
Detecting Wikipedia Vandalism using WikiTrust?

Lab Report for PAN at CLEF 2010

B. Thomas Adler1, Luca de Alfaro2, and Ian Pye3

1 thumper@alumni.caltech.edu, Fujitsu Labs of America, Inc.
2 luca@dealfaro.com, Google, Inc. and UC Santa Cruz (on leave)

3 ipye@cs.ucsc.edu, CloudFlare, Inc.

Abstract WikiTrust is a reputation system for Wikipedia authors and content.
WikiTrust computes three main quantities: edit quality, author reputation, and
content reputation. The edit quality measures how well each edit, that is, each
change introduced in a revision, is preserved in subsequent revisions. Authors
who perform good quality edits gain reputation, and text which is revised by sev-
eral high-reputation authors gains reputation. Since vandalism on the Wikipedia
is usually performed by anonymous or new users (not least because long-time
vandals end up banned), and is usually reverted in a reasonably short span of
time, edit quality, author reputation, and content reputation are obvious candi-
dates as features to identify vandalism on the Wikipedia. Indeed, using the full
set of features computed by WikiTrust, we have been able to construct classifiers
that identify vandalism with a recall of 83.5%, a precision of 48.5%, and a false
positive rate of 8%, for an area under the ROC curve of 93.4%. If we limit our-
selves to the set of features available at the time an edit is made (when the edit
quality is still unknown), the classifier achieves a recall of 77.1%, a precision of
36.9%, and a false positive rate of 12.2%, for an area under the ROC curve of
90.4%.
Using these classifiers, we have implemented a simple Web API that provides
the vandalism estimate for every revision of the English Wikipedia. The API can
be used both to identify vandalism that needs to be reverted, and to select high-
quality, non-vandalized recent revisions of any given Wikipedia article. These
recent high-quality revisions can be included in static snapshots of the Wikipedia,
or they can be used whenever tolerance to vandalism is low (as in a school setting,
or whenever the material is widely disseminated).

1 Introduction

Between 4% and 6% of Wikipedia edits are considered vandalism [15]. Although most
vandalism is promptly reverted, vandalism on Wikipedia still has negative consequences.
First, locating and reverting vandalism ends up consuming the scarce time of Wikipedia
editors. Second, the presence of vandalism on the Wikipedia lessens its perceived qual-
ity and can be an obstacle to the wider use of its content. For instance, in spite of
? The authors like to sign in alphabetical order; the order of the authors may not necessar-

ily reflect the relative sizes of the contributions. This research has been in part supported by
the Institute for Scalable Scientific Data Management, an educational collaboration between
LANL and the University of California Santa Cruz.

Wikipedia being an outstanding educational resource, its use in schools is hampered
by the risk of exposing students to inappropriate or incorrect material inserted by van-
dals. Third, any static compilation of Wikipedia articles, such as those produced by the
Wikipedia 1.0 project[13], is liable to contain a non-negligible amount of vandalized re-
visions. The presence of vandalism in the compilations reduces their appeal to schools
and other environments, where their static, no-surprise nature would otherwise be most
appreciated. As the compilations are static, and published on media such as DVD disks
or USB keys, the only way to remedy the vandalism is to publish new compilations —
incurring both significant cost and risking the inclusion of new vandalism.

Automated tools help reduce the impact of vandalism on the Wikipedia by identi-
fying vandalized revisions, both facilitating the work of editors and allowing the au-
tomated exclusion of vandalized revisions from static compilations and other settings
where they are deemed particularly undesirable [10,11,5,8,4,12]. Corresponding to these
two use cases — helping editors, and filtering revisions — we distinguish two aspects
of the Wikipedia vandalism detection problem:

– Zero-delay vandalism detection. The goal of the automated tool is to identify van-
dalism as soon as it is inserted. Thus, to identify vandalism the tool can make use
only of features available at the time the edit takes place: in particular, no features
that can be acquired in the future of the edit can be used. This type of vandal-
ism detection is most useful to help the work of editors, who can be altered to
the vandalism and take appropriate action in timely fashion. Zero-delay vandalism
detection was the focus of the Task 2 PAN 2010 workshop evaluation.

