
Strong normalization for System F by HOAS on top of FOAS

Andrei Popescu1 Elsa L. Gunter2 Christopher J. Osborn3

1,2,3:University of Illinois at Urbana-Champaign. 1: Corresponding author. Emailuuomul@yahoo.com

Abstract—We present a point of view concerning HOAS
(Higher-Order Abstract Syntax) and an extensive exercise in
HOAS along this point of view. The point of view is that
HOAS can be soundly and fruitfully regarded as adefinitional
extensionon top of FOAS (First-Order Abstract Syntax). As
such, HOAS is not only an encoding technique, but also a
higher-order view of a first-order reality. A rich collection of
concepts and proof principles is developed inside the standard
mathematical universe to give technical life to this point of view.
The exercise consists of a new proof of Strong Normalization
for System F. HOAS makes our proof considerably more direct
than previous proofs. The concepts and results presented here
have been formalized in the theorem prover Isabelle/HOL.

Keywords- Higher-Order Abstract Syntax; System F;
General-Purpose Framework; Isabelle/HOL

I. I NTRODUCTION

HOAS (Higher-Order Abstract Syntax) is a methodology
for representing formal systems (typically, logical systems
or static or dynamic semantics of programming languages or
calculi), referred to asobject systems, into a fixed suitably
chosen logic, referred to as themeta logic. HOAS prescribes
that the object system be represented in the meta logic so
that variable-binding, substitution and inference mechanisms
of the former be captured by corresponding mechanisms of
the latter. HOAS originated in [36], [52], [31], [49] and has
ever since been extensively developed in frameworks with
a wide variety of features and flavors. We distinguish two
main (overlapping) directions in these developments.
-(I) First, the employment of a chosen meta logic as apure
logical framework, used for defining object systems for the
purpose of reasoninginside those systems. A standard exam-
ple is higher-order logic (HOL) as the meta logic and first-
order logic (FOL) as the object system. Thanks to affinities
between the mechanisms of these two logics, one obtains an
adequate encodingof FOL in HOL by merely declaring in
HOL types and constants and stating the FOL axioms and
rules as HOL axioms – then the mechanisms for building
FOL deductions (including substitution, instantiation, etc.)
are already present in the meta logic, HOL.
-(II) Second, the employment of the meta-logic to reason
about the represented object systems, i.e., to represent not
only the object systems, but also (some of) theirmeta-
theory. (E.g., cut elimination is a propertyabout Gentzen-
style FOL, not expressible in a standard HOAS-encoding of
FOL into HOL.) While direction (I) has been quasi-saturated
by the achievement of quasi-maximally convenient logical
frameworks (such Edinburgh LF [31] and generic Isabelle
[49]), this second direction undergoes these days a period of
active research. We distinguish two main approaches here:

-(II.a) The HOAS-tailored framework approach[61], [59],
[38], [40], [65], [25], [1], [16], [53]. This is characterized by
the extension of the pure logical frameworks as in (I) with
meta-reasoning capabilities. The diad (object system, meta
logic) from (I) becomes a triad:object system, logical frame-
work where this system is specified,meta-logical framework
where one can reasonaboutthe logical framework [51]. The
challenge here is choosing suitable logical and meta-logical
frameworks that allow for adequate HOAS encodings, as
well as enough expressive meta-theoretic power. (The logical
framework is typically chosen to be a weak logic, e.g., an
intuitionistic logic or type system as in (I), or linear logic.)

Somewhat complementary to the above work on HOAS-
tailored meta-reasoning, [60], [20] developed HOAS-
tailored recursive definitionprinciples in a logical frame-
work distinguishing between a parametric and a primitive-
recursive function space.
-(II.b) Thegeneral-purpose framework approach[19], [18],
[7]. This approach employs a general-purpose setting for
developing mathematics, such as ZF Set Theory, Calculus of
Constructions, or HOL with Infinity, as the logical frame-
work, with object-level bindings captured again by means
of meta-level bindings, here typically functional bindings –
this means that terms with bindings from the object system
are denoted usingstandard functions. Here there is no need
for the three-level architecture as in (II.a), since the chosen
logical framework is already strong enough, meta-theoretic
expressiveness not being a problem. However, the difficulty
here is brought be the meta-level function space being wider
than desired, containing so-called “exotic terms”. Even after
the function spaces are cut down to valid terms, adequacy
is harder to prove than at (II.a), precisely because of the
logic’s expressiveness.

We advocate here a variant of the approach (II.b), high-
lighting an important feature, to our knowledge not yet
explored in the HOAS literature: the capability tointernalize,
and eventually automate, both the representation map and
the adequacy proof. We illustrate this point by an example.
Say we wish to represent and reason aboutλ-calculus and
its associatedβ-reduction (as we actually do in this paper).
Therefore, the object system is an “independent” (Platonic,
if you will) mathematical notion, given by a collection of
items calledλ-terms, with operators on them, among which
the syntactic constructs, free variables and substitution, and
with an inductively defined reduction relation.

In the HOAS-tailored framework approach, for represent-
ing this system one defines a corresponding collection of
constants in the considered logical framework, say LF, and

then does an informal (but rigorous)pen and paper proofof
the fact that the syntax representation is adequate (i.e., the
existence of a compositional bijection between theλ-terms
and normal forms of LF terms of appropriate types) and of
a corresponding fact forβ-reduction [50].

In the general-purpose framework approach, one can de-
fine the original system itself (hereλ-calculus) in the meta-
logical framework (say, HOLω, Higher-Order Logic with
Infinity) in such a way that accepting this definition as con-
forming to the mathematical definition is usually not a prob-
lem (for one who already accepts that HOLω is adequate for
representing the mathematical universe (or part of it)), since
the former definitions are typically almost verbatim render-
ings of the latter – in HOLω, one can define inductively the
datatype of terms, perhaps defineα-equivalence and factor
to it, then define substitution, reduction, etc. Moreover, one
can also define in HOLω a system that is a HOAS-style
representation of (the original)λ-calculus, i.e.: define a
new type of items, call them HOAS-terms, with operators
corresponding to the syntactic constructs of the original
terms, but dealing with bindings via higher-order operators
instead. In particular, the constructor forλ-abstraction will
have type (HOAS-terms# HOAS-terms)→ HOAS-terms,
where one may choose the type constructor# to yield
a restricted function space, or the whole function space
accompanied by a predicate to cut down the “junk”, etc.
Once these constructions are done, one may also define
in HOLω the syntax representation map fromλ-terms to
HOAS-terms and prove adequacy. (And a corresponding
effort yields the representation ofλ-term reduction.) Now, if
the above are performed in a theorem prover that implements
HOLω, such as Isabelle/HOL, then HOAS-terms become a
formally certifiedadequate representation of the (original)
λ-terms, not available in the existent HOAS-tailored ap-
proaches. Moreover, in many cases the construction of the
HOAS-terms, the proofs of their basic properties and the
adequacy proof can beautomated, being the same for all
syntaxes with bindings.

One may argue that, on the other hand, the above HOAS-
terms do not retain all the convenience of a genuine HOAS
encoding. Thus, when various standard relations need to be
defined on HOAS-terms, certain context-free clauses spe-
cific to the HOAS-tailored frameworks (within the so-called
HOAS-encoding of judgements) are no longer available here.
E.g., a rule like ∀X. X : S ⇒ A X : T

Lam(A) : S → T

(typing rule for λ-abstractions –⇒ is logical implication
and A a map from terms to terms) cannot act as a def-
initional clause in HOLω for a typing relation : , due
to non-monotonicity. The short answer to this objection is
agreeing that general-purpose frameworks do bring their
expressiveness with the price of not allowing the cleanest
possible HOAS. A longer answer is given in this paper,
where we argue that developing suitable general-purpose-

framework concepts accommodates non-monotonicity and
impredicativity flavors that make “pure” HOAS so attractive.

This paper develops novel HOAS concepts and techniques
pertaining to thegeneral-purpose framework approach.
Here, the general-purpose framework could be regarded as
being the mathematical universe (given axiomatically by any
standard formalization of mathematics). All the involved
systems, including the original systems and their represen-
tations, dwell in this mathematical universe, and are thus
discussed and related via standard-mathematics concepts and
theorems. Our HOAS exercise here is a proof of the strong
normalization result for System F [27].

Apart from this introduction, Sec. II recalling some syn-
tax concepts, Sec. VI drawing conclusions and discussing
related and future work, and the appendix giving more
details on our Isabelle formalization, the paper has two
main parts. In the first part, consisting of Secs. III and IV,
we discuss some general HOAS techniques for representing
syntax and inductively defined relations, illustrated on the
λ-calculus and System F. The HOAS “representation” of
the original first-order syntax will not be a representationin
the usual sense (via defining a new (higher-order) syntax),
but will take a different view of the same syntax. Let
us call abstractionspairs (x,X) variable-term moduloα-
equivalence.1 Abstractions are therefore the arguments to
which theλ-operator applies, as inλx.X .2 Under the higher-
order view, abstractionsA are no longer constructed by
variable-term representatives, but are analyzed/”destructed”
by applying them (as functions), via substitution, to terms.
Namely, given a termX , A X , read “A applied toX”,
is defined to beY [X/x], where(x, Y) is any variable-term
representative forA. This way, the space of abstractions
becomes essentially a restricted function space from terms
to terms, as in strong HOAS. (The [strong HOAS]–[weak
HOAS] dichotomy is recalled in Sec. VI-C.) Although this
change of view is as banal as possible, it meets its purpose:
the role previously played by substitution now belongs to
function-like application. The latter of course originates in
substitution, but one can forget about its origin. In fact, one
can (although is not required to!) also forget about the origi-
nal first-order binding constructor and handle terms entirely
by means of the new, higher-order destructor. Moving on to
the discussion of recursive-definition principles for syntax,
we perform an analysis of various candidates for the type
of the recursive combinator, resulting notably in a novel
“impredicative” principle in the spirit of (strong) HOAS.

