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Abstract
In this paper, we propose a new formulation of the classical
Good-Turing estimator for n-gram language model. The new
approach is based on defining a dynamic model for language
production. Instead of assuming a fixed probability distribution
of occurrence of an n-gram on the whole text, we propose a
maximum entropy approximation of a time varying distribution.
This approximation led us to a new distribution, which in turn
is used to calculate expectations of the Good-Turing estimator.
This defines a new estimator that we call Maximum Entropy
Good-Turing estimator. Contrary to the classical Good-Turing
estimator it needs neither expectations approximations nor win-
dowing or other smoothing techniques. It also contains the well
know discounting estimators as special cases. Performance is
evaluated both in terms of perplexity and word error rate in an
N-best re-scoring task. Also comparison to other classical esti-
mators is performed. In all cases our approach performs signif-
icantly better than classical estimators.

1. Introduction
It is a well known fact that state-of-the-art speech recognition
systems uses n-gram models in their language models. In order
to estimate such models, it is necessary to use probability esti-
mators which assign a probability to each n-gram. Because of
the sparse characteristic of language two problems often arise.
On the one hand the number of samples of a particular event is
often inadequate to obtain robust estimators of such event. On
the other hand, even when the amount of available training data
is huge, many events do not occur at all, but this does not mean
they have zero probability of occurrence, it just means they did
not occur in the training set. As a consequence the maximum
likelihood estimator of the probability given by the quotient r/n
where r is the frequency of occurrence of an event (n-gram) and
N is the total number of events, will not be in general a good
estimator of the probability. On one hand it will assign null
probability to non zero occurrence events, on the other hand it
can be shown [10] that it tends to over-estimate events which
have low frequency of occurrence in a text. In order to deal
with the problem of sparseness of data, many probabilities es-
timators have been proposed on the literature. Two of the most
popular are the Good-Turing estimator [3], [6] and discounting
estimators [2], [1].

In this work we take a different approach. We assume a dy-
namic language model for speech production in the sense that
the frequency of occurrence of an event is not fixed on the text,
but is a random variable. Even when this view requires a careful
mathematical treatment, it is possible using maximum-entropy
models to obtain an approximation which requires an estimator
which just depends on r. Starting with classical Good-Turing
estimator, we will re-formulate it in order to meet our model

requirements. As a result a new estimator called maximum en-
tropy Good-Turing estimator will be obtained. This new estima-
tor does not need approximations and empirical formulations as
in the case of classical Good-Turing estimator [3], [7].

In the next section we briefly describe classical Good-
Turing estimation and maximum-entropy models in order to un-
derstand our formulation. In section 3 we formally state our
Good-Turing maximum entropy model and we discuss some is-
sues related to it. Experimental results are shown in section 4.
Finally some concluding remarks are given in section 5.

2. Classical Good-Turing estimator and
maximum entropy models

2.1. Good-Turing estimator

Classical Good-Turing estimator [3] can be stated as a formal
model [7], [6] in which the probability of an event σ (an n-
gram) whose frequency of occurrence r is given by: P (σ) =
qr , with:

qr =
r∗

N
(1)

where:

r∗ = (r + 1)
Er+1,cr+1{cr+1}
Er,cr{cr}

Er+1,cr+1{cr+1} =
X

∀cr+1

cr+1P (r + 1, cr+1) (2)

Er,cr{cr} =
X

∀cr
crP (r, cr) (3)

r is the frequency of repetition of an event, N is the to-
tal number of events, Cr corresponds to the number of events
whose frequency of occurrence is r, and P (r, cr) is the joint
probability distribution of Cr events with frequency r. A fun-
damental hypothesis of the model is the symmetry requirement
which states that any two events having the same frequency in
the text must also have the same probability estimate [6]. Equa-
tions (2) and (3) are difficult to determinate and they are not
used in practical implementations of the Good-Turing estima-
tor, instead they are approximated with training data. As a con-
sequence, many values of cr are zero, and there exists an unac-
ceptable dispersion between values of cr and cr+1. These prob-
lems make necessary the use of windowing techniques, or non
continuous qr in order to smooth such dispersions [7]. Even
though smoothing is necessary, in practical implementations,
not only mathematical formality is lost with this approxima-
tion, but also empirical adjustments are necessary for each kind
of text.