– Historical vandalism detection. The goal of the automated tool is to find vandalized
revisions wherever they may occur in the revision history of Wikipedia articles.
This type of vandalism detection is most useful when filtering vandalism out of the
revisions that are displayed to visitors, as in the Flagged Revisions project [14], or
included in a static compilation.

The goal of this work was to build, and evaluate the performance of a vandalism detec-
tion tool that relies on the features computed by WikiTrust.4 WikiTrust is a reputation
system for Wikipedia authors and content, based on the algorithmic analysis of the
evolution of Wikipedia content [1,2]. WikiTrust computes the quality of each revision,
according to how much of the change introduced by the revision is preserved in subse-
quent revisions. This computation involves the comparison of each revision with both
previous and subsequent revisions. It results in a quality index comprised between −1,
for revisions that are entirely reverted, and +1, for revisions whose contribution is kept
unchanged. Authors gain or lose reputation according to the quality of the revisions they
make. WikiTrust then uses author reputation to compute the reputation of the text com-
prising each revision, at the granularity of the individual word, according to how well
the text has been revised by high-reputation authors. In particular, after each revision,
the text that has been inserted or heavily modified has a small amount of reputation, in
proportion to the reputation of the revision’s author, while the text that has been left un-
changed has gained a small amount of reputation, again in proportion to the reputation
of the revision’s author.

4 http://www.wikitrust.net/

We decided to base our vandalism detection tool on a simple and efficient archi-
tecture. WikiTrust stores the information about revision quality, author reputation, and
text reputation in database tables that complement the standard database tables used
by the Mediawiki software to implement the Wikipedia. To classify a revision as a
vandalism or regular revision, our tool reads information from the WikiTrust and Me-
diawiki database tables about the revision and its author, and feeds this information to
a decision-tree classifier which produces the desired output. We relied on the machine-
learning toolset Weka to train and evaluate a classifier [7]. Our decision to rely only
on information readily available in the Mediawiki and WikiTrust database tables has
enabled us to produce an efficient Web-based API for our classifier: given the revision
id of a Wikipedia revision, the API performs the database lookups and return the clas-
sification of the revision in milliseconds. This makes our classifier well-suited to the
real-time identification of vandalism and filtering of revisions up to the scale of the
English Wikipedia.

Since vandalism tends to be performed by anonymous or novice authors, who have
little or no reputation, and since vandalism tends to be reverted promptly, corresponding
to revisions of low quality as measured by WikiTrust, we expected our tool to perform
fairly well at historical vandalism detection. Indeed, when evaluated on the PAN 2010
Wikipedia vandalism corpus [9], our tool was able to achieve a recall of 83.5% of van-
dalism, with a precision of 48.5% and a false positive rate of 8.2%, corresponding to
an area under the ROC curve [6] of 93.4%. To our surprise, our tool performed rea-
sonably well even at the task of zero-delay vandalism detection, achieving a recall of
82.8% with a precision of 28.6% and false positive rate of 14.4%, leading to an area
under the ROC curve of 90.9% (these results are summarized in Table 1). The surprise
is due to the fact that, in evaluating the performance for zero-delay vandalism, we have
had to exclude the two most potent classification features we had: revision quality and
user reputation. We had to discard the revision quality feature because it is based on a
comparison between the given revision and future revisions, and these future revisions
are of course not available when a revision is inserted.

On the other hand, the author reputation feature is available at the time a revision
is made, and it would be usable in any real use of our tools. Unfortunately, we had to
exclude this from the evaluation performed for the PAN 2010 Workshop, due to the
time lag between the revisions being used for the evaluation, and the evaluation itself.
The problem is that WikiTrust keeps track only of the current value of user reputation.
At the time the PAN 2010 Workshop Task 2 evaluation took place, the values of user
reputation in the WikiTrust database reflected author reputation as of May 2010. The
PAN 2010 Task 2 evaluation dataset was instead based on revisions that had been en-
tered in November or December 2009. Thus, the author reputation values available to
us were in the future of the revisions to be evaluated, and we deemed them unsuitable
for the evaluation of the performance of zero-delay vandalism detection. Undoubtedly,
the performance we report for the zero-delay tool is lower than the real performance we
can achieve by including also the user reputation feature.

