
JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 1

Time and Probability based
Information Flow Analysis

Ruggero Lanotte, Andrea Maggiolo–Schettini, and Angelo Troina

F

Abstract—In multilevel systems it is important to avoid unwanted indi-
rect information flow from higher levels to lower levels, namely the so
called covert channels. Initial studies of information flow analysis were
performed by abstracting away from time and probability. It is already
known that systems that are proved to be secure in a possibilistic
framework may turn out to be insecure when time or probability are
considered. Recently, work has been done in order to consider also
aspects either of time or of probability, but not both. In this paper we
propose a general framework, based on Probabilistic Timed Automata,
where both probabilistic and timing covert channels can be studied. We
define a Non-Interference security property and a Non Deducibility on
Composition security property, which allow expressing information flow
in a timed and probabilistic setting. We then compare these properties
with analogous ones defined in contexts where either time or probability
or neither of them are taken into account. This permits a classification of
the properties depending on their discerning power. As an application,
we study a system with covert channels that we are able to discover by
applying our techniques.

Index Terms—Probabilistic Timed Automata, Multilevel Security, Infor-
mation Flow Analysis, Weak Bisimulation.

1 INTRODUCTION

In a multilevel system every agent is confined in a
bounded security level; information can flow from a
certain agent to another agent only if the level of the
former is lower than the level of the latter. Access rules
can be imposed by the system in order to control direct
unwanted transmission from higher levels to lower lev-
els; however, it could be possible to transmit information
indirectly by using system side effects. Usually, this kind
of indirect transmissions, called covert channels, do not
violate the access rules imposed by the system and are
difficult to discover.

The existence of covert channels has led to the more
general approach of information flow security, which aims
at controlling the way information may flow among
different entities. The idea is to try to directly control
the whole flow of information, rather than only the
direct communication among agents. In [29] the au-
thors introduce the notion of Non-Interference, stating,

Preliminary results of this paper have been presented in [37].

• R. Lanotte is with Università dell’Insubria.
• A. Maggiolo–Schettini is with Università di Pisa.
• A. Troina is with Università di Torino.

intuitively, that low level agents should not be able to
deduce anything about the activity of high level agents.
By imposing some information flow rules, it is possible
to control direct and indirect leakages, as both of them
give rise to unwanted information flows.

In the literature there are many different definitions
of security based on the information flow idea, and
each is formulated in some system model (see, e.g., [29],
[41], [30], [26], [28], [1], [25], [7], [2], [27]). Most of
the considered properties are based on analysis of in-
formation flow that does not take into consideration
aspects of time or probability in the analysis of the
behaviour of the system. Therefore, these models are
not able to check the existence of probabilistic or timing
covert channels which exploit these quantitative aspects
to transmit information. To overcome this, a significant
work has been done in order to extend the study by
considering either time (see, e.g., [28], [1], [25], [7]) or
probability (see, e.g., [30], [2], [22]).

This has required the use of descriptive means for sys-
tems which allow expressing time and probability. Timed
Automata have been introduced by Alur and Dill [5]
as an extension of ω-Automata to describe real-time
systems. Timed Automata are equipped with variables
measuring time, called clocks. Transitions are guarded
by clock constraints, which compare the value of clocks
against constants, and by reset updates, which reset clocks
to the initial value 0. Extensions with probability have
been proposed (e.g. in [4], [8], [34], [35]). In this paper
we are interested in a general framework where both
probabilistic and timing covert channels can be studied.
In particular, we consider a class of Probabilistic Timed
Automata (PTAs) where the analysis of information flow
security properties is carried out by partitioning the set
of action labels into high level actions and low level
actions.

The framework of PTAs allows specification of timed
systems showing a probabilistic behaviour in an intuitive
and succinct way. Therefore, within the framework of
PTAs, where time and probabilities are taken into con-
sideration, the modeler can describe, in the same speci-
fication, different aspects of a system, and analyze on a
single model real-time properties, performance and relia-
bility properties (by using, e.g., classical model checking
techniques), and information flow security properties



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 2

able to detect both probabilistic and timing covert chan-
nels.

On the one hand, there are new covert channels that
arise from the interplay of time and probability which
are not detected with the techniques used to study only
timed information flow or probabilistic information flow.
On the other hand, our weak bisimulation relation for
PTAs preserves the results deriving from the study of
nondeterministic systems or systems where only time
or only probabilities are considered. For example, the
results proved for the study of information flow with
the use of weak bisimulation in a timed framework
(see the work by Agat [1]) or in a probabilistic setting
(see the work by Aldini et al. [2]) are preserved by
our weak bisimulation for PTAs. We actually feel that
the examples studied in the above mentioned papers
could be encoded, with reasonable abstractions, within
the framework of PTAs.

The remainder of this paper is organised as follows.
In Section 2 we present our model of Probabilistic Timed
Automata and we recall the definitions of Probabilistic
Automata, Timed Automata and Nondeterministic Sys-
tems. We define bisimulation equivalences and opera-
tions for all these models. In Section 3 we define the Non-
Interference and the Non Deducibility on Composition
security properties in a probabilistic and timed setting
described by Probabilistic Timed Automata. The concept
of Non-Interference was proposed originally in a purely
nondeterministic setting [29], [41], [26]. Non Deducibility
on Composition was proposed by Focardi and Gorrieri
in order to detect insecure behaviour that the Non-
Interference property is not able to detect. We show here
that these concepts, together with the analogous con-
cepts for Probabilistic Automata and Timed Automata,
can be expressed in a single framework where both
probability and time are considered. In Section 4 we
study, as an application, some covert channels which
may arise in a network shared buffer. In Section 5 we
draw our conclusions.

2 THE FORMALISM

We recall the definition of Probabilistic Timed Automata,
operations and bisimulation for these automata, we pro-
posed in [37], [44].

This model is inspired by models of Probabilistic
Timed Automata in the literature (see, as examples, [8],
[34], [4]). Actually, our model is closer to [8] which
extends Markov Decision Processes (MDPs) (see [9], [33])
with time. The main difference with the models in [34]
and [4] is that we define, as for MDPs, probability distri-
butions over the set of transitions instead of distributions
over target states. This choice, while requiring some
particular attention in the definition of the semantics (in
particular in the normalization of probabilities), allows
us to easily get rid of probabilities when reducing to
the non probabilistic case, thus allowing for simpler
proofs when showing that equivalences are preserved

in the less expressive models where time or probabil-
ities are abstracted away. Note, however, that all those
frameworks are equivalent, and translations can be given
from each of those models to any other. Hence, the
results provided in this paper for our model can be
immediately applied to the other models of Probabilistic
Timed Automata.

Abstracting away from time, Probabilistic Automata
are defined as a particular case. We recall also the defi-
nitions of Timed Automata ([5]) and of Nondeterministic
Systems.

2.1 Probabilistic Timed Automata

A discrete probability measure over a countable set Q is a
function µ : 2Q → [0, 1] such that µ(Q) = 1 and for each
countable family {Qi} of pairwise disjoint elements of
2Q, µ(∪iQi) =

∑
i µ(Qi). We adopt the convenient abuse

of notation µ(q) for µ({q}).
Let us assume a set X of positive real variables called

clocks. A valuation over X is a mapping v : X → IR≥0

assigning real values to clocks. For a valuation v and a
time value t ∈ IR≥0, let v + t denote the valuation such
that (v + t)(x) = v(x) + t, for each clock x ∈ X .

The set of constraints over X , denoted Φ(X), is defined
by the following grammar:

φ ::= x ∼ c |φ ∧ φ | ¬φ |φ ∨ φ | true

where φ ranges over Φ(X), x ∈ X , c ∈ Q and ∼∈
{<,≤, =, 6=, >,≥}.

We write v |= φ when the valuation v satisfies the
constraint φ. Formally, v |= x ∼ c iff v(x) ∼ c, v |= φ1∧φ2

iff v |= φ1 and v |= φ2, v |= ¬φ iff v 6|= φ, v |= φ1 ∨ φ2 iff
v |= φ1 or v |= φ2, and v |= true.

Let B ⊆ X ; with v[B] we denote the valuation re-
sulting after resetting all clocks in B. More precisely,
v[B](x) = 0 if x ∈ B, v[B](x) = v(x), otherwise. Finally,
with 0 we denote the valuation with all clocks reset to
0, namely 0(x) = 0 for all x ∈ X .

Definition 2.1: A Probabilistic Timed Automaton (PTA) is
a tuple A = (Σ, X, Q, q0, Inv, δ,Π), where:
• Σ is a finite alphabet of actions;
• X is a finite set of positive real variables (clocks);
• Q is a finite set of states and q0 ∈ Q is the initial

state;
• Inv : Q → Φ(X) is a function assigning a constraint

φ ∈ Φ(X) (called state invariant) to each state in Q.
• δ is a finite set of transitions in Q×Σ×Φ(X)×2X×Q.
• Π = {π1, . . . , πn} is a finite set of probability dis-

tributions as functions πi : δ → [0, 1], for any i =
1, . . . , n, where πi(e) is the probability of performing
transition e according to distribution πi.

For a state q ∈ Q, we denote with δ(q) the set of
transitions with q as source state, i.e. the set δ(q) =
{(q′, a, φ,B, q′′) ∈ δ | q′ = q}. We require that∑

e∈δ(q) πi(e) = 1 for any i and q. Moreover, we assume
that for all ej there exist some πi such that πi(ej) > 0.



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 3

Transitions from a state q take the form (q, a, φ,B, q′)
for a starting state q, a label a ∈ Σ ∪ {τ}, an enabling
condition φ ∈ Φ(X), a set B of clocks to be reset and a
target state q′.

As we shall see in the next subsection, the nonde-
terministic behaviour of a PTA derives by the fact that
there will be, in general, more probability distributions
in Π that will enable a move from a given state. The
probabilistic behaviour of a PTA is modelled by the fact
that a transition (q, a, φ, X, q′) will be chosen according
to some probability distribution πi ∈ Π.

2.1.1 Semantics of PTAs

A configuration of a PTA A is a pair (q, v), where q ∈ Q
is a state of A, v is a valuation over X and v |= Inv(q).
The initial configuration of A is represented by (q0,0).

There is a discrete transition step from a configuration
si = (qi, vi) to a configuration sj = (qj , vj) through action
a ∈ Σ ∪ {τ}, written si

a−→ sj , if there is a transition
e = (qi, a, φ, B, qj) ∈ δ such that vi |= φ, vj = vi[B],
vi |= Inv(qi) and vj |= Inv(qj).

The values of all the clocks increase uniformly with
the passage of time. Thus, there is a time step from a
configuration si = (qi, vi) to a configuration sj = (qj , vj)
through time t ∈ IR>0, written si

t−→ sj , if qj = qi,
vj = (vi + t) and ∀t′ ∈ [0, t] vi + t′ |= Inv(qi).

An execution fragment of A is a finite sequence of steps
σ = s0

α1−→ s1
α2−→ . . .

αk−→ sk, where s0, . . . , sk are
configurations, and αi ∈ Σ∪{τ}∪IR>0. With ExecFragA

we denote the set of execution fragments of A, and
with ExecFragA(s) we denote the set of execution frag-
ments of A starting from configuration s. We define
last(σ) = sk and |σ| = k. For any j ≤ |σ|, with σj

we define the sequence of steps The execution fragment
σ is called maximal iff there are no configuration s and
α ∈ Σ ∪ {τ} ∪ IR≥0 such that σ

α−→ s.
With SA we denote the set of configurations reach-

able by A, more precisely, SA = {last(σ) | σ ∈
ExecFragA(s0)}.