2.2. Maximum entropy models

Maximum-entropy models have been used in language model
contexts to estimate n-grams (see for example [11]), basically
they can be stated as follows:

• Reformulate the different information sources as con-
strained to be satisfied by the target estimate.

• Among all probability distributions that satisfy these
constraints, choose the one that has the highest entropy.

Mathematicallym constrains are expressed as expectation func-
tions as follows:

E{gk(x)} =
X

∀xi

gk(xi)P (xi) k = {1, . . . ,m} (4)

gk(x) are model constrains usually expressed as expectation of
these functions. The distribution which maximize entropy given
such constrains is given by [12]:

p(x) =

exp

 
−

mX

k=1

λkgk(x)

!

Z(λ1, . . . , λm)
(5)

where Z is the partition function.

3. Maximum entropy Good-Turing
estimator

3.1. A dynamic model for language production

We can think of the speech production process as follows, con-
sider a hypothetical speaker who starts to speak to another per-
son about some specific topic, at this moment his vocabulary is
reduced to the number of words he said up to a particular mo-
ment t1 sayNt1 . the number of repetitions is expected to be low
at first so, a reasonable assumption for the probability of emis-
sion of a word is 1/Nt1 . If we use entropy as a measure of the
information of the message at time t1, it will be approximately
Ht1

∼= logNt1 [12]. After some time of emitting words, say
at instant t2, speaker vocabulary will increase to Nt2 and, lan-
guage entropy will also grow. However at this point, some vo-
cabulary repetitions are expected to have occurred, decreasing
the grown rate of entropy. As a consequence, Ht2 will be lower
than logNt2 . Our assumption is that in the long term, language
entropy of that dynamic process, will grow at decreasing rate up
to a maximum stationary value. This value would correspond
to the case when the speaker has used nearly all his vocabulary
concerning a specific topic to a specific person, and the number
of repetitions is enough to avoid growth entropy any more.

It means that we are viewing language production as a dy-
namic process by which the probability of an event is not fixed
but is a function of time, so it could be zero at a moment (when
no examples of an event are emitted up to that moment), and
non-zero at another moment. A complete formulation of the
dynamics of this model is out of the scope of the present work
however, if we assume that in the long term the system bounds
a maximum entropy state which does not change any more, a
simplified model can be developed and a robust estimator of the
probability of an event found.

3.2. Model constrains

It should be clear from the discussion above, that r, the fre-
quency of occurrence of event, is not constant but it changes
when speaker introduces more and more vocabulary. We can
think of it as a random variable with an associated probability
Pt(r) which, of course, is unknown. Index t means distribu-
tion changes with time. If we adopt the symmetry requirement
used in Good-Turing estimator, we will not be able to distin-
guish between different events that occur the same number of
times, so the distribution which represents model dynamics will
not only be a function of r, but also the number of events whose
frequency of occurrence is r. If we call such number cr , we
will have an associated distribution Pt(r, cr). But we are not
interested in the instantaneous dynamics of the model, instead
we are concerned with the distribution whose entropy reaches
a stable maximum. Such distribution would corresponds to the
best static approach we could do of our dynamic process. We
will call such distribution P (r, cr).

In order to find P (r, cr) we will embody four statistics that
include information of the process necessary for the model. The
first is:

S1 =
X

∀ σ
N(σ) (6)

where σ is an event, and N(σ) is the number of times such
event occurs. This statistics corresponds to a sufficient statistics
for the Poisson distribution [12]. The choice of this statistics is
based on a previous work [9] which shows that the frequency
of occurrence of an event in a text follows a Poisson distribu-
tion. In another work [8], it is also shown that cr , (the number
of events with frequency r), also responds to a Poisson distri-
bution, but different for each r, so the second statistics that we
incorporate is:

S2 =

NrX

k=0

X

∀ σ
δ(N(σ), k) (7)

where Nr is the maximum number of occurrences of an event
and δ(i, j) = 0 ∀i 6= j. We also define two statistics which
take into account dynamics properties:

S3 =

NrX

k=0

X

∀σ
kδ(N(σ), k) (8)

S4 =
X

∀σ
logN(σ) (9)

Now we are ready to formulate a maximum entropy proba-
bility distribution P (r, cr) that meets our four constrains.

