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Abstract—We present a point of view concerning HOAS
(Higher-Order Abstract Syntax) and an extensive exercisen
HOAS along this point of view. The point of view is that
HOAS can be soundly and fruitfully regarded as adefinitional
extensionon top of FOAS (First-Order Abstract Syntax). As
such, HOAS is not only an encoding technique but also a
higher-order view of a first-order reality A rich collection of
concepts and proof principles is developed inside the staadd
mathematical universe to give technical life to this point fview.
The exercise consists of a new proof of Strong Normalization
for System F. HOAS makes our proof considerably more direct
than previous proofs. The concepts and results presented re
have been formalized in the theorem prover Isabelle/HOL.

Keywords Higher-Order Abstract Syntax; System F;
General-Purpose Framework; Isabelle/HOL
I. INTRODUCTION

HOAS (Higher-Order Abstract Syntays a methodology
for representing formal systems (typically, logical sysse
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-(Il.a) The HOAS-tailored framework approad®1], [59],
[38], [40], [65], [25], [1], [16], [53]. This is character&d by
the extension of the pure logical frameworks as in (I) with
meta-reasoning capabilities. The diad (object systemamet
logic) from (1) becomes a triadibject systemlogical frame-
work where this system is specifietieta-logical framework
where one can reas@boutthe logical framework [51]. The
challenge here is choosing suitable logical and meta-#gic
frameworks that allow for adequate HOAS encodings, as
well as enough expressive meta-theoretic power. (Thedbgic
framework is typically chosen to be a weak logic, e.g., an
intuitionistic logic or type system as in (l), or linear lagi

Somewhat complementary to the above work on HOAS-
tailored meta-reasoning [60], [20] developed HOAS-
tailored recursive definitionprinciples in a logical frame-
work distinguishing between a parametric and a primitive-
recursive function space.

or static or dynamic semantics of programming languages of(ll.b) The general-purpose framework approaf9], [18],
calculi), referred to ambject systemsnto a fixed suitably [7]. This approach employs a general-purpose setting for
chosen logic, referred to as theeta logic HOAS prescribes  developing mathematics, such as ZF Set Theory, Calculus of
that the object system be represented in the meta logic sGonstructions, or HOL with Infinity, as the logical frame-
that variable-binding, substitution and inference meran  work, with object-level bindings captured again by means
of the former be captured by corresponding mechanisms aff meta-level bindings, here typically functional binding

the latter. HOAS originated in [36], [52], [31], [49] and has this means that terms with bindings from the object system
ever since been extensively developed in frameworks wittare denoted usingtandard functionsHere there is no need

a wide variety of features and flavors. We distinguish twofor the three-level architecture as in (Il.a), since thesgm
main (overlapping) directions in these developments. logical framework is already strong enough, meta-theoreti
-(1) First, the employment of a chosen meta logic gauee  expressiveness not being a problem. However, the difficulty
logical framework used for defining object systems for the here is brought be the meta-level function space being wider
purpose of reasoninigside those systemA standard exam- than desired, containing so-called “exotic terms”. Evepraf
ple is higher-order logic (HOL) as the meta logic and first-the function spaces are cut down to valid terms, adequacy
order logic (FOL) as the object system. Thanks to affinitiess harder to prove than at (Il.a), precisely because of the
between the mechanisms of these two logics, one obtains dogic’s expressiveness.

adequate encodingf FOL in HOL by merely declaring in We advocate here a variant of the approach (Il.b), high-
HOL types and constants and stating the FOL axioms anfighting an important feature, to our knowledge not yet
rules as HOL axioms — then the mechanisms for buildingexplored in the HOAS literature: the capabilityitiernalize,
FOL deductions (including substitution, instantiation.p  and eventually automate, both the representation map and
are already present in the meta logic, HOL. the adequacy prooie illustrate this point by an example.
-(I) Second, the employment of the meta-logic to reasorSay we wish to represent and reason abogalculus and
aboutthe represented object systems, i.e., to represent ndt associate@-reduction (as we actually do in this paper).
only the object systems, but also (some of) theieta- Therefore, the object system is an “independent” (Platonic
theory (E.g., cut elimination is a propertgbout Gentzen- if you will) mathematical notion, given by a collection of
style FOL, not expressible in a standard HOAS-encoding oftems called\-terms, with operators on them, among which
FOL into HOL.) While direction (I) has been quasi-saturatedthe syntactic constructs, free variables and substituaod

by the achievement of quasi-maximally convenient logicalwith an inductively defined reduction relation.

frameworks (such Edinburgh LF [31] and generic Isabelle In the HOAS-tailored framework approach, for represent-
[49]), this second direction undergoes these days a pefiod ang this system one defines a corresponding collection of
active research. We distinguish two main approaches hereconstants in the considered logical framework, say LF, and



then does an informal (but rigorousgn and paper proodf  framework concepts accommodates non-monotonicity and
the fact that the syntax representation is adequate (e., t impredicativity flavors that make “pure” HOAS so attractive

existence of a compositional bijection between Migerms This paper develops novel HOAS concepts and techniques
and normal forms of LF terms of appropriate types) and ofpertaining to thegeneral-purpose framework approach
a corresponding fact fgB-reduction [50]. Here, the general-purpose framework could be regarded as

In the general-purpose framework approach, one can déeing the mathematical universe (given axiomatically by an
fine the original system itself (herecalculus) in the meta- standard formalization of mathematics). All the involved
logical framework (say, HOL, Higher-Order Logic with systems, including the original systems and their represen
Infinity) in such a way that accepting this definition as con-tations, dwell in this mathematical universe, and are thus
forming to the mathematical definition is usually not a prob-discussed and related via standard-mathematics concepts a
lem (for one who already accepts that HQIs adequate for theorems. Our HOAS exercise here is a proof of the strong
representing the mathematical universe (or part of itfigesi  normalization result for System F [27].
the former definitions are typically almost verbatim render ~ Apart from this introduction, Sec. Il recalling some syn-
ings of the latter — in HOL,, one can define inductively the tax concepts, Sec. VI drawing conclusions and discussing
datatype of terms, perhaps defineequivalence and factor related and future work, and the appendix giving more
to it, then define substitution, reduction, etc. Moreovexe 0 details on our Isabelle formalization, the paper has two
can also define in HQOJL a system that is a HOAS-style main parts. In the first part, consisting of Secs. Ill and IV,
representation of (the original)-calculus, i.e.: define a we discuss some general HOAS techniques for representing
new type of items, call them HOAS-terms, with operatorssyntax and inductively defined relations, illustrated oa th
corresponding to the syntactic constructs of the original\-calculus and System F. The HOAS ‘“representation” of
terms, but dealing with bindings via higher-order operstor the original first-order syntax will not be a representaiion
instead. In particular, the constructor farabstraction will  the usual sense (via defining a new (higher-order) syntax),
have type (HOAS-terms- HOAS-terms)— HOAS-terms, but will take a different view of the same syntaket
where one may choose the type constructerto yield us call abstractionspairs (z, X) variable-term modulax-

a restricted function space, or the whole function spacequivalencée. Abstractions are therefore the arguments to
accompanied by a predicate to cut down the “junk”, etc.which the\-operator applies, as k. X . Under the higher-
Once these constructions are done, one may also defirgder view, abstractionsi are no longer constructed by
in HOL,, the syntax representation map frokaterms to  variable-term representatives, but are analyzed/"detstd]
HOAS-terms and prove adequacy. (And a correspondingy applying them (as functions), via substitution, to terms
effort yields the representation afterm reduction.) Now, if Namely, given a termX, A_ X, read “A applied to X",

the above are performed in a theorem prover that implemenis defined to b&’[X/z], where(z,Y") is any variable-term
HOL,,, such as Isabelle/HOL, then HOAS-terms become aepresentative ford. This way, the space of abstractions
formally certifiedadequate representation of the (original) becomes essentially a restricted function space from terms
A-terms, not available in the existent HOAS-tailored ap-to terms, as in strong HOAS. (The [strong HOAS]-[weak
proaches. Moreover, in many cases the construction of thelOAS] dichotomy is recalled in Sec. VI-C.) Although this
HOAS-terms, the proofs of their basic properties and thechange of view is as banal as possible, it meets its purpose:
adequacy proof can bautomated being the same for all the role previously played by substitution now belongs to
syntaxes with bindings. function-like application. The latter of course originata

