
draft

An Ultrametric Model of Reactive Programming

Neelakantan R. Krishnaswami
Microsoft Research

neelk@microsoft.com

Nick Benton
Microsoft Research
nick@microsoft.com

Abstract
We describe a denotational model of higher-order functional reac-
tive programming using ultrametric spaces, which provide a natural
Cartesian closed generalization of causal stream functions. We de-
fine a domain-specific language corresponding to the model. We
then show how reactive programs written in this language may
be implemented efficiently using an imperatively updated dataflow
graph and give a higher-order separation logic proof that this low-
level implementation is correct with respect to the high-level se-
mantics.

1. Introduction
There is a broad spectrum of models for reactive programming.
Functional reactive programming (FRP), as introduced by Elliott
and Hudak [12], is highly expressive and generally shallowly em-
bedded in powerful general-purpose languages. At the other end,
synchronous languages such as Esterel [5], Lustre [8] and Lu-
cid Synchrone [17] provide a restricted, domain-specific model
of computation supporting specialized compilation strategies and
analysis techniques. Synchronous languages have been extremely
successful in application areas such as hardware synthesis and
embedded control software, and provide strong guarantees about
bounded usage of space and time. FRP was initially aimed at dy-
namic interactive applications running is less resource-constrained
environments, such as desktop GUIs, games and web applications.
Even in such environments, however, naive versions of FRP are too
unconstrained to be implemented efficiently (the implementations
are far from naive, but it is still all too easy to introduce significant
space and time leaks), but also too unconstrained from the point
of view of the programmer, allowing unimplementable programs
(e.g. ones that violate causality) to be written. More recent variants
of FRP [15, 18] restrict the model to rule out non-causal functions
and ill-formed feedback.

In practice, of course, interactive GUIs and the like are usu-
ally implemented in general-purpose languages in a very impera-
tive style. A program implements dynamic behavior by modifying
state, and accepting callbacks to modify its own state. These pro-
grams exhibit complex uses of aliasing, tricky control flow through
callback functions living in the heap, and in general are very diffi-
cult to reason about. Part of the difficulty is the inherent complex-
ity of verifying programs using such powerful features, but an even
more fundamental problem is that it is not immediately clear even
what the semantics of such programs should be — and even the
most powerful verification techniques are useless without a speci-
fication for a program to meet.

The starting point for the work described here is the syn-
chronous dataflow paradigm of, for example, Lustre [8] and Lu-
cid Synchrone [17]. We wish to be able to write complex dynamic
reactive applications in a high-level declarative style, without aban-
doning the efficient stateful execution model that those languages
provide, at least for the first-order parts of our programs. To this

end, we first present a new semantic model for reactive programs
in terms of ultrametric spaces, which generalizes previous models
based on causal stream functions. Our model supports full Carte-
sian closed structure, thus giving a natural mathematical notion of
higher-order reactive programs.

The use of metric spaces means that we can use Banach’s con-
traction map theorem to interpret feedback. Unlike earlier seman-
tics based on domain models of streams, we can thus restrict our
semantics to total, well-founded stream programs. Furthermore, by
using an abstract notion of contractiveness instead of an explicit no-
tion of guardedness, our semantics lifts easily to model higher-type
streams (e.g., streams of streams) and recursion at higher type.

Next, we give a domain specific language for writing reac-
tive programs. Since streams distribute over products and form
a comonad, the co-Kleisli category of streams is also Cartesian
closed, thus giving us two natural notions of function for reac-
tive programs. Prior work [7, 19] has focused primarily on the
co-Kleisli category, but the interpretation of fixed points is sig-
nificantly more natural in the base category of ultrametric spaces.
By adapting the adjoint calculus presentation of intuitionistic linear
logic [3, 4], our language allows one to work in the two categories
simultaneously. The idea is to decompose the stream comonad into
a pair of adjoint functors, which in the term calculus become modal
operators connecting the two lambda calculi. We can then inter-
pret fixed points in the category of ultrametrics (thereby retaining
a simple equational theory for them) while still enabling program-
ming implicitly with streams, as is common in dataflow languages.
Furthermore, we extend the adjoint calculus with additional judge-
ments to track contractiveness, so that we can use typechecking
to ensure that clients can only take fixed points of well-defined,
strictly-contractive functions.

In the second part of the paper, we give a reasonably efficient
implementation of our language in terms of an imperative dataflow
graph and prove the correctness of the implementation with respect
to the semantics. The correctness proof uses a rather non-trivial
Kripke logical relation, built using ideas from separation logic,
rely-guarantee reasoning and step-indexed models, but ensures that
clients can reason about programs as well-behaved mathematical
objects, satisfying the full range of β, η and fixpoint equations, with
all the complexities of the higher-order imperative implementation
hidden behind an abstraction barrier.

2. Reactive Programs and Stream Transformers
Reactive programs are usually interpreted as stream transformers.
A time-varying value of type A can be viewed as a stream of As,
and so a program that takes a time-varying A and produces a time-
varyingB is then a function that takes a stream ofAs and produces
a stream of Bs.

However, the full function space on streams is too generous:
many functions on streams do not have sensible interpretations as
reactive processes. For example, a stock trading program receives
a stream of prices and emits a stream of orders, but the type

An Ultrametric Model of Reactive Programming 1 2010/8/5

Priceω → Orderω includes functions that produce orders today
that are a function of the price tomorrow; such functions are (much
to our regret) unrealizable.

The semantic condition that expresses which functions do cor-
respond to implementable processes is causality: the output at time
n should depend only on the first n inputs. We formalize this as
follows, writing bxscn for the n-element prefix of the stream xs:

DEFINITION 1. (Causality) A stream function f : S(A) → S(B)
is said to be causal when, for all for all n and streams as and as′,
if bascn = bas′cn then bf(as)cn = bf(as′)cn.

This definition rules out, for example, the tail function, for which
the first n outputs depend upon the first n+ 1 inputs.

Whilst causality is an intuitive and appealing definition for
streams of basic types (such as integers), it is not immediately clear
how to generalize it. What might causality mean over a stream of
streams, or even a stream of stream functions?

We also want to define streams by feedback or recursion, as in
this definition of the increasing sequence of naturals:

nats = fix(λxs. 0 :: map succ xs)

An operational way of thinking about when such fixed points are
well-defined is to observe that the function λxs. 0 :: map succ xs
can produce its first output without looking at its input. So we can
imagine implementing the fixed point by feeding the output at time
n back in as the input at time n+ 1, exploiting the fact that at time
0 the input value does not matter. This leads us to define:

DEFINITION 2. (Guardedness) A function f : S(A) → S(A)
is said to be guarded when there exists a k > 0 such that for
all for all n and streams as and as′, if bascn = bas′cn then
bf(as)cn+k = bf(as′)cn+k.

PROPOSITION 1. (Fixed Points of Guarded Functions) Every guarded
endofunction f : S(A) → S(A) (where A is a nonempty set) has
a unique fixed point.

As with causality, guardedness is an intuitive and natural prop-
erty, but generalizations to higher types seem both useful and un-
obvious. For example, we may want to write a recursive function:

fib = fix(λf λ(j, k). j :: f(k, j + k))

So the natural questions to ask are: what does guardedness mean at
higher type, and how can we interpret fixed points at higher type?
We will answer these questions by moving to metric spaces.

3. An Ultrametric Model of Reactive Programs
A complete 1-bounded ultrametric space is a pair (A, dA), where
A is a set and dA ∈ A×A→ [0, 1] is a distance function, satisfying
the following axioms:

• dA(x, y) = 0 if and only if x = y

• dA(x, x′) = dA(x′, x)

• dA(x, x′) ≤ max(dA(x, y), dA(y, x′))

• Every Cauchy sequence in A has a limit

A sequence 〈xi〉 is Cauchy if for any ε ∈ [0, 1], there is an n
such that for all i > n, j > n, d(xi, xj) ≤ ε. A limit is
an x such that for all ε, there is an n such that for all i > n,
d(x, xi) ≤ ε. Ultrametric spaces satisfy a stronger version of the
triangle inequality than ordinary metric spaces, which only ask
that d(x, x′) be less than or equal to dA(x, y) + dA(y, x′), rather
than max(dA(x, y), dA(y, x′)). We often just write A rather than
(A, dA).

A map f : A→ B between ultrametric spaces is nonexpansive
when it is non-distance-increasing:

∀xx′, dB(f x, f x′) ≤ dA(x, x′)

A map f : A → B between ultrametric spaces is said to be
strictly contractive when it shrinks the distance between any two
points by a nonzero factor:

∃q ∈ [0, 1), ∀xx′, dB(f x, f x′) ≤ q · dA(x, x′)

Complete 1-bounded ultrametric spaces and nonexpansive maps
form a Cartesian closed category. The product is given by is given
by the Cartesian product of the underlying sets, equipped with the
pointwise sup-metric:

dA×B((a, b), (a′, b′)) = max
{
dA(a, a′), dB(b, b′)

}
Exponentials give the set of nonexpansive maps a sup-metric over
all inputs:

dA→B(f, f ′) = sup
{
dB(f a, f ′ a) | a ∈ A

}
Any set X can be made into an ultrametric space D(X) by

equipping it with the discrete metric that defines d(x, x′) to be 0 if
x = x′ and 1 otherwise.

For an ultrametric space A, the ultrametric space of streams on
A is defined by equipping the set S(A) with the causal metric of
streams:

dS(A)(as, as
′) = sup

{
2−n · dA(asn, as

′
n) | n ∈ N

}
Furthemore, this is functorial: for any map f : A → B, we define
fω : S(A)→ S(B) by mapping f over the input stream, which is
easily seen to preserve identity and composition.

The interpretation of the stream metric is easiest to understand
in the case of streams of discrete elements. In this case, the metric
says that two streams are closer, the later the time at which they
first disagree. So two streams which have differing values at time
0 are at a distance of 1, whereas two streams which never disagree
will have a distance of 0 (and hence will be equal streams).

