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It is a well-known and easy consequence of Serre’s calculation of the rational homotopy
groups of spheres that the homology functor defines an equivalence of the rational stable
homotopy category to the category of graded rational vector spaces. However, it also
became soon apparent that localisation at a prime number p does not simplify the picture
to a similar extent. The reason is that from the point of view of a structure theory of
the stable homotopy category of finite spectra, there is an infinite sequence of chromatic
primes lying above each of the usual prime numbers. This was discovered by Ravenel in
the late seventies, who formulated his picture in a sequence of conjectures motivated by
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earlier work of Quillen, Landweber, Novikov, Morava and Miller, Ravenel and Wilson. A
breakthrough on this question has been achieved by Devinatz, Hopkins and Smith, which
led to a proof of all Ravenel conjectures with the exception of the disproved telescope
conjecture. We refer to [Rav93] and the references given there for all these questions.

The Ravenel conjectures make it clear that localisation at a chromatic prime (for in-
stance, K-localisation) can simplify the task of giving an algebraic model for the stable
homotopy category, and also that at least in the case of finite spectra no further simplifi-
cation by other localisations is possible. The task of understanding the stable homotopy
category at a chromatic prime therefore seems to be on the agenda. To my knowledge, the
first work in this direction is due to Bousfield [Bou85], who classified the K-local spectra at
an odd prime. He later extended his work to include the prime 2. The aim of this work is
to give an extension of Bousfield’s classification of spectra at an odd prime to a description
of the localised stable homotopy category in terms of cochain complexes.

The construction of the equivalence of categories also uses, besides the K-local stable
homotopy category itself, similar localisations of the category of C-diagrams of spectra,
where C is a finite poset. This makes it desirable to extend the equivalence between K-
local spectra and cochain complexes to C-diagram categories, but we can do this only for
dim C < 2p−4. Therefore, our algebraic model can only be considered as an approximation
to the topological picture, but not as a complete algebraisation comparable to Quillen’s
success in the rational unstable case. In the terminology of [Rav87], we have to give our
model a place among the flat earth models, since its unrestricted validity (i.e., for dim C

arbitrary) would imply, among other futile things, that no higher order self-map of the
sphere spectrum survives K-localisation at p. The reason why a flat earth model based on
K-theory can give us information about the homotopy category is that the Adams spectral
sequence based on K-theory is sparser than the classical Adams spectral sequence based
on homology. I hope that the simplicity of our model, compared to what will possibly be
involved in a full algebraisation of the theory, and the possibility that some of the methods
can be useful in getting more realistic and more complicated models justifies its publication
despite of its limited scope.

Our methods can also be applied to n-th part of the chromatic tower, where n2 + n <
2p−2. In this case, it seems that no complete classification of the objects has been obtained
before, but only a classification of the invertible spectra by B. Gross and M. Hopkins.
The restriction under which they are able to obtain their classification is only slightly
better than the one under which we hope to actually calculate the homotopy category.
I think that the results obtained in that way are at least not far from being the best
possible approximation of stable homotopy by derived categories. All approximations of
greater precision probably have to use more complicated structures. Although the Ravenel
conjectures (which certainly are an essential part of the picture) have been guessed from
the experience in the stable case, it is not clear whether the stabilisation simplifies the task
of an algebraisation of homotopy. It is possible that it obfuscates non-linear features of the
problem which cannot be ignored even in the stable case.
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We obtain our partial algebraisation of K-local stable homotopy by a combination of
Bousfield’s methods in [Bou85] with the idea underlying the construction of the realisation
functor from the derived category of perverse sheaves to the derived category of usual
sheaves in [BBD82]. Beilinson, Bernstein and Deligne use the filtered derived category.
Since our construction is more complicated, we have to use homotopy categories of C-
diagrams for a poset C. The axioms for such a system of categories are given in the first
and longest chapter. They involve only the structures belonging to a system of diagram
categories. The triangulated structure is reconstructed from these more basic data. This
should be compared to another improvement of the axioms of triangulated categories due
to Keller [Kel91]. Keller does not eliminate the triangulated structure. One the other side,
he only needs the filtered derived categories for a finite number of two-step filtrations. This
is less than the input needed by our axioms, but it also makes his systems unsuitable for the
purposes of this paper, since our construction definitely needs diagram categories shaped
by more complicated posets. However, his axioms and two of the axioms considered in our
paper (namely, C̃-systems and P̃-systems) can be shown to be equivalent (cf. [GW95] and
[Wil95]), and the same probably holds for the other two types of systems considered in
this paper. I am indebted to Haynes Miller for pointing out a system of axioms similar to
ours exists in a paper of Alex Heller [Hel88] on abstract homotopy theory. He imposes no
linearity condition and assumes diagram categories shaped by an arbitrary small category
as input. Apart from these differences, his axioms are similar to ours. He also has a
universality result similar to our Theorem 4, but in his case the distinguished role is plaid
by the homotopy category of simplicial sets of arbitrary size rather than of finite spectra.

The second section proves the abstract uniqueness theorem for categories with an Adams
spectral sequence. In the third section this abstract result is applied to K-local stable
homotopy. In the K-local case, the assumptions of our abstract uniqueness theorem have
been verified by Bousfield [Bou85]. For the generalisation to higher chromatic primes,
the necessary facts about the Adams-Novikov spectral sequence and the cohomological
dimension of its E2-term do not seem to be contained in the published literature (although
slight modifications of them are). Therefore, these facts have to be proved before we
can formulate our result about the structure of the n-th chromatic localisation of stable
homotopy at an odd prime p for n2 + n < p.

I am indebted to H.-J. Baues, W. Dwyer, D. Husemoller, M. Hopkins, H. Miller, A.
Neeman, D. C. Ravenel and R. Thomason for helpful discussions, to my pupils J. Wolff,
J. Willing and P. Goertz for pointing out numerous typographical mistakes in the earlier
versions of this paper, to F. Waldhausen for arousing my interest in the subject, and to the
Max-Planck-Institute for Mathematics in Bonn and the Mathematisches Forschungsinstitut
Oberwolfach, whose guest the author was for several weeks, for their hospitality.

1. Systems of triangulated diagram categories

1.1. Notations. For a category C, we denote by Ob(C) the set of objects of C. The Nerve
of C will be denoted by N.C. The dimension of this simplicial set (i. e., the supremum of
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the dimensions of its non-degenerate simplices) will be called the dimension of C. For a
subcategory D ⊆ C and x ∈ C, we will denote by D→ x the following comma category:

Objects are pairs (d, φ) where d ∈ D and d
φ
−−→ x is a morphism in C. Morphisms from

(d, φ) to (d̃, φ̃) are morphisms d δ−→ d̃ in D such that φ = φ̃δ. The category D← x has

pairs (d, φ) with d ∈ D and x
φ
−−→ d in C as objects. Morphisms are defined in the same

way as for D→x. If M ⊆ Ob(C) is a subset, we will denote by C−M the full subcategory
of C with the set of objects C −M . If M = {x} has just one element, we will also denote
this subcategory by C − x. If F : D → C is a functor, the categories F ⇒ x and F ⇐ x

have objects (d ∈ D,F (d)
φ
−−→ x) and (d ∈ D, x

φ
−−→ F (d)). If F is the inclusion of a

subcategory, this is the same as D→ x and D← x.
Let F : C →D be a functor between categories, and let AD be the category of functors

from D to A. Let LKanF (resp. RKanF ) be the (in general, only partially defined) left
(resp. right) Kan extension functor along F from AC to AD. If these extensions are defined
everywhere, they are the left (resp. right) adjoint to the pull-back functor F ∗ : AD → AC.
If the necessary limits (for instance, finite limits and colimits if C and D are finite) exist,
then they exist and are given by

(RKan
F

A)X = lim
F⇐X

p∗A,(1)

(cf. for instance [Mac71, Theorem X.3.1]) where A ∈ AC, the value of A at X is denoted
AX , and p : (F ⇐ X) → C is the projection. There is a dual version for right Kan
extensions. In the case of an abelian category A, we will denote the i-th left (resp. right)
derived left (resp. right) Kan extension by LKaniF (resp. RKaniF ). By (1), we have

(RKani
F

A)X = lim
F⇐X

i p∗A.(2)

If A
F
−→ B

G,G̃
−−→ C

H
−→ D are functors between categories and if G

φ
−→ G̃ is a natural

transformation, then HG
H(φ)
−−→ HG̃ and GF

φF−→ G̃F denote the natural transformations
derived from φ.

As usual, for a natural number n, n will denote the totally ordered set {0 < 1 · · · < n},

n
di−→ n+ 1 is the monotonic injection not containing i in its image, and n

si−→ n− 1 is the
monotonic surjection satisfying si(i) = si(i+ 1).

Throughout this paper, (k) refers to formula k in the same subsection, whereas (i.j.k)
refers to formula k in subsection i.j. The other logical units are numbered in the same
way, with the exceptions of definitions and theorems, which are numbered consecutively
throughout the paper.