One may argue that, on the other hand, the above HOASsubstitution, but one can forget about its origin. In facteo
terms do not retain all the convenience of a genuine HOA&an (although is not required to!) also forget about theiorig
encoding. Thus, when various standard relations need to heal first-order binding constructor and handle terms elgtire
defined on HOAS-terms, certain context-free clauses spasy means of the new, higher-order destructor. Moving on to
cific to the HOAS-tailored frameworks (within the so-called the discussion of recursive-definition principles for synt
HOAS-encoding of judgemeptae no longer available here. we perform an analysis of various candidates for the type

E.g.,arulelke vx x:5=4x:T of the recursive combinator, resulting notably in a novel
Lam(A): S — T “impredicative” principle in the spirit of (strong) HOAS.
(typing rule for A-abstractions —=- is logical implication Then we discuss HOAS representation of inductively
and A a map from terms to terms) cannot act as a defdefined relations, performed by a form of transliteratiok fo
initional clause in HOL, for a typing relation_:_, due lowing some general patterns. These patterns are illestrat

to non-monotonicity. The short answer to this objection is

agreeing that general-purpose frameworks do bring their lin this paper, we use lowercases for variables and upperdaséerms.

expressiveness with the price of not allowing the cleanest 2In order to streamline our presentation, we prefer to regardperator
. . . ; . such as\ not as binding itself variables into its arguments, but eath

pOSSIble HOAS. A Ionger answer Is given in this paper, 55 taking its arguments with their variables already bodured, taking

where we argue that developing suitable general-purposesstractions as arguments — see Sec. |1.



by the case of the reduction and typing relation for Systenboldface fonts). We employ the lambda-abstraction, univer
F, and it appears that a large class of systems (e.g., mosél/existential quantification and implication symbalsVv,
of those from the monographs [10], [29], [42], [54]) can 3 and = only in the meta-language of this paper, amat
be handled along these lines. For typing, we also presentia the formal languages that we discuss— B is the A-
“purely HOAS” induction principle, not mentioning typing to-B function space, andP(A) and P,(A) the powerset
contexts. Once our formalization will be fully automated and P(A) \ {0}, respectively.c is functional composition.
(see Sec. VI-B), it will have a salient advantage over previfor R C A x A, R* is its reflexive-transitive closuré] is
ous HOAS approaches: adequacy will needbe proved by the empty list and infixed “,” is list concatenation.
hand, but will follow automatically from general princigle

In the second part, Sec. V, we sketch a proof of strong
normalization for System F within our HOAS framework.  The two systems are standardly defined employing First-
We make essential use of our aforementiodedinitional  Order Abstract Syntax (FOAS), modute-equivalence. We
principle and typing-context-free induction principl® ob-  later refer to them as “the original systems”, to contrastrth
tain a general criterion for proving properties on typablewith their HOAS representations.
terms (which is in principle applicable to properties otherA. The (untyped)-calculus
than strong normalization, including confluence and type We fix an infinite setvar, of variables ranged over by
preservation). From this criterion, we infer strong normal z,y, z. The setsterm, of terms ranged over byX,Y, Z,
ization for terms typable in the empty context. (Extendingand abs of abstractions ranged over byA, B, are given
the result to arbitrary contexts is then immediate.) Unlikeby: X := InvVx |App X Y | Lam A A= 2X
previous proofs [28], [64], [43], [26], [11], [6], [13], [37 where we assume that, in.X, z is bound in X, and
[21], our proof does not emplogtata or type environments terms and abstractions are identified modulo the standardly
and semantic interpretation of typing contextsa virtue of  induced notion of-equivalencesee, e.g., [12]). Therefore
our setting, which is thus delivering the HOAS-prescribedwhat we call “abstractions” and “terms” in this paper are
service ofclearing the picture of inessential details equivalence classegNote: the operator&pp, Lam andzx._
Isabelle formalization. For the formalization of the con- (for any fixedz) are well-defined om-equivalence classes.)
cepts and results presented in this paper (including th&or convenience, we shall keep implicit the injective map
FOAS definitions of the systems, their HOAS representainv : var — term, and pretend thavar C term (this
tions and adequacy theorems, and the Strong Normalizatiosmission will be performed directly for the syntax of System
theorem), we have chosen a particular general-purposg logiF below). Anenvironmenp € envis a finite-domain partial
namely HOL,, implemented as Isabelle/HOL [48]. The function from variables to terms. We write:
formal scripts can be downloaded from [56]. The document fresh : var — term — bool, for the predicate indicating if
SysF.pdf from that (zipped) folder contains a detailed pre-a variable is fresh in a term (“fresh” meaning “non-free”);
sentation of the relevant theories. These theories can also_|_| : term — env — term, for the concurrent substitu-
be browsed in html format in the fold@ysF_Browse. The  tion on terms — namelyX [g] is the term obtained fronk
section-wise structure of this paper reflects quite falthfu by concurrently (and capture-avoiding-ly) substitutingX
that of our Isabelle development, so that the reader shouldach variabler with the termp(z) if p(x) is defined.
have no difficulty mapping one into the other. Moreover, the- _[_/_] : term — term — var — term, for unary
concrete syntax we use for our operators in Isabelle is @imosubstitution — namelyX[Y/y] is the term obtained from
identical to the one of the paper; the proofs, written (fa& th X by (capture-avoiding-ly) substituting with Y in X.
more complex facts) in the top-down Isar [47] style, are also We employ the same notations for abstractioinssh :

II. THE A-CALCULUS AND SYSTEM F RECALLED

fairly readable. (More details can be found in the appepdix.var — abs— bool, _[_] : abs— env — abs etc.

The above precautions allow us to focus our presentatio®ne-step3-reduction~- : term —term — bool is given by:
on mathematics rather than on formalization, while still . X Y )
keeping an eye on formalization. As a side-effect, we hopepp (Lam(z.Y)) X ~ Y[X/x] (Beta) Lam(z.X) ~ Lam(z.Y) )
to illustrate that the discussed “general mathematicsbiis f X ~Y (AppL) X ~Y (ADPR)
malizable in other general-purpose theorem provers bgside App X Z ~AppY Z App Z X ~App Z Y

that of our choice. (Though, admittedly, some extra care is X is called strongly normalizingif there is no infinite
required, if working in more constructive settings such assequenceX,),en with Xo = X andvn. X, ~ X;41.