An execution of A is either a maximal execution frag-
ment or an infinite sequence of steps s0

α1−→ s1
α2−→ . . .,

where s0, s1 . . . ∈ SA and α1, α2, . . . ∈ Σ∪{τ}∪ IR≥0. We
denote with ExecA the set of executions of A, and with
ExecA(s) the set of executions of A starting from s.

Given a configuration s = (q, v), with Adm(s) =
{(q, a, φ,B, q′) ∈ δ | v |= φ and v[B] |= Inv(q′)} we repre-
sent the set of admissible transitions that an automaton
could execute from configuration s, and we say that a
transition in Adm(s) is enabled in s. Given two configu-
rations s = (q, v), s′ = (q′, v′), and given a ∈ Σ∪ {τ}, we
represent with Adm(s, a, s′) = {(q, a, φ, B, q′) ∈ δ | v |=
φ ∧ v′ = v[B] |= Inv(q′)} the set of transitions that
lead from configuration s to configuration s′ through a

transition step labeled with a1.
A configuration s = (q, v) is called terminal iff

Adm(s′) = ∅ for all s′ = (q, v + t) with t ∈ IR≥0; we
denote with ST the set of terminal configurations.

The probability of executing a transition step from
a configuration s is chosen, among all the transitions
enabled in s, according to the values returned by some
distribution π, while we set the probability of executing a
time step labeled with t ∈ IR>0 to the value 1. Intuitively,
a PTA chooses nondeterministically the distribution of a
transition step or to let time elapse by performing a time
step, and, in this case, also the amount of time passed is
chosen nondeterministically.

Executions and execution fragments of a PTA arise by
resolving both the nondeterministic and the probabilistic
choices [34]. To resolve the non-deterministic choices of
a PTA, we introduce now schedulers of PTAs.

A scheduler of a PTA A is a partial function from
ExecFragA to Π ∪ IR>0. Given a scheduler F and an
execution fragment σ, we assume that F is defined for
σ if and only if ∃s ∈ SA and α ∈ Σ∪{τ}∪ IR>0 such that
last(σ) α−→ s.

For a scheduler F of a PTA A we define ExecFragF
A

(resp. ExecF
A) as the set of execution fragments (resp.

the set of executions) σ = s0
α1−→ s1

α2−→ s2
α3−→ . . . of

A such that, for any i, αi ∈ IR>0 iff F (σi−1) = αi, and
αi ∈ (Σ ∪ {τ}) iff ∃e ∈ Adm(si−1, αi, si) and πi(e) > 0,
where πi = F (σi−1).

Given a scheduler F and an execution fragment σ =
s0

α1−→ s1
α2−→ s2

α3−→ . . .
αk−→ sk ∈ ExecFragF

A , if k = 0
we put PF

A (σ) = 1, else, if k ≥ 1, we define PF
A (σ) =

PF
A (σk−1) · p where

p =





∑
e∈Adm(sk−1,αk,sk)

(F (σk−1))(e)∑
e∈Adm(sk−1)

(F (σk−1))(e)
if αk ∈ Σ ∪ {τ}

1 if αk ∈ IR>0.

Notice that such a measure is consistent, since we are
assuming, given the execution fragment σ, that there is a
step from sk−1 to sk labeled with αk. Now, if αk ∈ IR>0,
then p = 1, otherwise the probability of going from sk−1

to sk through a discrete transition labeled with αk is re-
normalized according to the transitions enabled in sk−1.
In this latter case, Adm(sk−1) 6= ∅, since there exists at
least the step sk−1

αk−→ sk.
Given a scheduler F , let ExecF

A(s) be the set of exe-
cutions in ExecF

A starting in s, ExecFragF
A(s) be the set

of execution fragments in ExecFragF
A starting in s, and

σFieldF
A(s) be the smallest sigma field on ExecF

A(s) con-
taining the basic cylinders σ↑, where σ ∈ ExecFragF

A(s).
The probability measure ProbF

A is the unique measure
on σFieldF

A(s) such that ProbF
A(σ↑) = PF

A (σ).
Note that, given a PTA A and a scheduler F , the

executions of A driven by F do not contain any nonde-

1. Since the underlying meaning is the same, we overloaded the
function Adm to represent either the admissible transitions exiting a
given configuration, or, more specifically, the set of transitions that,
starting from a given configuration, lead to a certain configuration
executing the specified action.



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 4

µ´
¶³?

q0

x≤10

¾ b, 1
6

0≤x≤5µ´
¶³

q1 -
a, 1

3

x := 0 µ´
¶³

q2©©©©©©©©*a, 1
2 µ´

¶³
q3

Fig. 1. Example of PTA.

terministic choice. Hence, a PTA A driven by a scheduler
F gives rise to a fully probabilistic behaviour.

Example 2.2: In Figure 1 we show an example of PTA
with Π = {π}. Transitions of the automaton are e1 =
(q0, b, 0 ≤ x ≤ 5, ∅, q1), e2 = (q0, a, true, {x}, q2) and e3 =
(q0, a, true, ∅, q3). The automaton has only a probability
distribution π, with π(e1) = 1

6 , π(e2) = 1
3 and π(e3) = 1

2 .
As required,

∑
e∈δ(q0)

π(e) = 1 holds.
Intuitively, from the initial configuration (q0,0), the

PTA may nondeterministically choose whether to per-
form some time step and update the value of clock x
(for a time less or equal than 10, respecting the state
invariant) or to perform, probabilistically, transitions e1,
e2 or e3 with probabilities 1

6 , 1
3 and 1

2 , respectively.
If some time step is performed in state q0, such that

the value of clock x becomes greater than 5, then the
transition labeled with b cannot be performed anymore,
and the probabilities of performing the other transitions
should be redistributed. In this case, even if the transi-
tion was at some point enabled in state q0, we might
intuitively say that the automaton has consumed too
much time resource to be able to perform transition e1

anymore. Even if the case is quite simple in the depicted
automaton, similar situations may arise whenever the
automaton returns to a certain state at different times
and some of the transitions may not be enabled anymore.
Note that re-normalizing probability at run-time allows
us to relax the condition of admissible target states used
in [34].

Examples of executions of the PTA in Figure 1 are
σ1 = (q0, 0) 9.7−→ (q0, 9.7) a−→ (q2, 0) 3−→ (q2, 3) and
σ2 = (q0, 0) 3−→ (q0, 3) b−→ (q1, 3) 1.2−→ (q1, 4.2) with
P (σ1) = 2

5 and P (σ2) = 1
6 , where (q, t) represents the

configuration composed by the state q and the valuation
v such that v(x) = t.

In the following, A is a PTA, F is a scheduler of A, α̂
stands for α if α ∈ Σ∪ IR>0 and for ε (the empty string)
if α = τ , s ∈ SA and C ⊆ SA.

Let ExecF
A(s, τ∗α̂τ∗, C) be the set of executions that

lead to a configuration in C via a sequence belonging
to the set of sequences τ∗α̂τ∗ starting from the config-
uration s and crossing configurations equivalent to s.
Finally, we define the probability ProbF

A(s, τ∗α̂τ∗, C) =
ProbF

A(ExecF
A(s, τ∗α̂τ∗, C)).

2.1.2 Regions

We recall the definitions of clock equivalence [5]. Clock
equivalence is a finite index equivalence relation permit-

ting to group sets of evaluations and to have decidability
results.

Let A be a PTA; with CA we denote the greatest
constant that appears in A.

Let us consider the equivalence relation ∼ over clock
valuations containing precisely the pairs (v, v′) such that:
• for each clock x, either bv(x)c = bv′(x)c, or both v(x)

and v′(x) are greater than CA;
• for each pair of clocks x and y with v(x) ≤ CA and

v(y) ≤ CA it holds that fract(v(x)) ≤ fract(v(y)) iff
fract(v′(x)) ≤ fract(v′(y)) (where fract(·) returns
the fractional part of the argument);

• for each clock x with v(x) ≤ CA, it holds that
fract(v(x)) = 0 iff fract(v′(x)) = 0.

As proved in [5], v ∼ v′ implies that, for any φ ∈ Φ(X)
with constants less than or equal to CA, v |= φ iff v′ |= φ.

With [v] we denote the equivalence class
{v′ | v ∼ v′}. The set of equivalence classes
V = {[v] | v is a valuation} is finite, and with |V |
we denote its cardinality.

We also recall the definition of clock zones (for more
details see [11] and [32]).

The set of clock zones on X (denoted with Ψ(X)) is
the set of formulae ψ such that

ψ ::= true | false |x ∼ c |x− y ∼ c |ψ1 ∧ ψ2 |ψ1 ∨ ψ2 | ¬ψ

where ∼ {<,≤, >,≥, =}, c ∈ IN and x, y ∈ X .
Let A be a PTA with states in Q and clocks in X ; a

region R of A is a pair (q, ψ) where q ∈ Q and ψ ∈ Ψ(X).

2.1.3 Weak Bisimulation for PTAs

Bisimilarity is widely accepted as the finest extensional
behavioural equivalence one would want to impose on
systems, and it may be used to verify a property of a
system by assessing the bisimilarity of the considered
system, with a system one knows to enjoy the property.

The bisimulation of a system by another system is
based on the idea of mutual step-by-step simulation. In-
tuitively, two systems A and A′ are bisimilar if whenever
one of the two systems executes a certain action and
reaches a configuration s, the other system is able to
simulate this single step by executing the same action
and reaching a configuration s′ which is again bisimilar
to s. A weak bisimulation is a bisimulation that does not
take into account τ (internal) moves. Hence, whenever
a system simulates an action of the other system, it can
also execute some internal τ actions before and after the
execution of that action.

In order to abstract away from τ moves, Milner [43]
introduces the notion of observable step, which consists
of a single visible action α preceded and followed by
an arbitrary number (including zero) of internal moves.
Such moves are described by a weak transition relation
=⇒, defined as α=⇒= ( τ−→)∗ α−→ ( τ−→)∗, where −→
is the classical strong relation, and τ=⇒= ( τ−→)∗. It is
worth noting that with such a definition a weak internal



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 5

transition τ=⇒ is possible even without performing any
internal action.

For the definition of weak bisimulation in the proba-
bilistic setting, Baier and Hermanns [6] replace Milner’s
weak internal transitions q

τ=⇒ q′ by the probability
Prob(q, τ∗, q′) of reaching state q′ from q via internal
moves. Similarly, for visible actions α, Baier and Her-
manns define q

a=⇒ q′ by means of the probability
Prob(q, τ∗ατ∗, q′). Thus, we give a definition of weak
bisimulation for PTAs which is inspired by [6].

Definition 2.3: Let A = (Σ, X,Q, q0, Inv, δ,Π) be a PTA.
A weak bisimulation on A is an equivalence relation R on
SA such that, for all schedulers F and (s, s′) ∈ R, there
exists a scheduler F ′ such that for all C ∈ SA/R and
α ∈ Σ ∪ {τ} ∪ IR>0:

ProbF
A(s, τ∗α̂τ∗, C) = ProbF ′

A (s′, τ∗α̂τ∗, C)
and vice versa.
Two configurations s, s′ are called weakly bisimilar on
A (denoted s ≈A s′) iff (s, s′) ∈ R for some weak
bisimulation R.

In order to define weak bisimulation among PTAs, we
resort to the notion of a disjoint sum of automata.