Then we discuss HOAS representation of inductively
defined relations, performed by a form of transliteration fol-
lowing some general patterns. These patterns are illustrated

1In this paper, we use lowercases for variables and uppercases for terms.
2In order to streamline our presentation, we prefer to regardan operator

such asλ not as binding itself variables into its arguments, but rather
as taking its arguments with their variables already bound,i.e., taking
abstractions as arguments – see Sec. II.

2

by the case of the reduction and typing relation for System
F, and it appears that a large class of systems (e.g., most
of those from the monographs [10], [29], [42], [54]) can
be handled along these lines. For typing, we also present a
“purely HOAS” induction principle, not mentioning typing
contexts. Once our formalization will be fully automated
(see Sec. VI-B), it will have a salient advantage over previ-
ous HOAS approaches: adequacy will neednot be proved by
hand, but will follow automatically from general principles.

In the second part, Sec. V, we sketch a proof of strong
normalization for System F within our HOAS framework.
We make essential use of our aforementioneddefinitional
principle and typing-context-free induction principleto ob-
tain a general criterion for proving properties on typable
terms (which is in principle applicable to properties other
than strong normalization, including confluence and type
preservation). From this criterion, we infer strong normal-
ization for terms typable in the empty context. (Extending
the result to arbitrary contexts is then immediate.) Unlike
previous proofs [28], [64], [43], [26], [11], [6], [13], [37],
[21], our proof does not employdata or type environments
andsemantic interpretation of typing contexts– a virtue of
our setting, which is thus delivering the HOAS-prescribed
service ofclearing the picture of inessential details.
Isabelle formalization. For the formalization of the con-
cepts and results presented in this paper (including the
FOAS definitions of the systems, their HOAS representa-
tions and adequacy theorems, and the Strong Normalization
theorem), we have chosen a particular general-purpose logic,
namely HOLω, implemented as Isabelle/HOL [48]. The
formal scripts can be downloaded from [56]. The document
SysF.pdf from that (zipped) folder contains a detailed pre-
sentation of the relevant theories. These theories can also
be browsed in html format in the folderSysF Browse. The
section-wise structure of this paper reflects quite faithfully
that of our Isabelle development, so that the reader should
have no difficulty mapping one into the other. Moreover, the
concrete syntax we use for our operators in Isabelle is almost
identical to the one of the paper; the proofs, written (for the
more complex facts) in the top-down Isar [47] style, are also
fairly readable. (More details can be found in the appendix.)
The above precautions allow us to focus our presentation
on mathematics rather than on formalization, while still
keeping an eye on formalization. As a side-effect, we hope
to illustrate that the discussed “general mathematics” is for-
malizable in other general-purpose theorem provers besides
that of our choice. (Though, admittedly, some extra care is
required, if working in more constructive settings such as
Coq [14], in order to have our definitions go through.)
Conventions and notations.While Isabelle distinguishes
between types (as primitive items) and sets (as items in-
habiting bool-functional types), we shall ignore this dis-
tinction here and refer to all the involved collections as
sets (the reader can recognize the types though by the

boldface fonts). We employ the lambda-abstraction, univer-
sal/existential quantification and implication symbolsλ, ∀,
∃ and⇒ only in the meta-language of this paper, andnot
in the formal languages that we discuss.A → B is theA-
to-B function space, andP(A) and P6=∅(A) the powerset
and P(A) \ {∅}, respectively.◦ is functional composition.
For R ⊆ A × A, R∗ is its reflexive-transitive closure.[] is
the empty list and infixed “,” is list concatenation.

II. T HE λ-CALCULUS AND SYSTEM F RECALLED

The two systems are standardly defined employing First-
Order Abstract Syntax (FOAS), moduloα-equivalence. We
later refer to them as “the original systems”, to contrast them
with their HOAS representations.
A. The (untyped)λ-calculus

We fix an infinite setvar, of variables, ranged over by
x, y, z. The setsterm, of terms, ranged over byX,Y, Z,
and abs, of abstractions, ranged over byA,B, are given
by: X ::= InV x | App X Y | Lam A A ::= x.X
where we assume that, inx.X , x is bound inX , and
terms and abstractions are identified modulo the standardly
induced notion ofα-equivalence(see, e.g., [12]). Therefore
what we call “abstractions” and “terms” in this paper areα-
equivalence classes. (Note: the operatorsApp, Lam andx.
(for any fixedx) are well-defined onα-equivalence classes.)
For convenience, we shall keep implicit the injective map
InV : var → term, and pretend thatvar ⊆ term (this
omission will be performed directly for the syntax of System
F below). Anenvironmentρ ∈ env is a finite-domain partial
function from variables to terms. We write:
- fresh : var → term → bool, for the predicate indicating if
a variable is fresh in a term (“fresh” meaning “non-free”);
- [] : term → env → term, for the concurrent substitu-
tion on terms – namely,X [ρ] is the term obtained fromX
by concurrently (and capture-avoiding-ly) substituting in X
each variablex with the termρ(x) if ρ(x) is defined.
- [/] : term → term → var → term, for unary
substitution – namely,X [Y/y] is the term obtained from
X by (capture-avoiding-ly) substitutingy with Y in X .

We employ the same notations for abstractions:fresh :
var → abs→ bool, [] : abs→ env→ abs, etc.
One-stepβ-reduction : term→ term→bool is given by:

·

App (Lam(x.Y)) X Y [X/x]
(Beta)

X Y

Lam(z.X) Lam(z.Y)
(Xi)

X Y

App X Z App Y Z
(AppL)

X Y

App Z X App Z Y
(AppR)

X is called strongly normalizingif there is no infinite
sequence(Xn)n∈IN with X0 = X and∀n. Xn Xn+1.
B. System F

We describe this system as a typing system forλ-terms
without type annotations, in a Curry style (see [10]). Its syn-
tax consists of two copies of the untypedλ-calculus syntax
– one for data and one for types. More precisely, we fix two
infinite sets,dvar, of data variables(dvarsfor short), ranged

3

over byx, y, z, andtvar , of type variables(tvars for short),
ranged over bytx, ty, tz. The setsdterm and dabs, of data
termsandabstractions(dtermsanddabstractionsfor short),
ranged over byX,Y, Z andA,B,C, and tterm and tabs,
of type termsandabstractions(ttermsand tabstractionsfor
short), ranged over bytX, tY, tZ andtA, tB, tC, are defined
by the following grammars, again up toα-equivalence:

X ::= x | App X Y | Lam A A ::= x.X
tX ::= tx | Arr tX tY | Al tA tA ::= tx . tX

Above, App and Lam stand, as in Subsec II-A, for “appli-
cation” and “lambda”, whileArr and Al stand for “arrow”
and the “for all” quantifier. Since dterms do not have type
annotations, indeed both the abstract syntax of dterms and
that of tterms are that ofλ-calculus (from Subsec. II-A), just
that for tterms we writeArr andAl instead ofApp andLam.

All concepts and results from Subsec. II-A apply to either
syntactic category, separately. Letdenv, ranged over byρ,
be the set of data environments, andtenv, ranged over by
ξ, that of type environments. For any itemsa and b, we
may write a : b for the pair (a, b). A well-formed typing
context(contextfor short) Γ ∈ ctxt is a list of pairs dvar-
tterm, x1 : tX1, . . . , xn : tXn, with the xi’s distinct. The
homonymous predicatesfresh : dvar → ctxt → bool and
fresh : tvar → ctxt → bool (indicating if a dvar or a tvar is
fresh for a context) are defined as expected:fresh y [] = True;
fresh y (Γ, (x : tX)) = (fresh y Γ∧y 6= x); fresh ty [] = True;
fresh ty (Γ, (x : tX)) = (fresh ty Γ ∧ fresh ty tX).

The type inference relation(⊢ :) : ctxt → dterm →
tterm → bool is defined inductively by the clauses:

·

Γ, x : tX ⊢ x : tX
(Asm)
[fresh x Γ]

Γ ⊢ X : tX

Γ, y : tY ⊢ X : tX
(Weak)
[fresh y Γ]

Γ, x : tX ⊢ Y : tY

Γ ⊢ Lam(x.Y) : Arr tX tY
(ArrI)
[fresh x Γ]

Γ ⊢ Y : tY

Γ ⊢ Y : Al(tx.tY)

(AlI)
[fresh tx Γ]

Γ ⊢ X : Arr tY tZ Γ ⊢ Y : tY

Γ ⊢ App X Y : tZ
(ArrE)

Γ ⊢ Y : Al(tx.tY)

Γ ⊢ Y : tY[tX/tx]
(AlE)

We write ⊢ X : tX for [] ⊢ X : tX. X is called typable if
Γ ⊢ X : tX for someΓ and tX.