PROPOSITION 2. (Banach’s Fixed Point Theorem) For any nonempty,
complete metric space A and strictly contractive endofunction
f : A→ A, there exists a unique fixed point of f .

3.1 From Ultrametrics to Functional Reactive Programs
For streams of base type, the properties of maps in the category
of ultrametric spaces correspond exactly to the properties of first-
order reactive programs discussed in the previous section.

THEOREM 1. (Causality is Nonexpansiveness) Suppose A and B
are sets. Then a function f : S(A)→ S(B) is causal if and only if
it is a nonexpansive function under the causal metric of streams of
elements of the discrete spaces D(A) and D(B).

THEOREM 2. (Guardedness is Contractiveness) Suppose A and B
are sets. Then a function f : S(A) → S(B) is guarded if and
only if it is a strictly contractive function under the causal metric
of streams of elements of the discrete spaces D(A) and D(B).

The proof of these two theorems is nothing more than the
unwinding of a few definitions. However, the consequences of are
quite dramatic! By interpreting our programs in the category of
ultrametric spaces:

1. We can interpret tuples and functions (with the full β and η
rules) thanks to the Cartesian closure of this category.

2. Since streams are functorial, we can interpret streams of
streams.

An Ultrametric Model of Reactive Programming 2 2010/8/5

3. Furthermore, contractiveness gives an analogue of guardedness
that makes sense at higher types, and likewise Banach’s fixed
point theorem gives an interpretation of fixed points that makes
sense at higher types.

In an abstract sense, this semantics fulfill the original promise of
functional reactive programming in a “no-compromise” way: one
can freely and naturally write higher-order programs with stream
values, and the properties of ultrametric spaces ensure that all
functions are causal and all recursions well-founded.

3.2 The Co-Kleisli Category of Streams
Synchronous dataflow languages like Lucid Synchrone [17], have
a programming model that differs somewhat from that which the
previous section suggests. In these languages time is implicit, and
streams are only rarely manipulated directly. A definition like
sum = λ(x, y). x + y is implicitly lifted to operate pointwise over
streams. One reason for this choice is brevity, but a more important
one is operational. Arbitrary stream functions, even causal ones,
can be hard or impossible to implement without space leaks. We
aim to implement reactive programs using some state such that
the current inputs and state determine the current outputs and next
state. For hardware compilation or hard real-time programming,
one needs that state to be bounded, and even for less constrained
applications, it is unacceptable for the state to grow unboundedly.
By keeping time implicit, restricting oneself to stream functions
that are the the result of the compiler’s automatic lifting, one can
make it harder (or impossible) to write programs that leak memory
by retaining arbitrary amounts of history.

Fortunately, we can capture the essence of this class of restric-
tion in our mathematical semantics by working in the co-Kleisli cat-
egory of the stream comonad on the category of ultrametric spaces.

Recall that a comonad on a category U is a functor S : U→ U,
equipped with two natural transformations εA : S(A) → A
(the counit) and δA : S(A) → S(S(A)) (the comultiplication)
satisfying the equations δA;S(δA) = δA; δS(A) and δA;S(εA) =
id = δA; εT (A). In the case of streams, the counit ε is the head
function on streams, and the comultiplication takes a stream and
returns the a stream containing the successive tails of the input
stream.1 S(·) is a strong functor: S(A × B) ' S(A) × S(B).
We write unzip and zip for the components of this isomorphism.

The co-Kleisli category US of a comonad S : U → U is the
category of free S-coalgebras, which may be presented as having
the same objects U, but taking maps from A to B to be in US to
be maps f : S(A) → B in U. Amazingly, US is also cartesian
closed; the identity, composition, projection, pairing, currying and
evaluation maps are defined in Figure 1.

We think of a map e : A → B in US as the interpretation
of a synchronous dataflow program with a free variable of type
A in the style of Lucid Synchrone - i.e. something that is really
implicitly lifted to work on streams. The dynamic behavior of
synchronous terms is understood via the coextension; e† is a map
e : S(A)→ S(B) in U, and is the function we get by feeding e the
successive tails of the original input stream. So this says that if the
input A takes on the values as = [a0, a1, a2, . . .], then the output
results will be [e(as), e(tail (as)), e(tail (tail (as))), . . .].

Although US is Cartesian closed, it does not have coproducts.
Furthermore the instantaneous interpretation of terms makes it hard
to support operations acting on streams of streams. The key diffi-
culty is that there is no map in this category which takes a stream

1 The “Kleisli triple” formulation for monads is perhaps more familiar to
functional programmers, which is given in terms of an extension operator
sending maps f : A → T (B) to bind(f) : T (A) → T (B). Dually, the
coextension for comonads sends maps f : S(A) → B to f† : S(A) →
S(B), and can be defined as f† = δ;S(f).

id = ε
f; g = δ;S(f); g

fst = unzip;π1; ε
snd = unzip;π2; ε
pair(f, g) = (f, g)

curry(f) = λ(zip; f)
eval = unzip; (ε× id); eval

Figure 1. Definition of operations in the co-Kleisli category

of streams, and whose coextension yields the head of the stream
of streams. This, in turn, makes defining fixed point operators very
difficult: a variable of typeA⇒ A denotes a stream of functions. If
all of these functions are contractive, and we take fixed point of co-
extensions pointwise, then we get a stream of streams — at which
point we discover that we can never look at the second element of
any of the results. This amnesia is the very reason that space leaks
become harder to program: this is not an accidental difficulty!

3.3 Adjoint Logic
At this point, we have two views of reactive programming. One,
which we might call “FRP-style”, has a very simple semantics in
terms of ultrametrics and stream values, and naturally supports
fixed points at any type. However, it seems difficult to imple-
ment efficiently. On the other hand, we can take a “synchronous
dataflow” view to support more efficient implementation tech-
niques, at the price of making it difficult to give good semantics
to feedback. So it is natural to ask if there is some way of com-
bining the strengths of the two approaches. We meet this goal by
adapting adjoint-style models of intuitionistic linear logic [3, 4].
Originally developed to give a model of linear logic, these turn out
to be abstract enough to apply naturally to the setting of dataflow
programming as well.

DEFINITION 3. An adjoint model is specified by:

1. A cartesian closed category (U, 1,×,⇒).
2. A symmetric monoidal closed category (US , I,⊗,().
3. A symmetric monoidal adjunction ((−)ω, V, η, ε,m, n) from

U to US . Here, η and ε witness the adjunction, and m and
n are the natural transformations showing that the monoidal
structure is preserved.

In our setting, we take the CCC to be the co-Kleisli category of
ultrametric spaces, and take the monoidal closed structure in the
definition to be the cartesian closed structure of the category of
ultrametric spaces (since Cartesian products are a special case of
monoidal products). We decompose the stream comonad into the
usual free and forgetful functors that go between the category of
ultrametric spaces and the co-Kleisli category of streams over it.
Specifically, the functors (−)ω : US → U and V (−) : U → US
are defined as:

Xω = S(X)
(f : X → Y)ω = δX ;S(f) = f†

V (A) = A
V (f : A→ B) = εA; f

Intuitively V (f) takes a function f from the general FRP world
and embeds it into the synchronous dataflow world by having it act
at each instant on the head of the stream. The action of the other half
of the adjoint (g)ω takes a synchronous dataflow function, and turns
it into a general function on streams, via the coextension operation.
Verifying that V (f)ω = S(f) is immediate from the definitions.

Furthemore, we know that (X × Y)ω ' Xω ⊗ Y ω , and also
X ⇒ V (B) ' V (Xω (B). This latter isomorphism is actu-

An Ultrametric Model of Reactive Programming 3 2010/8/5

x : X ∈ Γ

Γ ` x : X

Γ ` e : X ⇒ Y Γ ` e′ : X

Γ ` e e′ : Y

Γ, x : X ` e : Y

Γ ` λx. e : X ⇒ Y

Γ;x : X ` e : Y

Γ ` λx. e : X Y Γ ` 〈〉 : 1

Γ ` e : A Γ ` e′ : Y

Γ ` (e, e′) : X × Y
Γ ` e : X1 ×X2

Γ ` πi e : Xi

x : A ∈ ∆

Γ; ∆ ` x : A

Γ; ∆ ` t : A(B Γ; ∆ ` t′ : A

Γ; ∆ ` t t′ : B

Γ; ∆, x : A ` t : B

Γ; ∆ ` λx. t : A(B

Γ; ∆;x : A ` t : B

Γ; ∆ ` λx. t : A−•B Γ; ∆ ` 〈〉 : I

Γ; ∆ ` t : A Γ; ∆ ` t′ : B

Γ; ∆ ` (t, t′) : A⊗B
Γ; ∆ ` t : A1 ⊗A2

Γ; ∆ ` πi t : Ai

Γ; · ` t : A

Γ ` val t : val A

Γ ` e : val A

Γ; ∆ ` start(e) : A

Γ ` e : X

Γ; ∆ ` eω : Xω

Γ; ∆ ` t : Xω Γ, x : X; ∆ ` t′ : A

Γ; ∆ ` let xω = t in t′ : A

Figure 2. Syntax for Adjoint Logic

ally the key property which lets us switch our view of a program
between the synchronous and the functional reactive views.

For example, under the adjoint view, it becomes easy to resolve
the puzzle at the end of the last subsection: the feedback operator
is just the fixed point operator in the category of ultrametric spaces,
with type (Xω −•Xω) (Xω . Once we have a stream in hand,
we can give it to a synchronous program to start computing with
whenever we want.

4. A Domain Specific Language
We now give a small domain-specific language corresponding to
the semantics of the previous section. As in adjoint logic, we have
two sorts of types, writing A,B,C for the types of the lambda
calculus interpreted in the base category of ultrametric spaces,
and X,Y, Z for the types interpreted in the co-Kleisli category. In
addition to the standard function, product and adjoint types, we also
introduce types corresponding to contractive functions, X Y
and A−•B.