Definition 2.4: Let A = (Σ, X, Q, q0, Inv, δ,Π) and A′ =
(Σ′, X ′, Q′, q′0, Inv′, δ′, Π′) such that Q ∩Q′ = ∅ and X ∩
X ′ = ∅. Let Â = (Σ∪Σ′, X∪X ′, Q∪Q′∪{q̂}, q̂, ˆInv, δ∪δ′∪
{(q̂, τ, true, ∅, q0), (q̂, τ, true, ∅, q′0)}, Π̂), where, π̂1, π̂2 ∈ Π̂
such that π̂1(e) = 1 if e = (q̂, τ, true, ∅, q0), 0 otherwise,
and π̂2(e) = 1 if e = (q̂, τ, true, ∅, q′0), 0 otherwise.
Moreover, for each couple (π, π′) ∈ Π × Π′, π̂ ∈ Π̂ such
that:

π̂(e) =
{

π(e) if e ∈ δ
π′(e) if e ∈ δ′.

The invariant conditions of Â are given by:

ˆInv(q) =
{

Inv(q) if q ∈ Q
Inv′(q) if q ∈ Q′

We say that A and A′ are weakly bisimilar (denoted by
A ≈ A′) if (q0,0) ≈Â (q′0,0), where the valuation 0 is
defined over all clocks of the set X ∪X ′.

For deciding our notion of weak bisimulation, we
follow the classical approach of refining relations be-
tween configurations ([6], [13]). In particular, starting
from the initial relation where all configurations of a PTA
are equivalent, we stepwise specialize relations until we
obtain a weak bisimulation.

At each step we refine the set of classes by deleting
the relations between configurations si and sj which
do not satisfy the condition that, for all schedulers F ,
there exists a scheduler F ′ such that ProbF

A(si, τ∗α, C) =
ProbF ′

A (sj , τ∗α, C) and vice versa.
An algorithm for deciding weak bisimulation for PTAs

can be found in [38]. The complexity of deciding weak
bisimulation grows exponentially [38]. As we are dealing
with timed regions, such a complexity bound could
not be improved. The automatic analysis of complex
systems may thus became difficult, however, reasonable

abstractions of realistic systems could still be modelled
and analysed in our framework.

Proposition 2.5: It is decidable whether two PTAs are
weakly bisimilar.

Example 2.6: Consider the PTAs of Figure 2. Intu-
itively, they both can perform action a or action b before
5 time units, with equal probability 1

2 . By applying the
notion of weak bisimulation introduced above, the two
PTAs turn out to be equivalent. Let Â be the automaton
built from the automata A1 and A2 by following the
procedure described in Definition 2.4.

We call π1 the only probability distribution of A1 and
π2 the only probability distribution of A2.

With R we denote the equivalence relation on SÂ

such that ((q, v), (r, v′)) ∈ R if one of the following
requirements holds:
• q = q0, r = r0 and 0 ≤ v(x) = v′(z) ≤ 5.
• q = q0, r = r0 and v(x) = v′(z) > 5.
• q ∈ {q1, q2} and r ∈ {r1, r2} and v(x) = v′(z).

Note that the case x 6= z is not considered since no
reachable configuration allows this case.

The set of classes has infinite cardinality. Actually, each
value in [0, 5] generates a class. Hence, for any m ∈ [0, 5],
we call Cm the class composed by the two configurations
{(q0, x = m), (r0, z = m)}. As we will see, to solve
the problem of the infiniteness of classes, the algorithm
we propose groups the set of {Cm}m∈[0,5] into the triple
(q0, r0, x ≤ 5 ∧ x = z).

With C we denote the set of classes containing each
configuration (q0, v) and (r0, v) such that v(x) = v(z) >
5. This set of classes can be represented by the triple
(q0, r0, x = z∧x > 5). Finally, with C′ we denote the class
containing each configuration (q, v) such that q ∈ {q1, q2}
and (r, v) such that r ∈ {r1, r2} and v(x) = v(z).

In the following we assume α ∈ {a, b, τ}∪ IR>0, where
α is chosen according to a scheduler F and a distribution
πi.

We consider the case in which the configuration is in
a state of A2, the other case is easier since from q0 there
is no τ transition.

Given s = (r0, v) ∈ Cm and s′ = (q0, v
′) ∈ Cm and a

scheduler F , we have the following cases:
• if ProbF (s, τ∗, Cm) = 1, then ProbF ′(s′, τ∗, Cm) = 1,

for any scheduler F ′. Namely, ε ∈ τ∗.
• if ProbF (s, τ∗ατ∗, Cm+α) = 1 where α ∈ IR>0 and

α ≤ 5−m, then ProbF ′(s′, τ∗ατ∗, Cm+α) = 1 where
F ′(s′) = α.

• if ProbF (s, τ∗ατ∗, C) = 1 where α ∈ IR>0 and α >
5−x, then ProbF ′(s′, τ∗ατ∗, C) = 1 where F ′(s′) = α.

• if ProbF (s, τ∗ατ∗, C′) = 1
2 where α ∈ {a, b}, then

ProbF ′(s′, τ∗ατ∗, C′) = 1
2 where F ′(s′) = π1.

Moreover, for each s ∈ C we have that if
ProbF (s, τ∗ατ∗, C) = 1 where α ∈ IR>0, then
ProbF ′(s′, τ∗ατ∗, C) = 1 where F ′(s′) = α. Similarly for
each s ∈ C′.

The probability of any other case we have not consid-
ered here, is 0 for any scheduler F . In this case, in order



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 6

A1 A2

-
µ´
¶³
q0





À

a, 1
2

x ≤ 5

µ´
¶³
q1

J
J
J

JĴ

b, 1
2

x ≤ 5

µ´
¶³
q2

-
µ´
¶³
r0

ª

τ, 1
3 , z > 5





À

a, 1
3

z ≤ 5

µ´
¶³
r1

J
J

J
JĴ

b, 1
3

z ≤ 5

µ´
¶³
r2

Fig. 2. A1 ≈ A2.

A1 A2

-
µ´
¶³
q0 -

µ´
¶³
q1

l, 1
2 -

µ´
¶³
q0

ª

τ, 1
2

-
µ´
¶³
q1

l, 1
2

Fig. 3. A1 6≈ A2.

to show the weak bisimulation, it has been sufficient to
consider F ′ = F .

Now, R is a weak bisimulation on Â and, since (q0,0)
and (r0,0) are in the same class, A1 and A2 are weakly
bisimilar.

The next example shows a subtle feature of weak
bisimulation for PTAs. Namely, internal actions, even if
not visible, may alter the probability of observing the
passage of time.

Example 2.7: Consider the PTAs of Figure 3. Intu-
itively, they both, eventually, perform action l with prob-
ability 1 and then reach a terminal configuration. At a
first glance the two automata appear to be bisimilar,
however, the internal move in A2 allows a scheduler
to make different the probability of observing passage
of time with respect to A1. Namely, A1 and A2 are
not bisimilar because there exists no scheduler F of A1

able to simulate the behaviour induced by the following
scheduler F ′:

F ′(σ0) = π σ0 = (r0, 0)
F ′(σ1) = 1 σ1 = (r0, 0) τ−→ (r0, 0)
F ′(σ2) = π σ2 = (r0, 0) τ−→ (r0, 0) 1−→ (r0, 1)
. . .

where π is the only probability distribution of A2 de-
picted in Figure 3.

If C is the class containing the configuration (r0, 1) we
have that ProbF ′

A2
((r0, 0), τ∗1τ∗, C) = 1

2 , and no scheduler
exists for A1 with the same property.

We would like to stress the fact that this problem arises
since the internal action in A2 is probabilistically in com-
petition with the observable action l. If we replace the
probabilistic distribution π in A2 with two distributions
π1 and π2 assigning, respectively, probability 1 to each of
the two transitions, the two PTAs turn out to be weakly
bisimilar.

2.1.4 Auxiliary Operators for PTAs
We define operations of restriction, hiding and parallel
composition on PTAs.

We assume a PTA A = (Σ, X, Q, q0, δ, Inv, Π) and a set
L ⊆ Σ of actions.

Definition 2.8: The restriction of a PTA A with respect
to the set of actions L is A \L = (Σ, X, Q, q0, δ

′, Inv, Π′),
where:
• δ′ = {(q, a, φ, B, q′) ∈ δ | a 6∈ L}.
• π′ ∈ Π′ iff π ∈ Π where, for all e = (q, a, φ, B, q′) ∈ δ,

π′(e) = π(e)∑
e′∈δ′∩start(q)

π(e′)
.

The second condition is assumed in order to normalize
the probability of each transition according to the ones
remaining after the restriction. Thanks to this rule, the
condition

∑
e∈start(q) π′(e) ∈ {0, 1} continues to be true

for each state q of A \ L.
Definition 2.9: The hiding of a transition

e = (q, a, φ,B, q′) with respect to the set of actions
L (written e/L) is defined as:

e/L =
{

e if a 6∈ L
(q, τ, φ,B, q′) if a ∈ L

The hiding of a PTA A with respect to the set of actions
L is given by A/L = (Σ, X, Q, q0, δ

′, Inv, Π′), where δ′ =
{e/L | e ∈ δ}, and Π′ = {π′|∃π ∈ Π.∀e′ ∈ δ′ π′(e′) =∑

e∈δ:e/L=e′ π(e)}.
Proposition 2.10: Given a PTA A, A \ L and A/L are

PTAs for all L ⊆ Σ.
We assume two PTAs A1 = (Σ, X1, Q1, r0, δ1, Inv1,Π1)

and A2 = (Σ, X2, Q2, u0, δ2, Inv2, Π2) with disjoint sets
of states and clocks (Q1 ∩Q2 = ∅, X1 ∩X2 = ∅). We also
assume a set L ⊆ Σ of synchronization actions. Finally,
for i ∈ {1, 2}, given a transition e = (q, a, φ, B, q′) ∈ δi,
and a probability distribution πi ∈ Πi with πia(e) we
denote the normalized probability of executing transition
e with respect to all other transitions starting from q

and labelled with a, i.e. πia(e) = πi(e)∑
e′∈starta

i
(q)

πi(e′)
,

where startai (q) denotes the set of transitions in δi with
q as source state and a as labelling action, i.e. the set
{(q1, a

′, φ, B, q2) ∈ δi | q1 = q ∧ a′ = a}.

Definition 2.11: The parallel composition of two PTAs A1

and A2, with respect to the synchronization set L, is
defined as A1||LA2 = (Σ, X,Q, (r0, u0), δ, Inv, Π). The
set Q = Q1 × Q2 of states of A1||LA2 is given by
the cartesian product of the states of the two automata
A1 and A2, while the set of clocks X = X1 ∪ X2 is
given by the union of X1 and X2. State invariants are
defined as Inv : Q1 × Q2 → Φ(X1 ∪ X2), where, for
any r ∈ Q1 and u ∈ Q2 such that Inv1(r) = φ1 and
Inv2(u) = φ2, we have that Inv(r, u) = φ1 ∧ φ2. Given a
state (r, u) of A1||LA2 there is a probability distribution
π ∈ Π for any two probability distributions π1 ∈ Π1 and
π2 ∈ Π2. In particular, δ = S1 ∪ S2 ∪

⋃
a∈L Sa

3 where
S1 = {((r, u), b, φ, B, (r′, u)) | (r, b, φ, B, r′) ∈ δ1, u ∈
Q2, b 6∈ L}, S2 = {((r, u), b, φ, B, (r, u′)) | (u, b, φ, B, u′) ∈



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 7

δ2, r ∈ Q1, b 6∈ L} and, for any a ∈ L, Sa
3 = {e =

((r, u), τ, φ1 ∧φ2, B1 ∪B2, (r′, u′)) | e1 = (r, a, φ1, B1, r
′) ∈

δ1, e2 = (u, a, φ2, B2, u
′) ∈ δ2}. Moreover, for any pair

π1 ∈ Π1, π2 ∈ Π2, there exists π ∈ Π such that, for all e =
(q, a, φ,B, q′) ∈ δ, it holds that π(e) = f(e)∑

e′∈δ∩start(q)
f(e′)

where f(e) = π1(e) if e ∈ S1, f(e) = π2(e) if e ∈ S2 and
f(e) = π1(e1) · π2a(e2) + π2(e2) · π1a(e1) for e ∈ ⋃

a∈L Sa
3

obtained from e1 and e2.
Note that, given such a definition of parallel compo-

sition, A1 and A2 are forced to synchronize in order to
perform transitions labelled with actions in L, moreover,
whenever they synchronize, they give rise to an internal
action τ . Also note that, once chosen a transition e1 (e2)
with label a ∈ L of automaton A1 (A2), the transition
e2 (e1) of A2 (A1) that synchronizes with e1 (e2) is
chosen according to the probability π2a

(e2) (π1a
(e1))

normalized with respect to all the other transitions la-
belled with a. Besides, according to Definition 2.1, given
the parallel composition defined above, it holds that∑

e∈start(q) π(e) ∈ {0, 1} for each state q of A1||LA2.
This is done due to the last rule, that uses the auxiliary
structure f(e) in order to compute the normalized proba-
bilities in π. In fact, transitions of the single automata A1

and A2 with label a ∈ L are not allowed to be performed
without synchronization, and therefore they are lost in
the compound system together with their probabilities
(and therefore probabilities of the compound system
must be renormalized).

