the text im-
provement tasks presented in this paper (except for the im-
age description tasks, for which this data was not col-
lected). Latency is the time that elapsed between the pro-
gram posting a HIT and receiving a response.  Latency val-
ues are actually overestimates because TurKit only polled 
every 5 minutes in these experiments.  One improvement 
HIT generally required 15-30 minutes to complete, while 

voting (the total latency for all vote HITs needed by the 
iteration) typically took 7-15 minutes.  Our HIT tasks also 
measured turker time, the time actually spent by turkers 
doing the task, using JavaScript embedded in the task page.  
For improvement HITs, the time on task was average less 
than 5 minutes per HIT, while each vote HIT took half a 
minute or less. Cost is the amount spent per iteration, di-
vided between the improve HIT (which is fixed) and all the 
voting HITs (which is an average cost over all iterations, 
because many iterations required only 2 votes to choose the 
best out of 3).  All our experiments cost less than $1 each. 
 
SORTING 
In order to explore the extent to which our toolkit is capa-
ble of general purpose computation using MTurk, we tried 
sorting, using turkers to implement the comparison func-
tion. Sorting is not only a fundamental computational 
process, but also inherently iterative. An efficient compari-
son-based sort cannot know in advance all the comparisons 
it will need to make. 
Algorithm 
We model MTurk as a multiprocessor environment with 
many human-processors. We assume zero cost for commu-
nication between processors, since that is handled by a 
computer, much faster than any human-processor. 

 
Figure 2: MTurk workers build on each other’s work 
interpreting this handwriting. Turkers were in-
structed to put unknown words in parentheses. The 
result after six iterations is: 

“You (misspelled) (several) (words). Please spellcheck 
your work next time. I also notice a few grammatical mis-
takes. Overall your writing style is a bit too phoney. You 
do make some good (points), but they got lost amidst the 
(writing). (signature)” 

According to our ground truth, the highlighted words 
should be “flowery”, “get”, “verbiage” and “B-” respectively. 

 
Figure 3: Average time and cost for text improve-
ment experiments. 

                   latency (min)        turker time (min)      cost per
                   per iteration         per HIT                       iteration

ite
ra
tio

ns

im
pr
ov
e

al
l v
ot
es

im
rp
ov
e

si
ng
le
 v
ot
e

im
pr
ov
e

al
l v
ot
es

to
ta
l c
os
t

outline to prose 10 23.98 59.64 4.15 0.43 $0.05 $0.027 $0.38
active voice 13 37.47 7.77 5.22 0.23 $0.05 $0.027 $0.39
grammatical tense 7 9.45 16.38 1.56 0.35 $0.02 $0.022 $0.18
handwriting 9 21.20 14.57 3.30 0.38 $0.05 $0.023 $0.46
brainstorming 24 13.34 7.81 1.37 0.32 $0.02 $0.024 $0.88



 

 

Given enough processors (and the right constant-time oper-
ations), sorting can be accomplished in O(log n) wall-clock 
time [6]. We use such an algorithm for our experiments. 
The algorithm is based on quicksort. The algorithm first 
chooses a pivot.  Then it compares all of the elements to the 
pivot in parallel. This yields two lists, and the algorithm 
recursively applies the same technique to each list. If the 
pivots are well chosen, then the algorithm can only apply 
this recursion log n times before it is down to lists of just 
one element, hence the O(log n) running time as measured 
on the clock. Note that the algorithm actually requires O(n 
log n) person-hours of work on MTurk, since that many 
comparisons are required by  the sort. This algorithm is 
encapsulated in the sort function of TurKit. 
Experiments 
We ran several experiments exploring the potential uses of 
sorting using this algorithm.  
We ran three tasks requiring subjective sorting: 

• Sort 20 personal travel pictures based on how 
good they were to show others 

• Sort 10 t-shirt designs based on personal taste 
• Sort 6 images of coats based on how well they 

would suit a particular person (a photo of the per-
son was included) 