2 Features and Classification

The WikiTrust vandalism detection tool follows a standard two-phase machine learning
architecture, consisting of a feature-extraction component followed by a classifier.

2.1 Features

In selecting the features to feed to the classifier, we have limited our consideration to
the features that can be readily derived from the information available in the database
tables used by WikiTrust, or by the Mediawiki software that serves the Wikipedia. This
constraint was imposed so that the resulting tool could work on-line, in real-time, pro-
viding vandalism detection for any Wikipedia revision in a fraction of a second. As the
WikiTrust database tables replicate some of the information present in the Mediawiki
database tables, in practice we could derive all features from the WikiTrust tables alone:
this enabled us to implement the vandalism detection tool as a self-contained web API
on top of the WikiTrust database at UC Santa Cruz.

We describe below the features we extracted. We annotate with “H” the features
that were extracted for use by the historical classifier, and we annotate with “Z” those
that were extracted for use by the zero-delay classifier; we also indicate in brackets the
feature name used by the classifier. Not all features we extracted for use by a classifier
ended up being used: many were discarded by the classifier training process, as they
were of too little significance to be worth using.

– Author reputation [Reputation] (H). Author reputation is an obvious feature to
use, since vandalism tends to be performed predominantly by anonymous or novice
users, both of which have reputation 0 in the system. In the WikiTrust vandalism de-
tection tool, this feature is included both for zero-delay and for historical vandalism
detection: author reputation is in fact available at any time for any user. However,
for the purposes of the PAN 2010 Workshop evaluation, we have had to forego this
feature, due to the time lag between the revisions, entered in November-December
2009, and the values of reputation available to us, updated as of May 2010.

– Author is anonymous [Anon] (H,Z). In addition to author reputation, we also con-
sidered the fact whether the author was anonymous or not. Interestingly, whenever
author reputation was included as a feature, the feature stating whether the author
was anonymous or not was not used by the classifier. Evidently, knowing that a
revision was authored by a low-reputation author was enough information: whether
the author was anonymous, or a novice, did not seem to matter.

– Time interval to the previous revision [Logtime_prev] (H,Z), time interval to
the next revision [Logtime_next] (H). We provided as features the quantities
log(1 + t), where t is amount of time from the preceding revision, or to the follow-
ing revision. We thought this feature might be useful, as spam is usually reverted
promptly. Indeed, the Logtime_next feature was used, but with a very low threshold
of 2.74, corresponding to a delay of only a dozen seconds between a revision and
the next one.

– Hour of day when revision was created [Hour_of_day] (H,Z). We observed a
correlation between the probability of vandalism, and the hour of the day at which

the revision was created (timing signals have been used in a more sophisticated way
for vandalism detection in [12]). The classifier did not use this feature: either it was
unable to exploit it, or the information it contained was subsumed by that contained
in other, more significant features.

– Minimum revision quality [Min_quality] (H). In WikiTrust, every revision r is
judged with respect to several past and future revisions. In detail, the quality q(r |
r−, r+) of r with respect to a past revision r− and a future revision r+ is defined
by

q(r | r−, r+) =
d(r−, r+)− d(r, r+)

d(r−, r)
.

where d(r, r′) represents the edit distance between r and r′ (for the details on this
edit distance, see [1]). To understand this formula, it is useful to consider it from the
point of view of the author A+ of the future revision r+. From the point of view of
A+, the distance d(r−, r+) − d(r, r+) represents how much closer to A+’s work
the revision has become, and thus, it measures the improvement done by r upon
r−. The amount d(r−, r) measures the amount of change done by introducing r.
Thus, q(r | r−, r+) is a measure of the improvement, divided by the total change:
it is equal to -1 for entirely reverted revisions (where r− = r+), and to +1 if the
change introduced by r with respect to r− is perfectly preserved in r+.
Every revision is evaluated with respect to up to 6 past and 6 future revisions [3].
The minimum revision quality is the minimum quality computed with respect to all
past and future revisions considered. A low value for the minimum revision quality
indicates that at least one future author has reverted, in part or entirely, the edit that
led to the revision. Minimum revision quality was the most influential feature for
detecting vandalism in the historical vandalism detection tool.