Proposition 2.12: Given the PTAs A1 and A2, the par-
allel composition A1||LA2 is a PTA for all L ⊆ Σ.

2.1.5 Probabilistic Automata
We introduce Probabilistic Automata as a subcase of
PTAs.

Definition 2.13: A Probabilistic Automaton (PA) is a PTA
A = (Σ, X, Q, q0, δ, Inv, Π), where X = ∅, φ = true for
every e = (q, a, φ, B, q′) ∈ δ and Inv(q) = true for every
state q ∈ Q.

As X = ∅, there are no valuations of clocks, and
therefore a configuration reduces to a state. Transitions
and state invariants of a PA may have as a constraint
only the condition true. Moreover, since for PAs we
abstract from time, we assume that for each execution
σ of a PA there is no scheduler F ∈ FA such that
F (σ) ∈ IR>0.

2.1.6 From PTAs to PAs
Given a PTA A = (Σ, X, Q, q0, δ, Inv, Π), we call
untime(A) the PA obtained as the region automaton of
A, with probability functions chosen according to Π.
Intuitively, the region automaton (see [5]) is obtained
by considering timed regions as states. Note that in the
region automaton there is a step between regions R and
R′ with symbol (a, π) if and only if there is an admissible

run s
t−→ s′′

(a,π)−→ s′ of the PTA such that t ∈ IR>0

and where s ∈ R and s′ ∈ R′. We consider the special
symbol λ to label all the transitions of the PA untime(A)

arising from timed steps of the PTA A. More precisely,
untime(A) = (Σ ∪ {λ}, ∅, Q × [V ], (q0, [v0]), δ′, Inv′, Π′)
where:
• ((q, [v]), λ, true, ∅, (q′, [v′])) ∈ δ′ iff q = q′, v′ = v + t

for some time t ∈ IR>0 and v+t′ |= Inv(q) ∀t′ ∈ [0, t];
• ((q, [v]), a, true, ∅, (q′, [v′])) ∈ δ′ iff (q, a, φ, B, q′) ∈ δ,

v |= φ ∧ Inv(q), v′ = v[B] and v′ |= Inv(q′);
• Inv′(q, [v]) = true ∀(q, [v]) ∈ Q× [V ];
• For any λ-transition e′ = ((q, [v]), λ, true, ∅, (q′, [v′]))

there exists π′ ∈ Π′ such that π′(e′) = 1. Moreover,
for all π ∈ Π there exists π′ ∈ Π′ such that, π′(e′) =∑

e∈S π(e) where e′ = ((q, [v]), a, true, ∅, (q′, [v′])) ∈
δ′ and S = {(q, a, φ,B, q′) ∈ δ | v |= φ, v′ = v[B]}.

Given an execution σ = (q0, v0) → . . . → (qn, vn) of
A, with [σ] we denote the execution (q0, [v0]) → . . . →
(qn, [vn]) of untime(A).

As a consequence of Lemma 4.13 in [5] and Lemma
4.8 in [36] we have the following result.

Lemma 2.14: Given a PTA A, for any scheduler F of
A, there exists a scheduler F ′ of untime(A) such that,
for any σ ∈ ExecFragF , ProbF (σ) = ProbF ′([σ]), and
viceversa.

2.2 Timed Automata

We recall the definition of Timed Automata ([5]).
Definition 2.15: A Timed Automaton (TA) is a tuple A =

(Σ, X, Q, q0, δ, Inv), where Σ, X , Q, q0, δ and Inv are
defined as in Definition 2.1.

As for PTAs, a configuration of A is a pair (q, v), where
q ∈ Q is a state of A, and v is a valuation over X . The
initial configuration of A is represented by (q0,0) and
the set of all the configurations of A is denoted with SA.

There is a discrete transition step from a configuration
si = (qi, vi) to a configuration sj = (qj , vj) through action
a ∈ Σ∪ {τ}, written si

a−→ sj , if there is a transition e =
(qi, a, φ, B, qj) ∈ δ such that vi |= φ ∧ Inv(qi), vj = vi[B]
and vj |= Inv(qj).

Continuous timed steps are as for PTAs, and execution
fragments of a TA are, again, finite sequences of steps.

2.2.1 Weak Bisimulation for TAs
Definition 2.16: Let A = (Σ, X, Q, q0, δ, Inv) be a TA. A

weak bisimulation on A is an equivalence relation R ⊆
SA × SA such that for all (s, r) ∈ R it holds that ∀α ∈
Σ ∪ {τ} ∪ IR>0:
• if s

α−→ s′, then there exists r′ such that r
α=⇒ r′ and

(s′, r′) ∈ R;
• conversely, if r

α−→ r′, then there exists s′ such that
s

α=⇒ s′ and (s′, r′) ∈ R.
Two configurations s, r are called weakly bisimilar on
A (denoted s ≈A r) iff (s, r) ∈ R for some weak
bisimulation R.
Two TAs A = (Σ, X, Q, q0, δ, Inv) and A′ =
(Σ′, X ′, Q′, q′0, δ

′, Inv′) such that Q∩Q′ = ∅ and X∩X ′ =
∅ are called weakly bisimilar (denoted by A ≈ A′) if,
given the TA Â = (Σ∪Σ′, X ∪X ′, Q∪Q′, q0, δ ∪ δ′, ˆInv),



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 8

it holds (q0,0) ≈Â (q′0,0), where ˆInv is defined as in
Definition 2.4.

The following result is proved in [39] and [14].
Proposition 2.17: It is decidable whether two TAs are

weakly bisimilar.
In [45], [40], Wang and Larsen introduce strong and

weak bisimulation equivalences for a real time process
calculus obtained by extending Milner’s CCS [43] with
delays. Our notion of weak bisimulation for PTAs differs
form the mentioned one. In our framework, a weak
transition t=⇒ is given by a sequence of internal moves
followed by a single time transition of duration t fol-
lowed by a sequence of internal moves. In [45] both
time delays and internal moves are interchangeable, the
observable resulting after a series of time delays and
internal moves is just the time delay obtained summing
up the different timed steps: a weak timed transition
consists of a sequence of steps (either internal or timed
steps) such that the sum of the different time steps is
t. Thus, the main difference is that our notion of weak
bisimulation is weak only with respect to internal moves,
while the notion of weak bisimulation in [45] is weak with
respect to both internal and timed steps.

In [45] also a notion of strong bisimulation is given
(which is similar to our notion when abstracting from
internal moves). In a sense, we relax this equivalence by
introducing internal invisible moves, which then lead to
the definition of our intermediate weak bisimulation.

As a consequence, we are treating as visible consequent
timed steps. Such an assumption makes finer the classes
of our weak bisimulation relation but allows us to take
into account the fact that the scheduler is invoked again
after a timed step2. Such an invocation would actually
make distinguishable, to the eyes of a malicious sched-
uler, a system which can perform a single timed step of
length t from a system which can perform two timed
steps (maybe interleaved by some internal move) with
length t1 and t2 such that t1 = t2, and so alter its
observable behaviour (see [16], [17] for examples on how
malicious schedulers may collaborate with an attacker
allowing him to distinguish two bisimilar processes)3.
We believe that in the context of security analysis our
stricter notion of bisimulation is more suitable than the
one presented in [45].

2.2.2 Auxiliary Operators for TAs
We define operations of restriction, hiding and parallel
composition on TAs.

We assume a TA A = (Σ, X, Q, q0, δ, Inv) and a set
L ⊆ Σ of actions.

Definition 2.18: The restriction of a TA A with respect
to the set of actions L is A \ L = (Σ, X, Q, q0, δ

′, Inv),
where δ′ = {(q, a, φ, B, q′) ∈ δ | a 6∈ L}.

2. No assumption about the scheduler is needed in [45]; since this
model is purely possibilistic, nondeterminism could be treated in the
classical way. Here we used schedulers to combine probabilities and
nondeterminism.

3. Note that in our framework the scheduler also decides the amount
of time to pass.

Definition 2.19: The hiding of a TA A with re-
spect to the set of actions L is given by A/L =
(Σ, X, Q, q0, δ

′, Inv), where δ′ = {e/L | e ∈ δ}.
Proposition 2.20: Given a TA A, A\L and A/L are TAs

for all L ⊆ Σ.
We assume two TAs A1 = (Σ, X1, Q1, r0, δ1, Inv1) and

A2 = (Σ, X2, Q2, u0, δ2, Inv2) with Q1 ∩Q2 = ∅ and X1 ∩
X2 = ∅.

Definition 2.21: The parallel composition of two TAs A1

and A2, with respect to the synchronization set L, is
defined as A1||LA2 = (Σ, X, Q, (r0, u0), δ, Inv), where
Q = Q1 × Q2 and X = X1 ∪ X2. State invariants are
defined as Inv : Q1 × Q2 → Φ(X1 ∪ X2), where, for
any r ∈ Q1 and u ∈ Q2 such that Inv1(r) = φ1 and
Inv2(u) = φ2, we have that Inv(r, u) = φ1 ∧ φ2. The set
of transitions δ is defined as follows:
• if from state r the automaton A1 has a transi-

tion e1 = (r, a, φ, B, r′) with a 6∈ L, then e =
((r, u), a, φ,B, (r′, u)) ∈ δ;

• if from state u the automaton A2 has a transi-
tion e2 = (u, a, φ, B, u′) with a 6∈ L, then e =
((r, u), a, φ,B, (r, u′)) ∈ δ;

• if from state r the automaton A1 has a transi-
tion e1 = (r, a, φ1, B1, r

′) with a ∈ L and from
state u the automaton A2 has a transition e2 =
(u, a, φ2, B2, u

′), then A1 and A2 can synchronize
and e = ((r, u), τ, φ1 ∧ φ2, B1 ∪B2, (r′, u′)) ∈ δ.

Proposition 2.22: Given the TAs A1 and A2, A1||LA2 is
a TA for all L ⊆ Σ.

2.2.3 From PTAs to TAs
Given a PTA A = (Σ, X, Q, q0, δ, Inv, Π), unprob(A) =
(Σ, X, Q, q0, δ, Inv) gives the TA obtained from A by
simply removing Π.