3.3. Calculus of the distribution

Our four statistics (6), (7), (8) and (9) are put together in the
model trough equation (4) resulting:

NrX

r=1

NcX

cr=0

rP (r, cr) = 〈r〉 (10)

NrX

r=1

NcX

cr=0

crP (r, cr) = 〈cr〉 (11)



NrX

r=1

NcX

cr=0

rcrP (r, cr) = 〈rcr〉 (12)

NrX

r=1

NcX

cr=0

log(r)P (r, cr) = 〈log r〉 (13)

Where 〈log r〉, 〈cr〉, 〈rcr〉 y 〈r〉 are evaluated from training
data, Nr is the maximum number of occurrences for all event
and Nc is the maximum number of events that occur r times
with the same frequency. Maximizing the entropy of P (r, cr)
with the above constrains we obtain the corresponding equation
(5) related to our model:

P (r, cr) =
r−λ1e−cr(λ2 + λ3r)e−λ4r

Z(λ1, λ2, λ3, λ4)
(14)

where:

Z(λ1, λ2, λ3, λ4) =

NrX

r=1

NcX

cr=0

r−λ1e−cr(λ2 + λ3r)e−λ4r

As said, expectations 〈log r〉, 〈cr〉, 〈rcr〉 y 〈r〉, are obtained
from training data. We have used re-sampling statistical tech-
niques which give rise to Jackknife’s estimators [13] however,
other techniques could have been used. Once we get expecta-
tions we can get parameters λ1, λ2, λ3 y λ4 using IIS algorithm
[5]. Finally applying formula 14 we get our maximum entropy
distribution. The next step is to introduce this distribution in the
Good-Turing estimator.

3.4. Maximum entropy Good-Turing estimator

Once (14) is determined, it is not difficult to calculate expecta-
tions of the Good-Turing estimator (1). It is straightforward to
show that:

Er,cr{Cr} =
Kr−λ1e−(λ2 + λ3r)e−λ4r
“

1− e−(λ2 + λ3r)
”2 (15)

Finally replacing (15) in (1) we obtain our new maximum en-
tropy Good-Turing estimator:

qr =
(r + 1)

N

„
r

r + 1

«λ1

(16)

 
1− e−(λ2 + λ3r)

1− e−(λ2 + λ3(r + 1))

!2

e−(2λ3 + λ4)

3.5. discussion

It is important to compare our estimator with maximum-
likelihood estimator qr = r∗/N , defining the quotient r∗/r:

r∗

r
=

„
r + 1

r

«„
r

r + 1

«λ1

 
1− e−(λ2 + λ3r)

1− e−(λ2 + λ3(r + 1))

!2

e−(2λ3 + λ4)

This quotient allows us to understand the influence of the
parameters model. Parameter λ1 is a measure of the velocity of
growing of P (r, cr) when r increases. Parameter λ2 is related
to the value of the estimator at very low values of r (including
r = 1). Parameter λ3 measures the maximum likelihood limit
our estimator will reach. Finally, parameter λ4 is related to a
multiplicative factor (independent of r). This parameter will
affect the probability mass of unobserved events. If we think
unobserved events probability as:

P (ϕ0) = q0C0 = 1−
NrX

r=1

qrcr

an increase of the parameter λ4 will decrease qr , as a con-
sequence P (ϕ0), the probability of unobserved events will also
grow.