1.2. The axioms. Throughout this paper, we will use the term “poset” as an abbreviation
of “finite partially ordered set”. Every poset can be considered as a category in which
Hom(X, Y ) has precisely one element if X � Y , and is empty otherwise. Our systems
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of filtered triangulated categories will attach a category to each poset P . Let P be the
2-category containing posets as objects. For any poset C, let C

? be C with a initial and
final object ? added. For x, y in C, there is the unique homomorphism from x to y in C

?

which factorises over ?, which will be called the zero morphism. If x � y, there is one more
morphism from x to y in C

?, and there are no other morphisms. The composition is defined
in the obvious way. Let horizontal morphisms C → D in P be given by functors C

? →D
?

mapping ? to ?, and let bimorphisms be natural transformations between functors from
C
? to D

?.
It may sometimes be useful to consider homotopy categories of C-diagrams for other

categories C. It will be assumed that C is finite and finite-dimensional (i. e., the simplicial
set N.(C) is finite-dimensional). Let C

? be defined as above by adding a new initial and
final object ? to C and a new zero homomorphism factorising over ? between any two
objects of C, such that a composition which contains a zero is zero, and the composition
in C otherwise. C be the 2-category of finite finite-dimensional categories C, with functors
C
? → D

? mapping ? to ? as morphisms and natural transformations as bimorphisms.
Obviously, P ⊂ C.

Let K be one of the 2-categories C or P. If C and D are objects of K, HomK(C,D)
denotes the category of homomorphisms from C to D. We define the sub-2-category
K̃ ⊆ K which has the same objects as K and for which HomK̃(C,D) is the full subcategory
of HomK(C,D) whose objects are functors F from C

? to D
? with the following property:

If X
a
−→ Y is a morphism in C and if F (X) 6= ? and F (Y ) 6= ?, then F (a) 6= ?.

For set-theoretical reasons, it is sometimes necessary to consider small sub-2-categories
of K which are equivalent to K as 2-categories. If U is an infinite class, let KU be the
2-category described as follows: An object of K is an object of KU if its underlying set of
objects is a subset of U . If C and D are objects of KU , then HomKU

(C,D) = HomK(C,D).
Obviously, KU = K if U is the class of all sets.

Let K be one of the 2-categories PU , P̃U , CU , or C̃U , where U is an infinite class. A
K-system of triangulated diagram categories consists of the following data:

• For each C ∈ K, a category KC .
• For each functor f : C → C̃, a functor f ∗ : K

C̃
→ KC.

• For composable functors C
f
−−→ D

g
−→ E, a natural isomorphism

ιf,g : f
∗g∗ ∼= (gf)∗.

• For each natural transformation φ : f → g, a natural transformation
φ : f ∗ → g∗.

(1)

These are all the data we require. In particular, the triangulated structure is not initially
given but will be defined from these data. Of course, several axioms have to be satisfied.
Before we explain them, let us briefly sketch the typical situation in which such data
arise. One should think of KC as a homotopy category of diagrams (typically in some
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appropriate (“linear”) closed model category, or (probably) in some DG-category in the
sense of Bondal and Kapranov [BK91]) indexed by C. Obviously, any functor f : C? →
D? induces a functor f ∗ from D-diagrams to C-diagrams if we assume that in the C-
diagram objects which f sends to ? are mapped to the zero object, and morphisms which
f sends to the zero morphism become the zero morphism in the pull-back diagram. This
functor should pass to the homotopy category of diagrams. It is also clear that in such a
situation the natural transformations for the composition of two functors and for a natural
transformation between two functors really exist. The reason for passing to C

? when
defining the morphisms is that this gives us a convenient way of prepending or appending
zeros to a given diagram.

To formulate the axioms, we need some more notations. Let n = {0 ≺ . . . ≺ n} ∈ P.
For each X ∈ C, let X : 0 → C be the functor sending 0 to X. For A ∈ KC, let
AX = X∗A ∈ K0. Similarly, we will write αX = X∗α for morphisms α in KC. Any
morphism φ : X → Y in C defines a natural transformation X → Y , hence φ : AX → AY .

The following axioms have to be satisfied:

Functoriality Axiom. The following two conditions hold:

• The maps f −→ f ∗ and φ −→ φ define a functor from HomK(C,D) to the category
of functors from KD to KC.

• We have ιf,Id = ιId,f = Id. Moreover, if C
f
−→ D

g
−→ E

h
−→ F are morphisms in K,

then
ιf,hgf

∗(ιg,h) = ιgf,h(ιf,g)h.

If D
g̃
−→ E is another morphism in K and if g

φ
−→ g̃ is a bimorphism, then

ιf,g̃f
∗(φ) = φf ιf,g

ιg̃,hφh∗ = h(φ)ιg,h

The motivation of this axiom in the concrete case of a system of homotopy categories of
diagrams should be clear.

Isomorphism Axiom. A morphism α : A → B in KC is an isomorphism if and only if
αX : AX → BX is an isomorphism in K0 for each X ∈ C.

In other words, a morphism in the homotopy category of C-diagrams is an isomorphism
if and only if it induces isomorphisms on the vertices of the diagram.

Disjoint Union Axiom. If C is the disjoint union of its full subcategories C1 and C2,
then the inclusions i1;2 : C1;2 → C define an equivalence of categories

KC
∼= KC1

× KC2
.

This is motivated by the fact that a C-diagram is completely determined by its restriction
to the connected components of C, and this determinacy should prevail after passing to
the homotopy category.
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Mapping Cylinder Axiom. Let Ar(C) be the category of morphisms in C (i. e., the
category C

1). The functors C → C × 1, X ⇒ X × 0 and X ⇒ X × 1, and the natural
transformation between them given by 0 ≺ 1 define a functor

aC : KC×1 → Ar(KC).

This functor should be viewed as a functor passing from the homotopy category of mor-
phisms between C-Diagrams to the category of morphisms in the homotopy category of
C-Diagrams. The Mapping Cylinder Axiom requires that this functor is full and defines a
bijection between the isomorphism classes of objects of KC×1 and Ar(KC).

In other words, every morphism in the homotopy category of C-diagrams should come
from a C × 1-diagram, and the functor from the homotopy category of C × 1-diagrams to
morphisms in the homotopy category of C-diagrams should be full.

Homotopy Kan Extension Axioms. The first homotopy Kan extension axiom requires
that for any functor f : C

? → D
? in K, the functor f ∗ : KD → KC has a left adjoint

Ho LKanf : KC → KD and a right adjoint Ho RKanf : KC → KD.

The second homotopy Kan extension axiom for Ho LKan applies to a functor f which
has a right adjoint f− and requires that for such f the morphism

Ho LKan
f

→ f ∗−

given by the natural transformation IdC → f−f is an isomorphism. If f possesses a left
adjoint f+, we require that the map

f ∗+ → Ho RKan
f

given by the natural transformation f+f → IdC is an isomorphism.

The motivation is that in the case of the homotopy categories of diagrams of cochain
complexes or spectra (or simplicial sets, too) these functors exist, generalise the usual
homotopy limit functors, and have the required properties.

In the special case where f : C
? → 0? comes from the unique functor C → 0, we shall

write simply Holim−−−→C for Ho LKanf and Holim←−−−C for Ho RKanf .

Linearity Axiom. This axiom is motivated by Goodwillie’s calculus of functors [Goo90]
and is the decisive condition which makes our categories triangulated (for instance, it
excludes the homotopy categories of diagrams of simplicial sets from consideration). It
asserts that a square is homotopy cartesian if and only if it is homotopy cocartesian. We
first have to introduce the necessary notations. Let ∈ P be the poset 1× 1, possessing
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the following elements:

0× 0 1× 0

0× 1 1× 1,
?

-

?
-

(2)

where → can be read as ≺. Let ⊂ be the subposet obtained by removing the lower
right corner 1×1, and let ⊂ be the subposet containing all elements of save for 0×0.
Let i : → and i : → be the inclusions. An object A of K is called homotopy
cartesian if and only if the canonical morphism A→ Ho RKani i

∗A is an isomorphism. It
is called homotopy cocartesian if and only if the canonical morphism Ho LKani i

∗A→ A
is an isomorphism. As we already announced, the linearity axiom requires that an object
of K is homotopy cartesian if and only if it is homotopy cocartesian.

We first define the notion of a compatible system of triangulated P-diagram categories.

Definition 1. For K = PU , or K = P̃U , the collection of data in (1) is called a system
of triangulated K-diagram categories if the above axioms (the Functoriality Axiom, the
Isomorphism Axiom, the Disjoint Union Axiom, the Mapping Cylinder Axiom, and the
Linearity Axiom and the two Homotopy Kan Extension Axioms) are satisfied.

In the cases K = CU or K = C̃U , I need another axiom about homotopy limits, which
will be introduced below in Definition 3.

Let C
f
−→D be a functor between finite finite-dimensional categories. There is a unique

functor C
? f?

−→ D
? which agrees with f on C and which sends ? to ?. For the sake of

simplicity, we will write f ∗ instead of f ?∗, Ho LKanf instead of Ho LKanf?, and Ho RKanf

instead of Ho RKanf?. Obviously, we have (fg)? = f ?g?. Moreover, if C
L


R

D are adjoint

functors, then so are C
? L?



R?

D
?.

1.3. Examples. Although other examples could be given, the main examples which are
needed for this paper are obtained from certain closed model categories in the sense of
Quillen ([Qui67], [Qui69]).

