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ABSTRACT 

While traditional safety and incident analysis has mostly focused on incident attributes 

data, such as the location and time of the incident, there are other aspects in incident response 

that are temporal in nature and are more difficult to analyze. We describe a visual analytics tool 

for temporal data exploration, called LifeFlow, used for the analysis of incident response data.  

LifeFlow provides user-controlled overviews of event sequences (e.g. notification, arrival, 

clearance etc).  It allows analysts to interactively explore temporal patterns, find anomalies in 

sequences and compare management practices. This type of analysis can potentially lead to 

process improvements and save human lives. We used NCHRP traffic incident data with more 

than 200,000 incidents are reported by 8 different agencies in a period of about 28 months. Our 

experience suggest that even non expert analysts can spot many anomalies in the data using the 

LifeFlow overviews, and are able to rapidly ask many questions and find differences between 

agencies.  

INTRODUCTION 

Vehicle crashes remain the leading cause of death for people between the ages of four 

and thirty-four. In 2008, approximately 6-million traffic accidents occurred in the United States.  

This resulted in nearly 40,000 deaths, 2.5 million injuries, and losses estimated at $237 billion. 

Given these statistics (1,2), reducing the impacts of crashes and improving safety on the nation’s 

highways has become a significant issue for policymakers and transportation engineers. To 

combat this problem, transportation systems are monitored at an unprecedented scope which 

results in tremendously detailed traffic, road weather, and comprehensive incident databases. 

While the transportation community emphasizes developing standards for archiving and 

transmitting raw incident data, little effort has been made to design appropriate visual analytics 

tools to explore the data, extract meaningful knowledge, and represent results.  We believe that 

interactive visualization tools can help transportation managers and government agencies better 

analyze these large multivariate datasets (3). 

While traditional safety and incident analysis has mostly focused on incident attributes 

data (such as the location and time of the incident or type of vehicle involved, there are a 

significant number of other variables in incident management that that are temporal in nature and 

are more difficult to analyze.  These variables may include what occurred prior to the incident, 

e.g. a driver consumed alcohol, amount of time spent driving, length of time since 

water/chemical spill, or amount of time since sunset.  Once the incident occurs there are other 

important variables such as when responders and equipment arrive on scene, the length of time 

that lanes are blocked or closed, the time it takes for a queue to reach a critical point, etc.   

Specifying complex temporal queries in traditional database query languages, such as 

SQL is extremely difficult even for computer scientists specializing in such analysis. 

Furthermore, proper analysis with traditional SQL requires the analyst to have a clear 

understanding of the questions to be asked, which often results in many important data 

relationships being overlooked.  Scientific research has made progress in representing temporal 

abstractions and executing complex temporal queries but there is very little research that focuses 
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on making it easy for users to specify the queries and to examine the results visually.  Some 

research systems provide temporal access languages to support limited visual queries from end-

users but these suffer the same accessibility difficulties of SQL, namely that the languages are 

not known by nor are they welcoming to practitioners, or they require an understanding of the 

underlying database structure. Simply stated, these query languages are too obtuse to use. 

In this paper we apply and extend LifeFlow (4), a new visual analytics tool for temporal 

data exploration, to the analysis of incident data.  LifeFlow provides user-controlled overviews 

of event sequences.  It allows analysts to visually explore temporal patterns in the data, find 

anomalies in event sequences and compare management practices based on incident attributes 

(e.g. incident type or agency type.)  

We first summarize related work and describe our case study data, then describe the 

LifeFlow visualization and user interface. Finally we illustrate the use of the tool with our case 

study data, and provide example of early findings. We conclude with feedback from 

transportation experts and possible future work directions. 

PREVIOUS WORK 

While static visual displays of information have been used to summarize and present 

information for a long time (5), only recently have interactive systems become available.  In the 

field of incident traffic analysis, analysis remains often done using traditional Excel spreadsheets 

and SQL queries (3). However, as transportation data have grown larger and more complex, 

visual analytics tools are also starting to emerge.  

Visual analytics tools have been used to analyze the timing and location of incidents, e.g. 

