
Machine Vision and Applications (1997) 9: 272–290 Machine Vision and
Applications
c© Springer-Verlag 1997

Estimating 3-D rigid body transformations: a comparison
of four major algorithms

D.W. Eggert1, A. Lorusso2, R.B. Fisher3

1 Department of Computer Science, University of New Haven, West Haven, CT 06516, USA, e-mail: eggert@vision.newhaven.edu
2 Department of Artificial Intelligence, University of Edinburgh, Edinburgh EH1 2QL, Scotland, UK, e-mail: adele@houdini.icb.ge.cnr.it
3 Department of Artificial Intelligence, University of Edinburgh, Edinburgh EH1 2QL, Scotland, UK, e-mail: rbf@aifh.ed.ac.uk

Abstract. A common need in machine vision is to com-
pute the 3-D rigid body transformation that aligns two sets
of points for which correspondence is known. A compara-
tive analysis is presented here of four popular and efficient
algorithms, each of which computes the translational and ro-
tational components of the transform in closed form, as the
solution to a least squares formulation of the problem. They
differ in terms of the transformation representation used and
the mathematical derivation of the solution, using respec-
tively singular value decomposition or eigensystem compu-
tation based on the standard [R,T] representation, and the
eigensystem analysis of matrices derived from unit and dual
quaternion forms of the transform. This comparison presents
both qualitative and quantitative results of several experi-
ments designed to determine (1) the accuracy and robust-
ness of each algorithm in the presence of different levels of
noise, (2) the stability with respect to degenerate data sets,
and (3) relative computation time of each approach under
different conditions. The results indicate that under “ideal”
data conditions (no noise) certain distinctions in accuracy
and stability can be seen. But for “typical, real-world” noise
levels, there is no difference in the robustness of the final
solutions (contrary to certain previously published results).
Efficiency, in terms of execution time, is found to be highly
dependent on the computer system setup.

Key words: Motion analysis – 3-D rigid transformations –
Pose estimation

1 Introduction

Determining the relationship between two coordinate sys-
tems through the use of sets of corresponded feature mea-
surements is known as theabsolute orientation problem. It
has numerous applications in the areas of photogrammetry,
robotics (constructing world models), object motion analysis,
relating a camera coordinate system to others (the hand-eye
transform), as well as estimating the position and orientation
of a recognized object (pose estimation).

Correspondence to: D.W. Eggert

A recent survey by Sabata and Aggarwal (1991) lists a
large number of methods that have been developed to com-
pute the 3-D rigid body transformation between two sets
of corresponded features. These techniques are categorized
based on feature type (surfaces, lines or points) and general
solution method (iterative vs closed form). Point features
are the most commonly used in practice. Closed form so-
lutions are generally superior to iterative methods, in terms
of efficiency and robustness, because the latter suffer from
the problems of not guaranteeing convergence, becoming
trapped in local minima of the error function and requir-
ing a good starting estimate. For these reasons, this pa-
per compares only a subset of the approaches mentioned
in the indicated survey:closed formsolutions involving cor-
respondedpoint sets. The problem of determining point cor-
respondence, itself an active research area, is not addressed
here.

Four popular and efficient solutions are compared in this
paper. These differ according to the representations used for
the transformation components, and in the ways they mini-
mize a criterion function. The first solution was developed
by Arun et al. (1987) and is based on computing thesin-
gular value decomposition(SVD) of a matrix derived from
the standard [R,T] representation. A similar approach, but
based on exploiting theorthonormal properties of the ro-
tation matrix, computes theeigensystemof a different de-
rived matrix, as presented by Horn et al. (1988). The third
algorithm, also developed by Horn (1987), involves com-
puting the eigensystem of a matrix related to representing
the rotational component as aunit quaternion. Yet another
eigensystem is analyzed when the translation and rotation
components are represented usingdual quaternions, as pre-
sented in the fourth technique by Walker et al. (1991).

The comparison conducted here consists of three parts.
First, the absoluteaccuracyof each algorithm is determined
using ground truth under noiseless conditions, and thenro-
bustnessis measured as the coordinates of corresponding
points are corrupted with increasing amounts of noise. Sec-
ond, thestability of the algorithms is quantified by finding
the breakdown limits as the original 3-D point sets degen-
erate into such forms as a plane, a line and a single point.
Lastly, the relativeefficiencyof the algorithms, in terms of

273

actual execution time, is reported for the above situations.
Conclusions based on these results should make the choice
of an appropriate algorithm for a given application easier
and more reliable.

2 Previous comparisons

The review by Sabata and Aggarwal (1991), while quite
broad in the number of techniques described, unfortunately
only presents a qualitative summary and comparison of these
techniques (also, the dual quaternion method was devel-
oped after this survey). Quantitative results which would
help answer the question, “Which is the best?”, were not
given. However, in the defining papers of these approaches
there appear certain quantitative results and qualitative as-
sessments of accuracy and speed, including the following.

Arun et al. observed that “the computer time require-
ments for the SVD and (unit) quaternion algorithms are com-
parable” (1987, p. 700). In a paper not directly related to any
of the methods, Zhang implemented both of the quaternion
algorithms and found that “they yield exactly the same mo-
tion estimate” (1994, p. 124). Also, he found these two tech-
niques to be more efficient than an iterative technique based
on the extended Kalman filter that he developed. Finally,
Walker et al. stated that “the two algorithms produce the
same rotation errors ... for the translation errors, the DQ al-
gorithm exhibits better performance than the SVD algorithm
... ” (1991, p. 364). The thorough and unbiased comparison
presented here will clarify, extend (and even refute) some
of these previous findings.

3 Descriptions of the algorithms

Each of the four algorithms computes the solution to a sim-
ilar problem, which can be described as follows. Assume
that there exist two corresponded point sets{mi} and{di},
i = 1 .. N , such that they are related by:

di = R mi + T + Vi (1)

where R is a standard 3× 3 rotation matrix,T is a 3-D
translation vector andVi a noise vector. Solving for the op-
timal transformation [̂R, T̂] that maps the set{mi} onto{di}
typically requires minimizing aleast squares error criterion
given by:

Σ 2 =
N∑
i=1

‖ di − R̂ mi − T̂ ‖ 2 (2)

It is true that if outliers exist in the data set (through
incorrect correspondences), this least squares solution is not
optimal and other techniques should be used (Meer et al.
1991). However, for the remainder of this paper we assume
only correct correspondences exist.

In the following sections, the basic steps involved in
minimizing Eq. 2 are listed for each method in a common
framework. This includes exactly how the rotation and trans-
lation components of the transformation are represented and
computed, as well as any special cases that must be consid-
ered for a complete solution. (For complete derivations of
each technique, the reader is invited to consult the appropri-
ate paper.)

3.1 The singular value decomposition of a matrix

This first method was developed by Arun et al. (1987), and
was originally designed to explicitly minimize Eq. 2.