– Total weight of judges [Judge_weight] (H). Not all triples (r−, r, r+) used to
compute the quality of revision r are given the same weight. The higher the reputa-
tion rep(A+) of the authorA+ of r+, the higher the weight we give to the computed
quality q(r | r−, r+). Additionally, if r+ is very different from both r− and r, then
the computed quality is given less weight, as it it difficult to compute what fraction
of the change from r− to r has been preserved in r+. Thus, we give to each judging
triple (r−, r, r+) the weight

exp
(
−min(d(r−, r+), d(r, r+))

3 · (1 + d(r−, r))

)
· log(1 + rep(A+)).

The total weight of the judges is the total weight of all triples used to judge the
revision r. This feature was not used by any classifier.

– Average revision quality [Avg_quality] (H). In addition to the minimum revision
quality mentioned above, we have also considered the average quality of a revision,
with respect to the past and future revisions with which it has been compared,
weighed as above. In cases in which the minimum revision quality was above the
−0.662 threshold, the average quality was a strong signal, with a discrimination
threshold of 0.156.

– Maximum dissent [Max_dissent] (H). The maximum dissent of a revision mea-
sures how close the average revision quality is to the minimum revision quality.
This feature turned out to be useful in the classifier.

– Delta [Delta] (H, Z). This feature measures the edit distance d(r, r−) between a
revision and the previous one. This feature was used by the classifiers, mainly to
treat very small edits in a more lenient way than longer ones.

– Revision comment length [Comment_len] (H,Z). The length of the comment is
another feature we considered, as we assumed that vandalism tended to be asso-
ciated with short comments. The classifier made use of this feature only for the
zero-delay detection, and even there the feature did not carry much weight.

– Next revision comment length [Next_comment_len] (H). We also considered as
a feature the length of the comment of the revision following the revision to classify.
Somewhat to our surpise, this feature turned out to be useful: if the next comment
was longer than 110 characters, this made it slightly more likely that the revision
under consideration was vandalism.

– Next comment mentioned a revert [Next_comment_revert] (H). We considered
whether the comment of the next revision mentioned a revert or undo. We expected
this to be an important feature: after all, most editors label in such a way the cor-
rective actions they take in presence of vandalism. However, our classifier did not
make use of this feature: the features of minimum and average revision quality
turned out to be much more reliable and less noisy.

– Previous text trust histogram [P_prev_hist0 . . . P_prev_hist9] (H,Z). Whenever
a revision is created, WikiTrust computes the reputation of each word of the revi-
sion, where the reputation is an integer in the interval 0, . . . , 9 [2]. The reputation
of a word indicates how well the word has been revised by reputable authors; in
particular, words that have been just entered or displaced by authors without rep-
utation (including both novice and anonymous authors) are assigned a reputation
of 0. When the revision is created, WikiTrust also computes a 10-column histogram
detailing how many words of the revision have each of the 10 possible reputation
values, and stores the histogram in the database, in an entry associated with the
revision. We renormalized the histogram, so that the columns summed to 1, and we
used the renormalized value of each column as a feature. This turned out to be an
important feature in the historical vandalism detection tool, and even more so in
the zero-delay detection tool. We tried many different renormalizations for the his-
tograms, such as ensuring that the columns sum to 1 (as in this case), or taking the
logarithms of every column value (as in the histogram difference, explained later).
The different normalizations led to essentially the same classifier performance.