III. HOAS VIEW OF SYNTAX

Here we present a HOAS approach to thesyntax of
calculi with bindings. We describe our approach for the
paradigmatic particular case of the untypedλ-calculus (from
Sec. II-A), but our discussion is easily generalizable to terms
generated from any (possibly many-sorted) binding signature
(as defined, e.g., in [23], [63]). We donot define a new
higher-order syntax, but introduce higher-order operators on
the original syntax – hence we speak of aHOAS viewrather
than of aHOAS representation.

A. Abstractions as functions
Throughout the rest of this section, we use the concepts

and notations from Sec. II-A, andnot the ones from
Sec. II-B. GivenA ∈ abs andX ∈ term, the functional
application of A to X , written A X , is defined to be
Y [X/x] for any x and Y s.t. A = (x.Y). (The choice of

(x, Y) is easily seen to be immaterial.) The operatoris
extensional, qualifying the set of abstractions as arestricted
term-to-term function space, and preserves freshness. Thus,
abstractions are no longer regarded as pairs var-term up
to α-equivalence, but as functions, in the style of HOAS.
Under this higher-order view, abstractions can be destructed
by application, as opposed to constructed by means of var-
term representatives as in the original first-order view. But
does the higher-order view suffice for the specification of
relevant systems with bindings? I.e., can we do without
“constructing” abstractions? Our answer is threefold:
-(1) Since the higher-order view does not change the first-
order syntax, abstractions by representatives are still avail-
able if needed.
-(2) Many relevant systems with bindings employ the bind-
ing constructors within a particular style of interaction with
substitution and scope extrusion (e.g., all variables appear
either bound, or substituted, or [free in the hypothesis])
which makes the choice of binding representatives irrelevant.
This phenomenon, to our knowledge not yet rigorously
studied mathematically for a general syntax with bindings,
is really the basis of most HOAS representations from the
literature. In Sec. IV, we elaborate informally on what this
phenomenon becomes in our setting.
-(3) The previous point argued that relevant systemsspecifi-
cationscan do without constructing abstractions. Now, w.r.t.
proofs of meta-theoretic properties, one may occasionally
need to perform case-analysis and inductionon abstractions.
HOAS-style case-analysis and induction are discussed be-
low, after we introduce2-abstractions.
B. 2-abstractions

These are for abstractions what abstractions are for terms.
2-abstractionsA ∈ abs2 are defined as pairsx.A var-
abstraction up toα-equivalence (just like abstractions are
pairs var-term up toα). (Alternatively, they can be regarded
as triplesx.y.Z, with x, y ∈ var and Z ∈ term, again
up to α.) Next we define two application operators for 2-
abstractions. IfA ∈ abs2 andX ∈ term, thenA 1X and
A 2X are the following elements ofabs:
- A 1X = A[X/x], wherex,A are s.t.A = (x.A);
- A 2X = (y.(Z[X/x])), where y, Z are s.t.y 6= x,
fresh y X andA = (y.(x.Z)).
(Again, the choice of representatives is immaterial.) Thus,
essentially,2-abstractions are regarded as2-argument func-
tions and applied correspondingly.

Now we can define homonymous syntactic operations for
abstractions lifting those for terms:
- InV : var → abs, by InV x = (y.x), wherey is s.t.y 6= x;
- App : abs→ abs→ abs, by App A B = (z. (App X Y)),
wherez,X, Y are s.t.A = (z.X) andB = (z.Y).
- Lam : abs2 → abs, by Lam A = (x. (Lam A)), where
x,A are s.t.A = (x.A).

If we also defineid ∈ Abs to be(x.x) for somex, we can
case-analyze abstractions by the above four (complete and

4

non-overlapping) constructors. Moreover, functional appli-
cation verifies the expected exchange law(A 1X) Y =
(A 2 Y) X and commutes with abstraction versus terms
constructors, e.g.,(Lam A) X = Lam(A 1X).

C. Induction principles for syntax
The following is the natural principle for terms under the

HOAS view. Notice that it requires the use of abstractions.
Prop 1: Let ϕ : term → bool be s.t. the following hold:

(i) ∀x. ϕ x. (ii) ∀X,Y. ϕ X ∧ ϕ Y ⇒ ϕ(App X Y).
(iii) ∀A. (∀x.ϕ(A x)) ⇒ ϕ(Lam A). Then∀X.ϕ X .

Likewise, a HOAS induction principle for abstractions
requires the use of2-abstractions. The2-place application in
the inductive hypothesis forLam in Prop. 2 offers “permuta-
tive” flexibility for when reasoning about multiple bindings
– the proof of Prop. 13 from Sec. V illustrates this.

Prop 2: Let ϕ : abs→ bool be s.t. the following hold:
(i) ϕ id. (ii) ∀x. ϕ(InVx).
(iii) ∀A,B. ϕA ∧ ϕB ⇒ ϕ(AppAB).
(iv) ∀A. (∀x. ϕ(A 1 x) ∧ ϕ(A 2 x)) ⇒ ϕ(Lam A).

Then∀A.ϕ A.

D. Recursive definition principles for syntax
This is known as a delicate matter in HOAS. One would

like that, given any setC, a mapH : term → C be
determined by a choice of the operationscInV : var → C,
cApp : C → C → C, andcLam (whose type we do not yet
specify) via the conditions:
(I) H x = cInV x. (II) H(AppX Y) = cApp (H X) (H Y).
(III) An equation (depending on the type ofcLam) with
H(Lam A) on the left.
(We only discussiteration, and not general recursion.)

Candidates for the type of the operatorcLam are:
(1) cLam : (term → C) → C, suggesting the equation
H(Lam A) = cLam(λX.H(A X)) – this is problematic
as a definitional clause, due to its impredicativity;
(2) A weak-HOAS-like [18] variable-restriction of (1),
namely,cLam : (var → C) → C, yielding the equation
(III w): H(Lam A)=cLam(λx.H(A x))
and a recursive principle:

Prop 3: There exists a unique mapH : Term → C s.t.
equations (I), (II), and (IIIw) hold.
(3) cLam : (C → C) → C. Then there is no apparent
way of defining the equation (III) in terms ofLam and
cLam without parameterizing by valuations/environments in
var → C, and thus getting into first-order “details” (at least
not in a standard setting such as ours – but see [60], [20]
for an elegant solution within a modal typedλ-calculus).
(4) A “flattened” version (collapsing some type information)
of both (1) and (3), namely,cLam : P6=∅(C) → C. This
may be regarded as obtained by requiring the operator from
(1) or (3) to depend only on the image of its arguments
in term → C or C → C, respectively. The natural as-
sociated (valuation-independent) condition (III) would be
H(Lam A) = cLam({H(A X). X ∈ term}).

Unfortunately, this condition is still too strong to guaran-
tee the existence ofH . But interestingly, if we have enough
variables, the existence of a compositional map holds:

Prop 4: Assumecard(var) ≥ card(C) and letcApp : C →
C → C andcLam : P6=∅(C) → C (wherecard is the cardinal
operator). Then there existsH : term → C s.t.:
(I) H(App X Y) = cApp (H X) (H Y) for all X,Y .
(II) H(LamA) = cLam({H(A X). X ∈ term}) for all A.

Prop. 4 is looser than a definition principle, since it does
not state uniqueness ofH . In effect, it is a “loose definition”
principle, which makes no commitment to the choice of
interpreting the variables. (Though it can be proved that
H is uniquely determined by its action on variables. As a
trivial example, the identity function on terms is uniquely
identified by its action on variables and by equations (I) and
(II). Other functions, such as term-depth, donot fall into the
cardinality hypothesis of this proposition, but of course can
be defined using Prop. 3.) Note the “impredicative” nature
of equation (II): it “defines”H on LamA in terms of the
“HOAS-components” ofA, where a “HOAS component”
is a result of applyingA (as a function) to a termX and
can of course be larger thanA. This proposition can be
useful in situations where the existence of a compositional
map is the only relevant aspect, allowing to take a shortcut
from the first-order route of achieving compositionality
through interpretation in environments – our proof of Strong
Normalization from Sec. V takes advantage of this.
Conclusion: While the above preparations for HOAS on
top of FOAS do require some work, this work is uniformly
applicable to any (statically-scoped) syntax with bindings,
hence automatable. Moreover, once this definitional effort
is finished, one can forget about the definitions and work
entirely in the comfortable HOAS setting (meaning: no more
α-representatives, variable capture, etc.), as illustrated next.

IV. HOAS REPRESENTATION OF INFERENCE

This section deals with the HOAS representation of in-
ductively defined relations on syntax, such as typing and
reduction. Given an inductively defined relation on the
first-order syntax employing the first-order operators, we
transliterateit through our HOAS view, roughly as follows:
(I) abstractions constructed by terms with explicit depen-
dencies become “plain” abstractions (used as functions);
(II) terms with implicit dependencies become abstractions
applied to the parameter they depend on;
(III) substitution becomes functional application;
(IV) unbound arbitrary variables become arbitrary terms;
(V) scope extrusion is handled by universal quantification.
(We explain and illustrate these as we go through the
examples, where the informal notions of implicit and explicit
dependency will also be clarified.)

Our presentation focuses on a particular example, the
typing and reduction of System F, but the reader can notice

5

that the approach is rather general, covering a large class of
reduction and type systems.