1.3.1. Diagram categories for a closed model category. This is a generalisation of the ap-
pendix A to [BF78]. The following facts are probably well-known to the experts. Therefore,
we make no claims to their originality. I understand that they will probably be contained
in a work in progress by Dwyer and Kan, which will also be able to deal with infinite homo-
topy limits. If this preprint exists, it is well possible that this paragraph will be removed
from the final version of our paper. Actually, it is quite surprising that the following facts
never seem to have been published in a quotable form, more than 25 years after [Qui67].
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Let C be a closed model category, and let C be a finite-dimensional finite category (for

the moment, we do not assume that it posses initial or final objects). A morphism F
φ
−−→ G

in CC is called a weak equivalence (resp. a componentwise fibration or a componentwise

cofibration) if, for each X ∈ C, the map F (X)
φ
−−→ G(X) is a weak equivalence (resp. a

fibration or a cofibration) in C. It is called a diagram fibration if it is a componentwise
fibration and if, for each X ∈ C, the canonical morphism

F (X) → G(X) ×
lim

C−X←X
G(·)

lim
C−X←X

F (·)

is a fibration in C. A morphism F
φ
−−→ G in CC is a diagram cofibration if it is a compo-

nentwise cofibration and if, for each X ∈ C, the morphism

F (X)
⊔

colim
C−X→X

F (·)

colim
C−X→X

G(·) → G(X)(1)

is a cofibration in C.

Proposition 1. Let C be a finite finite-dimensional category, and let C be a closed model
category.

a. We equip CC with the family of weak equivalences defined above. Then the following
two choices for the families of fibrations and cofibrations give CC the structure of a
closed model category:
• The closed model category CC

f having componentwise fibrations as fibrations
and diagram cofibrations as cofibrations.
• The closed model category CC

c having diagram fibrations as fibrations and com-
ponentwise cofibrations as cofibrations.

b. If a morphism F
φ
−−→ G in CC is a diagram fibration (resp. a diagram fibration and

a weak equivalence), then

lim
C
F

lim
C

φ
−−−−→ lim

C
G

is a fibration (resp. a trivial fibration) in C. If φ is a diagram cofibration (resp. a
diagram cofibration and a weak equivalence), then

colim
C

F
colim

C
φ

−−−−−−→ colim
C

G

is a cofibration (resp. a trivial cofibration) in C.

Proof. We will prove both assertions simultaneously by induction on the dimension of C,
the case where this number is zero (i. e., all morphisms in C are identical) being trivial.
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Within the set of categories of a given dimension d, we will also use induction on the
number of objects of C, starting with the impossible case that this number is zero.

Let both assertions be proved for all finite-dimensional finite categories of dimension
< d = dim C, and also for all categories of dimension d with less objects than C.

We prove that CC

c is a closed model category. We will use the axioms as they are
formulated in [BF78] or [Qui69]. The verification of CM1–3 is trivial. To verify CM4, we
have to find a lifting l for each diagram

F̃ F

G̃ G

-a

?

i

?

p

p p
p p

p p
p p

p p
p p

p p
p p

p p
p�

l

-b

(2)

when i is a componentwise cofibration, p is a diagram fibration, and at least one of p or i
is a weak equivalence. Let

α→ α1 → . . .→ αd

be a d-dimensional simplex in the nerve of C. Then the induction assumption can be
applied to C

′ = C − α, since this category has at most the same dimension as and
less objects than C. Let a ′ denote the restriction of functors to C

′. By the induction

assumption, we find the dotted arrow G̃′
l′−→ F ′ for the restriction of (2) to C

′. We have
to find

lα : G̃(α)→ F (α)

which is compatible with l′ and makes (2) at α commutative. Let Φ = limC′←α F (.) ∈ C
and Γ = limC′←αG(.). The conditions which lα has to satisfy can be formulated as the
commutativity of

F̃ (α) F (α)

G̃(α) G(α)×
Γ

Φ.

?
i

-a

?
-(b,l′)

p p p
p p p

p p p
p p3lα

(3)

The definition of a diagram fibration implies that the right vertical arrow in this diagram
is a fibration. Therefore, the dotted arrow exists if i is a trivial cofibration. Otherwise,
p has to be a weak equivalence, and the induction hypothesis applied to C ′ ← x (whose
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dimension is strictly less than the dimension of C) implies that Φ→ Γ is a trivial fibration
in C. Then the base change

G(α)×
Γ

Φ→ G(α)

is a trivial fibration [Qui69, Corollary II.1.2], as is F (α) → G(α), and it follows that the
right vertical arrow in (3) is a trivial fibration. Hence the dotted arrow exists in this case
too, and the verification of CM4 for CC

c is complete.

To verify CM5, we have to factorise a morphism F
f
−−→ G in CC

c into a cofibration i and
a fibration p, one of which has to be trivial. Let α and ′ have the same meaning as in the

proof of CM4. By the induction assumption, a factorisation of f ′ F ′
i′−−→ L′

p′
−−→ G′ with

the desired properties exists. Here L′ is not yet the restriction of some C-diagram to C
′,

but a C
′-diagram which was constructed by the induction assumption and which has to

be extended to C. Let

Φ = lim
C′←x

F (.)

Λ = lim
C′←x

L′(.)

Γ = lim
C′←x

G(.).

These objects, together with the obvious morphisms between them, form the solid part of
the following diagram:

G(α) Γ

L(α) Λ̃ Λ

F (α) Φ

-

p p p p p p p-q -

6
π̃

6
π

pp
pp

pp
ppI
j

-

6
ι̃

6
ι̃

Here Λ̃ is constructed in such a way that the upper square is cartesian. Let us first consider
the case in which we want i to be a trivial cofibration. By an application of the induction
hypothesis to C ′← α, the projective limit π is a fibration. Hence the same applies to π̃.
Choosing L(α) and the dotted arrows in such a way that q is a fibration and j is a trivial
cofibration, we arrive at the desired factorisation. If we want p to be a trivial fibration,
p′ has already been constructed in that way. By the induction assumption and by [Qui69,
Corollary II.1.2], its projective limit π and the base change π̃ are also trivial cofibrations.
Choosing L(α) and the dotted arrows in such a way that j is a cofibration and q is a trivial
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fibration, we complete the verification of CM5. Therefore, CC

c is a closed model category.
By duality, the same arguments apply to CC

f .
It remains to prove the second part of the proposition for C. By duality, it is sufficient

to verify the assertion about right Kan extensions. The functor between closed model
categories

constant diagram: C → CC

c

preserves cofibrations and weak equivalences. By the characterisation of fibrations and
trivial fibrations in terms of their lifting properties [Qui69, II.1.1.], its right adjoint limC

preserves fibrations and trivial fibrations.

Let Ho(CC) be the homotopy category obtained by inverting the weak equivalences. We
will now assume that the initial and final objects of C coincide. We will just call them the
zero object, and any morphism which factorises over it will be called the zero morphism.
Then there is a canonical functor

CC → CC
?

which extends a C-diagram to C
? by sending the zero object and morphisms in C

? to
the zero object and morphisms in C. Any functor f : C

? →D
? therefore defines a functor

f ∗ : CD → CC . It preserves weak equivalences, hence it defines a functor between homotopy
categories denoted by the same letter.

Proposition 2. The functor

f ∗ : Ho
(
CD
)
→ Ho

(
CC
)

has a left adjoint

Ho LKan
f

: Ho
(
CC
)
→ Ho

(
CD
)

and a right adjoint

Ho RKan
f

: Ho
(
CC
)
→ Ho

(
CD
)
.

If f has a right adjoint f−, Ho LKanf ∼= f ∗−. If f has a left adjoint f+, Ho RKanf ∼= f ∗+.

Proof. By duality, it suffices to consider Ho RKan. Let CC
?

o be the full subcategory of CC
?

containing the functors which send ? to the zero object in C. It is equivalent to CC. We
first note that the right Kan extension along f ?

RKan
f?

: CC
?

o → C
D

?

o

exists and is given by (1.1.1). If f ? has a left adjoint, the category over which the limit is
taken in (1.1.1) has an initial object f+(X), hence RKanf ∼= f ∗+ in this case.

An application of the following Lemma 1 to Φ = f ∗ and Γ = RKanf proves the asser-
tion.
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Lemma 1. Let C and D be closed model categories, and let Φ: C → D be a functor which
preserves cofibrations and weak equivalences and possesses a right adjoint Γ. Then the right
derived functor

RΓ: HoD → HoC

exists and is right adjoint to the functor

HoΦ = LΦ: HoC → HoD.

Proof. We want to derive the assertion from [Qui67, Theorem I.4.3].
It follows easily from the characterisation of these classes in terms of lifting properties

(cf. [Qui69, II.1.1.]) that Γ preserves the classes of fibrations and trivial fibrations in D.
We have to verify that Γ preserves weak equivalences between fibrant objects of D. Since
any weak equivalence factorises into a trivial cofibration followed by a trivial fibration, and
since we already know that Γ preserves the latter class, it suffices to prove that Γ takes
trivial cofibrations between fibrant objects of D to weak equivalences in C.