2.2.4 Nondeterministic Systems
We introduce Nondeterministic Systems as a subcase of
TAs.

Definition 2.23: A Nondeterministic System (NS) is a TA
A = (Σ, X, Q, q0, δ, Inv), where X = ∅, φ = true for every
e = (q, a, φ, B, q′) ∈ δ and Inv(q) = true for every state
q ∈ Q.

As X = ∅, there are no valuations of clocks, and
therefore a configuration reduces to a state. Transitions
and state invariants of a NS may have only the condition
true as a constraint. The class of NSs coincides with the
class of Nondeterministic Automata.

Operators and bisimulation defined for TAs reduce
in the subcase of NSs to the analogous operators and
bisimulation defined in [26].

2.2.5 From TAs and PAs to NSs
Given a TA A = (Σ, X, Q, q0, δ, Inv), we call untime(A)
the NS obtained as the region automaton of A and by
considering an empty set of clocks X . Note that in the
region automaton there is a step between regions R and
R′ with symbol a if and only if there is an admissible run



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 9

s
t−→ s′′ a−→ s′ of the TA such that t ∈ IR>0 and where

s ∈ R and s′ ∈ R′. We consider the special symbol λ to
label all the transitions of the NS untime(A) arising from
timed steps of the TA A. More precisely, untime(A) =
(Σ ∪ {λ}, ∅, Q× [V ], (q0, [v0]), δ′, Inv′) where:

• ((q, [v]), λ, true, ∅, (q′, [v′])) ∈ δ′ iff q = q′, v′ = v + t
for some time t ∈ IR>0 and v+t′ |= Inv(q) ∀t′ ∈ [0, t];

• ((q, [v]), a, true, ∅, (q′, [v′])) ∈ δ′ iff (q, a, φ, B, q′) ∈ δ,
v |= φ ∧ Inv(q), v′ = v[B] and v′ |= Inv(q′);

• Inv′(q, [v]) = true ∀(q, [v]) ∈ Q× [V ].

Given an execution σ = (q0, v0) → . . . → (qn, vn) of
A, with [σ] we denote the execution (q0, [v0]) → . . . →
(qn, [vn]) of untime(A).

As a consequence of Lemma 4.13 in [5] we have the
following result.

Lemma 2.24: Given a TA A, if σ is an execution
fragment of A, then [σ] is an execution fragment of
untime(A). Moreover, if [σ] is an execution fragment of
untime(A) , then there exists σ′ ∈ [σ] such that σ′ is an
execution fragment of A.

Given a PA A = (Σ, ∅, Q, q0, δ, Inv,Π), unprob(A) =
(Σ, ∅, Q, q0, δ, Inv) gives the NS obtained from A by
removing Π.

2.3 Relations among Weak Bisimulations

We shall use the same terminology for operators and
bisimulation in the different models when this does not
give rise to ambiguity.

Lemma 2.25: The following statements hold:

1) PTAs A,A′: A ≈ A′ ⇒ unprob(A) ≈ unprob(A′)
2) PTAs A,A′: A ≈ A′ ⇒ untime(A) ≈ untime(A′)
3) PAs A,A′: A ≈ A′ ⇒ unprob(A) ≈ unprob(A′)
4) TAs A,A′: A ≈ A′ ⇒ untime(A) ≈ untime(A′).

Proof: For cases (1) and (3), let us assume A =
(Σ, X, Q, q0, δ, Inv, Π), A′ = (Σ′, X ′, Q′, q′0, δ

′, Inv, Π′)
and Â constructed as in Definition 2.4. Since A ≈ A′ for
a weak bisimulation R, we have that for all (s, r) ∈ R,
C ∈ SÂ/R and schedulers F , there exists a scheduler F ′

such that ProbF
Â
(s, τ∗α, C) = ProbF ′

Â
(r, τ∗α, C) for every

α ∈ Σ ∪ {τ} ∪ IR>0. Now, if ProbF
Â
(s, α, s′) > 0 for some

s′ ∈ C there exists a configuration r′ and a scheduler
F ′ such that ProbF ′

Â
(r, τ∗α, r′) = ProbF

Â
(s, α, s′) > 0.

Therefore if s
α−→ s′, then there exists r′ such that

r
α=⇒ r′ and, since s′ and r′ are in the same equivalence

class, there exists also a bisimulation R′ on SÂnp
such

that (s′, r′) ∈ R′, where Ânp is constructed as in Defi-
nition 2.16 by starting from unprob(A) and unprob(A′).
The same holds if we exchange the roles of s and r.

For cases (2) and (4), the implications hold by the con-
struction of the region automaton and by Lemmata 2.14
and 2.24. Actually, for each run of a PTA (or TA), there
exists an analogous run for the PA (or NS) obtained with
untime(A). Weak bisimulations are, therefore, preserved.

3 SECURITY PROPERTIES

Given a system model with the basic operators of re-
striction, hiding and parallel composition together with
a notion of observational equivalence, it is easy to set up
a framework for the analysis of information flow.

In all of the formalisms presented in Section 2, a finite
alphabet Σ of visible actions is assumed. A multilevel
system interacts with agents confined in different levels
of clearance. In order to analyze the information flow
between parties with different levels of confidentiality,
the set of visible actions is partitioned into high level
actions and low level actions. Formally, we assume the
set of possible actions Σ = ΣH ∪ ΣL, with ΣH ∩ ΣL =
∅. In the following, with l, l′ . . . and h, h′, . . . we denote
actions of ΣL and ΣH respectively. With ΓH and ΓL we
denote the set of high level agents and low level agents.
Formally, an automaton A with a set of action labels Σ′

is in ΓH (ΓL) if Σ′ ⊆ ΣH (Σ′ ⊆ ΣL). For simplicity, we
specify only two-level systems; note, however, that this
is not a real limitation, since it is always possible to deal
with the case of more levels by iteratively grouping them
into two clusters.

A low level agent is able to observe the execution
of all the steps labeled with actions in ΣL and all the
timed steps. The basic idea of Non-Interference is that
the high level does not interfere with the low level if the
effects of high level communications are not visible by a
low level agent. Finally, an important assumption when
dealing with Non-Interference analysis is that a system
is considered to be secure (no information flow can occur)
if there is no interaction with high level agents (if high
level actions are prevented).

Other properties have been introduced in the literature
in order to capture different behaviour of systems that
have to be considered not secure. In [26] Focardi and
Gorrieri promote the classification of a set of proper-
ties capturing the idea of information flow and Non-
Interference. One of the most interesting and intuitive
security properties is Non Deducibility on Composition
(NDC), which states that a system A in isolation has not
to be altered when considering all the potential inter-
actions of A with the high level agents of the external
environment.

3.1 Non-Interference
We define Non-Interference properties, Probabilistic Timed
Non-Interference (PTNI), Probabilistic Non-Interference
(PNI), Timed Non-Interference (TNI) and Nondeterministic
Non-Interference (NNI).

Definition 3.1: Given a system A in PTAs (PAs, TAs,
NSs, resp.) A is PTNI (PNI, TNI, NNI, resp.)-secure if
and only if A/ΣH ≈ A \ ΣH . We write A ∈ PTNI (A ∈
PNI, A ∈ TNI, A ∈ NNI, resp.) when the system A is
PTNI (PNI, TNI, NNI, resp.)-secure.

In the definition above, A \ΣH represents the isolated
system, where all high level actions are prevented. As
we have seen, such a system is considered secure due to



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 10

the notion of Non-Interference. If the observational be-
haviour of the isolated system is equal to the behaviour
of A/ΣH , which represents the system that communi-
cates with high level agents in an invisible manner for
the low agents point of view, A satisfies the security
property.

Note that the PNI property is the BSPNI property
defined in [2], the TNI property is an analogous of the
tBSNNI property defined in [28], and NNI is the BSNNI
property of [26].

The PTNI property, defined in an environment where
both probability and time are studied, is able to detect
information flow that may occur either due to the proba-
bilistic behaviour of the system or due to the time when
an action occurs or due to a combination of them.

Proposition 3.2: It is decidable whether a PTA (PA, TA,
NS, resp.) A satisfies the PTNI (PNI, TNI, NNI, resp.)
property.

Proof: The result derives directly by the decidability
of weak bisimulation for all the models, and by the
computable definitions of the operators of hiding and
restriction.

The security properties defined in the probabilistic
and/or timed settings are conservative extensions of the
security properties defined in the possibilistic and/or
untimed settings.

Proposition 3.3: The following implications hold:
• A ∈ PNI ⇒ unprob(A) ∈ NNI.
• A ∈ TNI ⇒ untime(A) ∈ NNI.
• A ∈ PTNI ⇒ unprob(A) ∈ TNI ∧ untime(A) ∈ PNI.

Proof: The implications follow by the bisimula-
tion based definitions of the security properties and
by the conservativeness of the notions of weak bisim-
ulation (Lemma 2.25). Consider a PA A. If A ∈
PNI, by Lemma 2.25 we have that unprob(A/ΣH) ≈
unprob(A \ ΣH). Now, by definitions of unprob, hiding
and restriction, it is easy to see that unprob(A/ΣH) =
unprob(A)/ΣH and that unprob(A \ ΣH) = unprob(A) \
ΣH . Therefore, we have that unprob(A)/ΣH ≈
unprob(A) \ ΣH , proving that unprob(A) ∈ NNI. The
proof is similar for the other cases.

The converse implications do not hold. The integra-
tion of probability and time adds new information that
extends what is already known in the nondeterministic
case. Therefore, systems considered to be secure in a
purely possibilistic setting, may turn out to be insecure
when considering aspects either of probability or of time.
This is shown in Examples 3.4 and 3.5.

Example 3.4: In Figure 4 we show a case of proba-
bilistic information flow presented in [2]. We assume
Inv(qi) = true for every i ∈ [0, 6]. Abstracting away
from probability, the system A could be considered
secure. In a purely possibilistic setting, in both systems
unprob(A)/ΣH and unprob(A)\ΣH a low level agent can
observe the action l or the sequence ll′ without further
information about the execution of action h. It holds
that unprob(A)/ΣH ≈ unprob(A) \ ΣH and, therefore,
unprob(A) ∈ NNI and unprob(A) ∈ TNI. In a probabilistic

A A \ ΣH A/ΣH

- iq0

6l,p

iq1

?
l,q

iq2

?
l′

iq4

-l, r iq3

?
h

iq5

?
l′

iq6

- iq0

6l,p

iq1

?
l,q

iq2

?
l′

iq4

-l, r iq3 - iq0

6l,p

iq1

?
l,q

iq2

?
l′

iq4

-l, r iq3

?
τ

iq5

?
l′

iq6

Fig. 4. A probabilistic covert channel.

A A \ ΣH A/ΣH

- iq0 -h, 1
2 iq1

?
l
x = 5
iq3

?
l, 1

2 x = 0
iq2

- iq0

?
l x = 0
iq2

- iq0 -τ, 1
2 iq1

?
l
x = 5
iq3

?
l, 1

2 x = 0
iq2

Fig. 5. A timing covert channel.

framework, given p + r + q = 1, the high level action
h interferes with the probability of observing either a
single action l or the sequence ll′. Formally, in A \ΣH , a
low level agent observes either the single action l with
probability p + r or the sequence ll′ with probability q.
However, in A/ΣH the single event l is observed with
probability p and the sequence ll′ with probability r+q.
As a consequence we have A/ΣH 6≈ A \ ΣH , so that
the PNI and the PTNI properties reveal the probabilistic
covert channel.