At this point, the reader should recall the definitions
and notations pertaining to System F from Sec. II-B. No-
tations, in a nutshell: lowercasesx, y, z for dvars, upper-
casesX,Y, Z for dterms, uppercasesA,B for dabstractions,
calligraphic uppercasesA,B for 2-dabstractions; for the
type versions of the above, we prefix everything by “t”.
All the discussion from Sec. III duplicates for the two
copies of theλ-calculus that make the syntax of System
F. In particular, we have data-abstraction-lifted operators
App : dabs → dabs → dabs, Lam : dabs2→ dabs, etc.
(wheredabs2 is the set of data2-abstractions).

A. Representation of reduction
We define :dterm→dterm→bool inductively:

·

App (Lam A) X A X
(HBeta)

∀Z. A Z B Z

Lam A Lam B
(HXi)

X Y

App X Z App Y Z
(HAppL)

X Y

App Z X App Z Y
(HAppR)

Adequacy of the reduction representation is contained in:
Prop 5: The following are equivalent:

(1) X Y . (2) X Y . (3) ∀ρ ∈ denv. X [ρ] Y [ρ].
Remember that our HOAS representation dwells in the

same universe as the original system, i.e., both the original
relation and the representation relation act on the same
syntax – they only differintensionallyin the way their defi-
nition manipulates this syntax: the former through bindings
and substitution, the latter through abstractions-as-functions
and function application. Looking for the incarnations of
the general HOAS-transliteration patterns (I)-(V) listedat
the beginning of this section, we find that:
- The definition of is obtained by modifying in only
the clauses involving binding and substitution: (Beta), (Xi);
- In (Beta) and (Xi),Lam(x.Y), Lam(z.X) and Lam(z.Y)
becomeLam A, Lam A andLam B, according to (I);
- In (Beta),Y [X/x] becomesA X , according to (III);
- In (Xi), regarded as applied backwards, we have the extru-
sion of the scope ofz, asz is bound in the conclusion and
free in the hypothesis – by pattern (V), this brings universal
quantification over an arbitrary termZ in the hypothesis, as
well as the acknowledgement of an implicit dependency onz
(now having becomeZ) in theX andY from the hypothesis,
making them become, by (II), abstractions applied to the
implicit parameter,A Z andB Z.
(Note that this example does not illustrate pattern (IV), since
all variables appearing in the definition of are bound.)3

The infinitary clause (HXi) from the definition of
(whose premise quantifies over all dtermsZ) is convenient
when proving that is included inanother relation, as it
makes a very strong induction hypothesis, much stronger

3What we discuss here, in the context of the aforementioned patterns,
are not the inductively defined relations, but the inductivedefinitions
themselves; and what we loosely refer to as “variables” and “terms”
appearing in these definitions are really variable and term meta-variables.

than that given by (Xi) for . This is also true for rule
inversion, where fromLam A Lam B we can infer a
good deal of information compared to the first-order case.
However, when proving that includesa certain relation,
it appears that a HOAS clause matching (Xi) more closely
may help. Such a clause can be extracted from (Xi):

Prop 6: is closed under the following rule:
fresh z A fresh z B A z B z

Lam A Lam B
(HXi’)

Note that (HXi’) is stronger than (HXi) (but stronger as a
rule means weaker as an induction-principle clause). A rule
such as (HXi’) should be viewed as a facility to descend,
if necessary, from the HOAS altitude into “some details”
(here, a freshness side-condition). This fits into our goal
of encouraging HOAS definitions and proofs, while also
allowing access to details on a by-need basis.

Since, by Prop. 5, the relations and coincide,
hereafter we shall use only the symbol “ ”.
B. Representation of inference

A HOAS context(Hcontext for short) ∆ ∈ Hctxt is a
list of pairs in dterm × tterm , X1 : tX1, . . . , Xn : tXn.
Note thatctxt ⊆ Hctxt . For Hcontexts, freshness,fresh :
dvar → Hctxt → bool and fresh : tvar → Hctxt → bool,
and substitution, [,] : Hctxt → tenv → denv→ Hctxt
are defined as expected:fresh y [] = True; fresh y (∆, (X :
tX)) = (fresh y ∆ ∧ fresh y X); fresh ty [] = True;
fresh ty (∆, (x : tX)) = (fresh ty ∆ ∧ fresh ty tX);
[] [ξ, ρ] = []; (∆, (X : tX)) [ξ, ρ] = (∆[ξ, ρ], (X [ρ] : tX[ξ])).

We represent type inference by the relation(I⊢ :) :
Hctxt → dterm → tterm → bool, called HOAS typing
(Htyping for short):

·

∆, X : tX I⊢X : tX
(HAsm)

∆ I⊢X : tX

∆, Y : tY I⊢X : tX
(HWeak)

∀X. ∆, X : tX I⊢A X : tY

∆ I⊢ Lam A : Arr tX tY
(HArrI)

∀tX. ∆ I⊢ Y : tA tX

∆ I⊢ Y : Al tA
(HAlI)

∆ I⊢X : Arr tY tZ ∆ I⊢ Y : tY

∆ I⊢App X Y : tZ
(HArrE)

∆ I⊢ Y : Al tA

∆ I⊢Y : tA tX
(HAlE)

Prop 7: (Adequacy) The following are equivalent:
(1) Γ ⊢ X : A.
(2) Γ I⊢X : A. (Note: contexts are particular Hcontexts.)
(3) Γ[ξ, ρ] I⊢X [ρ] : A[ξ] for all ξ ∈ tenv andρ ∈ denv.

It follows that I⊢ is a conservative extension(from con-
texts to Hcontexts) of⊢. Thus, unlike with reduction, our
HOAS representation of typing,I⊢, doesnot manipulate the
same items as the original relation⊢, butextendsthe domain
– essentially, the new domain is the closure of the original
domain under substitution. Hereafter we writeI⊢ for either
relation, but still haveΓ range overctxt and∆ overHctxt .

The only pattern from (I)-(V) exhibited by our HOAS-
transliteration of typing that is not already present in theone
for reduction is (IV), shown in the transliterations of (Asm),
(Weak) and (ArrI) – there, we have the variablesx and y
becoming termsX andY in (HAsm) (HWeak) and (HArrI).
At (ArrI), (IV) is used in combination with (V), becausex
is also extruded back from the conclusion to the hypothesis,

6

thus becoming in the hypothesis of (HArrI) a universally
quantified termX . Another phenomenon not exhibited by
reduction is the presence of freshness side-conditions (inthe
original system), whose effect is toprevent dependencies–
e.g., the side-conditionfresh y Γ from (Weak) says that
Γ does not depend onx, meaning that, when transliterating
(Weak) into (HWeak), (II) is not applicable toΓ. (Otherwise,
to represent this we would need Hcontext-abstractions!)

Note that and coincide, whileI⊢ is only a conserva-
tive extension of⊢ – this is because our HOAS transliteration
methodalways closes under substitution, and , unlike ⊢,
is already closed. The presence of unbound variables in the
first-order definition, requiring modification (IV), is a precise
indicator of non-closedness.

C. Induction principle for type inference
By definition,I⊢ offers an induction principle: If a relation

R : Hctxt → dterm → tterm → bool is closed under the
rules definingI⊢, then∀∆, X, tX. ∆ I⊢X : tX ⇒ R ∆ X tX.

A HOAS technique should ideally do away (whenever
possible) not only with the explicit reference to bound
variables and substitution, but with the explicit reference
to inference (judgment) contexts as well. Our inductive
definition of Htyping achieves the former, but not the latter.
Now, trying to naively eliminate contexts in a “truly HOAS”
fashion, replacing, e.g., the rule (HArrI) with something like:

∀X. typeOf X tX ⇒ typeOf (A X) tY

typeOf (Lam A) (Arr tX tY)
(∗)

in an attempt to definenon-hypothetic typing(i.e., typing in
the empty context) directly as a binary relationtypeOf be-
tween dterms and tterms, we hit two well-known problems:
-(I) The contravariant position oftypeOf(X, tX) prevents the
clause (*) from participating at a valid inductive definition.
-(II) Even if we “compromise” for a non-definitional (i.e.,
axiomatic) approach, but would like to retain the advantages
of working in a standard logic, then (*) is likely tonot
be sound, i.e., not capture correctly the behavior of the
original system. Indeed, in a classical logic it would allow
one to type anyLamA to a typeArr tX tY for some non-
inhabited typetX. Moreover, even we restrict ourselves to
an intuitionistic setting, we still need to be very careful with
(and, to some extent, make compromises on) the foundations
of the logic in order for axioms like (*) to be sound. This is
because, while the behavior of the intuitionistic connectives
accommodates such axioms adequately, other mechanisms
pertaining to recursive definitions are not a priori guaranteed
to preserve adequacy – see [33], [39].

So what can one make of a clause such as (*) in a
framework with meta-reasoning capabilities? As already dis-
cussed in the introduction, the HOAS-tailored framework’s
solution is axiomatic: (*) would be an axiom in a logic
L (hosting the representation of the object system), with
L itself is viewed as an object by the meta-logic; in the
meta-logic then, one can perform proofs by induction on
derivations inL. Thus, HOAS-tailored frameworks solve the

problems with (*) by stepping one level up to a meta-logic.
Previous work in general-purpose frameworks, after several
experiments, eventually proposed similar solutions, either of
directly interfering with the framework axiomatically [45] or
of employing the mentioned intermediate logic L [44].