We need the fact that Γ preserves path objects X I of fibrant objects X of D. Let

X
s−→ XI

d0,1
−−−→ X be the constant path and beginning or end point morphisms. Then by

the dual of [Qui67, lemma I.1.2] d0,1 are trivial fibrations , which we know are preserved by
Γ. Since Γ(d0)Γ(s) is the identity, it follows from the saturatedness of weak equivalences in
C that Γ(s) is a weak equivalence. Therefore, Γ(X I) is a path object and it follows in view
of the dual of [Qui67, lemma I.1.1] that Γ preserves right homotopies between morphisms
to X.

Now if f is a trivial cofibration between fibrant objects of D, it has a inverse g up to
right homotopy [Qui67, lemma I.1.7], and we have just seen that this implies that Γ(g)
and Γ(f) are inverse up to right homotopies. It follows Γ(f) is invertible in HoC, hence it
is a weak equivalence by [Qui67, Proposition I.5.1].

The verification of the assumptions of [Qui67, Theorem I.4.3] is now complete.

As a consequence of Proposition 2, we can define notions of homotopy fibre products and
coproducts in any closed model category C. Therefore, we also have a notion of homotopy
cartesian or cocartesian squares. In the case where C is proper, this notion coincides with
the one in [BF78, Appendix A]. Since the homotopy category of a closed model category
depends on the family of weak equivalences alone, it follows that our notion of homotopy
cartesianness or cocartesianness also depends only on the family of weak equivalences (and,
of course, the underlying category C itself).

1.3.2. Linear Closed model categories.

Definition 2. A closed model category C is called linear if the following conditions hold:

• The morphism from the initial to the final object of C is an isomorphism. In other
words, the category is pointed.
• A commutative square in C is homotopy cartesian if and only if it is homotopy

cocartesian.
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By the remark made above, this condition depends only on the family of weak equiva-
lences. We will now check that a closed model category with this property gives rise to a
system of triangulated diagram categories. Let KC = HoCC with the pull-back functors f ∗

introduced before the formulation of Proposition 2, and the obvious natural transformations
between them. The Functorialtiy and Disjoint Union Axioms are trivial, the Homotopy
Kan Extension Axioms follow from Proposition 2, and the Linearity Axiom follows from
the definition of a linear closed model category. It remains to verify the mapping cylinder
axiom. The fact that the functor

KC×1 → Ar(KC)

is surjective on isomorphism classes of objects is clear from our definitions. To see that it
is full, it suffices to show that every commutative square in the homotopy category of C
comes from a commutative square in C. Obviously, it comes from a square

A B

C D

-α

?
β

?

γ

-δ

(4)

of fibrant and cofibrant objects of C which commutes up to homotopy. It follows easily
from the axioms of a closed model category that we may assume γ to be a fibration. Let
i0,1 : A→ A× I be a cylinder object for A and let H : A× I → D be a homotopy between

Hi0 = δβ and Hi1 = γα. Choosing a lifting H̃ : A × I → B of H with H̃i1 = α and
replacing α by H̃i0, we can make (4) commutative in C. This completes the verification of
the axioms.

1.3.3. Examples of linear closed model categories. Our first example concerns closed model
categories of cochain complexes. It is a generalisation of the unbounded derived category
of an abelian category with sufficiently many K-injective cochain complexes [Spa88].

Let A be an abelian category together with an equivalence of categories T : A → A, and
letN > 1 be a natural number. A (T,N)-periodic complex C is a pair (C∗, αC) consisting of
a cochain complex in A together with an isomorphism of complexes αC : C∗ ∼= C∗[N ]. For
arbitrary cochain complexes E∗, F ∗ in A, let Homk(E∗, F ∗) be the group of morphisms of
graded A-objects from E∗ to F ∗[k]. These groups form the cochain complex Hom?(E∗, F ∗)
with the usual differential (see for instance [Spa88, 0.4(2)] If (C∗, αC) and (D∗, αD) are
(T,N)-periodic complexes, let Hom?(C,D) ⊆ Hom∗(C∗, D∗) be the subcomplex of those φ
satisfying φ[N ]αC = αDφ. Let C(T,N)(A) be the category of (T,N)-periodic complexes, with
homomorphisms Hom(T,N)(C,D) = Z0(Hom∗(T,N)(C,D)), the homomorphisms of cochain

complexes φ satisfying φ[N ]αC = αDφ. Let an object C of C(T,N)(A) be called injective if
each C i is an injective object, acyclic if the cochain complex C∗ is acyclic, K-injective if for
each acyclic D, the cochain complex Hom∗(T,N)(D,C) is acyclic, and strictly injective if it is
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both injective and K-injective. A morphism in C(T,N)(A) is called a quasi-isomorphism if
it induces an isomorphism on cohomology. We say that there are sufficiently many strictly
injective complexes if for every (T,N)-periodic chain complex C there is a strictly injective I
and an embedding C → I which is a quasi-isomorphism. It is easy to see that this condition
implies that A has sufficiently many injective objects. We say that there are sufficiently
many K-injective objects if for every (T,N)-periodic complex C there exists a K-injective
D and a quasi-isomorphism C → D (which can be assumed to be a componentwise split
monomorphism). A (T,N)-periodic homotopy between two morphisms in C (T,N)(A) is
a homotopy between the corresponding morphisms of ordinary chain complexes which
belongs to Hom−1

(T,N)(C,D). A morphism in C(T,N)(A) is a homotopy equivalence if it is

invertible up to (T,N)-periodic homotopy. It is a componentwise split monomorphism
(resp. epimorphism) if each C i → Di is split monomorphism (resp. epimorphism).

Proposition 3. • If A has sufficiently many injective objects and finite cohomolog-
ical dimension, then there are sufficiently many strictly injective (T,N)-periodic
complexes.
• If there are sufficiently many strictly (resp. K-) injective (T,N)-periodic objects,

then C(T,N)(A) becomes a linear closed model category with monomorphisms (resp.
componentwise split monomorphisms) as cofibrations, componentwise split epimor-
phisms with strictly (resp. K-) injective kernel as fibrations, and quasi-isomorphism
as weak equivalences. Note that an epimorphism with injective kernel is automati-
cally componentwise split.
• C(T,N)(A) becomes a linear closed model category with componentwise split monomor-

phisms (resp. epimorphisms) as cofibrations (resp. fibrations) and homotopy equiv-
alences as weak equivalences.

Proof. At the price of replacing A by N copies of itself, we can assume for the sake of
simplicity that N = 1.

For every injective object I of A, the (T,N)-periodic complexes

V (I)N = TNI, d = 0,

and

C(I)N = TNI ⊕ TN−1I, d =

(
0 0
Id 0

)
,

with α defined in the tautological way, are easily seen to be strictly injective.
To prove the first assertion, we note that if C has finite injective dimension, then for every

injective complex C with injective H0, it follows easily that B0 and Z0 are also injective
and that C ∼= V (H0(C))⊕C(B0(C)) is strictly injective. Let D be the injective dimension.
For every (T,N)-periodic cochain complex C, we may choose injective objects I and J and
monomorphisms C0 → I and C0/B0 → J defining a morphism C → K(0)C(I)⊕ V (J) of
(T,N)-periodic complexes which is injective and defines a monomorphism on cohomology.
Iterating this procedure, we get a resolution C → K (0) → K(1) → . . .→ K(D−1), which is
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exact save for possibly at the last term and has the additional properties that each K (i) is
strictly injective with injective cohomology and that H0(K(i)) → H0(K(i+1)) is injective.
The cokernel K(D) of K(D−2) → K(D−1) is therefore injective with injective cohomology,
hence strictly injective by the above remark. Let K be the total complex of the double
complex K(0) → . . . → K(D), it is strictly injective and the inclusion C → K is an
embedding and a weak equivalence.

For the second and third assertions, the verification of the closed model axioms CM1–3 is
trivial. Since the construction of the mapping cylinder of a morphism of cochain complexes
carries over to the (T,N)-periodic case, every morphism of (T,N)-periodic complexes can
be factorised as an componentwise split monomorphism followed by a componentwise split
epimorphism which is a homotopy equivalence. This proves one half of CM5 for the closed
model structure described in the third assertion, and the other half follows by duality. In
particular, every morphism of (T,N)-periodic complexes can be factorised as a componen-
twise split monomorphism which is a weak equivalence followed by an epimorphism. In the
case of the second assertion, it is therefore sufficient to verify the factorisation axiom CM5

for epimorphisms C
f
−−→ D. Choosing a monomorphism

(
ker(f)

)0
→ I into an injective

object, we obtain an injection ker(f)
i−→ C(I) into an acyclic strictly injective complex

(resp. the componentwise split monomorphism ker(f) i−→ C(ker(f)0) into a contractible

and therefore K-injective complex). Let C
ĩ−→ E be the push-out of f along i, then ĩ is

a cofibration and E → D is a trivial fibration. Let ker(f)
j
−→ J be a quasi-isomorphic

monomorphism into a strictly injective (T,N)-periodic complex J (resp. a componentwise

split quasi-isomorphic monomorphism into a K-injective complex), and let C
j̃
−→ F be the

push-out. Then j̃ is a trivial cofibration and F → D is a fibration.