– Current text trust histogram [Hist0 . . . Hist9] (H,Z). The current value of the
text trust histogram was also provided as a feature, in this case without any renor-
malization. This feature turned out to be useful in most models, and in particular,
in the models for zero-delay vandalism detection.

– Histogram difference [L_delta_hist0 . . . L_delta_hist9] (H, Z). For each possible
text trust value i ∈ {0, . . . , 9}, we also included a measure of log(1 + |h(i) −
h−(i)|) · sign(h(i) − h−(i)), where h is the text trust histogram for the current
revision, and h− is the text trust histogram for the previous revision. This feature
turned out to be useful in both the zero-delay and the historical vandalism tools: an
increase in the number of words with reputation 0 was associated with vandalism.

In the historical vandalism detection tool, we found that the behavior of the classifier
essentially depended on two strong features: [Min_quality] and [Reputation]. The ad-

dition of other features increased performance somewhat, but the set of other features
considered was not particularly critical. In the zero-delay tool, on the other hand, the
features related to the trust histogram of words played an important role, since they
were used in part as proxies for the user reputation feature, which could not be used.

2.2 The Classifier

We based our vandalism tools on standard classifiers, and precisely, on the alternating
decision tree classifier available as part of Weka [7]. We experimented with various clas-
sifiers provided as part of Weka, and the alternating decision tree classifier (ADTree)
was the one that at the same time peformed best, and let to the classification models that
were the simplest, and the easiest to implement in a web-based API. Since vandalism
is relatively rare, we wished to achieve high recall of vandalism even at the expenses of
precision. To this end, we trained the classifier using a cost matrix that specified that the
cost of misclassifying a vandalism as a regular revision was β times as large as the cost
of misclassifying a regular revision as vandalism. After various experiments, we settled
on very small decision trees, consisting of only 10 or 20 nodes. In the PAN 2010 sub-
mission, we used β = 10 and a 20-node classifier. As we will see, the 20-node classifier
used in the submission is no better than the simpler 10-node classifier we will present
in detail. Again, we attribute this to the predominance of a few, very strong features.
The classifier for the submission was trained with the following command:

weka.classifiers.meta.CostSensitiveClassifier
-cost-matrix "[0.0 1.0; 10.0 0.0]" -S 1
-W weka.classifiers.trees.ADTree -- -B 20 -E -3

3 Results

The performance of the classifier is summarized in Table 1. In the table, we specify
the number of nodes used in the classifier, and the cost-factor β used to prioritize re-
call agaist precision. The models with β = 50 can be used for the problem of select-
ing a recent, non-vandalized revision of a Wikipedia article, an application where it is
more important to reject vandalism, than to avoid false positives. The resulting classi-
fier achieves 92.4% rejection of vandalism, while exhibiting a false positive rate of only
19.8%. As a selection tool for the best revision of an article has the luxury of selecting
the best among available revisions, we believe the real-world vandalism rejection rate
would in fact exceed 92.4%. The models used by the 10-node historical and zero-delay
classifiers are reported in Tables 2 and 3; these models offer an insight into the working
of the classifier, and on the relative importance of the features in each case. In the tables,
the nodes of the decision tree are labeled by integers, and the indentation used denotes
the level of the node in the tree.

4 Conclusions

Our approach to the vandalism task is orthogonal to the usual heuristics and natural
language processing techniques that are suggested when the topic of Wikipedia arises.

Classifier Type Nodes β Dataset Recall Precision False Pos. ROC area
H10b20 Historical 10 20 Training 0.903 0.430 0.078 0.956
H10b20 Historical 10 20 Evaluation 0.835 0.485 0.082 0.934
H20b50 Historical 20 50 Training 0.950 0.276 0.163 0.957
H20b50 Historical 20 50 Evaluation 0.924 0.302 0.198 0.937
Z10b20 Zero-Delay 10 20 Training 0.883 0.286 0.144 0.930
Z10b20 Zero-Delay 10 20 Evaluation 0.828 0.308 0.173 0.909
Z20b10 Zero-Delay 20 10 Training 0.837 0.357 0.098 0.931
Z20b10 Zero-Delay 20 10 Evaluation 0.771 0.369 0.122 0.904

Table 1. Performance summary of the historical and zero-delay vandalism tools, evaluated on
the training dataset (via 10-fold cross validation), and on the PAN 2010 evaluation dataset. The
classifier used for the PAN 2010 submission is Z20b10.