3.1.1 Transformation representation

For this approach, the rotation is represented using a standard
3× 3 orthonormal matrix. Translation is a 3-D vector, as in
Eq. 1.

3.1.2 Calculating rotation

As a consequence of the least-squares solution to Eq. 2, the
point sets{di} and {mi} should have the same centroid.
Using this constraint a new equation can be generated. By
defining:

d̄ =
1
N

N∑
i=1

di dci = di − d̄

m̄ =
1
N

N∑
i=1

mi mci = mi − m̄

(3)

Eq. 2 can be rewritten and reduced to:

Σ 2 =
N∑
i=1

‖ dci − R̂ mci ‖ 2

=
N∑
i=1

(d T
ci dci +m T

ci mci − 2 d T
ci R̂ mci)

(4)

This equation is minimized when the last term is maximized,
which is equivalent to maximizing Trace(R̂ H), whereH is
a correlation matrix defined by:

H =
N∑
i=1

mci d
T

ci (5)

If the singular value decomposition ofH is given byH =
UΛV T, then the optimal rotation matrix,̂R, that maximizes
the desired trace is

R̂ = V U T (6)

Note: minimizing Eq. 4 is also known as theorthogonal Pro-
crustes problem, the SVD-based solution of which has been
known for some time (Schonemann 1966). [It has also been
shown by Goryn and Hein (1995) that the above solution
holds in the case where both the model and data points have
been corrupted by noise.]

3.1.3 Calculating translation

The optimal translation aligns the centroid of the set{di}
with the rotated centroid of the set{mi} as mentioned ear-
lier. That is

T̂ = d̄− R̂ m̄ (7)

274

3.1.4 Special cases

When the determinant of̂R is +1, all is well. However, when
the two point sets are planar, or large amounts of noise exist,
the determinant of̂R may become−1, indicating a reflection
rather than a rotation has been computed. In this case the
desired rotation can be found aŝR = V

′
U T, where the

matrix V
′

= [v1, v2,−v3] is formed from the columns ofV,
with v3 being the column that corresponds to the singular
value ofH that is zero.

This special case has also been treated in alternative
derivations by Umeyama (1991) and Kanatani (1994). Here
the optimal rotation is expressed as:

R̂ = U

1
1

det(U V T)

 V T (8)

None of the algorithms are suitable for use on linear or
singular point data sets.

3.2 A solution involving orthonormal matrices

The second algorithm is similar in nature to the first, but
was developed independently by Horn et al. (1988). As pre-
sented in their paper, the error criterion function was slightly
different:

Σ 2 =
N∑
i=1

‖ di − ŝ R̂ mi − T̂ ‖ 2 (9)

including a scale factor, ˆs, in the transformation. Solving for
ŝ is done independently of solving for̂R and T̂. Therefore,
in the following summary of their approach it is assumed
that ŝ = 1 to enable an easier comparison.

3.2.1 Transformation representation

As in the SVD approach, rotation is represented using a 3×3
orthonormal matrix and translation is given by a 3-D vector.

3.2.2 Calculating rotation

As in the previous algorithm, the constraint of overlaying the
point set centroids is used to derive Eq. 4. Again, this equa-
tion is minimized when the last term is maximized, which
is also equivalent to maximizing the Trace(R̂ T M), where

M = H T =
N∑
i=1

dci m
T

ci (10)

AssumingM is non-singular, it can be decomposed asM =
U S, where

U = M S −1 S = (M T M) 1/2 (11)

U being an orthonormal matrix. When Trace(R̂ T M) is max-
imized, R̂ = U and can be expressed as:

R̂ = M
(
u1 u

T
1√

λ1
+
u2 u

T
2√

λ2
+
u3 u

T
3√

λ3

)
(12)

where{λj} and{uj} are the eigenvalues and corresponding
eigenvectors of the matrixM T M .

3.2.3 Calculating translation

The optimal translation̂T is computed using Eq. 7 given̂R
as found in Eq. 12.

3.2.4 Special cases

If the two point sets are planar, then the matrixM is sin-
gular and of rank two. The solution above does not hold in
this case, sinceλ3 becomes zero. The alternative solution
presented in (Horn et al. 1988) is:

R̂ = M
(
u1 u

T
1√

λ1
+
u2 u

T
2√

λ2

)
± u3 u

T
3 (13)

whereu3 is the eigenvector corresponding to the zero eigen-
value of the matrixM T M . The proper sign is chosen so
that the determinant of̂R will be +1.

Unfortunately, this solution is not correct in all cases and
must be modified. One such modification is:

R̂ = M S + ± X√| Trace(X) | (14)

where

S + =

(
u1 u

T
1√

λ1
+
u2 u

T
2√

λ2

)
X = [(M S +) (M S +) T − I] u3 u

T
3

(15)

This formulation will also hold in the general case of non-
planar point sets, but is more expensive to compute. When
the point sets are linear or singular, the eigenvaluesλ2 andλ1
also become zero, indicating neither solution remains valid.

3.3 A solution involving unit quaternions

The third method is also due to Horn (1987), and was also
designed to solve Eq. 9. However, in this case a new tech-
nique was developed based on a different representation for
the transformation. Again, we assume ˆs = 1 in the following.

3.3.1 Transformation representation

Rather than use the standard 3×3 orthonormal matrix to rep-
resent rotation, the unit quaternion is employed. If the overall
rotation is represented by a movement through an angleθ
about an axisa = [ax, ay, az] that is passing through the ori-
gin (with ‖a‖ = 1), the equivalent unit quaternion is a 4-D
vector defined asq = [cos(θ/2), sin(θ/2) ax, sin(θ/2) ay,
sin(θ/2) az]. Translation is still represented using a 3-D
vector in the following algorithm.

3.3.2 Calculating rotation

Unit quaternions have several useful properties (Horn 1987)
which can be exploited to rewrite the final term of Eq. 4 in
terms of quaternions and quaternion multiplication as:

275

Σ
′

=
N∑
i=1

d T
ci R̂ mci =

N∑
i=1

(q̂ ṁci q̂
∗) · ḋci (16)

where ˆq is the unit quaternion representing rotation̂R,
q̂ ∗ = [q̂0,−q̂1,−q̂2,−q̂3], and ṁci and ḋci are quaternions
formed by setting their first component to zero and the re-
maining three components to the corresponding point’s coor-
dinates. The expression in the above equation can be further
rewritten asΣ

′
= q̂ T P q̂, whereP is a 4× 4 matrix as

given in Eq. 17. For each of the elements in this matrix the
S terms are sums of products of point coordinates similar in
nature to the elements ofH in Eq. 5:Sab =

∑N
i=1mcia dcib

.
The quaternion ˆq which maximizes Eq. 16 is the eigenvector
associated with the largest positive eigenvalue of matrixP.
Given this ˆq, the equivalent rotation matrix̂R can be found
as in Eq. 18.