Example 3.5: In Figure 5 we show a case of timing
information flow. We assume Inv(qi) = true for i ∈ [2, 3]
and Inv(qi) = x ≤ 5 for i ∈ [0, 1]. Abstracting away
from time, the system A could be considered secure.
In an untimed setting, in both systems untime(A)/ΣH

and untime(A) \ΣH a low level agent can observe only
the action l executed with probability 1 without further
information about the execution of action h. It holds
that untime(A)/ΣH ≈ untime(A) \ ΣH , and, therefore,
untime(A) ∈ PNI. In a timed framework, given a clock
x ∈ IR≥0, the high level action h interferes with the time
of observing the action l. Formally, in A\ΣH , a low level
agent observes the single action l executed immediately.
However, in A/ΣH the single event l could either be
observed immediately or when the clock x reaches value
5. A low level agent, observing the event l when clock
x has value 5 knows that action h has occurred. As a
consequence, we have A/ΣH 6≈ A\ΣH , so that the PTNI
property reveals the timing covert channel. The same
holds for unprob(A); in this case the covert channel is
detected by the TNI property.



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 11

For system A in Figure 4, untime(A) is not PNI,
but unprob(A) ∈ TNI. On the contrary, for system A
in Figure 5, unprob(A) is not TNI, but untime(A) ∈
PNI. This shows that the discerning power of time and
probability, as regards the Non-Interference property, are
incomparable as stated in the next proposition.

Proposition 3.6: The following implications hold:
• ∃ PTA A : unprob(A) ∈ TNI ∧ untime(A) 6∈ PNI;
• ∃ PTA A : untime(A) ∈ PNI ∧ unprob(A) 6∈ TNI.
If we can express both time and probability as in PTAs,

we are able to describe systems exhibiting information
flow that neither a formalism with only probability nor a
formalism with only time can express. For such systems
we are able to show that they are not PTNI, even if they
are both PNI and TNI, and therefore we are able to reveal
a new covert channel.

Proposition 3.7: There exists a PTA A such that A is not
PTNI while unprob(A) is TNI and untime(A) is PNI.

Example 3.8: Consider the PTA A in Figure 6. We
assume Inv(qi) = true for i ∈ {3, 4, 8, 9}, Inv(qi) =
x ≤ 3 for i ∈ {0, 1, 5, 7} and Inv(qi) = x ≤ 4 for
i ∈ {2, 6}. It is easy to see that untime(A) ∈ PTI . In both
untime(A)/ΣH and untime(A) \ ΣH , a low level agent
observes the single event l taken with probability 1, and
therefore untime(A)/ΣH ≈ untime(A) \ ΣH . It is also
easy to see that unprob(A) ∈ TNI. In both unprob(A)/ΣH

and unprob(A) \ ΣH , a low level agent could either
observe the single event l taken when x = 3 or the event
l taken when x = 4, and therefore unprob(A)/ΣH ≈
unprob(A) \ ΣH . Finally, we show that A is not PTNI.
In a probabilistic and timed framework, the high level
action h interferes with the probability of observing the
action l executed either when x = 3 or when x = 4.
Formally, in A\ΣH , a low level agent observes the action
l either when x = 3 or when x = 4 with probability 1

2 ,
respectively. However, in A/ΣH the event l taken when
x = 3 is observed with probability 19

30 , while the action l
taken when x = 4 is observed with probability 11

30 . As a
consequence, we have A/ΣH 6≈ A\ΣH , so that the PTNI
property reveals the probabilistic timing covert channel.

There are other attacks on probabilistic timed systems
which do not arise in systems where only time or only
probability is taken into account. Let A be the PTA in
Figure 7. It is easy to see that unprob(A) is TNI and
untime(A) is PNI, as in a purely timed system or in
a purely probabilistic system, action h cannot alter the
low level observation. As for PTAs, we have however
that A is not PTNI. For a probabilistic timed system, in
fact, a scheduler may exploit the probabilistic execution
of h to alter the observation of the passage of time
(see Example 2.7). Namely, we have A/ΣH = A2 and
A \ΣH = A1 where A1 and A2 are the PTAs in Figure 3.

3.2 Non Deducibility on Composition
We define the Non Deducibility on Composition prop-
erties Probabilistic Timed Non Deducibility on Composition
(PTNDC), Probabilistic Non Deducibility on Composition

A A \ ΣH

A/ΣH

- iq0

6τ, 1
3

iq1¾ l

x = 3
iq3

?
τ, 1

3

iq2¾ l

x = 4
iq4

-h, 1
3 iq5

?

τ, 1
10

iq6 -l

x = 4
iq8

6
τ, 9

10

iq7 -l

x = 3
iq9

- iq0

6τ, 1
2

iq1¾ l

x = 3
iq3

?
τ, 1

2

iq2¾ l

x = 4
iq4

- iq0

6τ, 1
3

iq1¾ l

x = 3
iq3

?
τ, 1

3

iq2¾ l

x = 4
iq4

-τ, 1
3 iq5

?

τ, 1
10

iq6 -l

x = 4
iq8

6
τ, 9

10

iq7 -l

x = 3
iq9

Fig. 6. A probabilistic timing covert channel.

-
µ´
¶³
q0

ª

h, 1
2

-
µ´
¶³
q1

l, 1
2

Fig. 7. Yet another probabilistic timed attack.

(PNDC), Timed Non Deducibility on Composition (TNDC)
and Nondeterministic Non Deducibility on Composition
(NNDC).

Definition 3.9: Given a system A in PTAs (PAs, TAs,
NSs, resp.), A is PTNDC (PNDC, TNDC, NNDC, resp.)-
secure if and only if ∀E ∈ ΓH ,∀L ⊆ ΣH A/ΣH ≈
(A||LE) \ ΣH . We write A ∈ PTNDC (A ∈ PNDC, A ∈
TNDC, A ∈ NNDC, resp.) when the system A is PTNDC
(PNDC, TNDC, NNDC, resp.)-secure.

As we have seen, A/ΣH represents the observable
behaviour of A from a low level agent point of view
(i.e. the isolated system where all high level actions
are hidden). System (A||LE) \ ΣH represents, instead,
system A communicating with the high agent E and then
prevented from executing other high level actions. If the
observational behaviour of the isolated system is equal
to the behaviour of the system communicating with any
high level agent, A satisfies the security property.

Theorem 3.10: A ∈ PTNDC (PNDC, TNDC, NNDC,
resp.) ⇒ A ∈ PTNI (PNI, TNI, NNI, resp.).

Proof: If A is a PTA, consider E =
(∅, ∅, {q}, q, ∅, Inv(q) = false, Π) ∈ ΓH , while if A is a
TA consider E = (∅, ∅, {q}, q, ∅, Inv(q) = false) ∈ ΓH .
Intuitively, E is an automaton representing a high level
agent which does not perform any transition. Consider
then the set L = ∅. If system A is PTNDC (PNDC,
TNDC, NNDC, resp.), then A/ΣH ≈ (A||LE) \ΣH . Now,



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 12

A A \ ΣH Π

A/ΣH (A||LΠ) \ ΣH

- iq0 -h, 1
2 iq1 -h iq3

?
l

iq4
?
l, 1

2

iq2

- iq0

?
l

iq2

- ir0 -h ir1

- iq0 -τ, 1
2 iq1 -τ iq3

?
l

iq4
?
l, 1

2

iq2

- ir0 -τ, 1
2 ir1

?
l, 1

2

ir2

Fig. 8. A ∈ PTNI, but A 6∈ PTNDC.

by the definition of parallel composition, (A||LE) = A′

where A′ is an automaton behaving like A with only
different state names (i.e., the states of A paired with
the only state q of E). Now it is easy to see that A′ = A
after a renaming of the states (i.e. by renaming each
state (q′, q) of A′ with q′). As a consequence we have
that (A||LE) = A and, therefore, A/ΣH ≈ A \ ΣH ,
stating that A ∈ PTNI (PNI, TNI, NNI, resp.). The
converse implication does not hold, as it is shown in
Example 3.11.

Example 3.11: Consider the PTA A of Figure 8. We
assume Inv(qi) = (x = 0) for i ∈ {0, 1, 3} and Inv(qi) =
true for i ∈ {2, 4}. It is easy to see that A is PTNI secure,
since A/ΣH ≈ A \ ΣH . In both A/ΣH and A \ ΣH , a
low level agent observes the single event l taken when
x = 0 with probability 1. If we consider, instead, the
high level agent Π of Figure 8 and the set L = {h}, we
can observe that A/ΣH 6≈ (A||LΠ) \ ΣH . In fact, system
A/ΣH always performs action l with probability 1, while
system (A||LΠ) \ΣH may reach a deadlock state r1 and
does not perform any visible action with probability 1

2
(as it turns out after the parallel composition of A and Π).
As a consequence, automaton A is not PTNDC secure.
We also have that untime(A) ∈ PNI but untime(A) 6∈
PNDC, unprob(A) is TNI but not TNDC, and, finally,
unprob(untime(A)) ∈ NNI, but unprob(untime(A)) 6∈
NNDC.

Theorem 3.10 and Example 3.11 show that the PTNI
property is not able to detect some potential deadlocks
due to high level activities, as put into evidence in [26]
for the nondeterministic setting. For this reason we resort
to the PTNDC property, which implies PTNI, in order to
capture these finer undesirable behaviour.

Note that the PTAs in Figure 4 and Figure 5 are also
not PTNDC; this can be proven by considering two
simple classes of high level agents. For the first class we
consider just a high level agent that may synchronize
with the two PTAs by performing an action h, whereas
for the second class we consider an inactive high level
agent that does not perform action h (see proof of
Theorem 3.10).

As we did for the Non-Interference security prop-
erties in the previous section, now we distinguish the

discerning power of time and probability with the Non
Deducibility on Composition properties.

Proposition 3.12: The following implications hold:
• A ∈ PNDC ⇒ unprob(A) ∈ NNDC;
• A ∈ TNDC ⇒ untime(A) ∈ NNDC;
• A ∈ PTNDC ⇒ unprob(A) ∈ TNDC ∧untime(A) ∈

PNDC.
Proof: As for Proposition 3.3, the implications follow

by the bisimulation based definitions of the security
properties and by the conservativeness of the notions of
weak bisimulation. Consider again a PA A. If A ∈ PNDC,
by Lemma 2.25 we have that for all E ∈ ΓH , p ∈]0, 1[,
L ⊆ ΣH , unprob(A/ΣH) ≈ unprob((A||LE) \ ΣH). Now,
by definitions of unprob, hiding and restriction, it is
easy to see that unprob(A/ΣH) = unprob(A)/ΣH and
that unprob((A||LE) \ΣH) = unprob(A||LE) \ΣH . More-
over, by definition of parallel composition, we have that
unprob(A||LE) = unprob(A)||Lunprob(E). Therefore, we
have that unprob(A)/ΣH ≈ (unprob(A)||Lunprob(E)) \
ΣH . Now, since this condition holds for each PA E ∈ ΓH

and since any NS E′ may be derived by unprob(E) for
some PA E, we also have that for all NSs E′ ∈ ΓH ,
unprob(A)/ΣH ≈ (unprob(A)||LE′) \ ΣH , thus proving
that unprob(A) ∈ NNDC. The proof is similar for the
other cases.

For system A in Figure 4, untime(A) is not PNDC,
but unprob(A) ∈ TNDC. On the contrary, for system A
in Figure 5, unprob(A) is not TNDC, but untime(A) ∈
PNDC. This shows that also for the Non Deducibility
on Composition, time and probability add discerning
power, as stated in the next proposition.