We build atop WikiTrust [1], a system for computing user and text reputations by using
the implicit feedback of later editors to compute a quality score for every edit. This
has the interesting property of adapting with the community to changing notions of
acceptable behavior, which we use to construct user reputation. Utilizing features that
included data from the future of an edit made notable improvements in our ability to
classify the edits either as vandalism or regular, from an AUC value of 0.909 for our
zero-delay tool, to an AUC value of 0.934 for our historical analysis tool.

An open question is whether the information present in our feature set already over-
laps other solutions, or adds to the picture. For instance, it would be relatively easy
to add NLP analysis at the point where the actual differences of an edit is computed.
As part of our WikiTrust project, we are already able to dynamically download revi-
sions and evaluate them. To encourage further research extending the ideas we propose
here, we have integrated our results from this work into the live system and made two
web-based APIs available on an experimental basis.

The first web API implements our final model and presents the caller with a single
numerical result indicating the probability that the named revision is vandalism. For a
revision <id>, the call

http://en.collaborativetrust.com/WikiTrust/RemoteAPI?
method=quality&revid=<id>

returns the vandalism estimate for the revision, using the WikiTrust historical vandalism
detection tool.

Our second web API will be of greater interest to vandalism detection researchers:
we are making available the features for each revision, returned as a JSON5 result. It
uses the same URL structure as the first API, but uses a method value of “rawquality”
to indicate that the request is for the feature set:

http://en.collaborativetrust.com/WikiTrust/RemoteAPI?
method=rawquality&revid=<id>

5 http://www.json.org

: 0.134
| (1)Min_quality < -0.662: 0.891
| | (3)L_delta_hist0 < 0.347: -0.974
| | (3)L_delta_hist0 >= 0.347: 0.151
| | (4)Max_dissent < 0.171: -1.329
| | (4)Max_dissent >= 0.171: 0.086
| | | (10)Next_comment_len < 110.5: -0.288
| | | (10)Next_comment_len >= 110.5: 0.169
| (1)Min_quality >= -0.662: -1.203
| (2)Reputation < 0.049: 0.358
| (2)Reputation >= 0.049: -1.012
| | (6)P_prev_hist5 < 0.01: 0.482
| | (6)P_prev_hist5 >= 0.01: -0.376
| | | (7)Avg_quality < 0.156: 0.5
| | | (7)Avg_quality >= 0.156: -2.625
| | | (9)L_delta_hist2 < 0.347: -0.757
| | | (9)L_delta_hist2 >= 0.347: 1.193
| (5)Logtime_next < 2.74: 1.188
| (5)Logtime_next >= 2.74: 0.045
| | (8)Delta < 3.741: -0.255
| | (8)Delta >= 3.741: 0.168
Legend: -ve = False, +ve = True

Table 2. H10b20 classifier used by the WikiTrust historical vandalism detection tool.

: 0.134
| (1)L_delta_hist0 < 0.347: -1.018
| | (7)Hist0 < 0.5: -0.113
| | (7)Hist0 >= 0.5: 0.528
| (1)L_delta_hist0 >= 0.347: 0.766
| | (3)L_delta_hist3 < 0.347: 0.026
| | | (8)L_delta_hist4 < 0.347: 0.1
| | | (8)L_delta_hist4 >= 0.347: -0.751
| | (3)L_delta_hist3 >= 0.347: -0.962
| | (6)P_prev_hist0 < 0.004: 0.094
| | (6)P_prev_hist0 >= 0.004: -0.493
| (2)Anon = False: -0.576
| (2)Anon = True: 0.312
| (4)P_prev_hist9 < 0.115: -0.333
| (4)P_prev_hist9 >= 0.115: 0.182
| | (9)Hist7 < 1.5: 1.217
| | (9)Hist7 >= 1.5: -0.029
| (5)Delta < 2.901: -0.251
| (5)Delta >= 2.901: 0.182
| (10)Comment_len < 18.5: 0.123
| (10)Comment_len >= 18.5: -0.229
Legend: -ve = False, +ve = True

Table 3. Z10b20 classifier used by the WikiTrust zero-delay vandalism detection tool.