Our own solution has an entirely different flavor, and
does not involve traveling between logics and/or postulating
axioms, but stays in this world (the same mathematical
universe where all the development has taken place) and sees
what this world has to offer: it turns out that clauses such as
(*) are “backwards sound”, in the sense that any relation
satisfying them will include the empty-context Htyping
relation. This yields “context-free” induction:

Prop 8: Assumeθ : dterm → tterm → bool s.t.:
∀X. θ X tX ⇒ θ (A X) tY

θ (Lam A) (Arr tX tY)
(ArrI θ)

∀tX. θ Y (tA tX)

θ Y (Al tA)
(AlI θ)

θ Y (Arr tX tZ) θ X tX

θ (App Y X) tZ
(ArrE θ)

θ Y (Al tA)

θ Y (tA tX)
(AlEθ)

Then I⊢X : tX implies θ X tX for all X, tX.
Proof sketch.TakeR : Hctxt → dterm → tterm → bool
to beR ∆ X tX = ((∀(Y : tY) ∈ ∆. θ Y tY) ⇒ θ X tX).
ThenR satisfies the clause that defineI⊢, hence, in particular,
for all X, tX, I⊢X : tX impliesR [] X tX, i.e., θ X tX.

Viewing relations as nondeterministic functions, we can
rephrase Prop. 8 in a manner closer to the intuition of types
as sets of data, with alogical predicate[62] flavor:

Prop 8 (rephrased):Assumeθ : dterm → P(tterm) s.t.:
∀X. X ∈ θ tX ⇒ (A X) ∈ θ tY

(Lam A) ∈ θ (Arr tX tY)
(ArrI θ)

∀tX. Y ∈ θ (tA tX)

Y ∈ θ (Al tA)
(AlI θ)

Y ∈ θ (Arr tX tZ) X ∈ θ tX

(App Y X) ∈ θ tZ
(ArrE θ)

Y ∈ θ (Al tA)

Y ∈ θ (tA tX)
(AlEθ)

Then I⊢X : tX impliesX ∈ θ tX for all X, tX.

V. THE HOAS PRINCIPLES AT WORK

In this section we give a proof of strong normalization
for System F within our HOAS representation using the
developed definitional and proof machinery.

Remember that when introducing System F in Sec. II-B
we fixed infinite sets of type and data variables,dvar and
tvar , without making other assumption about their cardinal-
ities. But now we commit to such an assumption, asking
that we have much more type variables than data variables,
namely, thattvar has a cardinality greater than or equal to
that of P(dvar). (This assumption is needed for obtaining
a compositional map via Prop. 4.) One can easily see that
this assumption does not affect the generality of the result,
since once strong normalization has been proved forsome
fixed infinite cardinalities of the variable sets, then it can
be inferred that it holds forany other infinite cardinalities
– moreover, this also seems to be the case for most of the
interesting properties considered for typing systems in the
literature. Note also that this cardinality assumption hasan
intuitive reading in Cantorian set theory: think of types as
sets of data, identify types with tterms and data with dterms;
then, saying thatcard(tvar) = card(P(dvar)) is the same as

7

saying thatcard(tterm) = card(P(dterm)), i.e., that types
are indeed (in bijection with) sets of data.
A. An effective proof principle for typable terms

Before going after a proof of a particular property of
System F, we first analyze how we could hypothetically
employ our HOAS machinery in a potential proof. Many
important properties of typedλ-calculi state something about
the typable terms, with the statement possibly depending
on the type. I.e., for a family(GtX)tX ∈

∏
tX∈tterm P(dterm)

(viewed as atterm -sorted predicate), one would like to
prove that I⊢X : tX impliesX ∈ GtX for all X, tX. E.g.:
- Strong normalization:GtX ={X. X strongly normalizing}.
- Type preservation:GtX ={X. ∀X ′. X X ′⇒ I⊢X ′ : tX}.
- Church-Rosser:GtX = {X. ∀Y1, Y2. X Y1 ∧ X Y1

⇒ (∃Z. Y1 Z ∧ Y2 Z)}.
One may also wish to prove the more general versions

of these properties, which consider contexts as well. We
call a subsetK ⊆ ctxt essentially context-freeif [] ∈ K
impliesK = ctxt. We think ofK as a property on contexts.
If the property is true (i.e.,K = ctxt), then it is trivially
essentially context-free. The notion of essential context-
freeness is thus only interesting for properties whose truth
has not been established yet, and it says that it suffices to
prove such properties for empty contexts only. The adverb
“essentially” suggests that the effort of provingK = ctxt
from [] ∈ K is negligible, at least compared to that of
proving [] ∈ K. This is the case of strong normalization,
and also of type preservation, which is fortunate, since our
HOAS induction principle (Prop. 8) is only applicable to
empty-context versions of properties.

How would one go about proving thatI⊢X : tX implies
X ∈ GtX for all X? In order not to cramp the ideas with
(meta)type dependencies that require extra notation but do
not bring extra insight, we shall assume that allGtX’s are
equal,4 i.e., that we start with a subsetG ⊆ dterm and the
question is: How would we go about proving thatI⊢X : tX
implies X ∈ G for all X? Our “first reflex” is of course
to use the HOAS-induction principle from Prop. 8, that
is, search forθ : tterm → P(dterm) with Im(θ) ⊆ G,
i.e., θ : tterm → P(G), satisfying the clauses from there.
Then Prop. 4 suggests a HOAS-recursive definition ofθ.
Interestingly, after some investigation, we are naturallyled
to a general criterion justifiable by the combination of
HOAS induction and recursion (in what follows, we let
Zs range over lists of terms and takeAppL : dterm →
List(dterm) → dterm to be defined byAppL X [] = X
and AppL X (Z,Zs) = AppL (App X Z) Zs; moreover,
given a list Zs and a setG, we loosely writeZs ⊆ G to
indicate that all terms fromZs are inG):

Prop 9: Assume thatG ⊆ dterm s.t. the following hold:

Zs⊆ G

AppL y Zs∈ G
(VClG)

∀x. App Y x ∈ G

Y ∈ G
(AppClG)

4But the type-dependent case could be handled along the same lines.

X ∈ G Zs⊆ G AppL (A X) Zs∈ G

AppL (App (Lam A) X) Zs∈ G
(ClG)

Then I⊢X : A impliesX ∈ G for all X,A.
Proof sketch.Consider the following clauses, expressing
potential properties of subsetsS ⊆ dterm (assumed uni-
versally quantified over all the other parameters):
- (VClS): if Zs⊆ G, thenAppL y Zs∈ S;
- (ClS): if X ∈ G, Zs⊆ G andAppL (A X) Zs∈ S, then
AppL (App (Lam A) X) Zs∈ S.

Let C = {S ⊆ G. (VClS) and (ClS) hold}. We define
cArr : C → C → C and cAl : P6=∅(C) → C by cArr S1 S2 =
{Y. ∀X ∈ S1.App Y X ∈ S2} andcAl K =

⋂
K.

By Prop. 4, there exists a mapθ : tterm → C that
commutes withcArr andcAl, i.e.:
-(I) θ(Arr tX tZ) = {Y. ∀X ∈ θ tX. App Y X ∈ θ tZ}.
-(II) θ(Al tA) =

⋂
tX∈tterm θ(tA tX).

Now, (II) is precisely the conjunction of the clauses
(AlI θ) and (AlEθ) from Prop. 8 (rephrased), while the left-
to-right inclusion part of (I) is a rephrasing of (ArrEθ).
Finally, (AlEθ) holds because (ClS) holds for all S ∈ C.
Thus, the hypotheses of Prop. 8 (rephrased) are satisfied
by θ : tterm → C (regarded as a map intterm →
P(dterm)). Hence,∀X, tX. I⊢X : tX ⇒ X ∈ θ tX. And
since∀tX. θ tX ⊆ G, we get∀X, tX. I⊢X : tX ⇒ X ∈ G.

We call a subsetG ⊆ dterm type-closed(terminology
taken from [41]) if it satisfies the hypotheses of Prop. 9.

B. Proof of strong normalization for System F
We letSN be the set of all strongly normalizing dterms.
Prop 10: (Strong Normalization) IfΓ I⊢X : tX, then

X ∈ SN .
Proof. Let KSN ⊆ ctxt be {Γ. ∀X, tX. Γ I⊢X : tX ⇒ X ∈
SN}. It suffices to check:(1) KSN is essentially context-
free; (2) SN is type-closed. Indeed, by Prop. 9, (2) would
ensure[] ∈ KSN , hence, with (1), we would haveKSN =
ctxt. (1) and (2) are treated next.