Proposition 3.13: The following implications hold:
• ∃ PTA A : unprob(A) ∈ TNDC ∧ untime(A) 6∈

PNDC;
• ∃ PTA A : untime(A) ∈ PNDC ∧ unprob(A) 6∈

TNDC.
If we can express both time and probability as in PTAs,

we are able to describe systems exhibiting information
flow that neither a formalism with only probability nor a
formalism with only time can express. For such systems
we are able to show that they are not PTNDC, even if
they are both PNDC and TNDC, and therefore we are
able to reveal a new covert channel.

Proposition 3.14: ∃A : A 6∈ PTNDC ∧ unprob(A) ∈
TNDC ∧ untime(A) ∈ PNDC.

Proof: If we consider again the PTA A in Figure 6
we may show that untime(A) ∈ PNDC and unprob(A) ∈
TNDC by considering only two classes of high level sys-
tems (one containing high systems which may synchro-
nize with A and one with systems which may not). But,
as we have seen, A 6∈ PTNI, therefore, for Theorem 3.10
we also have that A 6∈ PTNDC.

The diagram in Figure 9 summarizes our results.
It is worth noticing that, as it happens for the analo-

gous properties defined in [26], [28], [2], the definition
of the PTNDC property is difficult to be used in prac-
tice because of the universal quantification on the high



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 13

TNI

PNI

PTNI

NDC

TNDC

PTNDC
PNDC

NNI

Fig. 9. Relations among security properties.

level agents. As we have seen, decidability of PTNDC
depends, in fact, on the possibility of reducing all the
high level automata in ΓH to a finite case suitable for the
particular automaton A we would like to study. In [26],
[28], [2] other properties have been defined, stronger
than the PTNDC property, which are easier to check.
Such properties, defined for a CCS-like process algebra,
discrete-time process algebra and probabilistic process
algebra respectively, could be easily translated within
our framework of PTAs.

4 AN APPLICATION

As an application we consider a network device, also
studied in [28] in a timed framework, that manages the
access to a shared buffer by following a mutual exclu-
sion policy. Assuming that the agents on the network
are classified as low and high level agents, the device
implements the no-write-down no-read-up policy [29]. In-
tuitively, the policy states that high level users can only
read the buffer, while low level users can only write on
it. Such a policy avoids direct information flow from
high level to low level, however malicious agents can
exploit some covert channel in order to transmit infor-
mation indirectly. For example, a low level user could get
information about the high level activity by observing
the amount of time the device is locked (non accessible
by the low level) when high agents are reading, or by
observing the frequencies with which high level agents
make access on it. We would like to check whether some
covert channel can be exploited, by giving a specification
of the network device and then checking the PTNDC
property.

In the following we consider only a low level user
and a high level user communicating with the network
device. We assume that the low level user is always
ready to write in the buffer, so we consider an agent
that infinitely waits for a grant from the device and then
writes in the buffer. In this manner we are considering
a low level user that continuously monitors the activity
of the device. We also assume that the entire procedure

B

Π1

Π2

(B||LΠ1) \ ΣH

(B||LΠ2)) \ ΣH

iq1
j

readH

Y

reqH , 1
2

?iq0
j

grantL, 1
2

y := 0
Y

writeL

y = n
iq2

- ir0 -reqH ir1 iq1¾
τ, 1

2 ?iq0
j

grantL, 1
2

y := 0
Y

writeL

y = n
iq2

?ir0
j

reqH

z := 0

Y

readH

z = k
ir1 iq1

j

τ

z = k

Y

τ, 1
2

z := 0
?iq0

j

grantL, 1
2

y := 0
Y

writeL

y = n
iq2

Fig. 10. Device specification with timing covert channels.

of receiving a grant in the network and writing in the
buffer is executed in a time n. In Figure 10, we model the
specification of a simple device (see the PTA B). Actions
reqH , readH , grantL and writeL model high level read
requests, high level reads, low level write grants and low
level writes, respectively. The set ΣH of high level actions
is {reqH , readH}. We assume Inv(q0) = Inv(q1) = true
and Inv(q2) = y ≤ n. The device B is always ready to
accept an access request from the high level agent with
probability 1

2 and to grant a write access to the low level
user with the same probability. Obviously, we always
consider the device composed with a high level agent
according to ||L (we assume L = {reqH , readH}). On
the one hand, when the device is composed with a high
level agent that performs action reqH with probability
1, it synchronizes with the high agent accepting his
request with probability 1

2 . On the other hand, if the
high level agent does not perform reqH , the composed
system performs action grantL with probability 1. As
a consequence, we can find out the following covert
channels. Consider the high agent Π1 of Figure 10, which
executes a read request without performing the reading
afterwards. System (B||LΠ1) \ ΣH reaches a deadlock
state that is not reached by B/ΣH . In this way, the high
level agent could transmit the bit 0 or 1 by alternatively
blocking or not the device. Such a covert channel can be
detected by the PTNDC property, in fact we have that
B/ΣH 6≈ (B||LΠ1) \ ΣH , so that B 6∈ PTNDC. Another
interesting covert channel arises if one considers Π2,
which locks the buffer and executes a reading only after
a time k. A low level user observing the behaviour of
(B||LΠ2) \ ΣH does not receive any grant access for a
time k when a reqH action is performed. In this way
the high level agent could indirectly transmit value k
to the low level user. We obviously have again that
B/ΣH 6≈ (B||LΠ2) \ ΣH .

The two covert channels discussed above could be
avoided by introducing a timeout mechanism which
releases the device if readH is not performed and by
always releasing the device after a fixed amount of time



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 14

has passed. In Figure 11 we show a device B′ that
accepts a high level request, and uses a clock x as timer
and t as timeout. When it executes action reqH the timer
is set to 0, action readH could be performed only when
x < t, and when x reaches value t the device unlocks
the buffer going back to q0. When transitions starting
from a given state have disjoint conditions we omit
probabilities since their execution depends on the time
configuration, rather than on the effective probability. We
assume Inv(q0) = true, Inv(q1) = Inv(q3) = x ≤ t and
Inv(q2) = y ≤ n. The timing covert channels shown
in the previous case could not be exploited anymore,
however device B′ is still insecure. In fact the device is
unavailable for the fixed amount of time when a high
level access is performed, and this is clearly observable
by the low level user that has to wait the termination
of the high level request before obtaining access to the
buffer. This represents a typical situation where the
unavailability of a shared resource can be encoded as
0 or 1 in order to transmit data. Such a situation is
captured by the PTNDC property by considering again
the automaton Π2 and assuming k < t. In fact we have
again that B′/ΣH 6≈ (B′||LΠ2) \ ΣH .

The capacity of such a covert channel could be re-
duced, but not totally avoided, by considering a buffer
that probabilistically locks himself without any high
level request. In this manner the low level user could
not be sure whether the buffer is really locked by the
high user or not. In Figure 11, B′′ represents a device
that behaves in such a manner, locking himself with a
probability r. Again, Inv(q0) = true, Inv(q2) = y ≤ n
and Inv(q1) = Inv(q3) = Inv(q4) = x ≤ t. As we
have said, this does not avoid entirely the covert chan-
nel, but the knowledge the low level user acquires is
affected by some uncertainty. In fact, if the device is
locked, the low level user could deduce that the high
user locked the device with a certain probability while
with probability r the device has locked himself for
simulating a false higher user’s activity. In this case, if
we resorted to a ε-tolerant weak bisimulation (i.e. for
which the probabilities of reaching a certain class from
certain configurations are allowed to be different up to
the threshold ε [2]), we would be able to give a measure
of the probabilistic covert channel, by estimating the
probability that the information flow arises according to
r, and therefore a measure of the security level of the
device.

We can completely hide the high level activity to the
low level user by partitioning into two sessions the time
in which users can access the buffer. During a low session,
lasting a fixed amount of time n, only the low level user
can access the buffer, then the device goes to the high
session, where access is reserved, for the same amount
of time, to the high level user. This makes impossible
for the low level user to discover something about the
high level activity, since the same fixed amount of time
is reserved to the high session even if the high user does
nothing. In Figure 12 we specify a buffer Bs that behaves

B′

B′′

?iq0iq1
ª

reqH , 1
2

x := 0
-τ

x = t

jreadH
x < t

¸x = t
τiq3

j

grantL, 1
2

y := 0
Y

writeL

y = n
iq2

?iq0iq1
ª

reqH ,p

x := 0
-τ

x = t

jreadH
x < t

¸x = t
τiq3

:grantL,q
y := 0

¾ writeL

y = n

iq2

R

τ, r
x := 0]

τ

x = t
iq4

Fig. 11. Improved device specifications.

Bs

Bc

iq2
s

τ, x = t

x := 0

k
τ, x = t

x := 0
?iq0

R

grantL

x + n ≤ t
y := 0

I

writeL

y = n

iq1

iq2iq3
ª

reqH

x < t

-τ
x = t

µ

readH , x < t

s
τ, x = t

x := 0

k
τ, x = t

x := 0
?iq0

R

grantL

x + n ≤ t
y := 0

I

writeL

y = n

iq1

Fig. 12. Secure Device.

in such a manner: the buffer is reserved for a time t to
the low level user and to the high level user alternatively.
We assume Inv(q0) = Inv(q2) = Inv(q3) = x ≤ t and
Inv(q1) = y ≤ n. Automaton Bs is PTNDC, in fact, for
every possible high level user Π, (Bs||LΠ) \ ΣH ≈ Bc ≈
Bs/ΣH . Intuitively, automaton Bc of Figure 12 represents
the automaton resulting after the parallel composition
between Bs and any high level user Π, and, therefore,
Bc is weakly bisimilar to Bs composed with any possible
high level user Π. Finally, it easy to see that Bc ≈ Bs/ΣH .

5 CONCLUSIONS

The classical theory of Non-Interference must be ex-
tended to cope with real systems which may exhibit
probabilistic and timing covert channels that are not cap-
tured by non quantitative security models. In this paper
we have developed a general framework where both
probability and time are taken into account. By defining
some information flow security property, we have shown
how to detect with our model both probabilistic and
timing covert channels.



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 15

Time and probability allow discovering that systems
which in a nondeterministic setting are considered to
be secure, are instead insecure. Time only and proba-
bility only give incomparable discerning power, while
having both time and probability gives a discerning
power greater than the ones given by each of them.
We have seen in Figure 6 an example of a PTA where
a covert channel arises by combining the probabilistic
and the timed behaviour of a system. Such a covert
channel could not be detected by analysing only the
timing of the system or the frequencies of its actions.
Such an academic example could work as a basis for
more complex covert channels. In [38], a flow on the
dining cryptographers protocol [18] has been detected
as a combination of the probabilistic and the timed be-
haviour of the cryptographers. The anonymity property
studied in this case could be reformulated in terms of a
noninterference property and analysed in our setting.

In general, realistic probabilistic protocols do not al-
ways guarantee full security. Actually, one may usually
assure that a property is satisfied up to a certain security
threshold. The problem with this kind of properties is
that one may end up classifying many realistic systems
as insecure.

Moreover, in the recent literature (see, e.g., [16], [17])
the interest also moved on the analysis of the possible in-
teractions of nondeterministic and probabilistic choices,
and their possibility to affect the security of a system
(examples on how nondeterminism does actually play a
role in asserting the security of a system are given in the
above mentioned papers). Actually, it has been shown
that in certain cases, a scheduler that collaborates with
an attacker can allow him to distinguish two bisimilar
systems. In this cases, the solution is either to define
stricter notions of behavioral equivalences (as in this
paper and in [16]), or to limit the information a scheduler
can access [17].