There are two judgement forms, Γ ` e : Y and Γ; ∆ ` t : B,
where Γ = x1 : X1, xn : XN and ∆ = y1 : Aa, . . . , ym : An.
We then interpret the first judgement as a map in US , of type X1×
. . . ×Xn → Y , and the second judgement as a map in U, of type
(X1×. . .×Xn)ω⊗A1⊗. . .⊗Am → B. Here, t ranges over “FRP
programs” interpreted in the base category of ultrametric spaces,
and e ranges over “synchronous dataflow programs” interpreted in
the co-Kleisli category. Note the asymmetry in the judgments – the
dataflow context appears in the FRP judgement, but not vice-versa.

We give typing rules for these programs in Figure 2. Most of
the rules are routine, with most of the interest lying in the rules that
permit passing between the two worlds, listed as the last four rules
of Figure 2. The val-introduction rule takes an FRP expression with
no free non-synchronous variables, and lifts it to a synchronous
program in US . The corresponding elimination rule says that within
an FRP program, we can take a synchronous term e : val A, and
ask for its current value with start(e). That is, viewing the val A
term as something lifted to a stream, this operation takes the head

Γ ` e : X

Γ; Γ̂ ` 〈e〉 : X

Γ; Γ̂ ` c : X Y Γ, Γ̂ ` e : X

Γ; Γ̂ ` c e : Y

Γ; Γ̂ ` c : X Γ; Γ̂ ` c′ : Y

Γ; Γ̂ ` (c, c′) : X × Y
Γ; Γ̂ ` c : X1 ×X2

Γ; Γ̂ ` πi c : Xi

Γ; Γ̂ ` () : 1

Γ; Γ̂ ` c : X Γ, x : X; Γ̂ ` c′ : Y

Γ; Γ̂ ` letc x = c in c′ : Y

Γ, x : X; Γ̂ ` c : b

Γ; Γ̂ ` λx : X. c : X ⇒ Y

Γ; Γ̂ ` c : X ⇒ Y Γ; Γ̂ ` c′ : X

Γ; Γ̂ ` c c′ : Y

Γ; Γ̂, x : X ` c : Y

Γ; Γ̂ ` λ̂x : X. c : X Y

Γ; ∆ ` t : A

Γ; ∆; ∆̂ ` 〈t〉 : A

Γ; ∆; ∆̂ ` d : A−•B Γ; ∆, ∆̂ ` t : A

Γ; ∆; ∆̂ ` d t : B

Γ; ∆; ∆̂ ` d : A Γ; ∆; ∆̂ ` d′ : B

Γ; ∆; ∆̂ ` (d, d′) : A⊗B
Γ; ∆; ∆̂ ` d : A1 ⊗A2

Γ; ∆; ∆̂ ` πi d : Ai

Γ; ∆; ∆̂ ` () : I

Γ; ∆; ∆̂ ` d : A Γ; ∆, x : A; ∆̂ ` d′ : B

Γ; ∆; ∆̂ ` letc x = d in d′ : B

Γ; ∆, x : A; ∆̂ ` d : b

Γ; ∆; ∆̂ ` λx : A. d : A(B

Γ; ∆; ∆̂, x : A ` d : B

Γ; ∆; ∆̂ ` λ̂x : A. d : A−•B

Figure 3. Syntax for Contractive Terms

— which is precisely the operation difficult to interpret in a purely
synchronous way. Conversely, the two final rule says how FRP
programs can define embedded stream values and then bind them
for use as synchronous dataflow variables.

In addition to these two judgements, we also need a pair of
judgements permitting programmers to define contractive func-
tions, which we describe in Figure 3. The first is Γ; Γ̂ ` c : X ,
which asserts that c is a term which is strictly contractive in the
variables in Γ̂. (It can be merely nonexpansive in the variables in
Γ.) Likewise, we have a judgement Γ; ∆; ∆̂ ` d : A, with d
strictly contractive in the variables in ∆̂ and nonexpansive in the
others. The interpretation of Γ; Γ̂ ` c : X is a morphism with type
Γ → (Γ̂ X), and the interpretation of Γ; ∆; ∆̂ ` d : X is a
morphism of type Γω ⊗∆→ (∆̂−•A).

At first glance, these judgements look similar to the usual rules
for introducing and eliminating functions, pairs, and so on. Upon
second glance, they look extremely peculiar! We introduce a sec-
ond (or third) context of variables, into which we move the binders
for contractive functions. However, we do so without giving a cor-
responding variable rule that permits directly using these hypothe-
sis. Instead, there are some rules (such as the application rule for
contractive functions) that permit moving the variables from the
new context into the old. From a semantic point of view, this is only
to be expected — the interpretation of the variable rule in categori-
cal proof theory is an identity morphism, and identities are not con-
tractive. So we cannot expect to have a normal variable rule for the
hypotheses corresponding to arguments of contractive functions.
Operationally, this embodies our need to ensure that the variables
are only used as arguments to our primitive contractive functions
(such as cons), which will ensure that the terms they appear in are
always guarded.

An Ultrametric Model of Reactive Programming 4 2010/8/5

To define the semantics, we need some maps in the category of
ultrametrics which witness the fact that contractiveness is preserved
by almost everything. The implementations of these functions are
the evident ones given the types, since contractive functions are just
a subset of the nonexpansive ones. (Also, we elide the essentially
identical semantics of contractive terms in the co-Kleisli category.)

5. Implementation Language and Dataflow
Library

Implementation Language. The programming language in which
we implement our domain-specific language is a polymorphic
lambda calculus with monadically typed side-effects. The types are
the unit type 1, the function space τ → σ, sums τ + σ, products
τ ? σ, inductive types like the natural number type N, the general
reference type ref τ , as well as (higher-kinded but still predicative)
universal and existential types ∀α : κ. τ and ∃α : κ. τ . In addi-
tion, we have the monadic type©τ for side-effecting computations
producing values of type τ . The side effects we consider are heap
effects (such as reading, writing, or allocating references) and non-
termination. The syntax, typing, and semantics of the implemen-
tation language are all standard, and we omit them for reasons of
space. The construction of fixed points in the implementation lan-
guage is restricted to pointed types, which are the monadic types,
products of pointed types and function types whose codomain is
pointed. The other monadic primitives are new(e), !e, and e := e′,
which allocate, read and write references (inhabiting type ref τ),
respectively.
Program Logic. We reason about programs in the implementation
language in the program logic whose syntax is shown in Figure 6.
The Hoare triple {p} c {a : τ . q} is used to specify computations,
and is satisfied when running the computation c in any heap satis-
fying the predicate p either diverges or yields a heap satisfying q;
note that the value returned by terminating executions of c is bound
(by a : τ) in the postcondition. These atomic specifications can
then be combined with the usual logical connectives of intuition-
istic logic including conjunction, disjunction and implications, as
well as quantifiers ranging over the sorts in ω. This permits us to
give abstract specifications to modules using existential quantifiers
to hide program implementations and predicates.

The assertions in the pre- and post-conditions are drawn from
higher-order separation logic [2]. In addition to the usual connec-
tives of Hoare logic, we add spatial connectives to talk about shared
state. The separating conjunction p ∗ q is satisfied by states can be
split into two disjoint parts, one of which satisfies p, and the other
of which satisfies q. The disjointness property makes the noninter-
ference of p and q implicit, simplifying specifications greatly. emp,
which is true only of the empty heap, is the unit of ∗. The points-to
relation e 7→ e′, holds of the one-element heap in which the value
of the reference e has contents equal to the value of e′.

The universal and existential quantifiers ∀x : ω. p and ∃x : ω. p
are higher-order quantifiers ranging over all sorts ω. The sorts
include the language typesA, kinds κ, the sort of propositions prop,
and function spaces over sorts ω ⇒ ω′. For the function space, we
include lambda-abstraction and application. Because our assertion
language contains within it the classical higher-order logic of sets,
we will freely make use of features like subsets, indexed sums, and
indexed products, exploiting their definability.

Dataflow Library. We implement our DSL on top of an imper-
ative dataflow network, which is rather like a generalized spread-
sheet. There is a collection of cells, each of which contains some
code whose evaluation may read other cells. When a cell is read,
the expression within the cell is evaluated, recursively triggering
the evaluation of other cells as they are read by the program ex-

Assertion Sorts ω ::= τ | κ | ω ⇒ ω | prop
Assertion p ::= e | τ | x | λx : ω. p | p q
Constructors | > | p ∧ q | p⇒ q | ⊥ | p ∨ q

| emp | p ∗ q | e 7→ e′

| ∀x : ω. p | ∃x : ω. p | S
Specifications S ::= {p} c {a : A. q} | {p}

| S and S′ | S =⇒ S′ | S or S′

| ∀x : ω. S | ∃x : ω. S

Figure 6. Specification Language

pression. Furthermore, each cell memoizes its expression, so that
repeated reads of the same cell will not trigger re-evaluation.

We will compile a synchronous dataflow program into a dataflow
graph, which is run inside an event loop. The event loop updates
a clock cell to notify the cells in the graph that they may need to
recompute themselves, and then it reads the cells it is interested in,
doing (hopefully) the minimal amount of computation needed at
each time step.

We give the interface to a dataflow library in Figure 7. We have
given a correctness proof of this library in prior work [14], but
will describe the specification here in detail, since we use it as a
component of the present work.

The interface features two abstract data types, cell and code. We
actually expose the implementations in the figure, to better discuss
them. cell α is the type of cells that compute a value of type α. It is
implemented as a record with four fields. The code field contains
an expression that will compute both a value of type α and a set
of cells that were read in the process. The (value) field is used for
memoizing the computed value. (reads) tracks which cells this one
has read, whilst (obs) records which cells are observing this one.
When the cell is read it returns its memoized value if it has one;
otherwise it runs its stored code to compute a value, updates its
memo field, transitively invalidates its observers and registers itself
as an observer of those cells it read during evaluation.