Prop 11: KSN is essentially context-free.
Prop 12: SN is type-closed.
The (very simple) proof of Prop. 11 is a mere rephrasing

of an argument using the original syntax that reduces, for the
two dtermsY andLam(x.Y), well-typedness of the former
to well-typedness of the latter and termination of the latter
to termination of the former. On the other hand, the proof
of Prop. 12 requires a tedious case analysis that mirrors that
of the original proof (so here our HOAS approach does not
bring any improvement). The latter proposition employs the
following lemma, whose proof occasions the usage of the
argument-permutative induction from Prop. 2:

Prop 13: If X
∗ X ′, thenA X

∗ A X ′.
Proof. First, we note thatfresh z A ∧ A z ∗ A′ z ⇒
Lam A

∗ Lam A′, from which we get
(∀z. A z ∗ A′ z) ⇒ Lam A

∗ Lam A′ (**)
Now, we employ the principle from Prop. 2, performing

induction onA. For the only interesting case, assumeA has

8

the form Lam A. We know from IH that∀z. (A 1 z) X

∗ (A 1 z) X ′ ∧ (A 2 z) X
∗ (A 2 z) X ′. The

second conjunct gives∀z.(A 1X) z ∗ (A 1X ′) z,
hence, with (**), Lam(A 1X) ∗ Lam(A 1X ′), i.e.,
(LamA) X

∗ (LamA) X ′. (We also used the ex-
change and commutation laws from Sec. III-B.)

The above proof reveals an interesting phenomenon: in
a HOAS setting, where bindings are kept implicit and
substitution is mere function application, in some proofs
one may need to perform a permutation of the “place-
holders” for function application (requiring2-abstractions),
whereas in a first-order framework one would be able
to proceed more directly. Indeed, consider a first-order
version of Prop. 13, stating that ∗ is substitutive:
X

∗ X ′ implies Y [X/x] ∗ Y [X ′/x]. Its proof goes
by induction on Y , treating the case of abstraction as
follows: AssumeY = Lam(z, Z). By Barendregt’s vari-
able convention (made rigorous by work [67], [66] us-
ing Nominal Logic [55]), we may assumez fresh for
x,X,X ′. By IH, Z[X/x] ∗ Z[X ′/x]. By (Xi) (iterated),
Lam(z.(Z[X/x])) ∗ Lam(z.(Z[X ′/x])), hence (sincez
is fresh),Lam(z.Z)[X/x] ∗ Lam(z.Z)[X ′/x], as desired.

The proof of the first-order version of the fact is more
direct than that of the HOAS version because under the first-
order view a termY allows substitutionat any position, i.e.,
at any of its free variables, while under the HOAS view an
abstractionA has onlyone particular position“prepared” for
substitution. Our definitional framework accommodates both
the first-order and the HOAS proofs, sincethe object syntax
is the same, being only subjected to two distinct views.
C. Our proof in the context of existing proofs

The first proof of strong normalization for System F was
given in Girard’s Ph.D. thesis [27], the very place where
(a Church-typed version of) the system was introduced.
All the proofs that followed employed in one way or
another Girard’s original idea ofreducibility candidates,
in later papers by different authors called (under slightly
different technical conditions)saturated sets– Sec. 11 in
[26] gives an overview. Variations in these proofs include
the employment of terms that may or may not bear type
annotations and technical adjustments on the “candidates”.
Our own proof follows Girard’s idea as well, but brings a
twofold improvement over previous proofs:
(1) It delves more directly into the heart of the problem –
our general-purposeHOAS induction principle5 expressed
by Prop. 8 “invites” one to seek a notion of candidate.
(2) It does away with the notions oftyping context, andtype
or data environment, which are employed inall the previous
proofs as “auxiliaries” to the main proof idea. Indeed,
previous proofs define a variant of our type evaluation map

5“General-purpose”, in that it isnot an ad hoc principle aimed at proving
the particular strong normalization result, but a general one derived by mere
syntactic analysis of the typing system; analogous principles are available
for a large class of typing systems.

θ (required to apply Prop. 8) that isparameterized by type
environments, i.e., by maps from tvars to tterms. Instead, we
employ our compositionality criterion (Prop. 4) to obtain a
lightweight, non-parameterizedθ directly, verifying what is
known as “Girard’s trick” (namely, proving that it has its
image in the set of candidates) in a more transparent fashion.
Then, previous proofs define a notion of semantic deduction
in contexts, universally quantifying over type environments
and/or data environments, and prove the typing relation
sound w.r.t. it – this step isnot required by our proof; more
precisely, this routine issue of logical soundness has been
recognized as a general phenomenon pertaining to HOAS
and has already been dealt with in the proof of Prop. 4.

On the formalization side, we are only aware of the
LEGO [2] formalization from [6], and of the ATS [16]
formalization from [21], both following [28]. The former
uses de Bruijn encoding of the syntax, while the latter
employs LF-style, axiomatic HOAS for data terms and de
Bruijn indices for type terms. It appears that potential ATS
variants of some of our results (mainly Props. 8 and 4) could
have been used to “HOASify” (and simplify) the proof from
[21] – in particular, our employment of Prop. 4 seems to
answer the following question raised in loc. cit., on page
120: ”[can one] prove strong normalization using a higher-
order representation for types[?]”. On the other hand, due to
the partly axiomatic approach, the adequacy of the HOAS
representation from loc. cit. (i.e., variants of our Props.5
and 7) cannot be formally established in that setting.

VI. CONCLUSIONS, RELATED WORK AND FUTURE WORK

One purpose of this paper was to insist on, and bring
technical evidence for, the advantage of using a general-
purpose framework for HOAS, or, in other words, to em-
ploy HOAS within standard mathematics. We showed that
our general-purpose framework offers access to some of
the HOAS advanced conveniences, such as impredicative
and context-free representations of (originally context-based)
type systems. Another purpose was to bring, via an extensive
HOAS exercise, more evidence to a belief seemingly shared
by the whole HOAS community (beyond the large variety
of proposed technical solutions), but not yet sustained by
many examples in the literature (apart from those from [9]):
that a HOAS representation of a system is in principle able
not only to allow hassle-free manipulation and study of a
system, but also to actuallyshed more light on the deep
properties of a system. We believe that our general-purpose
HOAS machinery does simplify and clarify the setting and
justification of a notoriously hard result in type theory.
A. Future work – generalization

The constructions and results from Sec. III can be straight-
forwardly generalized to an arbitrary many-sorted syntax
with bindings. Moreover, the constructions and adequacy
proofs from Sec. IV seem to work for a large class of
inductively defined inference systems in whose clauses the

9

migration of variables between scopes satisfies a few general
conditions, allowing the sound application of transforma-
tions (I)-(V) discussed in Sec. IV. We are currently working
on determining such suitably general conditions.
B. Future work – full automation

Although our results have been formalized, we have not
yet taken full advantage of the ample possibilities for auto-
matically building the HOAS machinery. We are currently
implementing (the general versions of) the results presented
in Secs. III and IV as a definitional package in Isabelle/HOL.
Our system will require the user to give abinding signature
and a number ofinference system specificationson the
terms of this signatures (for various desired relations: typing,
subtyping, type generality, reduction, etc.). From the binding
signature, the system will produce the terms (one Isabelle
type of terms for each syntactic category), as well as all
the standard operators on them (substitution, free variables
etc.) and prove the standard lemmas about these. (Currently,
we have the underlying FOAS machinery formalized for
an arbitrary binding signature(see the documentFOAS.pdf
from [56]), but need to write some template proofs for the
simple facts required for instantiating this signature based
on user input.) From the inference system specifications,
the system will produce the actual inductive definitions
of the intended relations. Then the system will construct,
along the lines of this paper, the HOAS view of syntax
(defining new higher-order operators on terms and proving
their properties) and the representation of inference, which
will be automatically proved adequate. General versions of
the propositions in this paper’s Secs. III and IV shall also be
proved (automatically). All in all, based on a very compact
input from the user our system will produce:(i) the intended
object system with all its basic first-order constructions;(ii)
a HOAS representation formally certified as adequate.

We also plan to engage our system in formalizing other
extensive case studies, including the POPLmark challenge
[4] and formalizing the meta-theory ofπ-like calculi [58].

It would be interesting to investigate to which extent
different theorem provers could support (and perhaps sim-
plify) the formal development of our results. For instance,
Coq would free us from having to write template proofs,
as the general results for an arbitrary syntax with bindings
could be stated over families of types, thus being directly
instantiable to particular syntaxes. On the other hand, our
employment of the Hilbert choice operator in Isabelle in the
crucial definition of application (as being substitution, for
somerepresentatives) is not directly supported by Coq.
C. More related work

There is a very extensive literature on the subject of syntax
representation in general and on HOAS in particular. We
only mention some works most directly relevant here. The
HOAS-tailored framework approach yielded several theorem
provers and functional programming environments (some
of them already mature and with an extensive case-study

record), including several extensions of LF – Twelf [5], Del-
phin [1], ATS [16], Beluga [53] – and Abella [3], a HOAS-
specialized prover based on definitional reflection. On the
other hand, the Hybrid package [7], written in Isabelle/HOL,
is a successful realization of the general-purpose framework
approach. Later versions of this system [44], [46], [22] also
import the three-level architecture idea from the HOAS-
tailored framework approach. Our context-free induction
principle from Prop. 8 captures the (non-inductive) open-
world situation from a HOAS-tailored setting while avoiding
the need for an exotic logic or for a “third-party” logic.