(6).  ICE (Incident Cluster Explorer) combines interactive maps, histograms, two-dimensional 

plots and parallel coordinates plots and allows users to interact simultaneously see relationships 

between the tightly coupled visualizations to analyze patterns in multidimensional incidents 

incident data (7,8). 

Using simulations in the backend interactive visualizations have been used for training, 

e.g. (3) describe a system to provide designers and operators with an appreciation of the impact 

of highway incidents on traffic delays on arterials. The ambitious Virtual Incident Management 

(3), a 3D massively multiplayer virtual environment, shows great promise for training traffic 

control personnel, emergency management personnel and first responders. These environments 

can help trainees obtain a better understanding of the traffic incidents in a safe environment, 

while generating large amounts of data that can be analyzed later or in real time.  

To represent incident response data, tools that focus on categorical temporal data should 

be considered. An example is Lifelines (10) which presents a single screen overview of a 

medical patient record. This concept was applied to the display of incident data (11). Another 

interactive visualization, Lifelines2 (12) allowed users to explore collections of records instead 

of a single record and to search for specific temporal patterns (e.g. find all records including 

event A followed by event B within 2 hours). This work demonstrated that interactive visual 

exploration can beneficially complement query formulation.  The features in Lifelines2 were 
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found to be useful by medical researchers for tasks such as identifying patients for clinical trials, 

establishing quality assurance measures, testing alarm conditions, etc. Similarly, Lifelines2 can 

be used to find all incidents with specific known patterns, e.g. all incidents for which lane 

clearance occurred more than 5 hours after a lane closure.  One limitation of Lifelines2 is that it 

does not provide an overview of all the records at once, making difficult to see the most common 

temporal sequences or to spot unusual or anomalous ones -- tasks that our new work on LifeFlow 

addresses. 

Interfaces have also been developed to find patterns similar to a template or a reference 

record. Similan (13) allows sequences search by similarities while retaining LifeLines2’s main 

visualization, and explores different ways of specifying and performing the temporal search 

using a customizable similarity measure.  Every record is ranked by similarity to the reference 

one, revealing variants of the pattern. However, Similan shares Lifelines2 main limitation: the 

need to know beforehand the sequences to be searched, and the absence of a temporal sequence 

overview technique. 

Finally, the LifeFlow display itself was inspired by a hierarchical visualization called 

Icicle Tree (14) which uses a space filling technique to summarize overviews of categorical data 

in a fixed space area. Like Treemaps (15) this technique is useful to convey characteristics of a 

hierarchy, such as the distribution of nodes in the branch of the hierarchy. LifeFlow uses a 

drawing algorithm similar to the Icicle Tree but adds a time dimension in the x axis while 

keeping the proportions of event sequences along the y axis. 

DATASET USED IN THIS STUDY 

To guide our design and implementation of LifeFlow for the analysis of incident data, we 

used a National Cooperative Highway Research Program (NCHRP) dataset that includes 203,214 

traffic incidents from 8 agencies.  

In incident includes two attributes: the agency that processed it (represented with a letter 

from A to H for anonymity) and the type of incident (e.g. “Disabled Vehicle”, “Fatal Accident”, 

“Multiple Collision”, etc.) The values for incident types are textual and not standardized across 

the agencies, e.g. “Disabled” versus “Disabled Vehicle”. 

In addition, each incident has a sequence of incident management events: “Incident 

notification”, “Incident arrival”, “Incident clearance”, “Incident cleared”, “Lane clearance”, 

“Return to normal”. The meanings of the events can also vary from agency to agency.  

A typical incident sequence includes: 

 “Incident notification” marking when the agency is first notified of the incident 

 “Incident Arrival” marking when the emergency team arrive the scene. 

 “Lane Clearance” marking when the lanes are opened, but the incident scene may 

not being completely cleared yet. 
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 “Incident cleared”, “Incident clearance”, and “Return to normal” all denote the 

end of incidents.  Later on in the analysis, we aggregated all three into the new 

event type “Return to normal (aggregated).” 

A typical sequence of event starts with “Incident Notification” and finish with “Return to 

normal”, with the possibility of having “Incident Arrival” and “Lance Clearance” between them.  