The code α type is a user-defined monadic type, as is com-
monly defined in Haskell. It has the responsibility of both com-
puting a value of type α, as well as returning a set of all the cells
that it read in the process of computing its return value. The bind
and return operations are the unit and extension operations of the
user-level monad, and the operations it supports are given in lines
12-16. There is an operation to read a cell, an operation cell to
create a cell, and getref, setref, and newref operations to cre-
ate local state in the dataflow network. On line 17, there is also
an operation to update a cell, but it does not live within the code
monad.

As each cell tracks both who it reads and who observes it, it may
seem that there is a global invariant on the whole dataflow graph,
which would make local reasoning difficult. This is true, but it is
possible to work around this difficulty. The key idea is to introduce
an domain-specific separation logic tuned to the needs of proving
dataflow programs correct. That is, we introduce a predicate H(θ)
describing the global invariant of the whole dataflow graph, but
index it by spatial formulas which describe the dataflow graph
in a local way. Then, we can use these formulas to specify the
operations of the library.

We give the syntax of formulas in Figure 8, above the spec-
ifications of the library operations. I and φ ⊗ ψ correspond to
the emp and separating conjunction of separation logic, denoting
empty graphs and two disjoint collections of cells. However, in ad-
dition to the ref(r, v) predicate (which corresponds to points-to in
separation logic), we include a pair of predicates describing cells.
The predicate cell−(c, e) means that c is a cell in the dataflow
graph containing code e, and that it is not ready — i.e., it needs to be

An Ultrametric Model of Reactive Programming 5 2010/8/5

[[Γ ` xi : Xi]] = πi
[[Γ ` e e′ : Y]] = ([[Γ ` e : X ⇒ Y]], [[Γ ` e′ : X]]); eval
[[Γ ` λx. e : X ⇒ Y]] = λ([[Γ, x : X ` e : Y]])
[[Γ ` () : 1]] = 1Γ

[[Γ ` (e, e′) : A×B]] = ([[Γ ` e : A]], [[Γ ` e′ : B]])
[[Γ ` πi(e) : Ai]] = [[Γ ` e : A1 ×A2]];πi
[[Γ ` val t : val A]] = ηΓ;V ([[Γ; · ` t : A]])

[[Γ; ∆ ` xi : Ai]] = π2;πi
[[Γ; ∆ ` t t′ : B]] = ([[Γ; ∆ ` e : A(B]],

[[Γ; ∆ ` e′ : A]]); eval
[[Γ; ∆ ` λx. t : A(B]] = λ([[Γ; ∆, x : A ` t : B]])
[[Γ; ∆ ` () : I]] = 1∆

[[Γ; ∆ ` (t, t′) : A⊗B]] = ([[Γ; ∆ ` t : A]], [[Γ; ∆ ` t′ : B]])
[[Γ; ∆ ` πi(t) : Ai]] = [[Γ; ∆ ` t : A1 ⊗A2]];πi
[[Γ; ∆ ` tω : Xω]] = π1; ([[Γ ` t : X]])ω

[[Γ; ∆ ` let xω = t in t′ : A]] = ((π1, [[Γ; ∆ ` t : Xω]]);n, π2);
[[Γ, x : X; ∆ ` t′ : A]]

[[Γ; ∆ ` start(t) : A]] = π1; ([[Γ ` t : val A]])ω ; εA

Figure 4. Semantics of Adjoint Language

sweak : X → (Y Z)
spair : (X Y)× (X Z)→ (X Y × Z)
scurry : (X × Y Z)→ (X Y Z)
seval : (X Y Z)× (X ⇒ Y)→ (X Z)
swap : (X ⇒ Y Z) ' (Y X ⇒ Z)
scomposer(f : Y → Z) : (X Y)→ (X Z)

[[Γ; Γ̂ ` 〈e〉 : X]] = [[Γ ` e : X]]; sweak

[[Γ; Γ̂ ` c e : Y]] = ([[Γ; Γ̂ ` c : X Y]], λΓ̂([[Γ, Γ̂ ` e : X]])); seval

[[Γ; Γ̂ ` πi(c) : Xi]] = [[Γ; Γ̂ ` c : X1 ×X2]]; scomposer(πi)

[[Γ; Γ̂ ` () : 1]] = 1Γ; sweak Γ̂

[[Γ; Γ̂ ` letc x = c in c′ : Y]] = (λ([[Γ, x : X; Γ̂ ` c′ : Y]]); swap, [[Γ; Γ̂ ` c : X]]);
spair ; scomposer(eval)

[[Γ; Γ̂ ` λx : X. c : X ⇒ Y]] = λ([[Γ, x : X; Γ̂ ` c : Y]]); swap

[[Γ; Γ̂ ` λx : X. c : X Y]] = [[Γ; Γ̂, x : X ` c : Y]]; scurry

[[Γ; Γ̂ ` (c, c′) : X × Y]] = ([[Γ; Γ̂ ` c : X]], [[Γ; Γ̂ ` c′ : Y]]); spair

Figure 5. Semantics of Contractive Terms

evaluated before producing a value. The predicate cell+(c, e, v, rs)
almost means the opposite: it means that c is ready (i.e., has a
memoized value), conditional on all its dependencies in rs being
ready themselves. Since establishing this can require us to follow
paths in the heap, we introduce two inductively-defined relations
unready(θ, c), and ready(θ, c, v). These are defined in the obvious
way on the syntax of formulas θ, and establish respectively that the
cell c is unready — either it or one of its ancestors are a negative
cell — or that c and all of its ancestors are positive cells.

Now, we can explain the specifications of the code expressions
in Figure 8. First, all of these specifications are parameterized by
an extra quantifier ∀ψ. . . ., which lets us manually build in a kind
of frame rule into this specification — any formula we can derive
will also be quantified, and hence work in larger dataflow graphs.
However, one oddity of these rules is that the framed formula ψ
is asymmetric; in the postcondition, we frame on a formula like
<(u, ψ). This is a “ramification operator”, whose purpose is to look
at the dependencies of cells in ψ and ensure that they are not falsely
marked as ready due to other updates.

On line 1, return leaves its frame untouched, and returns
its value v without reading any cells. On lines 2-5, we have a
specification for bind. It looks complicated, but is actually very
straightforward — the specification of bind e f is that it takes its
state from θ to θ′′, assuming that e takes θ to θ′, and f (with the
return value of e) takes θ′ to θ′′. The operations newref, getref,
setref have the obvious actions on local references, and cell
simply allocates a new cell, leaving it in an unready state. On
lines 10-11, we have a specification for read, in the case that its
argument is ready. Finally, on lines 12-16, we have the rule that
explains what happens when the cell is unready — we need to know
what the code in the cell does, and we also need to know that this
code does not modify the current cell itself. If so, then the heap
is updated to reflect both the action of the code, and the effect of
setting the cell to a positive state.

1 code : ?→ ?
2 code α =©(α× set(ecell))

3 cell : ?→ ?
4 cell α = {code : ref code α;
5 value : ref option α;
6 reads : ref set(ecell));
7 obs : ref set(ecell));
8 unique : N}
9 ecell = ∃α : ?. cell α

10 return : ∀α : ?. α→ code α
11 bind : ∀α, β : ?. code α→ (α→ code β)→ code β
12 read : ∀α : ?. cell α→ code α
13 cell : ∀α : ?. code α→ code cell α
14 newref : ∀α : α→ code ref α
15 getref : ∀α : ref α→ code α
16 setref : ∀α : ref α→ α→ code unit

17 update : ∀α : ?. code α→ cell α→©unit

Figure 7. Implementation of Notification Networks

6. The Implementation
We have two cartesian closed categories in play, each of which is
represented a bit differently. Below, we give the interpretation of
the types into our functional language.

(|I|)u = unit
(|A⊗B|)u = (|A|)u ? (|B|)u
(|Xω |)u = stream (|X|)s
(|A(B|)u = code option (|A|)u → code option (|B|)u
(|A−•B|)u = code option (|A|)u → code option (|B|)u
(|1|)s = unit
(|X × Y |)s = (|X|)s ? (|X|)s
(|X → Y |)s = stream (|X|)s → code stream (|Y |)s
(|X Y |)s = stream (|X|)s → code stream (|Y |)s
(|val A|)s = (|X|)u
stream τ = cell option τ

An Ultrametric Model of Reactive Programming 6 2010/8/5

φ, ψ, θ ::= I | φ⊗ ψ | cell+(c, e, v, rs) | cell−(c, e) | ref(r, v)

1 ∀ψ. {H(ψ)} return(v) {(a, ∅). H(ψ) ∧ a = v}
2 ∀ψ. {H(θ ⊗ ψ)} e {(a, r). H(θ′ ⊗<(u, ψ)) ∧ a = v ∧ r = r1} and
3 ∀ψ. {H(θ′ ⊗ ψ)} f v {(a, r). H(θ′′ ⊗<(u′, ψ)) ∧ a = v′ ∧ r = r2}
4 =⇒ ∀ψ. {H(θ ⊗ ψ)} bind e f{(a, r). H(θ′′ ⊗<(u ∪ u′, ψ))
5 ∧ a = v′ ∧ r = r1 ∪ r2}
6 ∀ψ. {H(ψ)} newref(v) {(a, ∅). H(ψ ⊗ ref(a, v))}
7 ∀ψ. {H(ref(r, v)⊗ ψ)} getref(r) {(a, ∅). H(ref(r, v)⊗ ψ) ∧ a = v}
8 ∀ψ. {H(ref(r,−)⊗ ψ)} setref(r, v) {(a, ∅). H(ref(r, v)⊗ ψ)}
9 ∀ψ. {H(ψ)} cell(code)

{
(a, ∅). H(cell−(a, code)⊗ ψ)

}
10 ready(θ, c, v) =⇒ ∀ψ. {H(θ ⊗ ψ)} read(c){(a, r). H(θ ⊗ ψ)
11 ∧ r = {c} ∧ a = v}
12 unready(θ, c) and unready(θ′, c) and code(θ, c, code) and
13 ∀ψ. {H(θ ⊗ ψ)} code {(a, r). H(θ′ ⊗<(u, ψ)) ∧ a = v ∧ r = rs}
14 =⇒ ∀ψ.{H(θ ⊗ ψ)}
15 read(c)
16 {(a, {c}). H([<({c} , θ′)|cell+(c, code, v, rs)]) ∧ a = v}

Figure 8. Library Specification

Units and products of the ultrametric world can be represented
directly using ML types. The first interesting case is at Aω , where
we give the representation of streams of values of type A. This
clause is interpreted as (|A|)s, which can be understood as follows.
A stream is a cell, which yields values by accessing and modify-
ing the dataflow graph each time it is read. This means we must
be very careful about the operations we permit on this type, be-
cause otherwise we will break the illusion that this is a pure, time-
independent value. Furthermore, we do not realize streams of type
τ with a cell τ . Instead, we use a cell option τ . The reason for this
decision is that we want to implement recursion via feedback, and
so we need to be able to have cells which are unitialized on their
first time step.