Let A
f
−−→ B

p
−→ D and A

i−→ C
g
−→ D, pf = gi, be a commutative square with a

fibration p and a cofibration i, one of which is a weak equivalence. To verify CM4 for this
square, we note that in all cases the morphism of cochain complexes

Hom∗(T,N)(C,B)
(i, p)
−−−−→ H = Hom∗(T,N)(A,B) ×

Hom∗
(T,N)

(A,D)

Hom∗(T,N)(C,D).(5)

is surjective. Indeed, this is easily seen to be the case if both i and p are componentwise
split, or if ker(p) is injective and if i is a monomorphism, and this covers all the cases we
need. If we can prove that (5) induces an isomorphism on cohomology, then it induces a
surjection on Z0, and the diagonal C → B for the square exists. But the kernel of (5) is

Hom∗(T,N)(coker(i), ker(p)),(6)

and it is acyclic if coker(i) is acyclic and ker(p) is K-injective, or if one of ker(p) or coker(i)
is contractible, and again this covers all the cases we need.
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To verify the linearity axiom, we first note that the usual facts about mapping cones

generalise to the (T,N)-periodic case. In particular for M
f
−−→ N there are morphisms

cone(f)[−1] e−→M
f
−−→ N

g
−→ cone(f)

and a morphism ker(f) → cone(f)[−1] which is a quasi-isomorphism (resp. homotopy
equivalence) if f is an epimorphism (resp. a componentwise split epimorphism) and a mor-
phism cone(f)→ coker(f) which is a quasi-isomorphism (resp. homotopy equivalence) if f
is a (componentwise split) monomorphism. In particular, there are homotopy equivalences

cone(g)→ coker(g) = M [1](7)

cone(e)← ker(e)[1] = N.

Let A01
α←−− A00

β
−−→ A10 be an object of C(T,N)(A) . We claim that for all three closed

model structures we are considering, Ho LKani A is given by the commutative square

A00 cone(A00 → A00 ⊕ A01)

cone(A00 → A10 ⊕ A00) cone(A00 → A10 ⊕ A01.)

-

? ?
-

(8)

Indeed, there is a natural homomorphism from LKani A to (8) which is a quasi-isomor-
phism (resp. a homotopy equivalence) if A00 → A01 ⊕ A10 is a (componentwise split)
monomorphism.

In a similar way, one verifies that for an object A of C(T,N)(A) given by

A01 → A11 ← A10,

we have (
Ho RKan

i
A
)

00
∼= cone(A01 ⊕ A10 → A11)[−1].

It follows that a commutative square of (T,N)-periodic complexes A is homotopy carte-
sian if and only if

A00 → cone(A01 ⊕ A10 → A11)[−1]

is a quasi-isomorphism (resp. a homotopy equivalence), and it is homotopy cocartesian if
and only if

A11 ← cone(A00 → A10 ⊕ A01)

is a quasi-isomorphism (resp. a homotopy equivalence). In view of (7), these two conditions
are equivalent.
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Corollary 1. If there are sufficiently many K-injective complexes, then the system of cat-
egories

D(T,N)
C

(A) = HoQuisC
(T,N)(AC),(9)

where Quis is the set of quasi-isomorphisms, is a system of triangulated diagram categories.
In the general case, the system of categories

K(T,N)
C

(A) = HoHeC
(T,N)(AC),(10)

where He is the set of homotopy equivalences, is a system of triangulated diagram categories.

We will write D(T,N)(A) and K(T,N)(A) for D(T,N)
0 (A) and K(T,N)

0 (A).

Remark 1. Let B be an abelian category with sufficiently many injective objects. Let A
be the category of graded B-objects which are bounded from below, and let T be the shift
functor. Then every injective complex is K-injective, and we may apply the first example
of the second assertion of above proposition (this example is also given in [Qui67]), and we
obtain the system of categories D+(B). If the cohomological dimension is finite, we can also
take A equal to the category of bounded graded B-objects, obtaining the bounded derived
category. If there are enough strictly injective B-complexes (for instance, if the homological
dimension is finite or in the cases covered by [Spa88]), then we can take the category of all
graded B-objects as A, obtaining D(A). For the application to stable homotopy, we will
however be in a situation where D(T,N)(A) has no t-structure.

In Corollary 1.5.1, we will see that (9) exists and forms a system of triangulated diagram
paracategories (in the sense of Remark 1.4.3), which will usually (but not always) be actual
categories. Note that while

D(T,N)
C

(A) ∼= D(T,N)(AC),

it is not true that K(T,N)
C

(A) ∼= D(T,N)(KC).
In [Adl96] third point has been generalized to pretriangulated DG-categories in the sense

of Bondal and Kapranov [BK91].
Another example of a linear closed model category is the category of spectra, equipped

with a closed model structure by [BF78]. That this category is linear easily follows from
the fact [Ada74, III.3.10] that in the category of spectra the families of homotopy fibre and
cofibre sequences coincide.

1.3.4. The opposite system of categories. If K is a system of triangulated diagram cate-
gories, then so is

Kop
C

=
(
KC

op

)op
.(11)

1.4. Consequences of the axioms. Let K be one of the 2-categories PU , P̃U , CU , or C̃U ,
where U is an infinite class. In the case K = PU or P̃U , let A be a system of triangulated
K-diagram categories. In the case K = CU , or C̃U , we have yet to impose another axiom,
so we assume for the moment that all axioms formulated so far are satisfied.
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1.4.1. Properties of the homotopy Kan extension functors. Let

C
?

D
?

E
?

F
?

-f̃

?

p̃

?

p

-f

be a commutative diagram. From

Id ∈ Hom(Ho RKan
p

,Ho RKan
p

) ∼= Hom(p∗Ho RKan
p

, Id)

→ Hom(f̃ ∗p∗Ho RKan
p

, f̃ ∗)

∼= Hom(p̃∗f ∗Ho RKan
p

, f̃ ∗)

∼= Hom(f ∗Ho RKan
p

,Ho RKan
p̃

f̃ ∗)

we derive a base change morphism

f ∗Ho RKan
p

→ Ho RKan
p̃

f̃ ∗(1)

and similar morphisms

Ho LKan
f̃

p̃∗ → p∗Ho LKan
f

(2)

p∗Ho RKan
f

→ Ho RKan
f̃

p̃∗(3)

Ho LKan
p̃

f̃ ∗ → f ∗Ho LKan
p

.(4)

Proposition 1. a. The base change morphism (1) is an isomorphism if and only if

(2) is. Moreover, this is the case when f and f̃ have right adjoints f− and f̃−
satisfying f−p = p̃f̃−.

b. The base change morphism (4) is an isomorphism if and only if (3) is. Moreover,

this is the case when f and f̃ have left adjoints f+ and f̃+ satisfying f+p = p̃f̃+.

Proof. Since (1) is adjoint to (2), the fact that one of them is a functorisomorphism implies
that the other one also is an isomorphism. The similar relation between (4) and (3) follows

by interchanging the roles of f and p. If f− and f̃− exist and have the required properties,
then it follows from the second homotopy Kan extension axiom that (2) is an isomorphism.

The same applies to (3) if f+ and f̃+ exist and have the required properties.
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Proposition 2. Let F : D → C be a functor, let X ∈ C, and let

iX : (C →X)→ C

jX : (F ⇒X)→D

F̃ : (F ⇒X)→ (C →X)

be the canonical functors. Assume that C is a poset. Then for A ∈ KD, we have an
isomorphism

(Ho LKan
F

A)X ∼= Holim−−−→C→Xi
∗
X Ho LKan

F
A

∼= Holim−−−→C→X Ho LKan
F̃

j∗XA(5)

∼= Holim−−−→ F⇒Xj
∗
XA.

A dual assertion holds for projective homotopy limits and right homotopy Kan extensions.

Proof. The first morphism in (5) is an isomorphism given by the second homotopy Kan
extension axiom. The third of these morphisms is a tautological isomorphism. It remains
to verify that the second morphism, which is a base change morphism, is an isomorphism.

Since C is a poset, i?X has a right adjoint iX− which is a morphism in P̃ and sends every
object of C to itself if it is � X, and to ? otherwise. Similarly, jX has a right adjoint
jX− which sends Y ∈ D to zero if f(Y ) 6� X, and to itself otherwise, with the expected
behaviour on morphisms. It is straightforward to check F̃ jX− = iX−F . The assertion
therefore follows from Proposition 1.

We are now ready to define systems of triangulated K-diagram categories, where K is CU
or C̃U . In this case, we impose another condition which in the case K = P was just derived
from the other axioms.

Definition 3. For K = C, or K = C̃, the collection of data in (1.2.1) is called a system of
triangulated C-diagram categories if the Functoriality Axiom, the Isomorphism Axiom, the
Disjoint Union Axiom, the Mapping Cylinder Axiom, the Homotopy Kan extension axioms
and the Linearity Axiom are satisfied and in addition the assertion of the last proposition
is true in full generality, without the assumption that C is a poset.