Another advantage of our estimator is that it verifies two
desired requirements for an estimator [1]: qr ≤ r/N , and
qr−1 ≤ qr ∀r. the second condition is easily seen from (16), in
order to verify the first condition we have found an equivalent
condition to qr ≤ r/N which is verified by our estimator:

„
r

r + 1

«λ1 + 2λ3λ2e
−λ2 − 1 „

1

2λ3

«e−λ4

< 1

Finally, if we make a series expansion of expression (16)
and we take the linear term, also making a convenient choice
of parameters λ1, λ2,λ3 and λ4, Ney discounting estimators [1]
results as a special case of the maximum entropy Good-Turing
estimator

4. Experimental results
4.1. data description

Experiments were performed on three corpora: an English
database, switchboard phase one, and two Spanish databases,
Latino 40 (available from LDC) and Latin-American Spanish
database collected by SRI International [4]. We also used text
extracted from newspapers. We performed perplexity mea-
surements using the whole databases, and N-best re-scoring
using switchboard corpus. We used bi-gram models with
Latino40 corpus and tri-gram models with switchboard and
Latin-American Spanish databases. The whole text was split
in three classes:

• Text A: It consists of text taken from Latino40 transcrip-
tions, we used 32k words for training and 8k words for
testing.

• Text B: It consists of text taken from Latin-American
Spanish database transcriptions and newspapers texts,
combining both classes of text we used 752k words for
training, and 33k words for testing.

• Text C: It consists of 3M words taken from switchboard
phase one transcriptions used for training, and 59k words
taken from hub-5 2001 evaluation set transcriptions used
for testing.



4.2. results

Perplexities measurements were performed over classical
Good-Turing estimator (CGT) [3], Katz estimator (KATZ) [2],
Absolute discounting (ADE) and linear discounting (LDE) es-
timators [1] and Maximum entropy Good-Turing (MEGT). Re-
sults can be shown in table 1.

Estimator Text A Text B Text C
(bigram) (trigram) (trigram)

CGT 219 739 534
ADE 149 251 160
LDE 138 693 176
KATZ 156 232 155
MEGT 134 218 146

Table 1: Perplexities of different estimators with different vo-
cabulary

Finally we performed N-best re-scoring over 5895 sen-
tences corresponding to HUB-5 2001 test set. We re-scored
2000-best hypothesis performed by The SRI DECIPHER(TM)
speaker-independent continuous speech recognition system at
SRI International. Results are shown in table 2

estimator wer
BASELINE 31.8

KATZ 31.5 (0.9%)
MEGT 30.7 (3.4%)

Table 2: WER after re-scoring using Katz and MEGT estima-
tors.

4.3. discussion

Table 1 shows maximum entropy method reports an improve-
ment in terms of perplexity superior to the rest of the estimators.
It is interesting to observe that, improvement is performed over
all three text corpora. This is an important difference in respect
off the other estimators. For example Katz estimator has lower
perplexity for text B and text C than for text A.

Table 2 shows results on N-best re scoring over switch-
board corpus in terms of WER. Only Katz estimator gave a
small improvement, the rest of estimators were not included be-
cause they did not decrease baseline WER. We can see a signif-
icant improvement concerning the baseline of 3.4% in the our
maximum entropy Good-Turing estimator. We could expect a
greater increase if we use maximum entropy estimator in a n-
gram model on a ASR task.

5. Conclusions
Using maximum entropy method and assuming a dynamic
model for language production, we have found a Good-Turing
like estimator which does requires neither smoothing nor em-
pirical adjustments which are necessary in the classical Good-
Turing estimator. Parameters defining our model are deter-
mined using the well known IIS algorithm. We also have shown
our new estimator verify both requirements desired in language

estimators:qr ≤ r/N , and qr−1 ≤ qr ∀r. Finally we shown
that our estimator contains Ney discounting estimator as a par-
ticular case.

Experimental results show maximum entropy method per-
forms better than all others estimators for the three classes of
text corpora considered. We also tested our estimator in a 2000
hypothesis N-best re scoring over switchboard corpus obtaining
decrements in the WER of 3.4% refered to the baseline.
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