LIFEFLOW DISPLAY 

When data is first loaded into LifeFlow, the software first analyzes the data to find all 

possible sequences of events across all incident records (even those the analysts may not expect 

to find.) It then aggregates all incident records with the same sequence into a tree of sequences, 

and creates a visualization of this tree.  For example, if three incidents have the same sequence of 

four events, these three incidents are aggregated together (Figure 1).  A color-coded vertical bar 

represents each event on the common sequence.  In this example, there are four events, so four 

vertical bars are used.  The distance between the bars indicates the mean (average) time between 

events in the set of incidents with the same sequence. The height of the aggregation represents 

the number of records or incidents. 

 

FIGURE 1 A single sequence bar aggregates multiple incidents with similar sequence of events: “Incident 

Notification” (orange), “Incident Arrival” (yellow), “Lane Clearance” (green), and “Return to Normal  

(Aggregated)” (blue).  The distance between the bars is proportional to the average time between events. The 

height of the bar is proportional to the number of incidents in the aggregation. 
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FIGURE 2:  Constructing a LifeFlow display: The raw table data in the incident log can be displayed on 

LifeLines 2 as a set of triangles colored by incident type. Then all incidents exhibiting the same sequence are 

aggregated in sequence bars, and the final LifeFlow display combines all the sequence bars so all the 

sequences in the data can be represented at once. 

 

FIGURE 3 shows an example with 5106 real incidents. The large top sequence bar tells 

us that most of those incidents follow a normal sequence (a) “Incident Notification”, “Incident 

Arrival”, “Lane Clearance” and “Return to Normal”, with an average of 22 minutes and 41 

seconds between notification and lane clearance, and another 9 minutes and 14 seconds before 

return to normal. In this example only a few incidents have no line clearance event, but many 

incidents have a sequence where the clearance is recorded as occurring before arrival on the 

scene (552 incidents). However the display also reveals many other several unexpected 

sequences (b) where, for instance, the “Lane Clearance” occurred before the “Incident 

Notification”, also shown in the detailed view of Figure 4.  Those anomalies have shorter 

average time to clearance. 
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FIGURE 3 LifeFlow display showing 5,106 incidents. Most of those incidents follow a normal sequence  (a) 

“Incident Notification”, “Incident Arrival”, “Lane Clearance” and “Return to Normal”, with an average of 

about 23 minutes before lane clearance and about 32 minutes before return to normal.  

USER INTERFACE 

LifeFlow can summarize of thousands of records in one screen, but also enables the 

analysts to interact with the data in order to answer questions they have. The following is a 

description of the operations that users can perform on LifeFlow: 

1. Access to Details.   

2. When users move the mouse cursor over a sequence bar, a tooltip describing details of 

the bar appears. The detail includes basic statistics of the time to the previous event and 

to the first event, etc. An example of popup dialog can be seen in Figure 4. 

3. When users select a sequence bar, a detailed view allows the user to look at individual 

records. A window opens on the right side with a LifeLines2 timeline display. Both views 
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are tightly coupled, so when the user selects a group of incidents in the overview, those 

same incidents appear in the detailed view for further analysis. See Figure 4 on the right. 

4. Split Display by Attributes.  Since the input data may also include non-temporal 

attributes for each of the incidents (“Incident Type” and “Agency”) users can split the 

display accordingly to group all incidents by those attributes. To achieve this, users select 

the type of attribute they want to use, for instance “Agency”.  This causes LifeFlow to 

aggregate incidents by their agency type first.  The result is that there is a sub-tree for 

each agency in the display, facilitating cross-agency comparison. The agency label is 

displayed as a big box on the left of each sub-tree, allowing easy identification and 

selection of each individual agency. Figure 5 shows an overview of all the different 

sequences for all the agencies. The agencies identifiers (letters A to H) can be seen in 

white boxes on the left of the overview. 

5. Show/Hide event types.  Using the legend on the left side of the screen users can show 

or ignore certain events using the check boxes.  For example by removing the lane 

clearance events the display is regenerated to combine all the records with similar 

sequences whether they have lane clearance events or not.  This allows users to aggregate 

the data as needed to compute the mean times between events on the new aggregates. 