Interestingly, the t-shirt design was also voted on by the 
population that would be wearing them, serving as some-
what of a comparison. The eventual wearers’ second choice 
was the turkers’ first choice.  Notably, the eventual wear-
ers’ first choice was an inside joke which turkers ranked 
near the bottom which verified that the joke was not main-
stream. 
Discussion 
This algorithm’s running time is optimal if each compari-
son is performed by a separate turker, but it may have 
drawbacks if a single turker performs many comparisons. 
Consider that the initial set of comparisons are all against a 
single pivot, so a MTurk worker doing these comparisons 
will see the same item repeated over and over. This may be 
tedious, and the worker’s impression of the repeated item 
may change over time, which is bad for comparisons in-
volving subjective criteria. We plan to explore these impli-
cations more in future work. 
This algorithm may not be optimal given the properties of 
the items we are attempting to sort. However, the toolkit 
itself seems capable of handling more complex algorithms, 
which we shall explore in future work.  
TOOLKIT 
An overview of TurKit and related systems is shown in 
Figure 4. A programmer writes a set of JavaScript files 
which are executed by TurKit. TurKit stores information 
about the running program in the JavaScript database, so 
that it can restart if the system crashes. 
TurKit also creates Human Computation Tasks (HITs) on 
MTurk. When turkers view these HITs, they see an iFrame 
pointing to a web page. The programmer must create the 

web pages used for this purpose. These web pages may 
access the database before being displayed to turkers. 
When turkers complete tasks, it is possible for the web 
server to store the results directly in the database, or pass 
the results back to MTurk. In the latter case, the program 
running in TurKit can retrieve the results from MTurk and 
store them in the database. 
The programmer retrieves results directly from the Java-
Script database. 
TurKit 
TurKit is a Java program that executes JavaScript files and 
provides them with an API. The API includes functionality 
for communicating with MTurk, and the JavaScript data-
base. 
One core feature of TurKit is a trace API for storing infor-
mation about the trace of a program’s execution. This trace 
can then be used if a program crashes in order to put the 
program back into its previous state, without re-executing 
all the code. In particular, it does not re-execute code with 
side effects, like creating HITs. 
TurKit also includes a utility API for executing common 
higher level tasks, like voting and sorting. 
MTurk API 
MTurk provides an API for a number of languages, includ-
ing Java. TurKit provides a JavaScript wrapper for this 
API, and converts common data types into native Java-
Script objects. This includes converting some XML data 
fields into JavaScript objects, for easier access. 

 
Figure 4: Architectural overview of TurKit and re-
lated systems. Arrows indicate the flow of informa-
tion. The programmer controls the system by writing 
two sets of source code: HTML files for the web 
server, and JavaScript files executed by TurKit. Re-
sulting output is retrieved via a JavaScript data-
base. 



 

 

The JavaScript wrapper adds additional fault tolerance to 
the Java API. This is necessary because MTurk requests 
will fail if they are made too quickly in succession. The 
JavaScript wrapper will retry a request up to ten times, 
sleeping for increasing intervals between each call. 
All JavaScript wrappers for MTurk functions with side 
effects, like createHit, approveAnswer and deleteHit, wrap 
these calls inside a call to once. The once function ensures 
that the side effect only happens once, even if the program 
is re-executed. This is discussed more in the trace API sec-
tion below. 
Trace API 
The trace API is implemented on top of the JavaScript da-
tabase API. It uses the database to store information about a 
program’s trace of execution, so that when it is restarted, it 
can return to where it left off, without re-executing expen-
sive code. 
The API consists of three functions: 
once: The once function accepts a function as an argument, 
and guarantees that it will only be executed successfully 
once. If the function crashes, then it will be re-executed in a 
subsequent run of the program. If the function executes 
successfully, then a deep clone of the return value is me-
moized in the database, and returned to the caller. When the 
program is re-executed, the memoized result is returned 
without re-executing the function. The primary use of once 
is to guard expensive side effecting calls to MTurk so that 
they are only ever executed one time, even when the entire 
program is restarted. 
crash: The crash function throws a “crash” exception. The 
purpose of crash is to simulate crashing the program. It is 
used when the program cannot continue without more in-
formation, presumably from MTurk. The program will be 
re-executed by TurKit after five minutes, giving time for 
turkers to complete work on HITs. This polling interval is 
adjustable.  
attempt: The attempt function takes a function as an argu-
ment. It executes this function inside a try/catch block 
which catches the “crash” exception. It returns true if the 
function executes normally and false if it crashes. 
The attempt function is conceptually similar to starting a 
new thread. The line of execution within the attempt func-
tion may be waiting on a different series of HITs than other 
lines of execution in the same program. 
Note that once and attempt functions may be nested. How-
ever, it is important that all once and attempt functions at 
the same level of nesting are called in the same order when 
the program is re-executed. If this order cannot be guaran-
teed, then the programmer must supply a unique string 
identifier as a second parameter to all calls to once and at-
tempt that may appear out of order within a nesting level. 
resetTrace: The resetTrace function clears the trace history 
for the current program. It accepts a number as an optional 
parameter. If this number is supplied, then resetTrace still 