Coq [14], in order to have our definitions go through.) B. System F

Conventions and notations.While Isabelle distinguishes  We describe this system as a typing system Xderms
between types (as primitive items) and sets (as items inwithout type annotations, in a Curry style (see [10]). Ita-sy
habiting bool-functional types), we shall ignore this dis- tax consists of two copies of the untypaetalculus syntax
tinction here and refer to all the involved collections as— one for data and one for types. More precisely, we fix two
sets (the reader can recognize the types though by thénfinite setsdvar, of data variableqdvarsfor short), ranged



over byx, y, z, andtvar, of type variableqtvarsfor short), (z,Y) is easily seen to be immaterial.) The operatois
ranged over byx, ty,tz. The setsdterm anddabs of data  extensional, qualifying the set of abstractions assdricted
termsandabstractiongdtermsanddabstractiondor short),  term-to-term function spac@nd preserves freshness. Thus,
ranged over byX,Y, Z and A, B, C, andtterm andtabs, abstractions are no longer regarded as pairs var-term up
of type termsand abstractions(ttermsandtabstractionsfor  to a-equivalence, but as functions, in the style of HOAS.
short), ranged over byX, tY,tZ andt A, tB, tC, are defined Under this higher-order view, abstractions can be desduct

by the following grammars, again up te-equivalence: by application, as opposed to constructed by means of var-
X z=z|App XY |Lam A4 A o= zX term representatives as in the original first-order viewt Bu
tX = tx| Arr tX tY | Al tA tA = tx.tX does the higher-order view suffice for the specification of

Above, App and Lam stand, as in Subsec II-A, for “appli- relevant systems with bindings? l.e., can we do without
cation” and “lambda”, whileArr and Al stand for “arrow”  “constructing” abstractions? Our answer is threefold:
and the “for all” quantifier. Since dterms do not have type-(1) Since the higher-order view does not change the first-
annotations, indeed both the abstract syntax of dterms anatder syntax, abstractions by representatives are stil-av
that of tterms are that of-calculus (from Subsec. 1I-A), just able if needed.
that for tterms we writéArr andAl instead ofApp andLam. -(2) Many relevant systems with bindings employ the bind-
All concepts and results from Subsec. II-A apply to eithering constructors within a particular style of interactioittw
syntactic category, separately. La¢nv, ranged over by,  substitution and scope extrusion (e.g., all variables appe
be the set of data environments, atediv, ranged over by either bound, or substituted, or [free in the hypothesis])
&, that of type environments. For any itemsand b, we  which makes the choice of binding representatives irreleva
may write a : b for the pair (a,b). A well-formed typing This phenomenon, to our knowledge not yet rigorously
context(contextfor short)T" € ctxt is a list of pairs dvar- studied mathematically for a general syntax with bindings,
tterm, 1 : tXy,..., 2, : tX,, with the x;’s distinct. The is really the basis of most HOAS representations from the
homonymous predicategesh : dvar — ctxt — bool and literature. In Sec. IV, we elaborate informally on what this
fresh : tvar — ctxt — bool (indicating if a dvar or a tvar is phenomenon becomes in our setting.

fresh for a context) are defined as expecfegh y [| = True; -(3) The previous point argued that relevant systepecifi-
freshy (T, (x : tX)) = (freshy T Ay # x); fresh ty [| = True;  cationscan do without constructing abstractions. Now, w.r.t.
fresh ty (T', (z : tX)) = (fresh ty T’ A fresh ty tX). proofs of meta-theoretic properties, one may occasionally

The type inference relatioq -_:_) : ctxt — dterm — need to perform case-analysis and inductiarebstractions
tterm — bool is defined inductively by the clauses: HOAS-style case-analysis and induction are discussed be-

(Asm) I'EX:tX  (Weak) low, after we introduce-abstractions.
D,z:tXFxz:tX [freshzT] Ty tyF X :tx [freshy T B. 2-abstractions
Iz XPY:t¥ (fA”')h . eyt (fA”)h or These are for abstractions what abstractions are for terms.

Tk Lam(z.y) : Arex ty [fresh @ T p yoc Alecty) [resh T g gpapactions A € abs2 are defined as pairs.A var-

FFX:ATtYtZ THY:tY L FY : Al(tx.tY) . ) : . .

(ArE) ————— "2 (AIE) abstraction up tax-equivalence (just like abstractions are
THAPp X Y : tZ TFY : tY[tX/ty]

) , , pairs var-term up ta). (Alternatively, they can be regarded
We write - X : tX for [] - X : tX. X is calledtypableif ;g triplesz.y.Z, with =,y € var and Z ¢ term, again
['F X : tX for somel” andtX. up to a.) Next we define two application operators for 2-
abstractions. If4 € ab2 and X € term, then. A_1 X and
A_2 X are the following elements aibs

Here we present a HOAS approach to tegntaxof  _ 4 1 x — A[X/z], wherez, A are s.t.A = (z.A);
calculi with bindings. We describe our approach for the. 4 o x — (y.(Z|X/z])), wherey, Z are sty # z,

paradigmatic particular case of the untypedalculus (from  fesp o X and A = (y.(2.2)).

Sec. II-A), but our discussion is easily generalizable tm&  (again, the choice of representatives is immaterial.) Thus
generated from any (possibly many-sorted) binding sigeatu gssentially2-abstractions are regarded 2srgument func-
(as defined, e.g., in [23], [63]). We doot define a new tions and applied correspondingly.

IIl. HOAS VIEW OF SYNTAX

higher-order syntax, but introduce higher-order opegator Now we can define homonymous syntactic operations for
the original syntax — hence we speak dfi@AS viewather  gpstractions lifting those for terms:

than of aHOAS representation - InV : var — abs by InV z = (y.z), wherey is s.t.y # x;

A. Abstractions as functions - App : abs— abs— abs by App A B = (z. (App X 1)),

Throughout the rest of this section, we use the conceptwherez, X, Y are s.t.A = (z2.X) andB = (2.Y).
and notations from Sec. Il-A, andot the ones from - Lam : ab2 — abs by Lam A = (x.(Lam A)), where
Sec. II-B. GivenA € abs and X € term, the functional =z, A are s.t. A= (z.4).
application of A to X, written A_ X, is defined to be If we also defingd € Abs to be(z.x) for somex, we can
Y[X/z] for any 2z andY s.t. A = (z.Y). (The choice of case-analyze abstractions by the above four (complete and



non-overlapping) constructors. Moreover, functional lapp Unfortunately, this condition is still too strong to guaran

cation verifies the expected exchange law_1X)_Y =  tee the existence dff. But interestingly, if we have enough
(A_2Y)_X and commutes with abstraction versus termsvariables, the existence of a compositional map holds:
constructors, e.g(Lam A)_ X = Lam(A_1X). Prop 4: Assumecard(var) > card(C) and letcApp : C —
C. Induction principles for syntax C — C andcLam : P.y(C) — C (wherecard is the cardinal

The following is the natural principle for terms under the OP€rator). Then there exist§ : term — C s.t.:
HOAS view. Notice that it requires the use of abstractions.(!) #(App X Y) = cApp (H X) (H Y') for all X, Y.

Prop 1: Let ¢ : term — bool be s.t. the following hold: (1) f(Lam A4) = cLam({H(A_X). X € term}) for all A.
(i) Vo. oz, (i) VX, Y. 0 X Ap Y = o(App X Y). Prop. 4 is looser than a def|n|t|(_)n. principle, since it does
(i) VA. (Vo.p(A_z)) = ¢(Lam A). ThenvX.p X. hotstate uniqueness &f. In effect, itis a “loose deﬁmu_on"

Likewise, a HOAS induction principle for abstractions Principle, which makes no commitment to the choice of
requires the use d-abstractions. The-place application in  INterpreting the variables. (Though it can be proved that
the inductive hypothesis fdram in Prop. 2 offers “permuta- £ 1S uniquely determined by its action on variables. As a
tive” flexibility for when reasoning about multiple bindiag rivial example, the identity function on terms is uniquely

— the proof of Prop. 13 from Sec. V illustrates this. identified by its action on variables and by equations (I) and
Prop 2: Let ¢ : abs— bool be s.t. the following hold: (. ch(_ar functions,_such as term-de_pth, wnlat fall into the

(i) pid. (i) Va. o(InV ). cardinality hypothesis of this proposition, but of course c

(iily VA, B. p AN B = o(App AB). be defined using Prop. 3.) Note the “impredicative” nature

(iv) VA. (Va. p(A_12) A p(A_22)) = p(Lam A). of equation (Il): it “defines”H on Lam A in terms of the
ThenVA. ¢ A. “HOAS-components” ofA, where a “HOAS component”