This drives the lazy representation of the function space A (
B, as a function from A-computations to computations of B-
values. For functions such as head, with type (val A)ω → A,
we need to look at the first element of a stream cell, and so we
need to perform a code computation to access it. However, since
we implement feedback with unit delay: (1) this access can fail on
the first try, so the computation must return an option; and (2) since
a contractive operation may do something else on the first timestep
before using its input, we need to allow the input to be lazy, to let
us use it later.

The interpretation of the co-Kleisli category is one in which
time plays a simpler role. The maps here are instantaneous func-
tions of streams, which we implement it via a dataflow graph which
we update to get to the next time step. In our implementation, the
argument to a function f : X ⇒ Y comes as a stream, and the
return value is term of type code stream X . The code constructor
permits the implementation to read and extend the dataflow graph,
doing some initialization to return a stream cell. Surpisingly, this
result is a stream, and not a point value, the way that the intepreta-
tion of morphisms in the co-Kleisli category might initially suggest.
In fact, our implementations actually realize the coextensions of the
morphisms of the co-Kleisli category, and the logical relation needs
to be adjusted in this clause to make it fit.

Selected parts of this implementation can be seen in Figures
9 through 12. We suppress many of the definitions for products
and exponentials, since they are the same as in our programming
language, modulo monadic sequencing. (For readability, we use
Haskell-style do-notation to write the terms our code type.)

However, the implementations of cons and fix are two of the
most complex functions in the whole library. The cons function
takes a thunk xt, and then returns a contractive function which will
appends xt’s value to the front of any input stream computation it
receives. The complexity arises from the fact that the stream ex-
pression may not yield a value on the first tick (since its evaluation
may attempt to read an unitialized stream), and even if it does yield
a stream, that stream may itself have a delay. So we need to keep
evaluating the stream expression until we get a stream, and then use
it to get values. Furthermore, if it gets an unitialized stream, cons
should simply replace the first None element with x, and if it is ini-
tialized, it should buffer its input for the next time step. The trick is
to use two reference cells – one to memoize the stream expression,
and the other as a one-place buffer for the stream. Note the call to
the register auxilliary function, which records a list of all cells
that read or write local state in the variable i, so that the event loop
can ensure that all stateful operations are performed every time step
so that these cells do not “lose” ticks.

The fix operator implements recursion via feedback. It takes
a stream of contractive dataflow functions, and returns a stream
realizing the fixed point of the first element of this stream. To do
this, we allocate a reference r (initially set to None), which the cell
input reads to produce its values. Then, we call f with the input,
and then construct a cell output which takes the return values and
writes them to r in order to prepare input for the next time step.

The implementation of (part of) the co-Kleisli category, given
in Figure 10 is very straightforward. Each operation simply takes
in a stream cell, and builds a cell to return its return value. This
is because all the difficulties have been encapsulated into a single
function: the zip operation (defined in Figure 11). Given two
stream cells, it returns a cell which pairs the successive elements of
its two inputs. This is a tricky function to verify, since the function
must work with lagged inputs, and we may receive a pair of inputs
in which one component is lagged and the other not. However, our
specification does not mention delays at all. So zip must pair up
the n-th elements irrespective of the possibly-differing delays of its
inputs.

To implement this, zip tests the two inputs, and introduces an
artificial delay, if one cell is delayed and the other is not. Otherwise,
it simply returns a cell which performs the pairing. Since imple-
menting a delay uses auxilliary state, we need to register the cell —
but we only register the cell in the case it needs the state. This re-
duces the number of cells that will get forced at the end of each trip
through the event loop, and so lets the dataflow graph remain lazier.
Finally, in Figure 12, we give the implementation of the functorial
actions of the two adjoint functors, which are straightforward.

For space reasons, we have suppressed most of the definitions
of the combinators of the contractive operations. However, these
are all the same as the implementation of the ordinary functions —
we simply use them in restricted contexts.

7. The Specification
In Figures 13 and 14, we give three mutually-dependent relations,
one for ultrametric values, one for co-Kleisli values, and one for
the memory state of the dataflow graph.

A memory state is a pair (θ,R), where θ is a formula describing
a dataflow network, andR is a rely describing the stream of seman-
tic values each cell in the network is expected to produce. To relate
these two, we have a satisfaction relation (θ,R) sat d, which can
be read as saying, roughly, that θ implements the set of streams in
R to distance d. This satisfaction relation is the most complicated
part of the definition, since we have to account for all of the issues
discussed in the previous section. Our satisfaction relation is given
in Figure 14. We specify a rely R as 9-tuple:

An Ultrametric Model of Reactive Programming 7 2010/8/5

id = λx. x
compose f g = λx. g(f(x))

cons : A→ (val A)ω −• (val A)ω

cons = λxt. do x′ ← xt; ofold (return None) f x′

with f x = return(Some(g x))
and g x ys = do r← newref(Some(x));

xsr← newref(None);
zs← cell(do old← getref(r);

xs′ ← do v← getref(xsr);
case v of
Some(xs)→ return(v)
None→ do xs′ ← xst;

setref(xsr, xs′);
return(xs′)

new← do xs′ ←!xsr;
ofold (return None) read xs

case old of
None→ return(new)
Some()→ do setref(r, new);

return(old));
register(zs);
return(Some(zs))

fix : (Aω −•Aω)(Aω

fix ft = do f′ ← ft; ofold (return None) fix′ f
fix′ = λf. do r← newref(None);

input← cell(do ← read(clock);
v← getref(r);
return(v));

pre← f(return(Someinput));
out← cell(do ← read(clock);

← read(input);
v← read(pre);
setref(r, v);
return(v));

register(out);
return(Some(out))

ofold none some None = none
ofold none some Some(x) = some(x)

ozip Some(x) Some(y) = Some((x, y))
ozip = None

Figure 9. The Implementation of the Ultrametric Category

id = λxs. cell(read xs)
compose f g = λas. do bs← f(as); cs← g(bs); return(cs)
one xs = cell(return(Some(〈〉)))
pair f g = λas. do bs← f(as); cs← g(as); zip(bs, cs)
fst = λabs. cell(do ab′ ← read(abs);

case ab′ of
None→ return(None)
Some(a, b)→ return(Some(a)))

snd = λabs. cell(do ab′ ← read(abs);
case ab′ of
None→ return(None)
Some(a, b)→ return(Some(b)))

eval = λfas. do fs← fst(fas);
as← snd(fas);
cell(do f′ ← read(fs)

case f′ of
None→ return None
Some(f)→ do bs← f(as);

read(bs))
curry f = λas. cell(Some(λbs. do abs← zip(as, bs); f(abs)))

Figure 10. The Implementation of the co-Kleisli Category

zip(as, bs) =
do a′ ← read(as);

b′ ← read(bs);
case (a′, b′) of
(None,None)
(Some(), Some())→

cell(do a′ ← read(as);
b′ ← read(bs);
case (a′, b′) of
(Some(a), Some(b))→ return(Some((a, b)))
(,)→ return(None))

(None, Some())→
do r← newref(None);

abs← cell(do a← read(as);
new← read(bs);
old← getref(r);
setref(r, new);
return(Some(a, old)));

register(abs);
return(abs)

(Some(),None)→
do r← newref(None);

abs← cell(do b← read(bs);
new← read(as);
old← getref(r);
setref(r, new);
return(Some(old, b)));

register(abs);
return(abs)

register(xs) =
do dummy← read(xs); lst← getref(i); setref(i, pack(xs) :: lst)

Figure 11. Utility Functions

omega f = λat. cell(do as′ ← at
case as′ of
None→ return(None)
Some(as)→ do bs← f(as);

return(Some(bs))

value f = λxs. cell(f(read(xs)))

varepsilon xs = read(xs)

eta xs = cell(do x′ ← xs
case x′ of
None→ return(None)
Some(a)→ return(Some(xs)))

Figure 12. Implementing the Adjunction

1. A finite set of stream cells and metric types C.

2. A set of reference cells L.

3. A map giving stream values VS : C → Valueω to each cell.2

4. A “delay flag” D : C → D which says for each cell whether its
output is delayed d or whether it is undelayed u. (We also order
delays so that u v d and give it the evident lattice structure.)

5. An assignment of a stream of values V L : L→ (1 + Value)ω

for each local reference. Note in particular that our local state
is given as a stream of options: this is because we might want
to use some state for “only a little while”. (The cons function
does this when it is applied to a lagged cell. It will use the value

2 We should write this as a dependent product, with an element of C
having type ΣA : type. cell option (|A|)s, and VS having the type
VS : Π(A,) ∈ C. Aω . However, we will suppress these dependencies
to reduce notational clutter.