Another standard classification of HOAS approaches is
in weak versus strong HOAS. Both capture object-level
bindings by meta-levelfunctional bindings; “weak” refers
to the considered functions mappingvariables to terms,
while “strong” refers to these functions mappingterms to
terms. Weak HOAS approaches are taken in [18], [34],
[57], [30], including in category-theoretic form (with a
denotational-semantics flavor) in [23], [33], [8], [24]. Our
work in this paper, the above HOAS-tailored approaches, as
well as [19], the work on Hybrid [7], [44], [46], [22], as
well as parametric HOAS [17], parametricity-based HOAS
[35],6 and de-Bruijn-mixed-HOAS [32], fall within strong
HOAS. In weak HOAS, some of the convenience is lost,
since substitution of terms for variables is not mere function
application, as in strong HOAS. On the other hand, weak
HOAS is is easier to define directly inductively. However,
as illustrated in this paper and in previous work [19], [7], in
a general-purpose setting having strong HOAS (perhaps on
top of weak HOAS as in [19], or directly on top of the first-
order syntax as here) is only a matter of somedefinitional
work. Because variables are particular terms, strong HOAS
can accommodate weak induction and recursion principles,
and in fact in most situations only such weak principles
are available due to the need of well-foundedness – Prop. 1
(similar to an axiom postulated in the Theory of Contexts
[34], [15] and to a fact proved by Hybrid [7]), as well as
our permutative induction for2-abstractions expressed in
Prop. 2, are examples of “weak” principles within strong
HOAS. To our knowledge, our Prop. 4 is the first genuinely
“strong” (albeit restricted) compositionality principlefor
syntax interpretation within general-purpose frameworks.
Acknowledgements.We thank the reviewers for their in-
sightful comments and suggestions.

REFERENCES

[1] Delphin. http://cs-www.cs.yale.edu/homes/carsten/delphin.

[2] LEGO. http://www.dcs.ed.ac.uk/home/lego.

[3] Abella Theorem prover, 2009. http://abella.cs.umn.edu/.

[4] The POPLmark challenge, 2009. http://fling-
l.seas.upenn.edu/ plclub/cgi-bin/poplmark/.

6The import of the notion of parametricity into HOAS was apparently
pioneered by [60], [20].

10

[5] The Twelf Project, 2009. http://twelf.plparty.org/.

[6] T. Altenkirch. A formalization of the strong normalization
proof for System F in LEGO. InTLCA, pages 13–28, 1993.

[7] S. Ambler, R. L. Crole, and A. Momigliano. Combining
Higher Order Abstract Syntax with tactical theorem proving
and (co)induction. InTPHOLs, pages 13–30, 2002.

[8] S. J. Ambler, R. L. Crole, and A. Momigliano. A definitional
approach to primitive recursion over Higher Order Abstract
Syntax. InMERLIN, 2003.

[9] A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using
typedλ-calculus to implement formal systems on a machine.
J. of Aut. Reasoning, 9(3):309–354, 1992.

[10] H. Barendregt. Introduction to generalized type systems. J.
Funct. Program., 1(2):125–154, 1991.

[11] H. Barendregt. Lambda calculi with types. In S. Abramsky,
D. M. Gabbay, and T. Maibaum, editors,Handbook of Logic
in Computer Science. Oxford University Press, 1992.

[12] H. P. Barendregt. The Lambda Calculus. North-Holland,
1984.

[13] M. Berger, K. Honda, and N. Yoshida. Genericity and the
pi-calculus.Acta Inform., 42(2):83–141, 2005.

[14] Y. Bertot and P. Casteran.Interactive Theorem Proving and
Program Development. Coq’Art: The Calculus of Inductive
Constructions. Springer, 2004.

[15] A. Bucalo, F. Honsell, M. Miculan, I. Scagnetto, and M. Hof-
mann. Consistency of the theory of contexts.J. Funct.
Program., 16(3):327–372, 2006.

[16] C. Chen and H. Xi. Combining programming with theorem
proving. In ICFP, pages 66–77, 2005.

[17] A. J. Chlipala. Parametric higher-order abstract syntax for
mechanized semantics. InICFP, pages 143–156, 2008.

[18] J. Despeyroux, A. P. Felty, and A. Hirschowitz. Higher-order
abstract syntax in Coq. InTLCA, pages 124–138, 1995.

[19] J. Despeyroux and A. Hirschowitz. Higher-Order Abstract
Syntax with induction in Coq. InLPAR, pages 159–173, 1994.

[20] J. Despeyroux and P. Leleu. Recursion over objects of func-
tional type. Mathematical Structures in Computer Science,
11(4):555–572, 2001.

[21] K. Donnelly and H. Xi. A formalization of strong nor-
malization for simply-typed lambda-calculus and system F.
Electron. Notes Theor. Comput. Sci., 174(5):109–125, 2007.

[22] A. P. Felty and A. Momigliano. Hybrid: A definitional
two-level approach to reasoning with Higher-Order Abstract
Syntax. CoRR, abs/0811.4367, 2008.

[23] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and
variable binding (extended abstract). InLICS, pages 193–
202, 1999.

[24] M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract
model for theπ-calculus. InLICS, pages 43–54, 1996.

[25] A. Gacek, D. Miller, and G. Nadathur. Combining generic
judgments with recursive definitions. In F. Pfenning, editor,
LICS, pages 33–44, June 2008.

[26] J. Gallier. On Girard’s candidats de reductibilite. InLogic and
Computer Science, pages 123–203. Academic Press, 1990.

[27] J.-Y. Girard. Une extension de l’interpretation de Gödel a
l’analyse, et son application a l’elimination des coupure dans
l’analyse et la theorie des types. In2nd Scandinavian Logic
Symposium, pages 63–92. 1971.

[28] J.-Y. Girard.Proofs and Types. Cambridge University Press,
1989.

[29] C. A. Gunter.Semantics of Programming Languages. Struc-
tures and Techniques. The MIT Press, 1992.

[30] E. L. Gunter, C. J. Osborn, and A. Popescu. Theory support
for weak Higher Order Abstract Syntax in Isabelle/HOL. In
LFMTP, pages 12–20, 2009.

[31] R. Harper, F. Honsell, and G. Plotkin. A framework for
defining logics. InLICS, pages 194–204. IEEE, Computer
Society Press, 1987.

[32] J. Hickey, A. Nogin, X. Yu, and A. Kopylov. Mechanized
meta-reasoning using a hybrid HOAS/de Bruijn representa-
tion and reflection. InICFP, pages 172–183, 2006.

[33] M. Hofmann. Semantical analysis of higher-order abstract
syntax. InLICS, page 204, 1999.

[34] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic
approach to metareasoning on nominal algebras in HOAS.
In ICALP, pages 963–978, 2001.

[35] D. J. Howe. Higher-order abstract syntax in classical higher-
order logic. InLFMTP, pages 1–11, 2009.

[36] G. P. Huet and B. Lang. Proving and applying program
transformations expressed with second-order patterns.Acta
Inf., 11:31–55, 1978.

[37] R. Loader. Normalization by calculation. Un-
published note, 1995. http://homepages.ihug.co.nz/ suck-
fish/papers/normal.pdf.

[38] R. McDowell and D. Miller. Reasoning with higher-order
abstract syntax in a logical framework.ACM Transactions
on Computational Logic, 3(1):80–136, 2002.

[39] R. C. McDowell. Reasoning in a logic with definitions and
induction. PhD thesis, University of Pennsylvania, 1997.

[40] D. Miller and A. Tiu. A proof theory for generic judgments.
ACM Transactions on Computational Logic, 6(4):749–783,
2005.

[41] J. C. Mitchell. A type-inference approach to reductionprop-
erties and semantics of polymorphic expressions (summary).
In LISP and Functional Programming, pages 308–319, 1986.

11

[42] J. C. Mitchell. Foundations for Programming Languages.
MIT Press, 1996.

[43] J. C. Mitchell and A. R. Meyer. Second-order logical relations
(extended abstract). InCLP, pages 225–236, 1985.

[44] A. Momigliano and S. Ambler. Multi-level meta-reasoning
with higher-order abstract syntax. InFoSSaCS, pages 375–
391, 2003.

[45] A. Momigliano, S. J. Ambler, and R. L. Crole. A comparison
of formalizations of the meta-theory of a language with
variable bindings in isabelle. Technical report, Supplemental
Proceedings of TPHOL’01, 2001.

[46] A. Momigliano, A. J. Martin, and A. P. Felty. Two-level
Hybrid: A system for reasoning using Higher-Order Abstract
Syntax. Electron. Notes Theor. Comput. Sci., 196:85–93,
2008.

[47] T. Nipkow. Structured Proofs in Isar/HOL. InTYPES, pages
259–278, 2003.

[48] T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle/HOL: A
Proof Assistant for Higher-order Logic. Springer, 2002.

[49] L. C. Paulson. The foundation of a generic theorem prover.
J. Autom. Reason., 5(3):363–397, 1989.

[50] F. Pfenning. Logical frameworks. InHandbook of Automated
Reasoning. Elsevier Science, 1999.

[51] F. Pfenning. Logical frameworks - a brief introduction. In
Paris Colloqvium on Programming, pages 137–166. 2002.

[52] F. Pfenning and C. Elliot. Higher-order abstract syntax. In
PLDI, pages 199–208, 1988.

[53] B. Pientka. Beluga: Programming with dependent types,
contextual data, and contexts. InFLOPS, pages 1–12, 2010.

[54] B. C. Pierce.Types and Programming Languages. The MIT
Press, 2002.

[55] A. M. Pitts. Nominal logic: A first order theory of names and
binding. In TACS, pages 219–242, 2001.

[56] A. Popescu. HOAS on top of FOAS formalized in Is-
abelle/HOL. Tech. Rep., Univ. of Illinois at Urbana-
Champaign, 2010. http://hdl.handle.net/2142/15449.