P =

[
Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz
Szx − Sxz Sxy + Syx Syy − Sxx − Szz Syz + Szy
Sxy − Syx Szx + Sxz Syz + Szy Szz − Sxx − Syy

]
(17)

R̂ =

[
(q̂ 2

0
+ q̂ 2

1
− q̂ 2

2
− q̂ 2

3
) 2 (q̂1 q̂2 − q̂0 q̂3) 2 (q̂1 q̂3 + q̂0 q̂2)

2 (q̂2 q̂1 + q̂0 q̂3) (q̂ 2
0
− q̂ 2

1
+ q̂ 2

2
− q̂ 2

3
) 2 (q̂2 q̂3 − q̂0 q̂1)

2 (q̂3 q̂1 − q̂0 q̂2) 2 (q̂3 q̂2 + q̂0 q̂1) (q̂ 2
0
− q̂ 2

1
− q̂ 2

2
+ q̂ 2

3
)

]
(18)

3.3.3 Calculating translation

Once the matrixR̂ has been computed from the elements of
q̂, the optimal translation̂T can again be found using Eq. 7.

3.3.4 Special cases

When the point sets are planar the above algorithm does not
need to be modified, but depending on the method used to
compute the eigensystem ofP, certain simplifications can be
made. Horn (1987) presents such an alternative algorithm for
planar point sets, but it will not be used in this comparison.
Neither of Horn’s methods are intended for linear or singular
point data sets.

3.4 A solution involving dual quaternions

The fourth algorithm is due to Walker et al. (1991), and is
the most significantly different of the four. The original error
criterion function which they minimized is:

Σ 2 =
L∑
i=1

αi ‖ n1i − R̂ n2i ‖ 2+

N∑
i=1

βi ‖ di − R̂ mi − T̂ ‖ 2

(19)

where {n1i} and {n2i} are two sets ofL corresponding
unit normal vectors, and ({αi}, {βi}) are weighting factors
reflecting data reliability. Thus this approach incorporates
both positional and directional information in the minimiza-
tion. In order to compare this approach with the others, it is

assumed thatαi = 0 andβi = 1 so that only point positions
are relevant. However, note that if independent direction in-
formation is available, this algorithm can integrate both data
types, unlike the previous algorithms in their current form.

3.4.1 Transformation representation

In this method the rotation and translation are represented
together using a dual quaternion. As the name suggests, it is
a quaternion consisting of two parts,qd = [r, s]. Rather than
describing motion as a rotation about the origin and then
a translation, it can be modelled as a simultaneous rotation
around and translation along a particular line in 3-D space.
Given that the line has directionn = [nx, ny, nz] (‖n‖ = 1),
passes through a pointp = [px, py, pz], and the amount of
motion is defined by an angleθ and a distancet, then the
two components ofqd are 4-D vectors defined as:

r =

[
sin(θ/2) n
cos(θ/2)

]

s =

[
t
2 cos(θ/2) n + sin(θ/2) (p× n)

− t
2 sin(θ/2)

] (20)

These two components of the dual quaternion have the prop-
erties thatr Tr = 1 ands Tr = 0.

3.4.2 Calculating rotation

The restricted version of Eq. 19 can be rewritten in terms of
the components of the optimal dual quaternion ˆqd = [r̂, ŝ]
as:

Σ 2 =
N∑
i=1

(ŝ T ŝ + 2 ŝ T (W(m̃i) − Q(d̃i)) r̂ −

2 r̂ T Q(d̃i) W(m̃i) r̂ + (m̃i
T m̃i + d̃i

T
d̃i))

= r̂ T C1 r̂ + ŝ T C2 ŝ + ŝ T C3 r̂ + C4

(21)

wherem̃i andd̃i are 4-D vectors defined with the first three
components set equal to half the values of the original point’s
coordinates and the fourth component set to zero. The 4×4
matricesQ(v) andW(v) are defined by:

Q(v) =

[
v3I + K (v0..2) v0..2

−v T
0..2 v3

]
K (v) =

 0 −v2 v1
v2 0 −v0
−v1 v0 0


W(v) =

[
v3I − K (v0..2) v0..2

−v T
0..2 v3

]
(22)

wherev0..2 represents the first three elements ofv. The C
terms are given as:

C1 =
N∑
i=1

Q(d̃i) W(m̃i) C2 = N I

C3 = 2
N∑
i=1

(W(m̃i) − Q(d̃i))

C4 =
N∑
i=1

(m̃i
T m̃i + d̃i

T
d̃i)

(23)

276

Table 1. Summary of four motion algorithms. Included are the transformation representation form, method of solution, and the
range of data configurations for which solutions were given

Cited Work Abbreviation Transform Solution Data point configurations handled
Representation Technique 3-D 2-D 1-D 0-D

Arun et al. (1987) SVD R, T use svd yes special no no
of derived matrix case

Horn et al. (1988) OM R, T use eigensystem yes special case no no
of derived matrix (modified)

Horn (1987) UQ q, T use largest eigenvector yes yes no no
of derived matrix

Walker et al. (1991) DQ qd = (r , s) use largest eigenvector yes yes no no
of derived matrix

In order to properly minimize Eq. 21 the two constraints
r̂ Tr̂ = 1 and ˆs Tr̂ = 0 are incorporated using Lagrange mul-
tipliers. Then it can be derived that given the 4× 4 matrix
A:

A = 1
2 (C T

3 (C2 + C T
2) −1 C3 − C1 − C T

1)

= 1
4N C T

3 C3 − C1

(24)

the value of ˆr is the eigenvector corresponding to the largest
positive eigenvalue ofA. The vector ˆr can be used to cal-
culate the equivalent rotation matrix̂R as:

R̂ = (r̂ 2
3 − r̂ T

0..2 r̂0..2) I + 2 r̂0..2 r̂
T

0..2 + 2 r̂3 K (r̂0..2) (25)

Equation 25 is equivalent to the quaternion to matrix con-
version of Eq. 18.

3.4.3 Calculating translation

The values of ˆs and T̂ are calculated based on ˆr as:

ŝ = −(C2 + C T
2) −1 C3 r̂ = − 1

2N C3 r̂

T̂ = W(r̂) T ŝ
(26)

3.4.4 Special cases

As with the unit quaternion algorithm, there is no need for
modification in the case where the points sets are planar,
while linear and singular point sets are still not handled.

3.5 Summary

A summary of the four techniques mentioned in this section
is given in Table 1. The listing shows the representation used
for each motion transform, the general solution method, and
which data configurations the algorithms were intended to
handle. The indicated abbreviations are used in all of the
following experimental descriptions.

4 Experimental comparison

Each of the four algorithms was implemented and a series
of experiments performed to determine their accuracy, ro-
bustness, stability and speed. In the following the results of
these experiments are detailed.