6. Selection and Filter. By clicking on any vertical colored bar on the overview, users can 

select groups of incidents (e.g. select all the incidents that begin with “Incident 

Notification”). After selecting instances users can filter instances by choosing to keep 

only the selection and remove everything else, or the opposite. This is an easy way to 

remove anomalous data that should be eliminated from further analysis. 

7. Align. By default all the events are displayed without alignment that is presenting the 

sequence bars in order of occurrence in the overview and presenting the events in an 

absolute timeline in the details. However sometimes users need to analyze more detailed 

what happens before and after a specific event. For this users can select to align the 

visualizations by any of the incident events. By doing so the detailed view presents a 

relative timeline for events showing the time difference from the rest of events to the 

aligned event (as shown in FIGURE 4 on the right). On the other hand, when alignment is 

made, the overview is divided in two sections one for the events before the alignment and 

one for the events after it. 

8. Select Common Sequences Across Attribute Values. After displaying the non-temporal 

attributes, users can also select a sequence across different attribute values.  For instance, 

selecting the sequence “Incident Notification”, “Incident Arrival”, “Return to Normal” 

in an attribute sub tree will select the same path in all the different agency sub trees. After 

making these selections the users can likewise apply filter. 

9. Measure Time Range. LifeFlow provides a measuring tool that gives the time distance 

between two nodes of the overview tree (dotted line in Figure 4), allowing users to see 

the exact difference in the average time to clearance between of agencies A and B, for 

instance. In Figure 4 the measuring tool shows that in average 29 minutes pass between 

“Incident Arrival” and “Return to Normal” in the most common sequence. Finally the 
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details popup (d) is also shown describing some details about the time gap between the 

“Lane Clearance” and the “Return to Normal”. 

10. Sort. To facilitate comparisons, users can sort the layout using a menu option in different 

ways: 1) according to the number of incidents the bars represent, 2) the longest (in time) 

sequence bar, or 3) the average length of the bars. Users can order the leaves of the 

overview tree by these three criteria, and facilitate comparisons.   For instance, one can 

quickly sort agencies by their average time to clear the incidents, or by the number of 

instances they reported. 

11. Displaying All Sequence Bars with Equal Height. When data includes a large number 

of incidents, it can be difficult to spot the aggregates that represent just a small number of 

incidents (e.g. dozens out of thousands). An option displays all the sequences using equal 

height, which makes it easier to review all possible sequences in the dataset. 

12. Load/Save Data. The basic format for LifeFlow is tab-delimited text files, where the 

columns are incident ID, event type, event time stamp, and annotation. Users can also 

export the results of their explorations. 

 

FIGURE 4 LifeFlow Interface. The main LifeFlow windows are divided in three sections: on the left the 

control panel, on the middle the LifeFlow overview, and on the right the detailed Lifelines2 view. Here we are 

representing 5106 incidents attended by the Agency A. We can see in the overview that most of those 

incidents follow a normal sequence  (a) “Incident Notification”, “Incident Arrival”, “Lane Clearance” and 

“Return to Normal”, However there are also some unexpected sequences (b) where, for instance, the “Lane 

Clearance” occurred before the “Incident Notification”, also shown in the detailed view. 
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CASE STUDY – RESULTS AND FINDINGS 

We used the dataset analysis mostly to guide our design.  Nevertheless, we were able to 

explore the data in a limited way and made several observations. We use those observations here 

solely to illustrate the use of the tool. Further analysis may be needed to validate our preliminary 

observations. 

Quantifying data quality issues 

When the entire dataset of 203,214 incidents was loaded into LifeFlow, only 195,346 out 

of all incidents exhibited the expected sequence of events.  Many variations and anomalies were 

found. 

After loading the dataset in LifeFlow, we immediately noticed that the Agency B 

contains a path that is more than 110 years long with 6,712 incidents (Figure 5). Investigating 

deeper into this path, we found that Agency B reported the “Incident Arrival” of those incidents 

as January 1th 1900. Since this date is commonly used as the initial date in computer systems, 

this suggests that the system the Agency used to register this event might have used it as a 

default value. Considering this part of the data as corrupted, we remove all incidents in this part 

from the dataset. While it was easy to spot this problem, such anomalies can often remain 

undetected, and skew the results of even the simplest of analysis such as calculating the mean 

time to clearance. 