An Ultrametric Model of Reactive Programming 8 2010/8/5

in its reference cell on the first time step, and then never store a
value in it again.)

6. A “getter” for each reference cell G : L ⇀ C. This is the cell
which will read that reference cell. This is a partial function,
so there can be reference cells which are not yet going to
be read by anyone. This lets us build up the dataflow graph
incrementally, while still remaining within the rely.

7. A “setter” for each reference cell S : L ⇀ C. This is the
cell which has responsibility for writing the next value of the
reference cell. Like the getter G, the getter S is also partial.
However, we require that its domain be a superset of G’s —
that is, we will always define getters before setters.

8. A function ∆ : C → P(C), giving the “static dependencies”
of each cell. The idea is that for each cell c, then c′ ∈ ∆(c)
tells us that c′ is a cell in the current heap which the evaluation
of c may update. (So reading c may create new cells it depends
on, but since they are not in the current heap they do not appear
in ∆(c).) Viewed as a relation, the reflexive transitive closure
of ∆ must be a partial order, to ensure that there will be no
nontrivial cycles in the dependency graph. We will write ∆∗(c)
to denote the cells reachable via the reflexive transitive closure
of ∆, and ∆+(c) for the transitive closure.

9. A function ∆L : L → P(C), which describes the static
dependencies of the contents of each reference cell. The reason
we need to track the dependencies of reference contents is that
cells may read references and use their contents, and so we need
to know what the dependencies for each value may be.

When we need to deal with multiple relies, we will name the
appropriate component using the name subscripted with the rely.
So if R is a rely, then we will write CR for its cells, VR for the
values of the cells, and so on.

We equip relies with a partial order as follows. We say that
R v R′, when CR ⊆ CR′ and LR ⊆ LR′ , and furthermore
each function is extended pointwise. That is, if c ∈ dom(R), then
VR′(c) = VR(c), and similarly for DS , L, VL, G, S, and ∆. (Note
in particular that the static dependencies for a given cell do not
grow — the extension order for ∆ is more stringent than simply
extension of the partial order.)

Furthermore, for any rely, we can also define its tail tail (R).
First, the footprints of the heap are unchanged Ctail (R) = CR
and Ltail (R). Second, the reference values all go to their tails
V Ltail (R) = λr. tail (V LR (r)). Third, the stream values for cells go
to their tails if they are not delayed, and remain unchanged if they
are. Vtail (R) = λc. if DR(c) = u then tail (VR(c)) else VR(c).
Fourth, the delay flag becomes u for all the cells, Dtail (R) =

λc. u. Finally, the other components — ∆,∆L, S,G — remain
unchanged.

Given this, we can explain the satisfaction relation in Figure 14.
We say when a graph φ satisfies a rely R to distance d, (written
“(φ,R) sat d”) when:

• The cells of the graph are CR plus the clock, and the references
of the graph are equal to LR plus the imperative list i. This is
lines 2-3.
• Each cell in the graph is either ready or unready. (Line 4)
• Each stateful ready cell depends upon the clock. (Lines 5-6)
• The update list i has some of the state-handling cells. (Line 7)
• References realizes the head of their stream if their setter is

unready, and the head of their tail stream otherwise. (Line 9)
• Each cell c in the graph realizes a stream of values correspond-

ing to VR(c), out to distance d. (Line 8)

Notice that the satisfaction relation does not require the con-
tents of references without setters to realize the expected values for
those references. Similarly, the clause of the satisfaction relation
for the update list i is imprecise — it only requires a subset of the
state-accessing cells. This is a deliberate design decision: the rea-
son we make this choice is to let incomplete networks be extensions
of complete ones. This lets us use our logical relation to say some-
thing the behavior of programs which run in incomplete dataflow
networks. This enables us to write programs which evaluate some
cells while building another part of a dataflow network.

The way we will reconcile this with our desire to say that closed
programs always build complete, closed networks, is to require that
every cell and function in the relation must always “make things
better”. That is, we never admit values into our relation which
increase the number of references without setters, or which increase
the number of stateful references which do not appear in the update
list i. Then, since we start a program in a complete dataflow graph,
we can only procede to complete graphs.

Having described the satisfaction relation and the extension
ordering for relies, we can now describe the extension ordering for
memories (i.e., pairs of a state formula and a rely). This is given
in Figure 16. On line 1, we introduce the set Mem(d), which are
just pairs of formulas and relies in the satisfaction relation. Then,
on lines 2-7, we describe what the ordering for valid memories is.
First, the relies must lie in the rely extension ordering, and then the
formulas must satisfy a number of extra conditions. First, anything
ready in the smaller state must remain ready in the larger one.
Second, all of the code in the cells must be the same in the smaller
memory and its extension. Finally, any reference which does not
have a defined writer must be unchanged (be the same physical
program value) in the smaller and larger states.

Then, on lines 8-10, we describe the temporal ordering of states.
The idea is that the Kripke ordering seen so far describes how a
dataflow graph can change during a time step, and the temporal
ordering describes how it changes upon a tick of the clock. The
idea is that to advance time one step, we update the clock to make
it invalid. This propagates a wave of invalidations throughout the
dataflow network, leaving it ready to compute the values of the next
time step. Then, two memories are in the relation µ′ �d

n µwhen µ′

is a state that could lie n steps in the future of µ. What this means
is that if n = 0, then µ′ and µ merely need to be in the Kripke
order (line 9). However, if n = m + 1, then there needs to be a
state µ0 which (a) larger is in the Kripke order with respect to µ,
and whose tail is n steps away in time from µ′. Here, tail (θ,R) is
(<(clock, θ), tail (R)), in accordance with the idea that the event
loop updates the clock to propagate this notification out to the rest
of the flow graph. Finally, one additional condition we impose on
this order is that we only tick on complete memories (i.e., ones in
which all the references have getters and setters).

Now, we can finally describe the Streamd
X(v, (θ,R)) clause

on line 8 of Figure 14. It says that for any n less than the log of
1/(2 × d), reading the stream cell should return the n-th value of
the stream. (Or, if the stream is delayed, it should return None on
the first timestep, and the n − 1st value of the stream at subse-
quent times.) It does this by appeal to the HeaddX(v, µ) predicate,
defined on lines 12-18. This predicate says that if we have a heap
implementing the dataflow network in θ, then reading it should re-
turn the appropriate value — either the head of the stream, or None,
depending on whether the stream is lagged or not. Regardless, the
updated cells in the network should either be in ∆(v) or new cells
(this is the meaning of the Update predicate, defined on 18-20 of
Figure 15). Furthermore, reading v should change neither the set
of references lacking getter or setters, nor the set of cells touch-
ing mutable state but not appearing in i (this is the Stable pred-
icate, defined on lines 21-29 of Figure 15). These predicates will

An Ultrametric Model of Reactive Programming 9 2010/8/5

appear in the postconditions of the Hoare triples in the UBuild and
VBuild relations, also — by ensuring that every imperative mod-
ification does not increase the number of dangling references, we
can conclude that clients will never write programs that break this
invariant.

The relation for ultrametric values, UdA(v, v, µ, σ), is given in
lines 1-9 of Figure 13. It relates elements v of a metric space A to
a concrete program term v. Intuitively, it can be read as saying “the
semantic value v is approximated by the computational value v to
at least distance d, when in memory µ and depending on cells σ”.
The clauses for unit and products are straightforward, and the cases
for the two function spaces are only slightly more complicated —
we quantify over all future heaps (both extensions of the current
in the Kripke ordering, and over the changes induced by the tem-
poral order) before asserting that applying related values to related
functions yield computations producing related results. The tempo-
ral quantification enforces the requirement that the function be safe
to call “at any time”. They both use the UBuild relation (defined
on lines 1-7 of Figure 15), which encapsulates safely reading and
extending the heap. The guts of this relation (and of the VBuild re-
lation used for the other category) resemble the Stream predicate.
The main difference between is that running UBuild is permitted
to delay returning a value (i.e., return None), if any of the cells σ
it may read are delayed. The exception is the return value of con-
tractive functions, which must always produce an undelayed value.
(This is what justifies the implementation of the fixed point using a
lagged input.)

On line 12, we give the relation for streamsXω . It just says that
a stream value is a cell in the dataflow graph which will produce
the appropriate values without delay, whose static dependencies are
bounded by σ cells.

Next, the relation V dX(v, v, µ, σ), defined on lines 18-28 of
Figure 13, relates values in the co-Kleisli category of streams to
the program terms v. The relation V dA(v, v, µ, σ) has the intuitive
reading “the semantic value v is approximated by computational
value v and memory state µ to at least distance d. Furthermore, the
use of v may involve evaluating the cells in σ”.

On line 18, the other side of the adjunction, val A, is interpreted
by deferring to the U -relation. Units and pairs (lines 19-20) con-
tinue to be interpreted simply, as before. As a convenience prior
to defining functions, on line 21 we add a auxilliary clause in this
relation for streams, which are simply cells in the dataflow graph
which will produce the correct stream of values, and whose static
dependencies are less than what the relation asks for.

Then, on lines 22-25, we give the interpretation of the function
space. We first quantify over extensions to the distance, the mem-
ory, and the dependencies, and then says that if we have a dataflow
cell v realizing some stream vs, we will VBuild an output stream
cell realizing f† vs. Furthermore, the static dependencies of the
result are bounded by the inputs. Finally, it says that the result will
be no more delayed than the input is (i.e., if the input is not lagged,
then the output won’t be, but if the input is lagged, then the output
might or might not be). The definition of the contractive function
space A−•B on lines 26-28 is similar, except that it promises that
its output will not be lagged, full stop. One noteworthy point is
that the dataflow functions here do not need to explicitly quantify
over all temporally future heaps, the way which the other function
spaces do — this is a consequence of our understanding of lifted
functions as instananeous.