) . L is a result of applyingd (as a function) to a ternX and

D. Recursive definition principles for syntax can of course be larger than. This proposition can be
_ This is known as a delicate matter in HOAS. One wouldsefy| in sjtuations where the existence of a compositional
like that, given any seC, a mapH : term — C be gy s the only relevant aspect, allowing to take a shortcut
determined by a choice of the operationisV : var — C,  from the first-order route of achieving compositionality
cApp : C — C — C, andcLam (whose type we do not yet through interpretation in environments — our proof of Stron
specify) via the conditions: Normalization from Sec. V takes advantage of this.
() Hae =cinvz. () H(App X'Y) = cApp(H X) (HY).  conclusion: While the above preparations for HOAS on
(Il An equation (depending on the type afam) with 155 of FOAS do require some work, this work is uniformly
H(Lam A) on the left. , applicable to any (statically-scoped) syntax with binging
(We only discussteration, and not general recursion.) hence automatable. Moreover, once this definitional effort

Candidates for the type of the operathem are: s finished, one can forget about the definitions and work
(1) clam : (term — C) — C, suggesting the equation gngirely in the comfortable HOAS setting (meaning: no more

H(lam A) = cLam(AX. H(A_X)) — this is problematic ,_representatives, variable capture, etc.), as illusiragt.
as a definitional clause, due to its impredicativity;

(2) A weak-HOAS-like [18] variable-restriction of (1),
namely,cLam : (var — C) — C, yielding the equation

IV. HOAS REPRESENTATION OF INFERENCE

(Il ): H(Lam A)=cLam( z. H(A_x)) This section deals with the HOAS representation of in-
and a recursive principle: ductively defined relations on syntax, such as typing and

Prop 3: There exists a unique maff : Term — C s.t.  reduction. Given an inductively defined relation on the
equations (1), (11), and (1},) hold. first-order syntax employing the first-order operators, we

(3) c,am : (C — C) — C. Then there is no apparent transliterateit through our HOAS view, roughly as follows:
way of defining the equation (lll) in terms dfam and (l) abstractions constructed by terms with explicit depen-
cLam without parameterizing by valuations/environments indencies become “plain” abstractions (used as functions);
var — C, and thus getting into first-order “details” (at least (II) terms with implicit dependencies become abstractions
not in a standard setting such as ours — but see [60], [20pplied to the parameter they depend on;

for an elegant solution within a modal typedcalculus). (1) substitution becomes functional application;

(4) A “flattened” version (collapsing some type information) (IV) unbound arbitrary variables become arbitrary terms;

of both (1) and (3), namelygLam : P.;(C) — C. This (V) scope extrusion is handled by universal quantification.
may be regarded as obtained by requiring the operator frofiMe explain and illustrate these as we go through the
(1) or (3) to depend only on the image of its argumentsexamples, where the informal notions of implicit and explic
in term — C or C — C, respectively. The natural as- dependency will also be clarified.)

sociated (valuation-independent) condition (lll) would b  Our presentation focuses on a particular example, the
H(Lam A) = cLam({H(A_X). X € term}). typing and reduction of System F, but the reader can notice



that the approach is rather general, covering a large class than that given by (Xi) for~. This is also true for rule
reduction and type systems. inversion, where fromLam A ~» Lam B we can infer a

At this point, the reader should recall the definitionsgood deal of information compared to the first-order case.
and notations pertaining to System F from Sec. II-B. No-However, when proving that» includesa certain relation,
tations, in a nutshell: lowercasesy, ~z for dvars, upper- it appears that a HOAS clause matching (Xi) more closely
casesX, Y, Z for dterms, uppercases, B for dabstractions, may help. Such a clause can be extracted from (Xi):
calligraphic uppercasesl, B for 2-dabstractions; for the Prop 6: ~» is closed under the following rule:
type versions of the above, we prefix everything by “t". freshzA freshzB Az~ Bz

) : ) (HXi")
All the discussion from Sec. Il duplicates for the two h , amA ~ LafTF]B N (b
copies of theA-calculus that make the syntax of System NOt€ that (HX7') is stronger than (HXi) (but stronger as a

F. In particular, we have data-abstraction-lifted openato rule means weaker as an induction-principle clause). A rule

App : dabs — dabs — dabs Lam : dabs2 — dabs etc such as (HXi’) should be viewed as a facility to descend,
(Whe.redabSZis the set of data-abétractions) " if necessary, from the HOAS altitude into “some details”

A Representation of reduction (here, a freshness side-condition). This fits into our goal
.W z p dt dt bool inductively: of encouraging HOAS definitions and proofs, while also
¢ define ~ -dterm —dterm ;’Z ?40 ;n u<j:B|veZzy. allowing access to details on a by-need basis.

App (Lam A) X — A_X (HBeta) o A — Lam B (HXi) Since, by Prop. 5, the relations> arlfj ~» coincide,
X ~ Y X YV hereafter we shall use only the symbeb”.
App X Z ~ App Y Z (HAppL) ApPZ X ~» APP Z Y (HAPPR) B. Representation of inference
Adequacy of the reduction representation is contained in: A HOAS contex{Hcontextfor short) A € Hctxt is a
Prop 5: The following are equivalent: list of pairs indterm x tterm, X; : tX;,..., X, : tX,.

(DX ~Y. X ~ Y. (3)Vpedenv. X[p] ~ Y[pl. Note thatctxt C Hctxt. For Hcontexts, freshnesgesh :

Remember that our HOAS representation dwells in thédvar — Hcixt — bool andfresh : tvar — Hctxt — bool,
same universe as the original system, i.e., both the ofiging"d substitution, [_,_] : Hctxt — tenv — denv — Hctxt
relation~ and the representation relatien act on the same aré defined as expectetieshy [| = True; freshy (A, (X
syntax — they only diffeintensionallyin the way their defi- tX)) = (fresh y A Afresh y X); fresh ty [| = True;
nition manipulates this syntax: the former through binging fresh v (A, (z : tX)) = (fresh ty A A fresh ty tX);
and substitution, the latter through abstractions-asifans J1& Pl =1 (A, (X tX_)) (£, p) = (A[E ol (X[_P]  tX[€]))-
and function application. Looking for the incarnations of e represent type inference by the relationt_: _) :
the general HOAS-transliteration patterns (1)-(V) listatt HCxt — dterm — tterm — bool, called HOAS typing

the beginning of this section, we find that: (Htyping for short): AL XX
- The definition of~» is obtained by modifying in~ only ———————— (HAsm) ——— " (HWeak)
. . .. e g A X :tXEX X AYY (tYE X : tX
the clauses involving binding and substituti¢Beta), (Xi); VXA X tXEA_X :tY VA EY :tA_tX
- In (Beta) and (Xi),Lam(x.Y), Lam(z.X) and Lam(z.Y) Artama: Aty A iy A CAD
becomeLam A, Lam A andLam B, according to (1); AFX:ATtYZ AFY:tY (HAITE) AFY :AtA (HAIE)
- In (Beta),Y'[X/z] becomesd _ X, according to (lll); AFApp XY :1Z AFRY tA_tX
- In (Xi), regarded as applied backwardse have the extru- Prop 7: (Adequacy) The following are equivalent:

sion of the scope of, asz is bound in the conclusion and (1) I'+ X : A.
free in the hypothesis — by pattern (V), this brings universa(2) I' F X : A. (Note: contexts are particular Hcontexts.)
quantification over an arbitrary terd in the hypothesis, as (3) I'[¢, p] F X|[p] : A[¢] for all £ € tenv and p € denv.
well as the acknowledgement of an implicit dependency on It follows that I is a conservative extensioffrom con-
(now having becomg) in the X andY from the hypothesis, texts to Hcontexts) of-. Thus, unlike with reduction, our
making them become, by (Il), abstractions applied to theHOAS representation of typind;, doesnot manipulate the
implicit parameterA_~Z and B _Z. same items as the original relatibnbut extendghe domain
(Note that this example does not illustrate pattern (IM)cei  — essentially, the new domain is the closure of the original
all variables appearing in the definition of are bound3 domain under substitution. Hereafter we wrltefor either
The infinitary clause (HXi) from the definition of~ relation, but still havd" range overctxt and A over Hctxt.
(whose premise quantifies over all dterid¥ is convenient The only pattern from (I)-(V) exhibited by our HOAS-
when proving that-— is included inanother relation, as it transliteration of typing that is not already present indne
makes a very strong induction hypothesis, much strongefor reduction is (IV), shown in the transliterations of (Agm
(Weak) and (Arrl) — there, we have the variablesand y