While our notion of weak bisimulation is extremely
strict (in our case study, in order to get secure systems,
we have to basically disallow any flow of information
between levels and thus we partition the buffer in two
different security clearance levels), there are also secure
non pathological systems which are not partitioned be-
tween security levels (see, e.g., the dining cryptogra-
phers study in [38]). Note, however, that our notion
could be made even stricter by following the approach
in [16] and requiring two systems to simulate each other
with the same scheduler.

On the other hand, the notion of weak bisimulation we
introduced in Definition 2.3 is quite strict also because
exact probabilities are required. Actually, an approximate
relation could be extremely useful when analyzing se-
curity aspects of probabilistic systems. More precisely,
within a purely qualitative setting one might establish
whether a system is secure or not; in a probabilistic
model, one can also verify the security level of a system
by establishing with which probability certain insecure
behaviour might arise (for example in the case of the

buffer presented in Section 4 where a fake lock was
considered).

In the classical approach to security analysis, some
probabilistic protocols turn out to be insecure even
though the probability of executing an insecure be-
haviour is close to 0. As a consequence, an approximate
quantitative study of the unwanted behaviour is crucial
for the evaluation of the security level of probabilistic
systems.

In order to introduce a quantitative measure for in-
secure behaviour and to estimate the probability that a
certain insecure behaviour arises, we could introduce an
approximate relation for deciding if two systems behave
almost in the same way (up to a given threshold). A
similar approach is developed in [3].

In [12], [19], [21], [22], [23] metrics are introduced
in order to quantify the similarity of the behaviour
of probabilistic transition systems that are not strictly
bisimilar. In [2] the authors introduce an enriched no-
tion of weak probabilistic bisimulation, which is able to
tolerate fluctuations making the security conditions less
restrictive and relating systems that may have largely
different possible behaviour under the condition that
such behaviour is observable with a negligible probabil-
ity. Other more information theoretical approaches also
go in this direction, see, e.g., [15], [10].

Finally, another line of research to be carried out as
a future extension of this work could consist in the
development of a technique for the automatic correction
of PTAs which do not satisfy a security property. Such a
technique could be easier for the automatic correction of
PTAs which do not satisfy the Non-interference security
property. It should automatically adjust the automa-
ton A in such a way that A/ΣH becomes bisimilar to
A \ ΣH . In this direction, Agat considers the aspect
of time in isolation for deterministic systems [1], Di
Pierro et al. propose a framework where probabilistic
systems are transformed to become time equivalent [20],
finally, in [24] systems are transformed to become time
probabilistic bisimilar.

REFERENCES

[1] J. Agat: Transforming out Timing Leaks. Proc. of POPL’00, ACM
Press, 40–53, 2000.

[2] A. Aldini, M. Bravetti, R. Gorrieri: A Process-algebraic Approach
for the Analysis of Probabilistic Non-interference. Journal of Com-
puter Security 12, 191–245, 2004.

[3] A. Aldini, A. Di Pierro: Estimating the Maximum Information
Leakage. International Journal of Information Security 7, 219–
242, 2008.

[4] R. Alur, C. Courcoubetis, D. L. Dill: Verifying Automata Speci-
fications of Probabilistic Real-Time Systems. Real-Time: Theory in
Practice, Springer LNCS 600, 28–44, 1992.

[5] R. Alur, D. L. Dill: A Theory of Timed Automata. Theoretical
Computer Science 126, 183–235, 1994.

[6] C. Baier, H. Hermanns: Weak Bisimulation for Fully Probabilistic
Processes. Proc. of CAV’97, Springer LNCS 1254, 119–130, 1997.

[7] R. Barbuti, L. Tesei: A Decidable Notion of Timed Non-interference.
Fundamenta Informaticae 54, 137–150, 2003.

[8] D. Beauquier: On Probabilistic Timed Automata. Theoretical Com-
puter Science 292, 65–84, 2003.



JOURNAL OF..., VOL. XXX, NO. XXX, MONTH 20XX 16

[9] R. E. Bellman: Dynamic Programming. Princeton University
Press, 1957.

[10] M. Boreale: Quantifying Information Leakage in Process Calculi.
Information and Computation 207, 699–725, 2009.

[11] P. Bouyer: Timed Automata May Cause Some Troubles. BRICS RS-
02-35.

[12] F. van Breugel, J. Worrel: Towards Quantitative Verification of Prob-
abilistic Systems (extended abstract). Proc. of ICALP’01, Springer
LNCS 2076, 421–432, 2001.

[13] S. Cattani, R. Segala: Decision Algorithm for Probabilistic Bisim-
ulation. Proc. of CONCUR ’02, Springer LNCS 2421, 371–385,
2002.

[14] K. Cerans: Decidability of Bisimulation Equivalences for Parallel
Timer Processes. Proc. of CAV’92, Springer LNCS 663, 302–315,
1992.

[15] D. Clark, S. Hunt, P. Malacaria: Quantitative Information Flow, Re-
lations and Polymorphic Types. Journal of Logic and Computation
18, 181–199, 2005.

[16] K. Chatzikokolakis, G. Norman, D. Parker: Bisimulation for
Demonic Schedulers. Proc. of FOSSACS’09, Springer LNCS 5504,
318–332, 2009.

[17] K. Chatzikokolakis, C. Palamidessi: Making Random Choices
Invisible to the Scheduler. Proc. of CONCUR’07, Springer LNCS
4703, 42–58, 2007.

[18] D. Chaum: The Dining Cryptographers Problem: Unconditional
Sender and Recipient Untrace- ability. Journal of Cryptology 1,
65-75, 1988.

[19] J. Desharnais, V. Gupta, R. Jagadeesan, P. Panangaden: The
Metric Analogue of Weak Bisimulation for Probabilistic Processes.
Proc. of LICS’02, IEEE CS Press, 2002.

[20] A. Di Pierro, C. Hankin, I. Siveroni, H. Wiklicky: Tempus fugit:
How to plug it. Journal of Logic and Algebraic Programming 72,
173–190, 2007.

[21] A. Di Pierro, C. Hankin, H. Wiklicky: Quantitative Relations and
Approximate Process Equivalences. Proc. of CONCUR’03, Springer
LNCS 2761, 508–522, 2003.

[22] A. Di Pierro, C. Hankin, H. Wiklicky: Approximate Non-
Interference. Journal of Computer Security 12, 37-82, 2004.

[23] A. Di Pierro, C. Hankin, H. Wiklicky: Measuring the Confinement
of Probabilistic Systems. Theoretical Computer Science 340, 3–56,
2005.

[24] A. Di Pierro, C. Hankin, H. Wiklicky: Quantifying Timing Leaks
and Cost Optimisation. Proc. of ICICS’08, Springer LNCS 5308,
81–96, 2008.

[25] N. Evans, S. Schneider: Analysing Time Dependent Security Prop-
erties in CSP Using PVS. Proc. of Symp. on Research in Com-
puter Security, Springer LNCS 1895, 222–237, 2000.

[26] R. Focardi, R. Gorrieri: A Classification of Security Properties.
Journal of Computer Security 3, 5–33, 1995.

[27] R. Focardi, R. Gorrieri, R. Lanotte, A. Maggiolo-Schettini,
F. Martinelli, S. Tini, E. Tronci: Formal Models of Timing Attacks
on Web Privacy. Elsevier ENTCS 62, 2001.

[28] R. Focardi, R. Gorrieri, F. Martinelli: Information Flow Analysis
in a Discrete-Time Process Algebra. Proc. of 13th CSFW, IEEE CS
Press, 170–184, 2000.

[29] J. A. Goguen, J. Meseguer: Security Policy and Security Models.
Proc. of Symp. on Research in Security and Privacy, IEEE CS
Press, 11–20, 1982.

[30] J. W. Gray III. Toward a Mathematical Foundation for Information
Flow Security. Journal of Computer Security 1, 255–294, 1992.

[31] P. R. Halmos: Measure Theory. Springer-Verlag, 1950.
[32] T. .A Henzinger, X. Nicollin, J. Sifakis, S. Yovine: Symbolic Model

Checking for Real-time Systems. Information and Computation
111, 193–244, 1994.

[33] H. Howard: Dynamic Programming and Markov Processes. MIT
Press, 1960.

[34] M. Kwiatkowska, G. Norman, R. Segala, J. Sproston: Automatic
Verification of Real-time Systems with Discrete Probability Distribu-
tion. Theoretical Computer Science 282, 101–150, 2002.

[35] M. Kwiatkowska, R. Norman, J. Sproston: Symbolic Model Check-
ing of Probabilistic Timed Automata Using Backwards Reachability.
Tech. rep. CSR-03-10, University of Birmingham, 2003.

[36] R. Lanotte, D. Beauquier: A Decidable Probability Logic for Timed
Probabilistic Systems. CoRR cs.LO/0411100 (2004).

[37] R. Lanotte, A. Maggiolo-Schettini, A. Troina: Information Flow
Analysis for Probabilistic Timed Automata. Proc. of FAST’04,
Springer IFIP 173, Toulouse, France, August 2004.

[38] R. Lanotte, A. Maggiolo-Schettini, A. Troina: Weak Bisimulation
for Probabilistic Timed Automata.
http://www.di.unito.it/˜troina/PTA_WB.pdf.

[39] F. Laroussinie, K. G. Larsen, C. Weise: From Timed Automata to
Logic - and Back. Proc. of MFCS’95, Springer LNCS 969, 27–41,
1995.

[40] K. G. Larsen, Y. Wang: Time abstracted bisimulation: Implicit
specifications and decidability. Information and Computation 134,
75–101, 1997.

[41] D. McCullough: Noninterference and the Composability of Security
Properties. Proc. of Symp. on Research in Security and Privacy,
IEEE CS Press, 177–186, 1988.

[42] J. K. Millen: Hookup Security for Synchronous Machines. Proc. of
CSFW’90, IEEE CS Press, 84–90, 1990.

[43] R. Milner: Communication and Concurrency. Prentice Hall, 1989.
[44] A. Troina: Probabilistic Timed Automata for Security Analysis and

Design. Ph.D. Thesis, University of Pisa, 2006.
[45] Y. Wang: Real–Time Behaviour of Asynchronous Agents. Proc. of

CONCUR’90, Springer LNCS 458, 502–520, 1990.

Ruggero Lanotte is Assistant Professor of
Computer Science at the University of Insubria
(Como) since 2003. Prior to his appointment
in Como, he was affiliated with the University
of Paris XII and the University of Pisa where
he received a Ph.D. degree on Computer Sci-
ence in 2003. His current research focuses on
automaton-theoretic modelling of distributed and
real-time systems. The most recent results re-
gard the study of probabilistic behaviour of these
systems and security analysis.

Andrea Maggiolo-Schettini is full professor of
Computer Science at the University of Pisa since
1983. Prior to this appointment from 1968 to
1981 he was a researcher of the Italian Na-
tional Research Council (C.N.R.) in Naples and
in Pisa, and from 1981 to 1983 he was full
professor of Computer Science at the University
of Turin. He has done research in computability
theory, semantics of programming languages,
specification and verification of concurrent and
distributed systems. His present interests in-

clude also systems biology and natural computing. He is member of the
steering committee of the IEEE International Conference on Software
Engineering and Formal Methods.

Angelo Troina is assistant professor of Com-
puter Science at the University of Turin since
October 2007. He got his Master degree in
Computer Science at the University of Bologna
in 2002 and obtained a Ph.D. in Computer Sci-
ence at the University of Pisa in 2006. Then
he moved to France for completing a postdoc
at LIX (Ecole Polytechnique) and LSV (ENS-
Cachan). His research topics include: formal
description techniques of concurrent systems,
modelling and verification of real-time and prob-

abilistic systems, foundations of security analysis and systems biology.