7.1 Correctness Proof
First, we establish some basic properties of our logical relation.

PROPOSITION 3. (Kripke Monotonicity) If d′ ≥ d, µ′wd
′
µ, σ′ ⊇

σ′, we have that

1. If UdX(v, v, µ, σ) then Ud
′
X (v, v, µ′, σ′).

2. If V dA(v, v, µ, σ) then V d
′

A (v, v, µ′, σ′).
3. If µ sat d then µ sat d′.

LEMMA 1. (Approximation Lemma)

1. If ∀d′ > d. Ud
′
A (v, v, µ, σ) then UdA(v, v, µ, σ).

2. If ∀d′ > d. V d
′

A (v, v, µ, σ) then V dA(v, v, µ, σ).
3. If ∀d′ > d. µ sat d′ then µ sat d.

LEMMA 2. (Induction Lemma)

1. If ∀d′ > 2 · d. Ud
′
A (v, v, µ, σ, δ) ⇒ U

d′/2
A (v, v, µ, σ, δ) then

UdA(v, v, µ, σ, δ).
2. If ∀d′ > 2·d. V d

′
A (v, v, µ, σ)⇒ V d

′
A (v, v, µ) then V dA(v, v, µ, σ).

3. If ∀d′ > 2 · d. µ sat d′ ⇒ µ sat d′/2 then µ sat d.

We often need to extend the memory in our proofs, which
requires us to re-establish the satisfaction relation for each cell in
the heap with the extended memory. We encapsulate this pattern of
reasoning with the following two lemmas. (The notation [f |x : v]
denotes extending f ’s domain by x and letting it be v there.)

LEMMA 3. (Reference Allocation) Suppose that (θ,R) sat d, and
that θ′ = θ⊗ref(r, v). LetR′ be the same asR, except that LR′ =
LR ∪ {r}, VR′ = [VR|r : vs] for some vs, and ∆L

R′ = [∆L
R|r : κ]

for some κ ⊆ CR. Then we have that (θ′, R′) sat d.

LEMMA 4. (Cell Allocation)
Suppose that (θ,R) sat d and extsat((θ,R), d) and let θ′ =
θ ⊗ cell−(c, code). Further suppose we have R′ w R such that
CR′ = CR ∪ {c}, LR′ = LR, GR′ = [GR|ri : c] for some set
of references indexed by I , and SR′ = [GR|rj : c] for some set of
references indexed by J .

Then if we can show that for all d′ > 2 · d, (θ′, R′) sat d′ im-
plies Streamd′/2

A (c, (θ′, R′)), we can conclude that (θ′, R′) sat d.

These two lemmas are enough to prove the correctness of ev-
ery operation in our library except for allocating the input cell in
the definition of the fixed point operation. The reason for this is
that when we write back values into the reference cell, the static
dependencies of the values may include the input. However, this
is a harmless dependency, since the input cell just dereferences a
pointer — it doesn’t read any other cells or do any other computa-
tion. So we can prove a custom lemma just for this case.

LEMMA 5. (Feedback Input Cell) Suppose that (θ,R) sat d. Then
suppose that θ′ = θ⊗ ref(r,None)⊗ cell−(c, code), where code
is do ← read(clock); !r. Furthermore, suppose we haveR′ such
that CR′ = CR ∪ {c}, VR′ = [VR|c : vs], DR′ = [DR|c : d],
∆R′ = [∆|c : Y] where Y ⊆ CR′ , LR′ = LR ∪ {r}, VR′ =
[VR|r : (None :: (map Some vs)] , ∆L

R′ = [∆L
R|r : X] where

X ⊆ CR′ , GR′ = [GR|r : c], and SR′ = SR.
Then we have that (θ′, R′) sat d.

Now we have enough machinery to prove the correctness of the
library. Let µ0 be the least memory, with an empty sets of cells and
local references (except for the clock and the mutable cell list i).
Then, we can show that

THEOREM 3. Define RealizeX→YU (f, f) to be V 0
X⇒Y (f, f, µ0, ∅),

and define RealizeA→BUS (g, g) to be U0
A(B(g, g, µ0, ∅, u). Then:

• If Γ ` e : X , then RealizeΓ→X
US ([[Γ ` e : X]], (|Γ ` e : X|)u)

• If Γ; ∆ ` t : A, then
RealizeΓω⊗∆→A

U ([[Γ; ∆ ` t : A]], (|Γ; ∆ ` t : A|)u)

Here, the banana brackets means replacing the categorical com-
binators of Figure 4 with our implementation combinators.

An Ultrametric Model of Reactive Programming 10 2010/8/5

1 UdI (〈〉 , 〈〉 , µ, σ) = true

2 UdA⊗B((a, b), (a, b), µ, σ) = UdA(a, a, µ, σ) ∧ UdB(b, b, µ, σ)

3 UdA(B(f, f, µ, σ) =

4 ∀d′ > 2 · d, n ≤ log(1/d′), σ′ ⊇ σ, µ′ �d′
n µ, v, v.

5 UBuildd
′·2n

A (v, v, µ′, σ′)⇒ UBuildd
′·2n

B (f v, f v, µ′, σ′)

6 UdA−•B(f, f, µ, σ) =

7 ∀d′ > 2 · d, n ≤ log(1/d′), σ′ ⊇ σ, µ′ �d′
n µ, v, v.

8 UBuildd
′·2n

A (v, v, µ′, σ′)⇒ UBuildd
′·2n

B (f v, f v, µ′, σ′, u)

9 UdXω (vs, v, (θ,R), σ) = VR(v) = vs ∧∆R(v) ⊆ σ

10 V dval A(v, v, µ, σ) = UdA(v, v, µ, σ)

11 V dI (〈〉 , 〈〉 , µ, σ) = true

12 V dX×Y ((x, y), (x, y), µ, σ) = V dX(x, x, µ, σ) ∧ V dY (y, y, µ, σ)

13 V̂ d
S(X)

(vs, v, (θ,R), σ) = VR(v) = vs ∧∆R(v) ⊆ σ

14 V dX⇒Y (f, f, µ, σ) =

15 ∀d′ > 2 · d, µ′wd′µ, σ′ ⊇ σ, v, v
16 V d

′
S(X)

(vs, v, (θ′, R′) as µ′, σ′)⇒
17 VBuildd

′
Y (f† vs, f v, θ′, σ′ ∪ {v} ,

⊔
w∈σ′∪{v}DR′ (w))

18 V dX Y (f, f, µ, σ) =

19 ∀d′ > 2 · d, µ′wd′µ, σ′ ⊇ σ, v, v.
20 V̂ d

′
S(X)

(vs, v, µ′, σ′)⇒ VBuildd
′
Y (f† vs, f v, µ′, σ′ ∪ {v} , u)

Figure 13. The Logical Relation

1 (θ,R) sat d ,
2 cells(θ) = CR] {clock} and
3 refs(θ) = LR] {i} and
4 ∀c : X ∈ CR. unready(θ, c) ∨ ∃v. ready(θ, c, v) and
5 ∀c ∈ GR(LR) ∪ SR(LR).
6 ready(θ, c,−)⇒ clock ∈ deps(θ, c) and
7 ∃I. hasref(θ, i, I) ∧ I ⊆ (GR(LR) ∪ SR(LR)) and
8 ∀c : X ∈ CR. Streamd

X(c, (θ,R)) and
9 ∀r : X ∈ LR. LocaldX(r, (θ,R))

10 Streamd
X(v, µ) =

11 ∀d′ > 2 · d, n ≤ log(1/d′), µ′ �d′
n µ. Headd

′·2n

X (v, µ′)

12 HeaddX(v, (θ,R) as µ) =
13 {H(θ) ∧ extsat(µ, d)}
14 read v

15 {(a,). ∃(θ′, R′) as µ′wdµ, u. H(θ′) ∧
16 ReadydX(v, a, µ′) ∧Update(u, µ, µ′, v) ∧ Stable(µ, µ′)}

17 LocaldA(r, (θ,R)) =
18 ∀d′ > 2 · d. SR(r) defined⇒
19 unready(θ, SR(r))⇒
20 Ref d

′
X (head(V RL (r)), r, µ,∆+

R(SR(r))) and
21 ready(θ, SR(r),−)⇒
22 Ref d

′
X (head(tail (V RL (r))), r, µ,∆+

R(SR(r)))
23 ∧ ∃v. ready(θ,GR(r), v))

24 Ref dX(v, r, (θ,R), σ) =

25 ∃v. hasref(θ, r, v) ∧Optd
′
X (v, v, (θ,R), σ)

26 ReadydX(c, v, (θ,R)) =

27 OptdX(if DR(v) then None else Some(VR(v)), a, (θ,R),∆+
R(c))

28 OptdX(None,None, µ, σ) = true
29 OptdX(Some(v), Some(v), µ, σ) = V dX(v, v, µ, σ))

30 extsat((θ,R), d) =
31 ∀r : X ∈ LR. SR(r) undef⇒ Ref dX(head(V LR (r)), r, (θ,R))

Figure 14. The Satisfaction Relation

1 UBuilddA(v, code, (θ,R) as µ, σ) =
2 UBuilddA(v, code, (θ,R) as µ, σ,

⊔
w∈σ DR(w)) =

3 UBuilddA(v, code, (θ,R) as µ, σ, L) =
4 {H(θ) ∧ extsat(µ, d)}
5 code

6 {(a,). ∃(θ′, R′) as µ′wdµ, u. H(θ′) ∧UOptdA(v, a, µ′, σ, L) ∧
7 Update(u, µ, µ′, σ) ∧ Stable(µ, µ′)}