Similarly, we found 48 incidents from Agency D that are about 10 months long, in which 

the “Incident Arrival” occurs before the “Incident Notification”. Considering those data 

corrupted as well, we also removed them. 

 

FIGURE 5 NCHRP dataset LifeFlow overview. The long path in the middle shows that there is a very 

anomalous group of incidents that are in average 110 years long. 
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The next thing we noticed from the resulting data was that there were many incidents that 

lasted exactly 24 hours, which seemed unlikely. Using the Align, Rank and Filter operators 

LifeFlow inherited from Lifelines2, we found that those 24-hours-long incidents have “Incident 

arrival” events occur in the first hour of the day (e.g. 12:30AM April 10 2009) and “Incident 

notification” events happened in the last hour of the same day (e.g. 11:50PM April 10 2009). 

This observation seemed to suggest that there were data entry problems with those incidents, 

indicating that the operator failed to - or was not able to - record the correct date of an event (e.g. 

12:30AM April 11 2009 as opposed to 12:30AM April 10 2009). Similar errors were discovered 

for paths that are about 12 hours long, in which case the errors seem to be problems choosing 

between AM and PM in the date.  

Those anomalies were found quite easily by the computer scientist main developer, who 

had no experience in transportation data.  Finding such errors using traditional tools like SQL or 

manual analysis can be very difficult and time consuming, and requires experienced analyst who 

would suspect the existence of such errors.  

Ranking the Agencies’ Performance 

In this study, we used the time from when the agencies were notified to the final 

clearance of the incidents as a performance measure.  

The time when the agency was notified in each incident can be indicated by the “Incident 

Notification” event. In order to compare the agencies’ performance, we needed to remove all the 

inconsistent data first. We removed all the incidents that do not start with “Incident Notification”, 

which could be performed easily using the equal height overview feature. 

However, these agencies use different event types to indicate the final clearance of 

incidents (e.g. “Incident cleared”, “Incident clearance” and “Return to normal”). Therefore, we 

replaced these three final clearance event types with a new event type called “Return to normal 

(Aggregated)”.  

After the steps above, the visualization of the data can be seen in Figure 6. Incidents are 

grouped by agencies. We showed only two event types (“Incident Notification” (orange) and 

“Return to Normal (Aggregated)” (blue)), so the horizontal length of each agency’s path 

represents the average time from incident notification to final clearance, which reflects the 

performance measure for that agency. We then sorted the agencies according to the length of 

their paths, resulting in the fastest agency (shortest path) on the top and the slowest agency 

(longest path) in the bottom. 
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FIGURE 6  Sorted display by a simple measure of agency performance. C seems to be the fastest to clear its 

incidents, followed by E, A, H, D, F, B and finally G.  Access to details will of course be needed to look for 

clues as to why those differences exist. 

From Figure 6 we can see that Agency C was the fastest agency to clear its incidents, 

taking about 5 minutes in average, while the slowest one was Agency G with an average of about 

2 hours 27 minutes. 

To investigate deeper into Agency C’s data, we removed the data from other agencies.  

Then we looked into the different Incident Types reported. We found that most of the incidents 

that Agency C reported are “Disabled Vehicles” which had in average a time to clear of about 1 

minute (Figure 7). Looking at the event distribution, we also found that a large number of the 

incidents reported “clearance” immediately after “Incident Notification”. This observation made 

us wonder if there is any explanation for these immediate clearances, and encouraged further 

analysis. 
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FIGURE 7 Overview of incident for the Agency C by Incident Type. This overview shows that the big 

majority of incidents covered by this agency are “Disabled Vehicles” with an average return to normal time 

of 1 minute 21 seconds. Even more the distribution of those events show that most of them were cleared 

immediately after the “Incident Notification” which is unlike other practices where it takes time to respond to 

a disabled vehicle notification. 

In a similar fashion, we investigated Agency G, which seems to be the slowest agency, in 

more details. Figure 8 shows the overview of the Incident Types for the Agency G.  Agency G 

classifies their incidents in only two types “Non-ATMS Route Incident” and simply “Incident”. 