clears the trace history, but it remembers this number. If 
resetTrace is called with the same number when the pro-
gram is re-executed, then it will do nothing. The program-
mer may increment this number to clear the trace history 
again. 
Utility API 
TurKit provides several utility functions to cover common 
higher level MTurk tasks. 
waitForHit: The waitForHit function accepts a HIT ID and 
returns a HIT JavaScript object complete with an array of 
answer objects representing the results returned from Me-
chancial Turk. If the HIT is not yet complete, this function 
throws the “crash” exception. 
vote: The vote function manages a HIT where turkers vote 
between two or more options. Consider the simple case of a 
best-of-three vote between two options. In this case, the 
system only needs two votes, if they are both the same. It 
only needs to request a third vote if the first two votes dis-
agree. The vote function handles this by extending a HIT to 
request more votes until enough votes agree with each oth-
er. 
The vote function takes three arguments: a HIT ID for a 
vote-HIT; a function that extracts the turker’s choice from 
the HIT’s answer object; and the number of votes necessary 
for a choice to win and terminate the voting. The vote func-
tion returns an object representing the results of the vote, 
including the fields: bestOption, totalVoteCount, and vote-
Counts, which is itself an object storing the count for each 
voting option. 
sort: The sort function takes two parameters: an array, and 
a comparator function. The comparator function is expected 
to accept two arguments a and b, and return -1, 0, or 1 de-
pending on whether a < b, a = b, or a > b, respectively. 
Typically the comparator will use the vote function to 
compare the items on MTurk. 
Note that JavaScript’s own Array.sort function has the 
same parameters, and achieves the same result. However, 
the TurKit sort function uses a parallel sorting algorithm, 
and uses the attempt function internally to simulate parallel 
threads of comparisons on MTurk. 
Example 
Figure 5 shows an iterative text improvement task in Tur-
Kit. This code relies on two web pages running on a local 
web server, namely improve.html, and verify.html. When 
the program creates a HIT on line 8, it includes a URL to 
improve.html. The text value is encoded as a URL parame-
ter appended to this URL. The improve.html page will dis-
play this value to turkers dynamically using client-side Ja-
vaScript. The value newText on line 13 comes from a 
POST parameter supplied as part of the form submitted by 
improve.html to MTurk. These values are encoded as XML 
by MTurk, but the TurKit API converts them to JavaScript 
for easy access. 
Similarly, the URL supplied to createHit on line 16 en-
codes both text and newText as parameters. The form sub-



 

 