8 UOptdA(v,None, µ′, σ, d) = true
9 UOptdA(v,Some(v), µ′, σ, L) = UDA (v,Some(v), µ′, σ

10 VBuilddX(vs, code, (θ,R) as µ, σ, L) =
11 {H(θ) ∧ extsat((θ,R), d)}
12 code

13 {(a,). ∃(θ,R′) as µ′wdµ, u. H(θ′) ∧ a ∈ CR′ − CR ∧
14 NewStreamd

A(vs, a, µ′, σ, L) ∧
15 Update(u, µ, µ′, a) ∧ Stable(µ, µ′)}

16 NewStreamd
X(vs, a, (θ′, R′), σ, L) =

17 DR′ (a) v L ∧∆∗
R′ (a) ⊆ σ ∧ V̂ d

S(X)
(vs, a, (θ′, R′),∆R′ (a))

18 Update(u, (θ,R), (θ′, R′), a) =
19 ∀c. ready(θ′, c,−) ∧ unready(θ, c) ⇐⇒ c ∈ u ∧
20 ∀c ∈ u. c ∈ ∆∗R(a) ∨ c ∈ (CR′ − CR)

21 Stable(µ, µ′) = StableRefs(µ, µ′) ∧ StableImps(µ, µ′)

22 StableRefs((θ,R), (θ′R′)) =
23 ∀r ∈ LR′ . SR′ (r) undef ⇐⇒ r ∈ LR ∧ SR(r) undef and
24 ∀r ∈ LR′ . GR′ (r) undef ⇐⇒ r ∈ LR ∧GR(r) undef and
25 ∀r ∈ LR − dom(GR). ∃v. hasref(θ, r, v) ∧ hasref(θ′, r, v)

26 StableImps((θ,R), (θ′, R′))} =
27 ∀I, I′. hasref(θ, i, I) ∧ hasref(θ, i, I′)⇒
28 [I′ − S−1

R′ (LR′)−G−1
R (LR)] = [I − S−1

R (LR)−G−1
R (LR)]

29 and ∀c ∈ I′. unready(θ′, c)⇒ c ∈ I ∧ unready(θ, c)

Figure 15. Auxilliary Relations

1 Mem(d) = {(θ,R) | (θ,R) sat d}

2 (wd) ⊆ Mem(d)×Mem(d)

3 (θ′, R′)wd(θ,R) iff
4 R′ w R and
5 ∀c : X ∈ CR, v. ready(θ, c, v)⇒ ready(θ′, c, v) and
6 ∀c : X ∈ CR, code. code(θ, c, code)⇒ code(θ′, c, code) and
7 ∀r ∈ ER, v. ref(θ, r, v) ⇐⇒ ref(θ′, r, v)

8 µ′ �d
0 µ = µ′wdµ

9 µ′ �d
n+1 µ =

10 ∃µ0 ∈ Mem(d). µ0wdµ ∧ complete(µ0) ∧ µ′ �2·d
n tail (µ0)

11 complete(θ,R) =
12 ∀r ∈ LR.∃c ∈ CR. SR(r) = c ∧ ∃v. ready(θ, c, v)

Figure 16. Orderings on Memories

8. Discussion
We have used ultrametric spaces to reinterpret the stream trans-
formers familiar from the semantics of synchronous dataflow. In
the special case of functions from streams to streams, causality
and nonexpansiveness precisely coincide, but complete ultramet-
ric spaces are Cartesian closed, supporting function spaces at all
orders, and a general notion of contractiveness for defining well-
founded fixed points. Furthermore, to support efficient implemen-
tation, we also need to make use of the co-Kleisli category over
the stream comonad, which we connect to the base category via an
adjunction.

An Ultrametric Model of Reactive Programming 11 2010/8/5

Pouzet and Caspi [7] extended synchronous dataflow program-
ming to higher order with their co-iterative semantics. They il-
lustrated how that this generated a Cartesian closed category (of
size-preserving functions), which they used to interpret functions.
Uustalu and Vene [19] subsequently observed that size-preserving
functions could be understood more abstractly as the co-Kleisli cat-
egory of streams. However, in both of these works, feedback was
handled in a somewhat ad hoc fashion.

The proper treatment of feedback is delicate, and disentangling
the two main pieces of it kept us busy for a long time. First, we
use ultrametrics to give a semantic criterion for causality, which
permits us to avoid explicitly looking at the syntax of a program
to identify dependencies. Second, we needed to make explicit use
of the adjunction between the base category of ultrametric spaces
and the co-Kleisli category of streams, in order to explain the
semantics of feedback. By using two categories, we do not need
to compromise on our reasoning principles in any way, which
is quite remarkable given the low-level, imperative nature of our
implementation.

Functional reactive programming was introduced by Elliott
and Hudak [12], and was given a semantics in terms of event
streams and unrestricted functions over them. In this and subse-
quent work [9], the semantics of fixed points were given denota-
tionally. This gives semantics to all FRP expressions, including
non-well-founded programs (which will go into infinite loops).

A notable feature of FRP is a treatment of continuous time.
We believe that our proof framework should extend to proving an
sampling theorem as in Wan and Hudak [20]. On the semantic
side, continuous streams can be modelled as functions R → A,
and the causal ultrametric extends naturally to this case. On the
implementation side, the clock can supply time deltas (in contrast
to its current delivery of pure ticks).

Due to the problem of space leaks, arrowized FRP [16] was in-
troduced in order to restrict the set of definable stream transformers
to the the causal ones. The restriction to arrows is roughly equiv-
alent to first-order functional programming, though Nilsson et al.
introduced additional combinators to recover higher-order and dy-
namic behavior. Our semantics gives a way of eliminating these
restrictions and admitting higher-order and dynamic behavior in a
very uniform way.

Metric methods were entered semantics in the early 1980s,
to simplify the denotational semantics of concurrency [11]. The
applications to stream programming were recognized early, but
not followed up on: in a surprisingly little-cited 1985 paper [10],
de Bakker and Kok proposed an ultrametric semantics for a lan-
guage of first-order stream programs over integers and wrote “We
think there are no problems when we allow functions of higher or-
der[. . .]”. This is a conjecture which we confirm, a full quarter-
century later: it is true, but only if we make it true twice over!

More recently, Birkedal and his coworkers [6] have used ultra-
metric models to give logics and semantics for sequential programs
involving advanced features such as higher-order state and poly-
morphism, and have shown connections between these ideas and
the more operationally-flavoured technique of step-indexed mod-
els [1]. Our ‘custom’ logical relation is very much in the spirit of
the recursively-defined predicates and relations used in these met-
ric models, and we additionally exploit metric structure to define
recursive values.

A fascinating and suggestive paper by Escardo [13], gives a met-
ric model to PCF extended with timeout operators. Since cancels
and interrupt operations pervade interactive programs, this suggests
we should investigate whether they can be supported without harm-
ing the reasoning principles of the language.

Finally, we have actually implemented the API of this paper
as a library in Objective Caml. After implementing the combina-

tory interface as a module interface, we implemented syntax exten-
sions using CamlP4, which compile terms of the adjoint calculus
into calls to our Ocaml library. In addition, we have implemented
bindings to the GTK GUI toolkit, and are currently investigating
proof principles for reasoning about “retained mode” architectures
(of which GUI toolkits and the HTML DOM are two examples).

References
[1] A. W. Appel and D. A. McAllester. An indexed model of recursive

types for foundational proof-carrying code. ACM Trans. Program.
Lang. Syst., 23(5):657–683, 2001.

[2] L. B. B. Biering and N. Torp-Smith. BI-hyperdoctrines, higher-order
separation logic and abstraction. ACM TOPLAS, 29(5), 2007.

[3] N. Benton. A mixed linear and non-linear logic: Proofs, terms and
models. In Computer Science Logic, volume 933 of LNCS, 1995.

[4] P. N. Benton and P. Wadler. Linear logic, monads and the lambda
calculus. In LICS, pages 420–431, 1996.

[5] G. Berry and L. Cosserat. The ESTEREL synchronous programming
language and its mathematical semantics. In Seminar on Concurrency,
pages 389–448. Springer, 1985.

[6] L. Birkedal, K. Støvring, and J. Thamsborg. The category-theoretic
solution of recursive metric-space quations. Technical Report ITU-
2009-119, IT University of Copenhagen, 2009.

[7] P. Caspi and M. Pouzet. A co-iterative characterization of synchronous
stream functions. Electr. Notes Theor. Comput. Sci., 11, 1998.

[8] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE: A declar-
ative language for real-time programming. In Proceedings of the 14th
Symposium on Principles of Programming Languages, 1987.

[9] A. Courtney. Modeling User Interfaces in a Functional Language.
PhD thesis, Yale University, 2004.

[10] J. W. de Bakker and J. N. Kok. Towards a uniform topological
treatment of streams and functions on streams. In ICALP, 1985.

[11] J. W. de Bakker and J. I. Zucker. Denotational semantics of concur-
rency. In STOC, pages 153–158. ACM, 1982.

[12] C. Elliott and P. Hudak. Functional reactive animation. In ICFP, 1997.
[13] M. Escardó. A metric model of PCF. In Workshop on Realizability

Semantics and Applications, 1999.
[14] N. Krishnaswami, L. Birkedal, and J. Aldrich. Verifying event-driven

programs using ramified frame properties. In Proceedings of Types in
Language Design and Implementation, 2010.

[15] H. Liu, E. Cheng, and P. Hudak. Causal commutative arrows and
their optimization. In ACM International Conference on Functional
Programming, 2009.

[16] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive pro-
gramming, continued. In Proceedings of the 2002 ACM SIGPLAN
workshop on Haskell, page 64. ACM, 2002.

[17] M. Pouzet. Lucid Synchrone, version 3. Tutorial and reference man-
ual. Université Paris-Sud, LRI, 2006.

[18] N. Sculthorpe and H. Nilsson. Safe functional reactive programming
through dependent types. In ACM International Conference on Func-
tional Programming, 2009.

[19] T. Uustalu and V. Vene. The essence of dataflow programming. In
Central European Functional Programming School, volume 4164 of
LNCS, 2006.

[20] Z. Wan and P. Hudak. Functional reactive programming from first
principles. In PLDI, pages 242–252, 2000.

An Ultrametric Model of Reactive Programming 12 2010/8/5