[57] C. Röckl and D. Hirschkoff. A fully adequate shallow em-
bedding of the [pi]-calculus in Isabelle/HOL with mechanized
syntax analysis.J. Funct. Program., 13(2):415–451, 2003.

[58] D. Sangiorgi and D. Walker.The π-calculus. A theory of
mobile processes. Cambridge, 2001.

[59] C. Schurmann. Automating the meta-theory of deductive
systems. PhD thesis, Carnegie Mellon University, 2000.

[60] C. Schurmann, J. Despeyroux, and F. Pfenning. Primitive
recursion for higher-order abstract syntax.Theor. Comput.
Sci., 266(1-2):1–57, 2001.

[61] C. Schurmann and F. Pfenning. Automated theorem proving
in a simple meta-logic for LF. InCADE, pages 286–300,
1998.

[62] R. Statman. Logical relations and the typed lambda-calculus.
Information and Control, 65(2/3):85–97, 1985.

[63] Y. Sun. An algebraic generalization of Frege structures - bin-
ding algebras.Theor. Comput. Sci., 211(1-2):189–232, 1999.

[64] W. Tait. A realizability interpretation of the theory of species.
In Logic Colloquium, pages 240–251. Springer, 1975.

[65] A. Tiu. A Logical Framework for Reasoning about Logical
Specifications. PhD thesis, Penn State University, 2004.

[66] C. Urban, S. Berghofer, and M. Norrish. Barendregt’s variable
convention in rule inductions. InCADE, pages 35–50, 2007.

[67] C. Urban and M. Norrish. A formal treatment of the Baren-
dregt variable convention in rule inductions. InMERLIN,
pages 25–32, 2005.

12

APPENDIX

More details on the formalization

The diagram in the figure shows the relevant part of our
theory structure in Isabelle. In fact, the part consisting of the
theoriesD andT and the ones below them matches faithfully
the structure of this paper and is conceptually self-contained.

Generics

T1

T

D1

D

InferenceHOAS_View_T HOAS_View_D

HOAS_Rep_Inference

HOAS_at_Work

[. . . .]

[HOL]

FOAS
The binding first-order preliminaries required by our

HOAS approach have been formalized for an arbitrary
(possibly infinitary) many-sorted syntax with bindings (not
shown in the diagram). While we believe this has some
interest in its own right, here we have neither the space nor
the need to discuss it. (But the interested reader can look at
the documentFOAS.pdf from [56].)

We have instantiated these general results to the syntax of
System F. TheoryD1 performs the instantiation to dterms. (It
consists of many simple facts about transiting back and forth
between the abstract notions of an input to a binding operator
(of specified arity) and the concrete binding arguments of
this syntax. The inference of these simple but tedious facts
will be soon automated.) The reader doesnot have to look
into D1 in order to comprehend our HOAS formalization.
Everything required w.r.t. the FOAS of dterms is contained
in theoryD, which accumulates all the relevant FOAS facts
on the syntactic constructs, fresh variables, substitution, as
well as swapping (the latter not discussed in the paper).
As mentioned, this very large collection of first-order facts
comes from a corresponding one on an arbitrary syntax
with bindings and will soon be completely automated as an
Isabelle package. The roles played byD1 andD for dterms
are played by theoriesT1 andT for tterms.

Thus, theoriesD and T correspond to the first part of
the paper’s Sec. II. The notations we used in these theories
match the ones from the paper, save for some variations
required to please the Isabelle parser. E.g.,Y [X/x] from
the paper becomesY#[X./x] in the scripts. The reader may
ignore these extra symbols and focus on “the shape” of the

notation. Next we refer to the theoryD, but the discussion
applies toT as well. The reader may legitimately wonder
how is one to be sure that we are talking aboutthe syntax
of System F, i.e., that it has been correctly defined, without
looking into our generic theory of syntax with bindings. The
answer is provided by the first two sections ofD, containing
properties that characterize the types of dterms and dab-
stractions together with the operations on themuniquely,
up to isomorphism– in a nutshell: (almost-)injectivity and
completeness of the syntactic constructs, together with the
induction principle, determine the types uniquely, and the
simplification rules for freshness, substitution and swapping
act like definitional clauses. The theoryInference defines
beta-reduction and typing for System F – therefore the
theory trio (D,T,Inference) matches this paper’s Sec. II.

HOAS
Again, here the proof development matches faithfully the

sectionwise (and, to some extent, also the subsectionwise)
structure of the paper.

The theoriesHOAS View D and HOAS View T formal-
ize the HOAS view of the syntax of dterms and tterms,
respectively, thus matching Sec. III. Next we refer to
HOAS View D only (sinceHOAS View T is similar). The
definitions of abstraction application and the other operators
given in the paper informally and claimed to be independent
of representatives are first given in Isabelle by pickingsome
representatives. E.g. the operatorsvarOfAbs and termOfAbs
pick togethera representative(x, Y) for an abstractionA,
and thenA X is defined to beY [X/x]; then, “the real
definition”, not committing to any particular such pair, is
stated as a lemma: “A X = Y [X/x] for all x, Y such that
A = (x.Y)”. (Note that in the scripts we writeDabs x Y
for (x.Y).) While the induction principles from Sec. III-C
are rendered verbatim in the scripts, the formalizations ofthe
recursive definition principles from Sec. III-D have a slightly
different form, reflecting Isabelle’s distinction betweena
type and a set. E.g., to obtain a flexible Isabelle version
of Prop. 4, we have the domainC from there represented
not merely by a type, but by a typec together with a
“well-structured-ness” predicatecWls : c → bool. Then a
compositional mapH as in Prop. 4 is called there a “HOAS-
morphism”; the existence of such a map is stated in the
scripts as Th.ex HOASmorph, and then rephrased as Th.
ex comp , which matches Prop. 4 more closely.

The theoryHOAS Rep Inference formalizes the HOAS
representation of inference, discussed in Sec. IV The three
subsections of this theory match those of Sec. IV. Our
HOAS inference employs infinitary inductive clauses, but
these are unproblematic in Isabelle, both definition-wise
and proof-wise (of course, it is their uniformity that makes
them unproblematic proof-wise). While in the paper we
assumectxt ⊆ Hctxt , in the formalization we have an
explicit injection asHctxt : ctxt → Hctxt , and a predicate

13

isCtxt : Hctxt → bool representing its image. As a “psycho-
logical” note, Isabelle figures out automatically the proof
of Prop. 8 once we indicate the relationR, while for the
human mind this is somewhat difficult to grasp, as is any
statement whose justification involves implications nested
on the left, as in(ϕ ⇒ χ) ⇒ ψ. (This is also part of the
difficulty of comprehending Girard’s proof technique, and,
more generally, the method of logical relations.)

The theoryHOAS at Work formalizes the strong normal-
ization proof, corresponding to this paper’s Sec. V. Here
is the content of this theory. First we prove the type-
closedness criterion, Prop. 9. Then we prove Prop. 13 –
we actually give two alternative proofs of this, reflecting the
paper’s discussion following Prop. 13. Then we make further
preparations for the proof of Prop. 12 in terms of some
variations of the notion of reduction-simulation. Finally,
we prove strong normalization, via verbatim renderings of
Props. 12 and 11.

Our Isabelle scripts can be downloaded from [56]. The
documentSysF.pdf from that (zipped) folder contains a
detailed presentation of the relevant theories. These the-
ories can also be browsed in html format in the folder
SysF Browse (note that the browsable format shows also
all the background (FOAS) theories needed for our HOAS
work).

Here is a list of further differences between the paper and
the Isabelle scripts:

• Isabelle uses⇒ for function space and−→ and =⇒
for logical implication. It also uses∀,

∧
(the latter

also written !!) for universal quantification. (There
are differences between the two Isabelle versions of
implications and universal quantifications, but they can
be ignored by the reader.)

• Isabelle uses:: for membership to a type, and∈ (also
written :) for membership to a set. We have ignored
this distinction in the paper.

• Prefix # indicates swapping or substitution on terms,
and $ and % the same operation on abstractions and
environments, respectively.)

• freshAbs andfreshEnv (instead offresh) are used for the
freshness operators on abstractions and environments,
respectively.

• Dabs x X andDabs2 x A (instead ofx.X andx.A) are
used for the first-order dabstraction and 2-dabstraction
constructs.

• Similarly, Tabs x tX and Tabs2 x tA (instead ofx.tX
and x.tA) are used for the first-order tabstraction and
2-tabstraction constructs.

• In theoriesT and T1, since there is no overlap (yet)
with data items, we do not prefix the variable names
by “t”.

• In the Isabelle scripts we have three kinds of nota-
tions for substitutions: arbitrary substitution in envi-
ronments,X [ρ], unary substitution (“usubst”)X [Y/y],

and variable-for-variable unary substitution (“vusubst”)
X [x//y]; we also have (variable-for-variable) swap-
ping, writtenX [x ∧ y].

• While the paper keeps some injections implicit, in
Isabelle we represent them explicitly:

– dInV : dvar → dterm, the injection of dvars as
dterms;

– tInV : tvar → tterm , the injection of tvars as
tterms;

– asHctxt : ctxt → Hctxt , the injection of contexts
as Hcontexts;

– isCtxt : Hctxt → bool, the predicate checking if
an Hcontexts is (the image of) actxt;

14