mitted by verify.html includes voteForNewText as a POST 
parameter, which is retrieved on line 22. 
The first time this program is executed, it will create a HIT 
on line 8, and return the HIT Id. Then it will wait for this 
HIT on line 11, which will trigger a “crash” exception. 
When the program is re-executed, the createHit function on 
line 8 will return the memoized HIT Id from the previous 
run of the program. At this time, line 11 might return a val-
ue if turkers have completed the HIT already. When the 
program finally gets to the second iteration of the while 
loop, it will call createHit a second time. This will result in 
the creation of a new HIT Id, which will be memoized for 
future runs of the program. Each run of the program will 
get further and further until the money value reaches zero. 
JavaScript Database 
The JavaScript database is a replacement for a standard 
SQL relational database. The JavaScript database persists a 
JavaScript environment on disk. Functions and non-
JavaScript objects are not persisted. 
Queries into this database are simply strings of JavaScript 
code that are executed in the environment of the database, 
potentially having side effects on it. Query results are for-
matted as strings of JSON. 
Since TurKit programs are written in JavaScript, and han-
dle large amounts of data stored in JavaScript objects, it is 
convenient to be able to transfer these objects to and from 
the database without any conversion, other than to and from 
JSON.  We omit details of our own implementation, since 
other such databases exist, including the storage mechan-
ism in AppJet2. 
To make it easier to inspect the contents of the JavaScript 
database, we provide a simple UI. This UI is conceptually 
similar to phpMyAdmin for MySQL. The UI consists of an 
expandable tree view implemented in a web page. The tree 
view limits the number of results shown when a node is 
expanded, with options for showing more items.  Having 
such an interface has proved useful in the process of de-
bugging and maintaining TurKit programs, even while they 
are running.  
DISCUSSION 
Over the course of our experimentation and system build-
ing, we have learned a number of lessons. 
Programming Paradigm 
The idea of recording a trace of the program in order to re-
execute it turned out to work really well for a couple of 
reasons. First, it allowed the program to be written in a 
straightforward procedural style. A previous version of the 
toolkit did not include the trace API. In order to write pro-
grams that were robust to system crashes, we needed to 
save the state manually. The simplest way to do this in-
volved persisting a small set of variables, including a state 
variable. We then needed to unwrap our program into a 

                                                           
2 AppJet: Instant Web Programming. http://appjet.com/ 

state machine with a giant switch-statement on the state 
variable. 
After we had the trace API, we discovered a second benefit. 
We could make many changes to the program while still 
being able to re-execute it, and this turned out to be useful. 
We could make changes that would push more information 
into the database, that we had forgotten to store before, or 
instrument the code to gather new statistical data even on 
parts of the program that have already run. 
The programming paradigm doesn’t feel as complicated as 
multithreaded programming or parallel programming, but it 
is easy to make some mistakes. A common mistake is 
putting code inside a call to once that shouldn’t be there. In 
one case, we decremented a money variable inside a call to 
once. Unfortunately, the money variable was re-initialized 
at the beginning of each run of the program.  Fortunately, 
for safety, TurKit enforces a maximum limit on money 
spent per day. 
The attempt function also requires some multi-threaded 
thinking when implementing algorithms like a parallel sort. 
We have also discovered cases where we need to store ex-
tra state information that can’t be represented with once 
and attempt. In a sense, these functions store a call stack, 
and what we need is space in this stack for local variables. 

Figure 5: Example TurKit program for iterative text 
improvement. 



 

 

Development Cycle 
Writing a new TurKit program often involves writing the 
accompanying web pages, and it is important to test the 
web pages in the MTurk sandbox before using them live. 
This testing is necessary to ensure that the web pages inte-
ract properly with MTurk. Most importantly, they need to 
POST the correct information to MTurk when a worker 
submits their response. 
When possible, we have found it useful to create generic 
web pages that can adapt to different purposes with URL 
parameters. All the iterative text improvement tasks use the 
same web pages, where most of the content shown to users 
is encoded as part of the URL. These web pages contain 
code responsible for interacting with MTurk which we only 
needed to test once. 
Once confident that a set of web pages work, it is good to 
test a new TurKit program by only allowing it to execute a 
little further each time. This can be achieved by calling 
crash right after each important action, like creating a HIT. 
The crash calls are removed after the programmer discovers 
that the program is behaving correctly up to that point. 
After a TurKit program seems to be working, the challenge 
switches to debugging the user interfaces presented to turk-
ers in order to guide turkers to provide the appropriate res-
ponses. The primary delay in this test cycle comes from 
waiting for turkers to complete HITs. Voting HITs may be 
completed in 10 minutes. Improvement HITs can take up to 
an hour, depending on the task involved, and the amount of 
money offered. A useful direction for future work would 
involve getting hard statistics on these times, but such re-
search may be premature while the number of turkers is 
still growing. 
Turkers 
Our initial experiments assumed that MTurk workers 
would be trying to game the system. The whole idea of 
voting was to ensure that workers didn’t get away with 
adding garbage to an image description, without our having 
to approve every improvement manually. To discourage 
turkers from cheating in the voting task, we required that 
their vote match the majority in order to get paid. 
However, our experience is that turkers are generally not 
trying to game the system, but it is still a good idea to use 
voting. This is because of the high variance of responses to 
improvement tasks. The typical method of dealing with 
variance is to have multiple people perform the same task, 
and pick the result that is most common. The results of 
improvement tasks are likely to all be different, but voting 
helps simulate the effect by having multiple people agree 
that the work was an improvement. 
Expertise 
In our experiments, we have come to believe that many 
turkers are reliable writers. However, not all turkers are 
experts at everything, and there is currently no good way to 
route tasks to turkers according to required expertise. 