4.1 The implementations

All experiments were conducted on a 50-MHz Sun Sparcsta-
tion 10 with a 1-MB cache running Solaris 2.4. The imple-
mentations were coded in C++ and compiled using the GNU
compiler1. While the majority of the coding was straightfor-
ward, a decision was necessary concerning which routines
to use in computing the SVD and eigensystem of a matrix.

In Horn’s work (1987, 1988), it is stated that the various
eigensystems can be computed by analytically solving cubic
and quartic characteristic equations to find the eigenvalues,
and then using Gaussian elimination to compute the eigen-
vectors (the SVD of a matrix can also be calculated analyt-
ically using this eigensystem algorithm). The authors of the
other papers used routines from various mathematical pack-
ages. Preliminary experiments showed the standard routines
were in general more stable and accurate than Horn’s ana-
lytic approach. Therefore, to provide another level of com-
monality, routines from the Eispack2 linear algebra package
(Smith et al. 1970) were used in all. Singular value decom-
position was performed using thesvd routine, while eigen-
systems were computed using a combination of thetred2
andtql2 functions. Since these standard functions are in fact
iterative, the overall closed form nature of each solution was
technically violated. However, these routines are well known
for their stability and rapid convergence, and no problems
were observed.

4.2 The accuracy/robustness experiment

In this experiment, the absolute accuracy of each of the algo-
rithms was tested by comparing generated output motions to
ground truth transformations under noiseless conditions. The
robustness was measured by examining the error in output
transformations under varying levels of noise in the input.
The data for these tests were generated as follows:
(1) Several different model sets of non-degenerately ar-
ranged 3-D points were created, ranging from a minimum
of N = 4 points (the smallest non-planar set) to a maxi-
mum ofN = 10, 000 points. The points in these sets,{mi},
were chosen randomly from a uniform distribution within a
cube of size 2×2×2 centered about the origin. Each corre-
sponding data set,{di}, was formed by adding noise to the

1 Code was compiled using gcc, version 2.6.3, using -O3 level
optimization.

2 This package was converted from Fortran to C using standard utilities
(f2c). Its routines generally have formed the basis of those in almost all
other packages, including Numerical Recipes in C (Press et al. 1992).

277

10
1

10
2

10
3

10
4

10
−16

10
−15

10
−14

10
−13

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

10
0

10
1

10
2

10
3

10
4

10
−16

10
−15

10
−14

10
−13

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

10
0

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

10
0

10
1

10
2

10
3

10
4

10
−16

10
−15

10
−14

10
−13

ERROR

(a) Translation error: All algorithms vs. True
N N

σ = 1.0

(b) Rotation error: All algorithms vs. True
N

(c) RMS error: All algorithms vs. True

N

(d) Enlargement of noiseless translation error in (a)

N
(e) Enlargement of noiseless rotation error in (b)

N

(f) Enlargement of noiseless RMS error in (c)

SVD UQ OM DQCURVE INDEX:

σ = 0

σ = 0.01

ERROR

σ = 1.0

σ = 0

σ = 0.01

ERROR

σ = 1.0

σ = 0

σ = 0.01

ERROR

ERROR

ERROR

σ = 10 -6

σ = 10 -10

σ = 10 -6

σ = 10 -10

σ = 10 -6

σ = 10 -10

Fig. 1. Differences between known transformations and those computed by algorithms. Graphs (log-log scale) are translation error, rotation error, and RMS
error vs data set size,N . A range of noise levels,σ = 0.0 to σ = 1.0, are shown in the left column (a–c), while the noiseless case is enlarged in the right
column (d–f)

278

10
1

10
2

10
3

10
4

10
−19

10
−18

10
−17

10
−16

10
−15

10
−14

10
−13

10
−12

10
1

10
2

10
3

10
4

10
−19

10
−18

10
−17

10
−16

10
−15

10
−14

10
−13

10
−12

10
1

10
2

10
3

10
4

10
−16

10
−15

10
−14

10
−13

10
−12

10
1

10
2

10
3

10
4

10
−16

10
−15

10
−14

10
−13

10
−12

10
1

10
2

10
3

10
4

10
−16

10
−15

10
−14

10
−13

10
−12

10
1

10
2

10
3

10
4

10
−19

10
−18

10
−17

10
−16

10
−15

10
−14

10
−13

10
−12

(c) Translation difference: SVD vs. OM (d) Rotation difference: SVD vs. OM

(a) Translation difference: SVD vs. UQ (b) Rotation difference: SVD vs. UQ

N N

ERROR

NN

σ = 0.0 σ = 0.01 σ=1.0CURVE INDEX:

(e) Translation difference: SVD vs. DQ (f) Rotation difference: SVD vs. DQ

N N

ERROR

ERROR

ERROR

ERROR

ERROR

Fig. 2. Differences between transformations computed by the SVD algorithm and the UQ (a, b), the OM (c, d) and the DQ (e, f) algorithms. Graphs (log-log
scale) are translation error,‖ T̂svd − T̂other ‖, and rotation error,‖ q̂svd − q̂other ‖, vs data set size,N , for various noise levelsσ = 0.0, 0.01, 1.0

279

Fig. 3. RMS errors ofa SVD, b UQ, c OM and d DQ algorithms for 2-D degenerate data sets underisotropic noise. Curves on graphs (log-log scale)
present errors for three data set sizes,N = 4, 100, 1000, and for four noise levels,σ = 0.0, 10−10, 10−6, 0.01

individual points in{mi} and transforming them to a new
location3. The noise added to each component was uncor-
related, isotropic and Gaussian in nature, with a zero mean
and variable standard deviation ranging from a minimum of
zero to a maximum of one unit.
(2) Transformations were generated in two parts. A 3-D
translation was computed by randomly selecting compo-
nents uniformly distributed in the range [−10 . . . 10].
Each rotation was calculated from a unit quaternion that
was randomly selected from a uniform distribution repre-
senting valid rotations (those having random components
in the range [−1 . . . 1] subject to the magnitude of the
quaternion originally being less than 1, and then eventually

3 Normally noise is added after a transformation. But, if the transform is
Euclidean and the noise is isotropic, both techniques are equivalent. Later
experiments will require special anisotropic noise to be added, which is
most easily done before the transformation. Therefore a consistent method
was used throughout.

normalized).
(3) For each data set size/noise level combination one hun-
dred trials were performed, a trial consisting of new points,
noise and transformation values. The average response of
each algorithm over these one hundred trials was used to
compute three different error statistics for the calculated
transforms. These included the norm of the difference be-
tween the true and estimated translation vectors,Terr =
‖ T̂alg − T̂true ‖, as well as the norm of the difference be-
tween true and estimated unit quaternions representing the
rotation,qerr = ‖ q̂alg − q̂true ‖. Also the root mean square
(RMS) error of the distance between corresponding points
in the model and adjusted data sets under the found trans-
formation was calculated:

RMSerr =

√∑N
i=1 ‖ di − R̂alg mi − T̂alg ‖ 2

N − 3

280

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

ERROR

DEGENERACY RATIO
(a) RMS error: SVD algorithm (b) RMS error: UQ algorithm

(c) RMS error: OM algorithm (d) RMS error: DQ algorithm

N = 4 N = 100 N = 1000CURVE INDEX:

ERROR

DEGENERACY RATIO

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

}

}

}
} σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

}

}

}

}

ERRORERROR

DEGENERACY RATIO DEGENERACY RATIO

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

}

}

}
} σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

}

}

}
}

Fig. 4. RMS errors ofa SVD, b UQ, c OM and d DQ algorithms for 2-D degenerate data sets underanisotropicnoise. Curves on graphs (log-log scale)
present errors for three data set sizes,N = 4, 100, 1000, and for four noise levels,σ = 0.0, 10−10, 10−6, 0.01

The first two of these error measures were also computed
between pairs of algorithms to determine any levels of dif-
ference between them.

The left column of Fig. 1 shows the robustness of the
four algorithms with regards to changes in noise level in
terms of the translation, rotation and RMS errors, respec-
tively. As might be expected, when the number of points
grows, the error in the computed transformation approaches
a value dependent on the noise level used to disturb the data
(the RMS error actually approaches

√
3σ). The exception to

this is the noiseless case, the graphs of which are enlarged in
the right column of Fig. 1. Here it is seen that the absolute
accuracy of the dual quaternion algorithm is less than that
of the others, which are very similar to one another except
on small data sets, where SVD seems the most accurate.

Figure 2 tries to emphasize any actual differences in
translation and rotation solutions between algorithms. The
comparisons shown are between the SVD algorithm and

the UQ (Fig. 2a,b), OM (Fig. 2c,d) and DQ (Fig. 2e,f) algo-
rithms. As one can see, the differences are really minimal (in
most cases near the level of machine precision, 2× 10−16),
and virtually independent of noise level. Even the largest
differences, 10−12 to 10−13, would not be considered no-
ticeable. The overall shape of the curves also suggests that
as the data set size increases, the individual algorithm dif-
ferences lose their significance.

So, from the results shown here, one can conclude that
the difference in solutions produced by the algorithms is
many orders of magnitude below typical RMS noise levels
in real data, almost at the level of machine precision. Only
in the theoretically noiseless case can any real differences be
observed. Then, the UQ and SVD results are most similar,
deviating from that of OM for small data sets, while these
three generally perform better than the DQ method.

281

10
0

10
5

10
10

10
15

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
0

10
5

10
10

10
15

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
0

10
5

10
10

10
15

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
5

10
10

10
15

10
−4

10
−3

10
−2

10
−1

10
0

SVD UQ OM DQCURVE INDEX:

ERROR

DEGENERACY RATIO

ERROR

DEGENERACY RATIO

ERRORERROR

DEGENERACY RATIO DEGENERACY RATIO

N = 4

N = 1000

N = 4

N = 1000

(a) RMS error: N=4, σ = 0.0 (b) RMS error: N=1000, σ = 0.0

(d) RMS error: anisotropic, σ = 0.01(c) RMS error: isotropic, σ = 0.01

Fig. 5. Graphs (log-log scale) of RMS errors of algorithms on 2-D degenerate data sets with no noise (a,b), isotropic noise (c), and anisotropic noise (d)

4.3 Stability experiments

In this section the stability of the algorithms is tested, i.e.
how well they compute a correct transformation under dif-
ferent data conditions. In most cases the algorithms were
designed for non-degenerate 3-D data sets, perhaps with ad-
ditional modifications for planar data. However, none were
designed to handle data points arranged in a linear or singular
point relation due to the unconstrained degrees of freedom
in the solution. The following subsections explore the dif-
ferences in algorithm performance as the data sets approach
these degenerate forms. The relative stabilities of the algo-
rithms, as well as the actual levels of degeneracy necessary
to cause breakdown, are given.

A sequence of data sets is necessary to monitor the break-
down of the algorithms. Successive point sets in the se-
quence were taken from a volume whose dimensions were
steadily reduced from that of an original 2× 2× 2 cube to
those of either a 2× 2 square, a 2-unit-long line, or a single
point. The level of degeneracy present in a particular point
set in the sequence is measured as thedegeneracy ratio =
2/d, whered is the current size of the cube in the shrinking
dimension. In the experiments this degeneracy ratio varies
from a value of one for the initial cube to an upper limit
of 1016 for the most degenerate form. Each data set in the
sequence was constructed using the process described in the

282

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

N = 4 N = 100 N = 1000CURVE INDEX:

ERROR

DEGENERACY RATIO
(a) RMS error: SVD algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

ERROR

DEGENERACY RATIO
(b) RMS error: UQ algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

ERROR

DEGENERACY RATIO
(c) RMS error: OM algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

ERROR

DEGENERACY RATIO
(d) RMS error: DQ algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

Fig. 6. RMS errors ofa SVD, b UQ, c OM and d DQ algorithms for 1-D degenerate data sets underisotropic noise. Curves on graphs (log-log scale)
present errors for three data set sizes,N = 4, 100, 1000, and for four noise levels,σ = 0.0, 10−10, 10−6, 0.01

previous section, with the exception that two different noise
models were used.

The first model, isotropic noise, represents the assump-
tion that no prior uncertainty information is known about
the data. The second model, anisotropic noise, represents the
belief that data uncertainty is limited to certain dimensions.
Here, the more accurate dimensions are along the direction
of degeneracy (for instance, perpendicular to a plane). The
level of noise added in this direction is less than that in the
other dimensions by an amount proportional to the volume’s
decreasing size. Adding this form of noise in any other direc-

tion would only lead to responses similar to those resulting
from isotropic noise.

The error criterion used to measure algorithm stability is
RMS error. However, it is not appropriate to simply com-
pute this error between the transformed data points and the
original model points. This is because several transforms
can produce similar error sums on degenerate data sets. For
instance, even for largely different rotations about the axis
of a cylinder (representing a thick line), a data point does
not move far from its original position when the cylinder di-
mensions approach that of a line. Therefore, in order to dis-
tinguish between such transforms, a control data set is used.

283

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

N = 4 N = 100 N = 1000CURVE INDEX:

ERROR

DEGENERACY RATIO
(a) RMS error: SVD algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

ERROR

DEGENERACY RATIO
(b) RMS error: UQ algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

ERROR

DEGENERACY RATIO
(c) RMS error: OM algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

ERROR

DEGENERACY RATIO
(d) RMS error: DQ algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

Fig. 7. RMS errors ofa SVD, b UQ, c OM and d DQ algorithms for 1-D degenerate data sets underanisotropicnoise. Curves on graphs (log-log scale)
present errors for three data set sizes,N = 4, 100, 1000, and for four noise levels,σ = 0.0, 10−10, 10−6, 0.01

This consists of randomly chosen points equal in number
to that used in the computation, but taken from the original
2× 2× 2 cube. When this data set is transformed accord-
ing to the true and estimated motions, the RMS calculation
using these points provides a distinguishing error measure.