The resulting JSON output is a hash table of key/value pairs, naming the feature and
the corresponding value for that feature.

These web APIs will be available as time and resources allow us to maintain this
service. We hope that the community will make use of these services and extend this
work easily with their own ideas.

References

1. Adler, B., de Alfaro, L.: A content-driven reputation system for the Wikipedia. In: Proc. of
the 16th Intl. World Wide Web Conf. (WWW 2007). ACM Press (2007)

2. Adler, B., Chatterjee, K., de Alfaro, L., Faella, M., Pye, I., Raman, V.: Assigning trust to
Wikipedia content. In: WikiSym 2008: International Symposium on Wikis. ACM Press
(2008)

3. Chatterjee, K., de Alfaro, L., Pye, I.: Robust content-driven reputation. In: Proceedings of
AISec 08: First ACM Workshop of AISec. ACM Press (2008)

4. Chin, S.C., Street, W., Srinivasan, P., Eichmann, D.: Detecting Wikipedia vandalism with
active learning and statistical language models. In: WICOW ’10: Proceedings of the Fourth
Workshop on Information Credibility on the Web (2010)

5. Druck, G., Miklau, G., McCallum, A.: Learning to predict the quality of contributions to
wikipedia. In: WikiAI’08: Proceedings of the Workshop on Wikipedia and Artificial
Intelligence: An Evolving Synergy. pp. 7–12. AAAI Press (2008)

6. Fawcett, T.: ROC graphs: Notes and practical considerations for researchers. Machine
Learning 31, 1–38 (2004)

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data
mining software: An update. SIGKDD Explorations 11(1) (2009)

8. Itakura, K., Clarke, C.: Using dynamic Markov compression to detect vandalism in the
Wikipedia. In: SIGIR’09: Proceedings of the 32nd International ACM SIGIR Conference
on Research and Development in Information Retrieval. pp. 822–823. ACM Press (2009)

9. Potthast, M.: Crowdsourcing a Wikipedia vandalism corpus. In: Proc. of the 33rd Intl. ACM
SIGIR Conf. (SIGIR 2010). ACM Press (2010)

10. Potthast, M., Stein, B., Gerling, R.: Automatic vandalism detection in Wikipedia. In:
ECIR’08: Proceedings of the 30th European Conference on IR Research. LNCS, vol. 4956,
pp. 663–668. Springer-Verlag (2008)

11. Smets, K., Goethals, B., Verdonk, B.: Automatic vandalism detection in Wikipedia:
Towards a machine learning approach. In: WikiAI’08: Proceedings of the Workshop on
Wikipedia and Artificial Intelligence: An Evolving Synergy. pp. 43–48. AAAI Press (2008)

12. West, A., Kannan, S., Lee, I.: Detecting Wikipedia vandalism via spatio-temporal analysis
of revision metadata. In: EUROSEC’10: Proceedings of the Third European Workshop on
System Security. pp. 22–28 (2010)

13. Wikipedia: Version 1.0 editorial team (2010),
http://en.wikipedia.org/wiki/Wikipedia:1, [Online; accessed
15-July-2010]

14. Wikipedia:flagged revisions (2010),
http://en.wikipedia.org/wiki/Wikipedia:FLAGGED, [Online; accessed
15-July-2010]

15. Wikiproject vandalism study #1 (2006),
http://en.wikipedia.org/wiki/Wikipedia:
WikiProject_Vandalism_studies/Study1, [Online; accessed 15-July-2010]