SWhat we discuss here, in the context of the aforementionéigrpa, becoming terms¥ andY in (HAsm) (HWeak) and (HArrI).
are not the inductively defined relations, but the inductdefinitions

themselves; and what we loosely refer to as “variables” ateninis” At (Arrl), (IV) is used in combination W'th (V), because )
appearing in these definitions are really variable and teetemariables. IS also extruded back from the conclusion to the hypothesis,



thus becoming in the hypothesis of (HArrl) a universally problems with (*) by stepping one level up to a meta-logic.
quantified termX. Another phenomenon not exhibited by Previous work in general-purpose frameworks, after sévera
reduction is the presence of freshness side-conditiorthéin  experiments, eventually proposed similar solutions egiti
original system), whose effect is firevent dependencies  directly interfering with the framework axiomatically [#6r
e.g., the side-conditiofresh y T" from (Weak) says that of employing the mentioned intermediate logic L [44].
T" does not depend an, meaning that, when transliterating  Our own solution has an entirely different flavor, and
(Weak) into (HWeak), (I1) is not applicable fo. (Otherwise, does not involve traveling between logics and/or postudati
to represent this we would need Hcontext-abstractions!) axioms, but stays in this world (the same mathematical
Note that-» and~- coincide, whileF- is only a conserva- universe where all the development has taken place) and sees
tive extension of- — this is because our HOAS transliteration what this world has to offer: it turns out that clauses such as
methodalways closes under substitutioand ~-, unlike I, (*) are “backwards sound”, in the sense that any relation
is already closed. The presence of unbound variables in theatisfying them will include the empty-context Htyping
first-order definition, requiring modification (IV), is a miee  relation. This yields “context-free” induction:
indicator of non-closedness. Prop 8: Assumef : dterm — tterm — bool s.t.:

C. Induction principle for type inference vX. 6 XtXA:> 0A_X)N ) w (All )
By definition, I offers an induction principle: If a relation eey(lzirr? tx)t(Z,;\rr tx;\?{ x :;/éfl XB)
R : Hetxt — dterm — tterm — bool is closed under the 6 (App Y X) Z (AITE o) 0y (A_tX) (AIE()

rules defining, thenvVA, X,tX. A F X :tX= RA X tX.  Then F X : tX implies# X tX for all X,tX.

A HOAS technique should ideally do away (wheneverp qof sketch Take R : Hctxt — dterm —s tterm —s bool
possible) not only with the explicit reference to boundi; pe R A X tX = (VY :tY) € ALY 1Y) = 6 X tX).
variables and substitution, but with the explicit referenc Then g satisfies the clause that defirehence, in particular,
to inference (judgment) contexts as well. Our inductivesy, g X, tX, FX :tX impliesR[| X tX, i.e,0 X tX. m
definition of Htyping achieves the former, but not the latter  vjewing relations as nondeterministic functions, we can
Now, trying to naively eliminate contexts in a “truly HOAS” ephrase Prop. 8 in a manner closer to the intuition of types
fashion, replacing, e.g., the rule (HArrl) with somethifigt 55 sets of data, with mgical predicate[62] flavor:

VX. typeOf X X = ypeOf(A_X) t¥ Prop 8 (rephrased)Assumed : dterm — P(tterm) s.t.:
typeOf (Lam A) (Arr tX tY)

in an attempt to defineon-hypothetic typingi.e., typing in ~ ~2- X € 9:( = A XE0Y i w Al )
the empty context) directly as a binary relatitypeOf be- Ye G(Ii\: tx)t§)0 (Ar)r(oé t(nx };EE(;(&EAA))
tween dterms and tterms, we hit two well-known problems: AP Y X) 0 (ArrE o) Yo A (AIE ()

(1) The contravariar)t _pos_ition aj/peO_f(X, X) prevents Fhe Then F X : tX implies X € 6 tX for all X, tX.
clause (*) from participating at a valid inductive definitio
-(I) Even if we “compromise” for a non-definitional (i.e., V. THE HOAS PRINCIPLES AT WORK
axiomatic) approach, but would like to retain the advantage In this section we give a proof of strong normalization
of working in a standard logic, then (*) is likely toaot  for System F within our HOAS representation using the
be sound i.e., not capture correctly the behavior of the developed definitional and proof machinery.
original system. Indeed, in a classical logic it would allow Remember that when introducing System F in Sec. II-B
one to type anytam A to a typeArr tX tY for some non- we fixedinfinite sets of type and data variablessar and
inhabited typetX. Moreover, even we restrict ourselves to tvar, without making other assumption about their cardinal-
an intuitionistic setting, we still need to be very carefullw ities. But now we commit to such an assumption, asking
(and, to some extent, make compromises on) the foundatiorthat we have much more type variables than data variables,
of the logic in order for axioms like (*) to be sound. This is namely, thatvar has a cardinality greater than or equal to
because, while the behavior of the intuitionistic connexgti  that of P(dvar). (This assumption is needed for obtaining
accommodates such axioms adequately, other mechanisrascompositional map via Prop. 4.) One can easily see that
pertaining to recursive definitions are not a priori guagadt  this assumption does not affect the generality of the result
to preserve adequacy — see [33], [39]. since once strong normalization has been provedséone

So what can one make of a clause such as (*) in dixed infinite cardinalities of the variable sets, then it can
framework with meta-reasoning capabilities? As already di be inferred that it holds foany other infinite cardinalities
cussed in the introduction, the HOAS-tailored framework’s— moreover, this also seems to be the case for most of the
solution is axiomatic: (*) would be an axiom in a logic interesting properties considered for typing systems & th
L (hosting the representation of the object system), witHiterature. Note also that this cardinality assumption &as
L itself is viewed as an object by the meta-logic; in theintuitive reading in Cantorian set theory: think of types as
meta-logic then, one can perform proofs by induction onsets of data, identify types with tterms and data with dterms
derivations inL. Thus, HOAS-tailored frameworks solve the then, saying thatard(tvar) = card(P(dvar)) is the same as



saying thatcard(tterm) = card(P(dterm)), i.e., that types
are indeed (in bijection with) sets of data.
A. An effective proof principle for typable terms

Before going after a proof of a particular property of
System F, we first analyze how we could hypothetically
_employ our HOA.S machinery in a potential pr(.)Of' Many versally quantified over all the other parameters):
important properties of typekt-calculi state something about (VCIS): if ZsC G, thenAppL y Zs€ S:
the typable terms, with the statement possibly depending (CIS): i.f Xea Z'sC a er')ldz\ppL (A' X) Zse S, then
on the type. l.e., for a familyGix)ix € [ [ixcnerm P(dterm) AppL (App (Lam A) X)_Zse g - ’
(viewed as atterm-sorted predicate), one would like to LetC = {S C G. (VCIS) énd (CF) hold}. We define
prove that F X : tX implies X € G for all X,tX. E.g.: CAIT : C —_>C . aﬁchI . Py(C) — C by CA” g g —
- Strong normalizationGix = { X. X strongly normalizing. v VX € 9 AP Y X € < };égnd A K — (K 122

. 1- 2 = .