4.3.1 Stability under 3-D→ 2-D degeneracy

In this experiment each data set degenerates into a plane. The
Z dimension of the 3-D cube is steadily shrunk from its 2-
unit size down to the level of machine precision, 2× 10−16.

Figure 3 shows the error responses of the algorithms with re-
spect to the isotropic noise model. As the degeneracy ratio
is increased, the data set more closely resembles a plane.
Curves are drawn for varying noise levels and data set
sizes. Figure 4 shows an equivalent range of responses when
anisotropic noise is used4.

4 Here, the noise level,σ, is the same in theX andY dimensions as
was used for the isotropic case, but the new value ofσ in theZ dimension
is computed by dividing the original value by the degeneracy ratio, thereby
reducing it for the more planar-like sets.

284

10
0

10
5

10
10

10
15

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
5

10
10

10
15

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

SVD UQ OM DQCURVE INDEX:

ERROR

DEGENERACY RATIO

ERROR

DEGENERACY RATIO

ERRORERROR

DEGENERACY RATIO DEGENERACY RATIO

N = 4

N = 1000

N = 4

N = 1000

(a) RMS error: N=4, σ = 0.0 (b) RMS error: N=1000, σ = 0.0

(d) RMS error: anisotropic, σ = 0.01(c) RMS error: isotropic, σ = 0.01

Fig. 8. Graphs (log-log scale) of RMS errors of algorithms on 1-D degenerate data sets with no noise (a,b), isotropic noise (c), and anisotropic noise (d)

The error values in both sets of graphs show, for the
most part, an independence from the degeneracy value. This
is to be expected, since the algorithms were designed to
handle planar point sets. The only deviations from this trend
occur in the noiseless case. Here, the response from the OM
algorithm is less numerically stable than the others (perhaps
suggesting the correction provided in Eq. 14 is not the best
alternative). Figure 5 provides a more direct comparison of
the algorithms at the extremes of the test sets. Figures 5c
and 5d show that under noisy conditions the responses of
the algorithms are the same. But when noise is not present
(Fig. 5a,b), only the SVD and UQ approaches remain similar,

while both the DQ and OM techniques produce less stable
answers.

4.3.2 Stability under 3-D→ 1-D degeneracy

In this experiment each data set degenerates into a line. The
X and Y dimensions of the 3-D cube are steadily shrunk
from their 2-unit size down to the level of machine precision.
Figures 6 and 7 show the error responses of the algorithms
under isotropic and anisotropic noise, again for four levels
of noise and three data set sizes.

None of the algorithms were designed to handle linearly
organized data sets. The graphs in Figs. 6 and 7 show the

285

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

N = 4 N = 100 N = 1000CURVE INDEX:

ERROR

DEGENERACY RATIO
(a) RMS error: SVD algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10
ERROR

DEGENERACY RATIO
(b) RMS error: UQ algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

ERROR

DEGENERACY RATIO
(c) RMS error: OM algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

ERROR

DEGENERACY RATIO
(d) RMS error: DQ algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

Fig. 9. RMS errors ofa SVD, b UQ, c OM and d DQ algorithms for 0-D degenerate data sets underisotropic noise. Curves on graphs (log-log scale)
present errors for three data set sizes,N = 4, 100, 1000, and for four noise levels,σ = 0.0, 10−10, 10−6, 0.01

different levels of degeneracy necessary to cause breakdown.
Under isotropic noise the error steadily rises as the diameter
of the tube representing the line decreases. Total breakdown
in the best cases occurs only after the line diameter reaches
the level of the noise, and under most other conditions earlier
than that. For anisotropic noise5 the trend is for the error to
remain at the noise level until numeric instability occurs, and

5 In the anisotropic case the noise level in theZ dimension is the same
as in the isotropic case, while that in theX andY dimensions is reduced
by the value of the degeneracy ratio.

then continue to rise steadily as the line diameter decreases,
finally reaching total breakdown.

Figure 8 shows a direct comparison of the relative sta-
bilities of the methods under the extreme conditions. Under
isotropic noise the algorithms behave similarly, independent
of these conditions (Fig. 8c). Under either anisotropic noise
(Fig. 8d) or no noise at all (Fig. 8a,b), the differences in nu-
merical stability become apparent. The DQ algorithm breaks
down first in all cases, while the UQ curves are always less
stable than those of SVD. The OM algorithm’s performance
is highly dependent on the data set size, actually being the
most stable for large data sets.

286

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

N = 4 N = 100 N = 1000CURVE INDEX:

ERROR

DEGENERACY RATIO
(a) RMS error: SVD algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

ERROR

DEGENERACY RATIO
(b) RMS error: UQ algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

ERROR

DEGENERACY RATIO
(c) RMS error: OM algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

ERROR

DEGENERACY RATIO
(d) RMS error: DQ algorithm

σ = 0

σ = 0.01

σ = 10 -6

σ = 10 -10

Fig. 10. RMS errors ofa SVD, b UQ, c OM andd DQ algorithms for 0-D degenerate data sets underanisotropicnoise. Curves on graphs (log-log scale)
present errors for three data set sizes,N = 4, 100, 1000, and for four noise levels,σ = 0.0, 10−10, 10−6, 0.01

4.3.3 Stability under 3-D→ 0-D degeneracy

In this experiment each data set degenerates into a point. All
three dimensions of the 3-D cube are steadily shrunk from
their 2-unit size down to the level of machine precision.
Figures 9 and 10 give the response curves of the algorithms
for the isotropic and anisotropic noise cases, respectively.

As with the linear data sets, the algorithms will break
down because there are too many unconstrained degrees of
freedom in the solution. However, the graphs in Figs. 9 and
10 are slightly different from those in the previous experi-

ment. Under isotropic noise the same steady rise in error is
seen as the cube size decreases. Here, total breakdown is not
achieved by any of the algorithms, except DQ, until the size
of the cube reaches the noise level. DQ’s stability is appar-
ently less than the others in this case, especially for small
amounts of noise. In the second case6, when the amount of
anisotropic noise is reduced, the error level of the response
does not change until a common breakdown curve is joined.

6 In the anisotropic case, the noise is actually isotropic, but the level is
reduced by the degeneracy ratio in all three dimensions from that in the
regular case.