As you can see from the visualization in Figure 8, the group with Incident Type “Incident” has 

an average length of about 38 minutes, which is a very good time compared to the other 

agencies, but the group with Incident Type “Non-ATMS Route Incident” took in average 5 hours 

14 minutes to clear. So we realized that when using the average time of all incidents from 

Agency G without considering the incident types, Agency G seems to be slower than other 

agencies. While in fact, Agency G performs quite well for incidents with Incident Type 

“Incident”. 
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FIGURE 8 Incident types overview for the agency G. This shows that the Agency handled only two types of 

incidents, and that the “Non-ATMS Route Incident” took them in average 5 hours 14 minutes to clear, while 

the other Incidents were cleared in fewer than 45 minutes. 

DISCUSSION 

Although our data analysis in the case study is limited and preliminary, domain experts 

from the CATT Lab is conducting a more formal analysis of the data.  They reviewed our work 

and stated that they wished LifeFlow was available earlier on when they started their own 

analysis.  They confirmed the existence of anomalies that we had found in the data, and stated 

that their elimination was non-trivial when using SQL. For example, when the analysts 

calculated the average time it took an agency to clear its events, they had to run an SQL query 

that searched for: “The average time difference of all the incidents where the Return to Normal is 

after the Incident Notification”. This means that they had to expect this error in the data, and 

they had to be careful to exclude them from their analysis. However excluding all the possible 

erroneous sequences in a SQL query would be very difficult.  In the end, they needed to review 

the results of SQL queries to ascertain that there were no longer any errors.  Without LifeFlow, 

this kind of review and identification of unexpected sequences would be almost impossible. 

Finally, they mentioned that LifeFlow would allow them to ask more questions faster, and 

probably richer questions about the data.  LifeFlow was also able to reveal unexpected sequences 

that may have been overlooked, but the tool also suggested that their prevalence is limited. 

We believe that using LifeFlow can assist analysts explore large datasets, such as the 

NCHRP traffic incident information, in ways that would be very difficult using traditional tools. 

This might allow analysts to find richer results in less time. For example, we believe that 
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LifeFlow can help analysts identify potential factors for the agencies’ differing performance 

results, and can quickly isolate data for further analysis.  

Challenges 

13. Normalization: Agencies report their incident management timing data in inconsistent 

ways.  Difference may stem from differences in data entry practices, terminology 

variations, or missing data. Policies are needed to decide if, and how, to normalize the 

data and tools will be needed to manage this normalization process and provide audit 

trails documenting the transformations.  Beside timing information, the same problem 

occurs with incident types as the terminology is not consistent across agencies or even 

local areas. This leads to a very large number of incident types in the interface and 

restricts comparisons.  Tools to interactively group and ungroup events types may be 

valuable.  

14. Scalability: While our initial prototype can already load 400,000 incidents, interaction is 

slow with such numbers, until the total number can be filtered down to smaller subset of 

interest. We will need to refine our algorithms to handle even larger numbers and 

evaluate their performance, but we are confident that this problem can be addressed.  

15. Interface complexity: Interfaces with many features and options can become difficult to 

use.  Future improvements will strive for simplicity, carefully making important features 

directly accessible while relegated rare features to menus and control panels.   

CONCLUSION 

In this paper we present a new visual analytics tool called LifeFlow and demonstrate how 

it can be used to explore incident data. Our case study looked at more than 200,000 incident data 

from 8 transportation agencies.  A rapid analysis by non experts reveal many unexpected 

sequences in the reported data (events dating more than 100 years ago, unusually long paths, 

possible AM/PM input errors and other anomalous sequences). We used LifeFlow to compare 

the performance of the agencies in clearing the incidents, and drilled down quickly to explore 

potential factors that affect performance. 

We believe that the analysts can use LifeFlow to ask more, richer questions than using 

SQL or direct analysis of the data in spreadsheets. LifeFlow allows exploration of the data, 

revealing not only common sequences, but also unexpected, erroneous sequences that would 

have ruined any statistical analysis if the errors were not fixed in the first place. 

LifeFlow is still under active development, and we have many plans for future expansion 

of features. By allowing better and faster understanding of the always-growing traffic incident 

data, LifeFlow may help identify best practices and ultimately help reduce congestion and save 

human lives. 
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