- Type preservationGi = {X. VX' X ~» X'= F X':tX}. : ]
- Church-RosseiGy = {X. VY1, Vs, X ~» Yy A X ~» Vi By Prop. 4 there eX|sts_ a.ma?) : tterm — C that
commutes withcArr andcAl, i.e.:

= (3Z2. Y1~ Z ANYy =~ Z)}. ) i
One may also wish to prove the more general versiongg:?) 99('(:: tti)tz_) 5 v VXQ(E,[AH té(')App Y Xeowz.
of these properties, which consider contexts as well. We .| IXetterm - .
Now, (Il) is precisely the conjunction of the clauses

call a subset’ C ctxt essentially context-fred [| € K .

implies K = ctxt. We think of K as a property on contexts. (A”.") and (A“.E") from Prop. 8 (rephrased)_, while the left-

If the property is true (i.e. X = ctxt), then it is trivially to-right inclusion part of (1) is a rephrasing of (Ark
o ' Finally, (AIE,) holds because (€) holds for all S € C.

essentially context-free. The notion of essential context -
freeness is thus only interesting for properties whosehtrutThus’ the hypotheses of Prop. 8 (rephrase_d) are satisfied
by 6 : tterm — (C (regarded as a map itterm —

has not been established yet, and it says that it suffices (dterm)). Hence,v.X,tX. I X : X = X € 0tX. And

prove such properties for empty contexts only. The adverb. _
“essentially” suggests that the effort of providg = ctxt sinceviX. f IX € G, we getv.X, iX. FX:iX = X € G. &

from [| € K is negligible, at least compared to that Oft l:Ne fcall a4iub§e_? gt (:.tern:h tyﬁe-cl%sed(terl;nnsolog)é
proving [| € K. This is the case of strong normalization, aken from [41]) if it satisfies the hypotheses of Prop. 9.

and also of type preservation, which is fortunate, since ouP- Proof of strong normalization for System F
HOAS induction principle (Prop. 8) is only applicable to ~ We letSA/ be the set of all strongly normalizing dterms.
empty-context versions of properties. Prop 10: (Strong Normalization) Ifl’ F X : tX, then

How would one go about proving thak X : tX implies X € SN.
X € Gy for all X? In order not to cramp the ideas with Proof.Let K5y C ctxt be {I'. VX, tX. T F X : tX = X €
(meta)type dependencies that require extra notation but d8A}. It suffices to check(l) Ksy is essentially context-
not bring extra insight, we shall assume that@lk’s are  free; (2) SN is type-closed. Indeed, by Prop. 9, (2) would
equal? i.e., that we start with a subsét C dterm and the ensure[] € Ksy, hence, with (1), we would hav& sy =
question is: How would we go about proving th&t X : tX  ctxt. (1) and (2) are treated next. ]
implies X € G for all X? Our “first reflex” is of course Prop 11: Kgy is essentially context-free.
to use the HOAS-induction principle from Prop. 8, that Prop 12: SN is type-closed.
is, search ford : tterm — P(dterm) with Im(¢) C G, The (very simple) proof of Prop. 11 is a mere rephrasing
i.e., 0 : tterm — P(G), satisfying the clauses from there. of an argument using the original syntax that reduces, fr th
Then Prop. 4 suggests a HOAS-recursive definitiondof two dtermsY” andLam(z.Y"), well-typedness of the former
Interestingly, after some investigation, we are naturldly  to well-typedness of the latter and termination of the fatte
to a general criterion justifiable by the combination of to termination of the former. On the other hand, the proof
HOAS induction and recursion (in what follows, we let of Prop. 12 requires a tedious case analysis that mirrots tha
Zs range over lists of terms and takepL : dterm —  of the original proof (so here our HOAS approach does not
List(dterm) — dterm to be defined byAppL X [| = X bring any improvement). The latter proposition employs the
and AppL X (Z,Zs) = AppL (App X Z) Zs moreover, following lemma, whose proof occasions the usage of the
given a listZs and a setG, we loosely writeZs C G to  argument-permutative induction from Prop. 2:
indicate that all terms fronZs are in G): Prop 13: If X ~»* X', thenA_X ~»* A_X'.

Prop 9: Assume thatG C dterm s.t. the following hold:  Proof. First, we note thafresh 2 AANA_z ~»* A" _2 =
Lam A ~=* Lam A’, from which we get

XeG ZsCG AppL(A_X)ZsedG
AppL (App (Lam A) X) Zse G
Then F X : AimpliesX € G for all X, A.
Proof sketch.Consider the following clauses, expressing
potential properties of subsefs C dterm (assumed uni-

(C19)

ZsC G Vz. AppY z € G
Ao 752 VO PR (appci©) (Voo A_z =" A'_z) = Lam A ~* Lam A’ (*
Now, we employ the principle from Prop. 2, performing
4But the type-dependent case could be handled along the saese | induction onA. For the only interesting case, assurhdas



the formLam A. We know from IH thatvz. (4_12)_X 0 (required to apply Prop. 8) that [garameterized by type
w* (A _12) X' N (A 22) X ~*(A_22)_X'. The environmentsi.e., by maps from tvars to tterms. Instead, we
second conjunct give¥z.(A_1X)_z ~»* (A_1X')_z, employ our compositionality criterion (Prop. 4) to obtain a

hence, with (**), Lam(A_1X) ~»* Lam(A_1X’), i.e., lightweight, non-parameterizetidirectly, verifying what is
(LamA) _X ~»* (LamA)_X’. (We also used the ex- known as “Girard’s trick” (namely, proving that it has its
change and commutation laws from Sec. 1I-B.) B image in the set of candidates) in a more transparent fashion

The above proof reveals an interesting phenomenon: iThen, previous proofs define a notion of semantic deduction
a HOAS setting, where bindings are kept implicit andin contexts, universally quantifying over type environrgen
substitution is mere function application, in some proofsand/or data environments, and prove the typing relation
one may need to perform a permutation of the “place-sound w.r.t. it — this step isot required by our proof; more
holders” for function application (requiring-abstractions), precisely, this routine issue of logical soundness has been
whereas in a first-order framework one would be ablerecognized as a general phenomenon pertaining to HOAS
to proceed more directly. Indeed, consider a first-ordeand has already been dealt with in the proof of Prop. 4.
version of Prop. 13, stating that-* is substitutive: On the formalization side, we are only aware of the
X ~»* X’ implies Y[X/x] ~»* Y[X'/xz]. Its proof goes LEGO [2] formalization from [6], and of the ATS [16]
by induction onY, treating the case of abstraction asformalization from [21], both following [28]. The former
follows: AssumeY = Lam(z, Z). By Barendregt's vari- uses de Bruijn encoding of the syntax, while the latter
able convention (made rigorous by work [67], [66] us-employs LF-style, axiomatic HOAS for data terms and de
ing Nominal Logic [55]), we may assume fresh for  Bruijn indices for type terms. It appears that potential ATS
z, X, X'. By IH, Z[X/x] ~»* Z[X'/z]. By (Xi) (iterated), variants of some of our results (mainly Props. 8 and 4) could
Lam(z.(Z[X/x])) ~»* Lam(z.(Z[X'/z])), hence (sincez  have been used to "HOASIfy” (and simplify) the proof from
is fresh),Lam(z.2)[X/x] ~»* Lam(z.Z)[X'/z], as desired. [21] — in particular, our employment of Prop. 4 seems to