287

10
0

10
5

10
10

10
15

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−15

10
−10

10
−5

10
0

10
0

10
5

10
10

10
15

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SVD UQ OM DQCURVE INDEX:

ERROR

DEGENERACY RATIO

ERROR

DEGENERACY RATIO

ERRORERROR

DEGENERACY RATIO DEGENERACY RATIO

N = 4

N = 1000

N = 4

N = 1000

(a) RMS error: N=4, σ = 0.0 (b) RMS error: N=1000, σ = 0.0

(d) RMS error: anisotropic, σ = 0.01(c) RMS error: isotropic, σ = 0.01

Fig. 11. Graphs (log-log scale) of RMS errors of algorithms on 0-D degenerate data sets with no noise (a,b), isotropic noise (c), and anisotropic noise (d)

Again, the DQ algorithm does not respond as robustly as the
others.

The magnitude of the differences in stability between
the DQ algorithm and the others is made very apparent in
the comparison graphs of Fig. 11. Here it can be seen that
breakdown occurs much earlier, except for large levels of
isotropic noise. The other responses are virtually identical,
with the OM curves breaking down slightly sooner if a small
data set size is used. However, even this apparently large
level of difference is not necessarily overly significant, since
the level of degeneracy required to cause any breakdown
under typical noise conditions might not be reached.

4.4 The efficiency experiment

From a theoretical standpoint, each of the algorithms exam-
ined has a time complexity ofO(N). In this section the actual
coefficients of the linear time functions are examined. Tim-
ings were performed on both small and large data sets under
different conditions. The timing diagrams for the noiseless
cases on different data types and sizes are shown in Fig. 12.
Other timings observed under varying levels of noise were
virtually identical to these, and so are not included here.

Let us first consider the coefficient of the linear term of
the time equation. All of the algorithms, except DQ, initially
spend time computing the same set of sums (the outer prod-

288

0 2 4 6 8 10

x 10
4

0

0.05

0.1

0.15

0.2

0.25

100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5
x 10

−3

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5
x 10

−3

0 2 4 6 8 10

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5
x 10

−3

0 2 4 6 8 10

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

x 10
4

0

0.05

0.1

0.15

0.2

0.25

100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5
x 10

−3

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

SVD UQ OM DQCURVE INDEX:

TIME

N

(a) Execution performance of algorithms on 3-D data sets of variable size

TIME

N

TIME

N

TIME

N

(b) Execution performance of algorithms on 2-D data sets of variable size

TIME

N

TIME

N

TIME

N

(c) Execution performance of algorithms on 1-D data sets of variable size

TIME

N

TIME

N

TIME

N

(d) Execution performance of algorithms on 0-D data sets of variable size

TIME

N

TIME

N

Fig. 12. Execution times (in seconds) of algorithms on non-degenerate and degenerate data sets of sizesN = 4 . . . 100 (left), N = 100. . . 1000 (center),
andN = 4 . . . 100, 000 (right)

289

ucts of the centered point coordinates in Eq. 5). Therefore
the linear terms, which are dependent on this computation,
should be identical for these three. The DQ algorithm com-
putes a different set of sums. The relative values of these
two terms are shown most clearly in the slopes of the graphs
in the middle and right columns of Fig. 12.

The right column makes it apparent that two basic slopes
exist for each algorithm’s response. This is a side-effect of
the size of the computer’s memory cache. Although the com-
putations of the DQ routine are greater in number, they make
fewer memory accesses for the data coordinates. This means
that on smaller data sets, which fit entirely in the cache, the
DQ algorithm is less efficient. But as the data size increases,
so do the cache misses, reversing the relative efficiencies of
the calculations. For the 1-MB cache used here, the tran-
sition occurs at approximatelyN = 10, 000. The smaller
deviations in the slope between the three algorithms other
than DQ are attributed to minor caching effects during the
timing process.

Next, consider the constant terms of the time equations.
Here each algorithm’s execution varies and can be broken
into two components: that necessary to compute an eigen-
system or SVD of a matrix, and the accompanying calcula-
tions to generate the matrix. Measurements of the auxiliary
calculations for the various routines were respectively: DQ
(6µs), UQ (5µs), SVD (with reflection correction 12µs,
without 7µs) and OM (with planar correction 41µs, with-
out 18µs). These small amounts are only a fraction of the
time necessary for the eigensystem and SVD computations.
Approximate timings on non-degenerate data were: SVD of
3×3 matrix 350µs, eigensystem of 4×4 matrix 275µs and
eigensystem of 3×3 matrix 150µs. The combined effect of
these times can be seen in the leftmost portion of Fig. 12a.
Because the SVD and eigensystem routines are iterative, the
approximate times just listed can vary based on changes in
data set size and degeneracy (see the remainder of the left-
most column in Fig. 12). The variability of these routines
also contributes to crossovers between certain curves, as can
be seen in the center column.

So, overall, if the data set size is less than 100, the OM
algorithm is the quickest, by as much as 30%7. For large data
set sizes the relative difference between the SVD, UQ and
OM methods becomes negligible, a few percent. Prior to the
data size exceeding the cache’s effectiveness (N < 10, 000)
the DQ technique is slower than the others, but eventually
it becomes the most efficient asN increases.

5 Conclusions

A comparison has been made between four algorithms which
compute a rigid 3-D transformation between two sets of cor-
responding points in closed form: SVD, UQ, OM and DQ.

7 However, it should be noted that the timings for small data sets are
highly dependent on the particular linear algebra routines being used. For in-
stance, execution times of corresponding functions in the Numerical Recipes
in C implementation are between two and four times faster than those in
the converted Eispack set. Under these conditions the relative ordering can
change as the auxiliary calculations become more significant. See Lorusso
et al. (1995) for alternate timings using these routines. The accuracy and
stability results are not significantly different for the two math packages.

As with most comparisons, no one algorithm was found to
be superior in all cases. In fact, for any practical application
there will be no discernible differences in accuracy or sta-
bility. Actual quantitative measures of accuracy and stability
have been presented in the previous section. A qualitative
summary of algorithm performance is given in Table 2. From
this, some final general conclusions can be drawn.

As mentioned, the accuracy and robustness of the algo-
rithm responses for non-degenerate 3-D point sets, even for
various levels of noise, is virtually the same. This is perhaps
not unexpected since they were designed to solve the same
problem. This conclusion is in agreement with all but the
previous findings of Walker et al. (1991) mentioned earlier
in the paper. It is not known how they derived their con-
clusion of superior accuracy for the DQ algorithm, but it is
certainly not supported by the data presented here.

A greater separation of algorithm performance was no-
ticed in the stability testing. Here, in most cases, the SVD
and UQ methods were very similar, with SVD marginally
more stable. The OM method was not as stable for planar
data sets, but was superior on certain degenerate data sets
of large size. In none of the testing was the DQ algorithm
more stable than the others, and usually it would break down
before them. However, under realistic amounts of noise, the
level of degeneracy necessary to expose these differences is
likely greater than what will occur in practice.