In the case where F is the inclusion of a full subcategory D ⊆ C, then for every
X ∈ Ob(D) the category F ⇒X has a final object (X, IdX). Therefore:

Corollary 1. Let C
F
−→ D be the inclusion of a full subcategory. Then the canonical

morphisms in KD

A −→ F ∗Ho LKan
F

A

F ∗Ho RKan
F

A −→ A

are isomorphisms for every object A of KD.
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Remark 1. In the case of a C-system, the assumption that the assertion of the last propo-
sition is valid cannot be derived from the other axioms. Indeed, for every finite finite-
dimensional category C, let C

(2) be the category which has the same objects as C and

Hom
C

(2)(X, Y ) = HomC(X, Y )× HomC(X, Y )

as morphisms. If C
? f
−→D

? is a functor, then let C
(2)? f(2)

−−→D
(2)? be the functor preserving

? which agrees with f on the set of objects and sends a morphism (a, b) in C
(2) to zero if

f sends one of the two morphisms a and b in C to zero, and to (f(a), f(b)) otherwise. If

a C-system K is given, let K(2) be defined by K(2)
C

= K
C

(2). The functor

K(2)
D

f∗
−→ K(2)

C

is given by

K
D

(2)
f(2)∗

−−→ K
C

(2) .

It is easy to see that K(2) satisfies the Functoriality Axiom, the Disjoint Union Axiom, the
Mapping Cylinder Axiom, the two Homotopy Kan Extension Axioms, and the Linearity
Axiom if they are satisfied for K. On the other side, the assertion of Proposition 2 applied

to the functor 0
iX−→ C asserts that the canonical morphism

∑

α∈HomC(X,Y )

A −→
(
Ho LKan

(K)
iX

A
)
Y

(6)

is an isomorphism. This gives
∑

(α,β)∈HomC(X,Y )×HomC(X,Y )

A ∼=
(
Ho LKan

(K(2))
iX

A
)
Y
,(7)

and this isomorphism identifies the counterpart of (6) for K(8)

∑

α∈HomC(X,Y )

A −→
(
Ho LKan

(K(2))
iX

A
)
Y

(8)

with the embedding of the summands corresponding to pairs of the form (α, α) in (7).
Therefore, (8) can be an isomorphism only if A is the zero object. Thus, if K satisfies
all the assumptions of Definition 3 and K0 is not the zero category, then K(2) violates
Proposition 2 but satisfies all the other assumptions of Definition 3.

The last proposition can often be used to reduce assertions about the functors Ho LKanf
and Ho RKanf to the similar assertions about Holim−−−→C and Holim←−−−C. The first part of the
following proposition is concerned with the question of replacing C by a smaller category.

Proposition 3. a. Let i : C
? → D

? be some functor (typically the inclusion of a

subcategory). If i has a left adjoint of the form l?, where D
l
−→ C, then Holim−−−→CA ∼=

Holim−−−→Di
∗A. If i has a right adjoint of the form r? for some functor D

r
−→ C, then

Holim←−−−DA ∼= Holim←−−−Ci
∗A.
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b. Let D be a prefibred category over C, and let f : D → C be the projection, then for
any X ∈ C and any A ∈ KD we have

(
Ho RKan

f
A
)
X
∼= Holim←−−− f−1(X)j

∗
XA,

where jX : f−1(X) → D is the inclusion. Similarly, if D is a precofibred category
over C, then (

Ho LKan
f

A
)
X
∼= Holim−−−→ f−1(X)j

∗
XA.

Proof. For the first point, let l be a left adjoint of i, then Holim−−−→C
∼= Holim−−−→D Ho LKanl ∼=

Holim−−−→Di
∗ by the second homotopy Kan extension axiom. The assertion about Holim←−−−

follows from the dual considerations.
For the second point, the definition of the condition that D is a prefibred category over

C in [SGA1, Exp. VI, Definition 6.1], is equivalent to the assertion that the inclusion(
f−1(X)

)
→ (f ⇐ X) has a right adjoint (cf. [Qui73, §1, after the formulation of Theo-

rem A]). This allows us to apply the first part of the proposition. Again, the case of Holim−−−→
is dual.

1.4.2. The extended linearity axiom. Let an object of KC× be called homotopy cartesian
if

A→ Ho RKan
IdC×i

(IdC × i )∗A

is an isomorphism, and let cocartesianness be defined in the same way, replacing by
and Ho RKan by Ho LKan and reversing the direction of the arrow. Since C × is both
fibrant and cofibrant over C, it follows from Proposition 3.b. and the isomorphism axiom
that an object A of KC× is homotopy cartesian (resp. cocartesian) if and only if for every
X ∈ C, the object j∗XA of K is homotopy cartesian (resp. cocartesian). By the linearity
axiom, we arrive at the first part of the following proposition.

Proposition 4. An object of KC× is homotopy cartesian if and only if it is homotopy
cocartesian. Consequently, for any D ∈ K the system LC = KD×C is also a system of
triangulated K-diagram categories.

The second part of this proposition follows from the first part since all the other axioms
obviously hold for the system L.

From now on, we will use the term bicartesian for the equivalent properties of being
homotopy cartesian and cocartesian.

Definition 4. A square in C is a functor i : → C which is injective on the set of objects.
Let A ∈ KC, we say that A makes the square homotopy bicartesian if i∗A is homotopy
bicartesian.

If in the following considerations (x) is the equation number of the definition of a poset
by a commutative diagram, then by a visible square in (x) we will understand a square
which actually becomes visible as an ordinary geometric square in (x).
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Proposition 5. Let i be a square in C. If the functor → (C−i(1×1)→i(1×1)) possesses
a left adjoint and if A = Ho LKanf B, where f : D → C is a functor not containing
i(1 × 1) in its image, then A makes i bicartesian. The same holds if the functor →
(C−i(0×0)←i(0×0)) possesses a right adjoint and if A = Ho RKanf B, where f : D → C

is a functor not containing i(0× 0) in its image.

Proof. It suffices to prove the first assertion. Let j : C − i(1 × 1) → C be the inclusion.

By our assumption on the image of f , f factorises as D
f̃
−→ C − i(1 × 1)

j
−→ C. Then

A ∼= Ho LKanj Ho LKanf̃ B
∼= Ho LKanj j

∗A, where the second isomorphism follows from
Corollary 1, hence

Ai(1×1)
∼= Holim−−−→ (C−i(1×1)→i(1×1))h

∗A ∼= Holim−−−→ i | ∗A

by Proposition 2 and Proposition 3.a., where

(C − i(1× 1)→ i(1× 1))
h
−→ C

is the canonical functor.

Proposition 6. a. Let f : ? → 0? be the functor sending 1 × 0 and 1 × 1 to 0, the
nonzero morphism between them to the identity, and all the other objects to ?. Then
for any object A of K0, f

∗A is bicartesian. The same applies to the functor g sending
0× 0 and 0× 1 to 0, and all the other objects of to ?.
As a consequence, if two adjacent vertices of a bicartesian square are contractible,
the opposite side of the square is an isomorphism. (This should be viewed as a
confirmation of our intuition that a morphism is an isomorphism if its cone or
homotopy fibre is contractible).

b. (Concatenation of squares and bicartesianness) Let d0,1,2 : 1→ 2 be the three mono-
tonic injections, and let A ∈ K2×1. Then if two of the three objects (di×Id1)

∗A ∈ K
are bicartesian, then so is the third one.

Proof. For the assertion about squares in which two adjacent vertices are contractible, the
Ho LKan-part of Proposition 5 can be applied to f ∗ = Ho LKani, where i(0) = 1 × 0.
Similarly, the Ho RKan-part of Proposition 5 can be applied to g∗. The assertion about
isomorphisms follows from the fact that a bicartesian square A can be reconstructed in a
unique way from i∗A or i∗A.

To prove the assertion about concatenation and bicartesianness, we can assume that
(d0× Id1)

∗A or (d2× Id1)
∗A is bicartesian. In the second case, let C = 2× 1−{2× 1} and

D = C − {1× 1}, and let j and k be the inclusions of the subposets C and D into 2× 1,

and let D
l
−→ C be the inclusion. Then by an application of Proposition 2, we have

(Ho LKan
k

k∗A)1×1
∼= (Ho LKan

l
l∗A)1×1

∼= Holim−−−→ (d2 × Id1)
∗A,
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and by an additional application of Proposition 3.a.

(Ho LKan
k

k∗A)2×1
∼= Holim−−−→ (d1 × Id1)

∗A.

By our assumption on (d2 × Id1)
∗A, it follows that j∗A ∼= Ho LKanl k

∗A, and that (d1 ×
Id1)

∗A is bicartesian if and only if A is isomorphic to Ho LKank k
∗A ∼= Ho LKanj j

∗A.
Since (Ho LKanj j

∗A)2×1
∼= Holim−−−→ (d0× Id1)

∗A, this is the case if and only if (d0× Id1)
∗A

is bicartesian.

We have proved that if (d2× Id1)
∗A is bicartesian, either both or none of the remaining

squares will be bicartesian. The same result with d2 replaced by d0 is proved in a similar
way, using right instead of left homotopy Kan extensions.

1.4.3. Preadditivity.

Proposition 7. K∅ is a trivial category (having precisely one morphism between any pair
of objects). For any C, KC has an initial object which is also a final object, and finite

coproducts exist and are isomorphic to the finite products. For every C
∗ f
−→ D

∗, the
functors f ∗, Ho LKanf , and Ho RKanf preserve finite coproducts and products.

Proof. By the disjoint union axiom, we have K∅ ∼= K∅ × K∅, whence the first assertion.

Let 0 be any object of K∅. For any C, let f : C
? → ∅? be the unique functor. The object

f ∗0 of KC will also be denoted by 0. By the existence of homotopy Kan extensions for f ,
it is both an initial and a final object of KC.