The proof of the first-order version of the fact is more answer the following question raised in loc. cit.,, on page
direct than that of the HOAS version because under the first20: "[can one] prove strong normalization using a higher-
order view a ternt” allows substitutiorat any positioni.e.,  order representation for types[?]”. On the other hand, due t
at any of its free variables, while under the HOAS view anthe partly axiomatic approach, the adequacy of the HOAS
abstractiord has onlyone particular positioriprepared” for  representation from loc. cit. (i.e., variants of our Props.
substitution. Our definitional framework accommodate$ibot and 7) cannot be formally established in that setting.
the first-order and the HOAS proofs, sinite object syntax
is the samgbeing only subjected to two distinct views. V1. CONCLUSIONS, RELATED WORK AND FUTURE WORK
C. Our proof in the context of existing proofs One purpose of this paper was to insist on, and bring

The first proof of strong normalization for System F wastechnical evidence for, the advantage of using a general-
given in Girard’s Ph.D. thesis [27], the very place wherepurpose framework for HOAS, or, in other words, to em-
(a Church-typed version Of) the System was introducedploy HOAS within standard mathematics. We showed that
All the proofs that followed employed in one way or our general-purpose framework offers access to some of
another Girard’s original idea ofeducibility candidates the HOAS advanced conveniences, such as impredicative
in later papers by different authors called (under slightlyand context-free representations of (originally contesed)
different technical conditionsyaturated sets- Sec. 11 in  type systems. Another purpose was to bring, via an extensive
[26] gives an overview. Variations in these proofs includeHOAS exercise, more evidence to a belief seemingly shared
the employment of terms that may or may not bear typedy the whole HOAS community (beyond the large variety
annotations and technical adjustments on the “candidates®f proposed technical solutions), but not yet sustained by
Our own proof follows Girard’s idea as well, but brings a many examples in the literature (apart from those from [9]):
twofold improvement over previous proofs: that a HOAS representation of a system is in principle able
(1) It delves more directly into the heart of the problem —not only to allow hassle-free manipulation and study of a
our general-purposéHOAS induction principl@ expressed System, but also to actuallghed more light on the deep
by Prop. 8 “invites” one to seek a notion of candidate. ~ Properties of a systenWe believe that our general-purpose
(2) It does away with the notions @fping contextandtype =~ HOAS machinery does simplify and clarify the setting and
or data environmentwhich are employed iall the previous Jjustification of a notoriously hard result in type theory.
proofs as “auxiliaries” to the main proof idea. Indeed,A. Future work — generalization
previous proofs define a variant of our type evaluation map The constructions and results from Sec. Ill can be straight-

forwardly generalized to an arbitrary many-sorted syntax

5“Genera|-purpose”, in that it inotan ad hoc principle aimed at proving \yith bindings. Moreover, the constructions and adequacy

the particular strong normalization result, but a genenal derived by mere
proofs from Sec. IV seem to work for a large class of

syntactic analysis of the typing system; analogous priesigre available | i ) ) -
for a large class of typing systems. inductively defined inference systems in whose clauses the



migration of variables between scopes satisfies a few genereecord), including several extensions of LF — Twelf [5], Del
conditions, allowing the sound application of transforma-phin [1], ATS [16], Beluga [53] — and Abella [3], a HOAS-
tions (1)-(V) discussed in Sec. IV. We are currently working specialized prover based on definitional reflection. On the
on determining such suitably general conditions. other hand, the Hybrid package [7], written in Isabelle/HOL
B. Future work — full automation is a successful realization of the general-purpose framewo
Although our results have been formalized, we have noaipproach. Later versions of this system [44], [46], [22pals
yet taken full advantage of the ample possibilities for auto import the three-level architecture idea from the HOAS-
matically building the HOAS machinery. We are currently tailored framework approach. Our context-free induction
implementing (the general versions of) the results present principle from Prop. 8 captures the (non-inductive) open-
in Secs. lll and IV as a definitional package in Isabelle/HOL.world situation from a HOAS-tailored setting while avoidin
Our system will require the user to givebinding signature  the need for an exotic logic or for a “third-party” logic.
and a number ofinference system specificatioms the Another standard classification of HOAS approaches is
terms of this signatures (for various desired relationsinty,  in weak versus strong HOAS. Both capture object-level
subtyping, type generality, reduction, etc.). From thedlsig  bindings by meta-levefunctional bindings; “weak” refers
signature, the system will produce the terms (one Isabelléo the considered functions mappingriablesto terms,
type of terms for each syntactic category), as well as allhile “strong” refers to these functions mappitgyms to
the standard operators on them (substitution, free vasabl terms. Weak HOAS approaches are taken in [18], [34],
etc.) and prove the standard lemmas about these. (Cugrentfp7], [30], including in category-theoretic form (with a
we have the underlying FOAS machinery formalized fordenotational-semantics flavor) in [23], [33], [8], [24]. Ou
an arbitrary binding signatureg(see the documemOAS.pdf  work in this paper, the above HOAS-tailored approaches, as
from [56]), but need to write some template proofs for thewell as [19], the work on Hybrid [7], [44], [46], [22], as
simple facts required for instantiating this signatureeoas well as parametric HOAS [17], parametricity-based HOAS
on user input.) From the inference system specificationd35],° and de-Bruijn-mixed-HOAS [32], fall within strong
the system will produce the actual inductive definitionsHOAS. In weak HOAS, some of the convenience is lost,
of the intended relations. Then the system will constructsince substitution of terms for variables is not mere florcti
along the lines of this paper, the HOAS view of syntaxapplication, as in strong HOAS. On the other hand, weak
(defining new higher-order operators on terms and provingiOAS is is easier to define directly inductively. However,
their properties) and the representation of inferencechvhi as illustrated in this paper and in previous work [19], [T, i
will be automatically proved adequate. General versions oft general-purpose setting having strong HOAS (perhaps on
the propositions in this paper’s Secs. Il and IV shall also b top of weak HOAS as in [19], or directly on top of the first-
proved (automatically). All in all, based on a very compactorder syntax as here) is only a matter of sod&finitional
input from the user our system will produdé: the intended work. Because variables are particular terms, strong HOAS
object system with all its basic first-order constructiofiiy; = can accommodate weak induction and recursion principles,
a HOAS representation formally certified as adequate. and in fact in most situations only such weak principles
We also plan to engage our system in formalizing otherare available due to the need of well-foundedness — Prop. 1
extensive case studies, including the POPLmark challenggimilar to an axiom postulated in the Theory of Contexts
[4] and formalizing the meta-theory af-like calculi [58]. [34], [15] and to a fact proved by Hybrid [7]), as well as
It would be interesting to investigate to which extentour permutative induction foR-abstractions expressed in
different theorem provers could support (and perhaps simProp. 2, are examples of “weak” principles within strong
plify) the formal development of our results. For instance,HOAS. To our knowledge, our Prop. 4 is the first genuinely
Cog would free us from having to write template proofs, “strong” (albeit restricted) compositionality principl&r
as the general results for an arbitrary syntax with bindingsyntax interpretation within general-purpose frameworks
could be stated over families of types, thus being directlyAcknowledgements.We thank the reviewers for their in-
instantiable to particular syntaxes. On the other hand, ousightful comments and suggestions.
employment of the Hilbert choice operator in Isabelle in the REFERENCES
crucial definition of application (as being substitutiooy f
somerepresentatives) is not directly supported by Coq.
C. More related work [2] LEGO. http://www.dcs.ed.ac.uk/home/lego.
There is a very extensive literature on the subject of syntax
representation in general and on HOAS in particular. We
only mention some works most directly relevant here. The [4] The POPLmark challenge, 2009. http://fling-
HOAS-tailored framework approach yielded several theorem  |-s€as.upenn.edu/ plclub/cgi-bin/poplmark.

provers and functional programming enVirOnments (Some 6The import of the notion of parametricity into HOAS was apaly
of them already mature and with an extensive case-studyioneered by [60], [20].
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APPENDIX notation. Next we refer to the theoty, but the discussion
More details on the formalization applies toT as well. The reader may legitimately wonder