In terms of efficiency, for small data set sizes the OM
algorithm appears quickest, given the setup reported here.
On larger data sets the differences in speed among all but
the quicker DQ algorithm are not overly significant. The
memory configuration of the computer is an important factor
in determining when the relative speed of the DQ algorithm
becomes superior.

So, in conclusion, it appears that it is only possible to
show a difference in the accuracy and stability of the pre-
sented algorithms in certain “ideal” situations. In any real
world application possessing even a low level of noise, one
would not expect to notice any differences in the algorithm
solutions. The only truly distinguishing factor is execution
time. And to make an informed decision about which is
fastest, one must carefully consider the data set size, the lin-
ear algebra package, the operating system and the computer
hardware configuration (memory cache) being used.

Finally, mention should be made of another recent algo-
rithm due to Wang and Jepson (1994). In their work they
consider the weighted least squares equation:

N∑
i=1

ci di = R
N∑
i=1

ci mi +
N∑
i=1

ci T (27)

By appropriately choosing the values,{ci}, the rotation term
can be eliminated and the translation computed. Similarly
the translation term can be eliminated, or the calculated
value substituted, in order to compute the rotation using
eigensystem methods. Preliminary results (Wang and Jep-
son 1994) indicate that superior performance may be ob-
tained because translation is computed independent of rota-
tion, thereby avoiding compounding any error in the rotation
result, especially for data sets far from the origin. However,
this performance depends on the robustness of the calcula-
tion of the set of coefficients,{ci}. This calculation works

290

Table 2. Qualitative comparison of algorithm performance (1 = best, 4 = worst). Ratings are based on the overall responses to different
noise levels and data set sizes. Comparisons are given for accuracy/robustness using 3-D data sets both with and without noise; stability of
response on degenerate data sets corrupted with no noise, isotropic noise (i-noise) and anisotropic noise (a-noise); and the overall execution
time for small and large data sets

Method 3-D accuracy 2-D stability 1-D stability 0-D stability Execution time
ideal noise ideal i-noise a-noise ideal i-noise a-noise ideal i-noise a-noise small N large N

SVD 1 1 1 1 1 2 2 2 3 1 1 2 2
OM 3 1 4 4 4 1 1 1 1 1 1 1 4
UQ 2 1 2 1 1 3 3 3 1 1 1 2 3
DQ 4 1 3 1 1 4 4 4 4 4 4 4 1

best on non-degenerate 3-D data. Since Wang and Jepson
are still examining this issue, at their request their method
has not been included in the comparison here.

Acknowledgements.This work was funded by EC HCM Project ERB40500
PL921003 through the SMART network and by UK EPSRC Grant
GR/H/86905. A shorter version of this work appears in the proceedings
of the 6th British Machine Vision Conference. Many thanks to Andrew
Fitzgibbon for helpful conversations and insights along the way.

References

Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-D
point sets. IEEE Trans Pattern Anal Machine Intell 9:698–700

Goryn D, Hein S (1995) On the estimation of rigid body rotation from
noisy data. IEEE Trans Pattern Anal Machine Intell 17:1219–1220

Horn BKP (1987) Closed-form solution of absolute orientation using unit
quaternions. J Opt Soc Am Ser A 4:629–642

Horn BKP, Hilden HM, Negahdaripour S (1988) Closed-form solution of
absolute orientation using orthonormal matrices. J Opt Soc Am Ser A
5:1127–1135

Kanatani K (1994) Analysis of 3-D rotation fitting. IEEE Trans Pattern
Anal Machine Intell 16:543–549

Lorusso A, Eggert DW, Fisher RB (1995) A comparison of four algo-
rithms for estimating 3-D rigid transformations. Technical Report 737,
Department of Artificial Intelligence, University of Edinburgh, Edin-
burgh, Scotland

Meer P, Mintz D, Rosenfeld A, Kim DY (1991) Robust regression methods
for computer vision: a review. Int J Comput Vision 6:59–70

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical
recipes in C: the art of scientific computing, 2nd edn., Cambridge
University Press, Cambridge, UK

Sabata B, Aggarwal JK (1991) Estimation of motion from a pair of range
images: a review. CVGIP: Image Understanding 54:309–324

Schonemann P (1966) A generalized solution of the orthogonal procrustes
problem. Psychometrika 31:1–10

Smith BT, Boyle JM, Ikebe Y, Klema VC, Moler CB (1970) Matrix eigen-
system routines: Eispack guide, 2nd edn., Springer Verlag, New York
Berlin Heidelberg

Umeyama S (1991) Least-squares estimation of transformation parameters
between two point patterns. IEEE Trans Pattern Anal Machine Intell
13:376–380

Walker MW, Shao L, Volz RA (1991) Estimating 3-D location parameters
using dual number quaternions. CVGIP: Image Understanding 54:358–
367

Wang Z, Jepson A (1994) A new closed-form solution for absolute orien-
tation. Proc IEEE Conference on Computer Vision and Pattern Recog-
nition, pp 129–134

Zhang Z (1994) Iterative point matching for registration of free-form curves
and surfaces. Int J Comput Vision 13:119–152

David W. Eggert received the BSEE and BSCpE (1986), MSCS (1988),
and PhD (1991) degrees from the University of South Florida. During his
time at USF, he was named IEEE Student Engineer of the Year (1985
and 1986) and Sigma Xi’s outstanding Master’s (1988) and PhD (1991)
Student of the Year. During the time of the work reported in this paper,
he was serving a a postdoctoral researcher in the Department of Artificial
Intelligence at the University of Edinburgh. He is currently an Assistant
Professor in the Department of Computer Science at the University of New
Haven. His research interests include object recognition using aspect graphs,
reverse engineering of CAD models, computer graphics and robotics.

Adele Lorusso graduated (summa cum laude) in Computer Science from
the Universita’ di Bari (Italy) in 1991. After working as a software engineer
for Olivetti, she held a 2-year position at Tecnopolis CSATA (Bari) as a
researcher in computer vision and robotics. During the summer of 1994
she was a visiting researcher at the Department of Artificial Intelligence
of the University of Edinburgh, after which she worked for 1 year as a
researcher at the Cybernetic and Biophysics Institute of the National Council
of Research in Genoa. Her main research interests are in computer vision
and robotics.

Robert B. Fisher received a BS with honors (Mathematics) from Califor-
nia Institute of Technology (1974) and an MS (Computer Science) from
Stanford University (1978). He received his PHD from the University of
Edinburgh (awarded 1987), investigating computer vision in the Department
of Artificial Intelligence. Dr. Fisher is a Senior Lecturer at the Department
of Artificial Intelligence, University of Edinburgh. His research covers top-
ics in high-level computer vision, and he directs research projects investi-
gating three-dimensional model-based vision, automatic model acquisition
and robot grasping. He teaches general and industrial vision courses for
undergraduate, MSc and PHD level students.

This article was processed by the author using the LaTEX style file pljour2
from Springer-Verlag.