Let C t C be the disjoint union of two copies of C, and let p : C t C → C be the
functor which is the identity on each of the two copies of C. By the disjoint union axiom,
KCtC

∼= KC × KC. Hence, Ho LKanp provides the coproduct and Ho RKanp the product
of two objects of KC . Since it has both a left and a right adjoint, f ∗ preserves both
products and coproducts. Since it has a right adjoint, Ho LKanf preserves coproducts and
Ho RKanf , having a left adjoint, preserves products.

It remains to prove that the coproduct and the product of two objects of KC coincide.
By the isomorphism axiom, it suffices to do this for C = 0. Let q : ? → (0 t 0)? be the
functor sending 0×0 to ? and 0×1 and 1×0 to the two copies of zero in 0t0. It has a left

adjoint l?, where 0t0
l
−→ sends the two copies of 0 to 0×1 and 1×0. By Proposition 3.a.

we have

Holim−−−→ 0t0
∼= Holim−−−→ q∗.(9)
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Now consider the following poset D:

� �

O0 X O1

� 	

Y P Ỹ

O2 X̃ O3


 	

-

? ?

-

?

?

- -

? ?
- -

Let j : →D be the inclusion of the framed subposet. For any (A,B) ∈ K0×K0
∼= K0t0,

let S = Ho LKanj q
∗(A,B) ∈ KD. It follows from Proposition 5 that S makes all the visible

squares in the above diagram bicartesian. In particular, by (9) SP is coproduct of SX = A
and SY = B, and by the dual version of (9) it is also a product of SX̃ and SỸ . But it
follows by applying Proposition 6.b. and Proposition 6.a. to the square formed by O0, X,
O2, X̃ that A ∼= SX → SX̃ is an isomorphism. Also, SỸ

∼= B. It follows that SP also is a
product of A and B.

Corollary 2. Let f : C
? → D

? be a functor, and let C1, . . . ,Cn be the connected compo-
nents of C. Let fj be the restriction of f to C j and let ij be the inclusion of Cj into C.
Then

Ho LKan
f

A ∼=
n⊕

j=1

Ho LKan
fj

i∗jA, Ho RKan
f

A ∼=
n⊕

j=1

Ho RKan
fj

i∗jA.(10)

It follows from the last proposition that every object of KC has canonical (and unique)
structures of a semigroup object and a semicogroup object and that these two canonical
structures yield the same structure of a semigroup on HomKC

(A,B). This semigroup will
be written additively, it will eventually turn out in Corollary 3 to be a group.

1.4.4. The loop space and suspension functors. Let p : ? → 0? be the projection sending
0× 0 to 0, and all the other objects to ?. We define the suspension functor Σ : K0 → K0

by

Σ = Holim−−−→ p∗ .(11)

The loop space functor is defined by

Ω = Holim←−−− p∗ ,(12)

where p sends 1× 1 to 0 and all other objects of to ?.
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We want to prove that these functors are mutually inverse equivalences of categories. To
verify this, we consider for A ∈ K0 the square B = Ho LKani p

∗A. By Proposition 2, we
have B1×1

∼= ΣA, hence p∗ΣA ∼= i∗B. Since B is homotopy cocartesian,

Ho RKan
i

p∗ΣA ∼= Ho RKan
i

i∗B ∼= B,

whence a canonical isomorphism A ∼= ΩΣA. The isomorphism A ∼= ΣΩA is constructed
in the same way.

We will put A[i] = ΣiA for i ≥ 0 and A[i] = Ω−iA for i ≤ 0. By the above results, the
functor [−i] really is an inverse to [i]. Eventually, we shall show that this is the shift functor
for a triangulated structure on K0. When we verify the axiom about shifting distinguished
triangles, it will be necessary to identify a sign change with a canonical automorphism of
Σ and Ω.

Let σ be the automorphism of Σ and Ω defined by interchanging the vertices 1× 0 and
0×1 of . More precisely, let σ be the automorphism of which interchanges the vertices
1× 0 and 0× 1. We have an isomorphism

σ : ΣA = Holim−−−→ p∗A

= Holim−−−→ (p σ)∗A
∼= Holim−−−→ σ

∗p∗A(13)
∼= Holim−−−→ p∗A

= ΣA.(14)

A similar definition is made for Ω.

Proposition 8. We have σ + Id = 0 on both Σ and Ω. In particular, the semigroup and
semicogroup objects ΩX and ΣX are group and cogroup objects.

Proof. It suffices to consider the case of Ω.
For each n > 0, let Cn be the poset having vertices X and O0, . . . , On with Oi ≺ X

and no other relations. For any object A of K0, let PnA be the object Holim←−−−Cn
p?nA, where

pn : Cn → 0 sends X to 0 and Oi to ?. For any map f : k → n, let f : Ck → Cn be the
map defined by f(X) = X and f(Oi) = Of(i). Corresponding to f , we have a morphism

f̃ : PnA→ PkA by applying (1) to the projective homotopy limits over Ck and Cn. These
morphisms satisfy the obvious transitivity property.

Let i0 = 0 < i1 < . . . < iN = n, and let fl be the unique monotonic bijection il − il−1
∼=

[il−1, il] = {k|il−1 ≤ k ≤ il}. We claim that

(f̃1, . . . , f̃N) : PnA→
N∏

l=1

Pil−il−1
A(15)

is an isomorphism. By an induction argument, it suffices to prove this for N = 2. Let D be
the poset containing Cn and the additional vertices Y1, Y2 such that O0, . . . , Oi1 are � Y1
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and Oi1 , . . . , On are � Y2. Let j : Cn → D be the inclusion and let B = Ho RKanj p
∗
nA.

Then PnA ∼= Holim←−−−DB. By an application of Proposition 3.a. to the inclusion k : → D

defined by k(1 × 1) = Oi1, k(0 × 1) = Y1, k(1 × 0) = Y2, which has a right adjoint
sending Oi1 and X to Oi1, O0, . . . , Oi1−1 and Y1 to Y1, and Oi1+1,... ,in and Y2 to Y2, we have
PnA ∼= Holim←−−− k∗B. But BOi1

= 0, while BY1 = Pi1A and BY2 = Pn−i1A, proving that (15)
is an isomorphism.

The isomorphism ∼= C1 gives us an identification P1
∼= Ω. The morphism d̃1 : P2A→

P1A together with the inverse of the isomorphism (d̃2, d̃0)A : P2A ∼= P1A× P1A gives us a
morphism a : ΩA⊕ΩA→ ΩA (which can be viewed as the concatenation of loops map).
We want to verify that this a satisfies the associativity law, i.e., that

a(x, a(y, z)) = a(a(x, y), z)(16)

for three morphisms x, y, z of any object E of K0 to ΩA. To do this, one notes that, by

the transitivity of the morphisms f̃ between the Pk, both sides of (16) are equal to ĩ03g,
where iαβ is the map from 1 to 3 sending 0 to α and 1 to β., and where g : E → P3A is
determined uniquely by

ĩ01g = x

ĩ12g = y

ĩ23g = z.

There is an action of the symmetric group S3 on P2 for which a permutation π of {0; 1; 2}
acts by π̃. We use the identification P2A ∼= P1A× P1A via d2 and d0 to study this action.
Let σij be the involution interchanging i and j. Thus, σ̃01 on P1A gives us the involution
σ on ΩA. Using this, one sees that

σ̃02 =

(
0 σ
σ 0

)
(17)

on P2. Since σ01 commutes with d2, we have d̃2σ̃01 = σd̃2, hence

σ̃01 =

(
σ 0
α β

)
.(18)

This is an involution if and only if σ and β are involutions and

ασ + βα = 0.(19)

Since d̃1 = d̃0σ̃01, we have

a(x, y) = α(x) + β(y).(20)



28 JENS FRANKE, UNIVERSITÄT BONN

Conjugating (18) by (17), we have

σ̃12 =

(
σβσ σασ

0 σ

)

Using this and d̃1 = d̃2σ̃12, we see that a(x, y) = σβσ(x) + σασ(y). Comparison with (20)
gives us

β = σασ(21)

By (20), the associativity law for a implies that

a(x, a(y, z)) = αx+ β(αy + βz)

= αx+ βαy + z

must be equal to

a(a(x, y), z) = α(αx+ βy) + βz

= α2x+ αβy + βz.

We put x = y = 0 and conclude that β = Id, which in view of (21) implies α = Id.
Therefore (19) implies σ + Id = 0.

Corollary 3. The categories KC are additive categories, and the functors f ∗, Ho LKanf ,
and Ho RKanf are additive functors.

Proof. By Proposition 7, it remains to show that HomKC
(A,B) is a group. In the case

where B is isomorphic to ΩC for some C ∈ ObKC, this follows from Proposition 8. But
every B is isomorphic to ΩΣB.