The diagram in the figure shows the relevant part of ourhow 's one to be sure that we are talking abtid syntax

theory structure in Isabelle. In fact, the part consistifthe of System F, i.e., that it has been correctly defined, without

theoriesD andT and the ones below them matches faithfully g)r?sklv:egr |ir;tor(())l\1/ir d%?jns ”(t:r;[zeﬁ(:?t/ t(\)/\f/oS};reI:t;)i(o\;wstg)g Qgt'gﬁwsih-rhe
the structure of this paper and is conceptually self-coeti P y g

properties that characterize the types of dterms and dab-
stractions together with the operations on thamiquely,
[ .1 ] up to isomorphism- in a nutshell: (almost-)injectivity and
completeness of the syntactic constructs, together wigh th
[ Gemerics | | (HoL] \ induction principle, determine the types uniquely, and the
simplification rules for freshness, substitution and sviagp
\ TL | | b1 \ act like definitional clauses. The theotyference defines
‘ ‘ beta-reduction and typing for System F — therefore the
\ T | | b \ theory trio ©,T,Inference) matches this paper’'s Sec. Il.

HOAS

Again, here the proof development matches faithfully the
HOAS, Rap- nference sectionwise (and, to some extent, also the subsectionwise)
structure of the paper.
The theoriesHOAS_View_D and HOAS_View_T formal-
ize the HOAS view of the syntax of dterms and tterms,
respectively, thus matching Sec. lll. Next we refer to
FOAS HOAS_View_D only (sinceHOAS_View_T is similar). The
The binding first-order preliminaries required by our definitions of abstraction application and the other omesat
HOAS approach have been formalized for an arbitrarygiven in the paper informally and claimed to be independent
(possibly infinitary) many-sorted syntax with bindings {no of representatives are first given in Isabelle by picksogne
shown in the diagram). While we believe this has someepresentatives. E.g. the operateasOfAbs andtermOfAbs
interest in its own right, here we have neither the space nopick togethera representativéz,Y") for an abstractiorA,
the need to discuss it. (But the interested reader can look and thenA_ X is defined to beY'[X/z]; then, “the real
the documenEOAS.pdf from [56].) definition”, not committing to any particular such pair, is
We have instantiated these general results to the syntax sfated as a lemmaA4'_ X = Y[X/z] for all z,Y such that
System F. Theorp1 performs the instantiation to dterms. (It A = (z.Y")". (Note that in the scripts we writ®abs = Y
consists of many simple facts about transiting back andhfortfor (x.Y").) While the induction principles from Sec. IlI-C
between the abstract notions of an input to a binding operataare rendered verbatim in the scripts, the formalizatiorteef
(of specified arity) and the concrete binding arguments ofecursive definition principles from Sec. 11I-D have a sligh
this syntax. The inference of these simple but tedious factdifferent form, reflecting Isabelle’s distinction between
will be soon automated.) The reader does have to look type and a set. E.g., to obtain a flexible Isabelle version
into D1 in order to comprehend our HOAS formalization. of Prop. 4, we have the domaifi from there represented
Everything required w.r.t. the FOAS of dterms is containednot merely by a type, but by a type together with a
in theoryD, which accumulates all the relevant FOAS facts“well-structured-ness” predicatewls : ¢ — bool. Then a
on the syntactic constructs, fresh variables, substityias  compositional mag as in Prop. 4 is called there a “HOAS-
well as swapping (the latter not discussed in the paper)ynorphism”; the existence of such a map is stated in the
As mentioned, this very large collection of first-order fact scripts as Thex_HOASmorph, and then rephrased as Th.
comes from a corresponding one on an arbitrary syntaex_comp_, which matches Prop. 4 more closely.
with bindings and will soon be completely automated as an The theoryHOAS_Rep_Inference formalizes the HOAS
Isabelle package. The roles played by andD for dterms  representation of inference, discussed in Sec. IV The three
are played by theoriesl andT for tterms. subsections of this theory match those of Sec. IV. Our
Thus, theoriesD and T correspond to the first part of HOAS inference employs infinitary inductive clauses, but
the paper’s Sec. Il. The notations we used in these theorighese are unproblematic in Isabelle, both definition-wise
match the ones from the paper, save for some variationand proof-wise (of course, it is their uniformity that makes
required to please the Isabelle parser. E¥j.X/z] from  them unproblematic proof-wise). While in the paper we
the paper becomés+#[X./x] in the scripts. The reader may assumectxt C Hctxt, in the formalization we have an
ignore these extra symbols and focus on “the shape” of thexplicit injection asHctxt : ctxt — Hctxt, and a predicate

HOAS_View_T ‘ ‘ Inference ‘ ‘ HOAS_View_D
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isCtxt : Hctxt — bool representing its image. As a “psycho-
logical” note, Isabelle figures out automatically the proof
of Prop. 8 once we indicate the relatigd, while for the

human mind this is somewhat difficult to grasp, as is any e«

statement whose justification involves implications neste
on the left, as in(p = x) = . (This is also part of the
difficulty of comprehending Girard’s proof technique, and,
more generally, the method of logical relations.)

The theoryHOAS_at_Work formalizes the strong normal-
ization proof, corresponding to this paper’s Sec. V. Here
is the content of this theory. First we prove the type-
closedness criterion, Prop. 9. Then we prove Prop. 13 —
we actually give two alternative proofs of this, reflectitg t
paper’s discussion following Prop. 13. Then we make further
preparations for the proof of Prop. 12 in terms of some
variations of the notion of reduction-simulation. Finally
we prove strong normalization, via verbatim renderings of
Props. 12 and 11.

Our Isabelle scripts can be downloaded from [56]. The
documentSysF.pdf from that (zipped) folder contains a
detailed presentation of the relevant theories. These the-
ories can also be browsed in html format in the folder
SysF_Browse (note that the browsable format shows also
all the background (FOAS) theories needed for our HOAS
work).

Here is a list of further differences between the paper and
the Isabelle scripts:

« Isabelle uses=- for function space and— and =

for logical implication. It also use¥, A (the latter
also written !!) for universal quantification. (There
are differences between the two Isabelle versions of
implications and universal quantifications, but they can
be ignored by the reader.)

« Isabelle uses: for membership to a type, and (also
written : ) for membership to a set. We have ignored
this distinction in the paper.

« Prefix # indicates swapping or substitution on terms,
and $ and % the same operation on abstractions and
environments, respectively.)

« freshAbs andfreshEnv (instead ofresh) are used for the
freshness operators on abstractions and environments,
respectively.

o Dabs z X andDabs2 z A (instead ofr. X andx.A) are
used for the first-order dabstraction and 2-dabstraction
constructs.

o Similarly, Tabs z tX and Tabs2 x tA (instead ofx.tX
and x.tA) are used for the first-order tabstraction and
2-tabstraction constructs.

« In theoriesT and T1, since there is no overlap (yet)
with data items, we do not prefix the variable names
by “t”.

« In the Isabelle scripts we have three kinds of nota-
tions for substitutions: arbitrary substitution in envi-
ronments,X [p], unary substitution (“usubst’X[Y/y],
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and variable-for-variable unary substitution (“vusubst”
X|[x//y]; we also have (variable-for-variable) swap-
ping, written X [z A y].
While the paper keeps some injections implicit, in
Isabelle we represent them explicitly:
— dinV : dvar — dterm, the injection of dvars as
dterms;
— tinV : tvar — tterm, the injection of tvars as
tterms;
— asHctxt : ctxt — Hctxt, the injection of contexts
as Hcontexts;
— isCtxt : Hctxt — bool, the predicate checking if
an Hcontexts is (the image of)cxt;