Interestingly, some turkers do know how to program, and 
we are currently exploring the use of this talent for itera-
tively creating programs. However, these experiments have 
run into more problems than the tasks involving writing. 
CONCLUSION AND FUTURE WORK 
We have described TurKit, a new toolkit for programming 
iterative tasks on MTurk using a familiar imperative pro-
gramming model, and applied it to a variety of example 
tasks. For future work, we plan to explore more compli-
cated algorithms using TurKit, such as a parallel sort algo-
rithm that is more robust to human comparison functions 
that may be noisy or only partially ordered.  Also valuable 
to users of TurKit would be a detailed study of MTurk’s 
properties as a programming system – latency, error rate, 
turker expertise, etc. 
ACKNOWLEDGMENTS 
We would like to thank everyone who contributed sugges-
tions and ideas to this work, including Thomas W. Malone, 
Robert Laubacher, and member of the UID group. This 
work was supported in part by the National Science Foun-
dation under award number IIS-0447800, by Quanta Com-
puter as part of the TParty project, and by the MIT Center 
for Collective Intelligence. Any opinions, Findings, conclu-
sions or recommendations expressed in this publication are 
those of the authors and do not necessarily reflect the views 
of the sponsors.. 
REFERENCES 
1. Luis von Ahn. Games With A Purpose. IEEE Computer Mag-

azine, June 2006. Pages 96-98. 

2. Luis von Ahn and Laura Dabbish. Labeling Images with a 
Computer Game. ACM Conference on Human Factors in 
Computing Systems, CHI 2004. Pages 319-326. 

3. Luis von Ahn, Shiry Ginosar, Mihir Kedia and Manuel Blum. 
Improving Accessibility of the Web with a Computer Game. 
ACM Conference on Human Factors in Computing Systems, 
CHI Notes 2006. pp 79-82. 

4. Luis von Ahn, Ben Maurer, Colin McMillen, David Abraham 
and Manuel Blum. reCAPTCHA: Human-Based Character 
Recognition via Web Security Measures. Science, September 
12, 2008. pp 1465-1468. 

5. AppJet: Instant Web Programming. http://appjet.com/ 

6. Heidelberger, P., Norton, A., and Robinson, J. T. 1990. Paral-
lel Quicksort Using Fetch-And-Add. IEEE Trans. Comput. 39, 
1 (Jan. 1990), 133-138.  

7. Susan L. Bryant, et al. Becoming Wikipedian: transformation 
of participation in a collaborative online encyclopedia. 
GROUP 2005. 

8. Kittur, A., Chi, E. H., and Suh, B. 2008. Crowdsourcing user 
studies with MTurk. CHI 2008. 

9. Kittur, A. and Kraut, R. E. 2008. Harnessing the wisdom of 
crowds in wikipedia: quality through coordination.  CSCW 
'08. ACM, New York, NY, 37-46 

10. Sorokin, A. and D. Forsyth, "Utility data annotation with 
Amazon MTurk," Computer Vision and Pattern Recognition 
Workshops, Jan 2008. 



 

 

 

 