1.4.5. Cone and Homotopy Fibre. Let the cone functor Cone : K1 → K2 be given by
Cone(A) = i∗Ho LKani p

∗A, where p : ? → 1? sends 1 × 0 to ?, and 0 × 0 to 0 and
0 × 1 to 1, and where i : 2 → is given by i(0) = 0 × 0, i(1) = 0 × 1, and i(2) = 1 × 1.
Similarly, let Hofi(A) = i∗Ho RKani q

∗A, where q(1× 0) = ?, q(0× 1) = 0, q(1× 1) = 1.
Let hofiA = (HofiA)0 and coneA = (ConeA)2. These objects should be thought of as

the homotopy fibre and the cone of the morphism A0 → A1, where A ∈ K1 contains enough
information about this morphism to define such objects up to unique isomorphism. Hofi
then is an object in the homotopy category of diagrams incarnating hofi→ A0 → A1. The
following proposition confirms our expectation that the homotopy fibre of the morphism
from A1 to the cone of A is A0.

Proposition 9. The functors d∗0 Cone and d∗2 Hofi are mutually inverse self-equivalences of
K1.

Proof. This is an application of the linearity axiom to the squares Ho LKani p
∗A and

Ho RKani q
∗A.
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1.4.6. Distinguished Triangles. Let D be the following poset:

� �

X Y O2

� 	

O1 Z XΣ


 	

-

?

-

? ?
- -

(22)

and let C be the framed subposet. Let f : C
? → 1? be given by f(Oi) = ?, f(X) = 0,

f(Y ) = 1, sending the morphism X → Y in C to the morphism 0 → 1 in 1. Let i be
the inclusion of C into D. For A ∈ K1, let B = Ho LKani f

∗A. By Proposition 2 and
Proposition 3.a., BZ

∼= cone(A) and BXΣ

∼= ΣA0. Therefore B gives us a morphism from
cone(A) to ΣA0.

Definition 5. The triangle TA is the triangle

A0 → A1 → cone(A)→ ΣA0

in K0. A triangle in K0 is called distinguished if it is isomorphic to TA for some A ∈ K1.
Finally, an object B of KD is called distinguished if it is of the form Ho LKani f

∗A for
some object A of K1. This is the case if and only if BO1 = BO2 = 0 and B makes the
two visible squares in (22) bicartesian. Such an object of KD gives rise to a distinguished
triangle in K0.

Remark 2. Although the dimension of the poset D is three, it is possible to characterise the
triangulated structure in terms of KC with dim C ≤ 1. For we have ΣA = cone(A → 0),
and the distinguished triangles are the ones isomorphic to triangles of the form

A→ B → cone(A→ B)→ cone(A→ 0).

Theorem 1. The category K0, equipped with this class of distinguished triangles, is a tri-
angulated category. In a similar way, the categories KD can be made into triangulated
categories, using the system of triangulated diagram categories K?×D described in Proposi-
tion 4.

Proof of Theorem 1: We will refer to the axioms of a triangulated category in the
numeration in which they are given in [GM88] or [GM94]. The axiomTR1.a) follows from
Proposition 6.a., which can be formulated as stating that the cone of the identity is 0.
AxiomTR1.b) is clear since by our definition any triangle isomorphic to a distinguished
one is distinguished. AxiomTR1.c) follows from the fact that the functor K1 → K0

1 gives
a surjection on the isomorphism classes of objects.

For axiom TR2, we define the shift of a triangle

T = (E
u−−→ F

v−→ G
w−−→ E[1])
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to be ST = (F v−→ G w−−→ E[1]
−u[1]
−−−−−→ F [1]). We have to show that a triangle is

distinguished if and only if so is its shift. The ‘if’-part follows readily from the following
lemma:

Lemma 1. We have STA ∼= Td∗0 Cone(A).

The ‘only if’-part follows from this and Proposition 9.

Proof of Lemma 1: Let E ⊃ D be the following poset

� �

X Y O2

O1 Z XΣ

O3 YΣ

� 


-

?

-

? ?
-

?

-

?
-

Let j : D → E be the inclusion and let k : F → E be the inclusion of the framed subposet.
F is isomorphic to D by an isomorphism sending X to Y , Y to Z, Z to XΣ, XΣ to YΣ,
O1 to O2 and O2 to O3. In particular, we can define the property of distinguishedness
for an object of KF , and we have a distinguished triangle associated to such an object.

Let C̃
ĩ
−→ E be the subposet C ∪ {O3}, and let C̃

? f̃
−→ 1? be defined by f̃ |C = f and

f̃(O3) = ?. Let C = Ho LKanĩ f̃
∗A. By Proposition 5, C makes all visible squares in

the above diagram bicartesian. Since in addition COi
= 0 for 1 ≤ i ≤ 3, j∗C and k∗C

are distinguished objects of KD and KF . In particular, there are canonical isomorphisms
CXΣ

∼= ΣCX andCYΣ

∼= ΣCY . Since for all U ∈ D we have C→U = C̃→U , the canonical
morphism B −→ j∗C is an isomorphism. Using this and Proposition 2 and Proposition 3.a.,
we see that the pull-back of C along the morphism from 1 to E sending 0 to Y and 1 to Z
is Cone(A). Therefore, the distinguished triangle belonging to k∗C is TCone(A). The lemma
follows if we can identify the triangle belonging to k∗C with STA. Only the identification
of the morphism CXΣ

−→ CYΣ
is not completely trivial. The embeddings of into E which
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give us the identifications of CXΣ
and CYΣ

with ΣA0 and ΣA1 look as follows:

1× 0 O1 O3 0× 1

0× 0 X Y 0× 0

0× 1 O2 O2 1× 0

- - �

6

?

-

6

?

-

6

?

6

?

�

- - �

In this diagram, the first and the seventh column represent the elements of , and the
second and the sixth column represent functors from to the two subposets of E used to
identify CXΣ

and CYΣ
. The horizontal arrows in the fourth column are morphisms in E.

Since the first and the seventh column of the diagram differ by the reflection of along
its main diagonal, it follows that the morphism ΣA0

∼= CXΣ
→ CYΣ

∼= ΣA1 differs from
the suspension of A0 → A1 by σ, which by Proposition 8 is −1.

The proof of Lemma 1 is complete. Q.E.D.

This completes the verification of axiom TR2. Axiom TR3 follows from the fullness of
the functor K1 → K0

1 required by the mapping cylinder axiom.
It remains to verify the octahedron axiom TR4. This will be done by associating a full

octahedron diagram in K0 to each object of K2 and verifying that each upper half of an
octahedron diagram comes from such an object.

To associate an octahedron diagram to an object of K2, we consider the following poset
O: � �

X Y Z O3

� �

O1 Z ′ Y ′ XΣ O4

� � � 


O2 X ′ YΣ Z ′
Σ

� 


?

-

?

-

?

-

?
-

?

-

?

-

?

-

?
- - -

(23)

Let l : P → O be the inclusion of the framed subposet, and let h : P
? → 2? be defined by

h(X) = 0, h(Y ) = 1, h(Z) = 2, h(Oi) = ?, taking an arrow to the zero morphism only if its
source or target are mapped to ?. For D ∈ K2, let E = Ho LKanl h

∗D. By an application
of Proposition 5, E makes all visible squares in (23) bicartesian. By Proposition 6.b., the
same is true for all concatenations of visible squares. Applying this to the squares formed
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by X, O1, O3, and XΣ (resp. by Y , O2, O3, and YΣ and by Z ′, O2, O4, and Z ′
Σ
), we see that

EXΣ
can be identified with ΣD0 (resp. EYΣ

with ΣD1 and EZ′
Σ

with ΣEZ′). Therefore,
we get all the necessary commutativities in the two halves of the octahedron diagram:

EX′ EZ = D2

?

EY = D1

?

EZ′ EX = D0

HHHj
+

?

+

�

���*

�����
-+

6

HHHY
(24)

EX′ EZ = D2

? EY ′ ?

EZ′ EX = D0,
?

+

�

�
��+Q

QQk

Q
QQs+�

��3

-+

6

(25)

including the commutativity of the two diagonal squares containing both EY and EY ′. In
these diagrams, arrows marked by a + are of degree one, and the four triangles marked
by ? have to be distinguished instead of commutative. To check that they are really
distinguished, we consider the following four embeddings m1...4 : D → O:

• m1(X) = X, m1(Y ) = Y , m1(O2) = O3, m1(O1) = O1, m1(Z) = Z ′, m1(XΣ) = XΣ.
• m2(X) = Y , m2(Y ) = Z, m2(O2) = O3, m2(O1) = O2, m2(Z) = X ′, m2(XΣ) = YΣ.
• m3(X) = X, m3(Y ) = Z, m3(O2) = O3, m3(O1) = O1, m3(Z) = Y ′, m3(XΣ) = XΣ.
• m4(X) = Z ′, m4(Y ) = Y ′, m4(O2) = O4, m4(O1) = O2, m4(Z) = X ′, m4(XΣ) =
Z ′

Σ
.

Of course, the arguments of each of the mi are vertices of (22), while its values are vertices
of (23). Each mi takes visible squares and O-vertices in (22) to visible squares and O-
vertices in (23), it follows that m∗iE is distinguished in the sense of Definition 5. This
proves the distinguishedness of the four triangles marked by ?.

It remains to prove that every upper cone

A′ C

?

B

?

C ′ A

@
@R
+

?

+

�

�
��

�
�	

-+

6

@
@I

(26)

comes from an object of K2. Let M ∈ K1 such that M0 → M1 is isomorphic to A → B.
The morphism B → C defines a morphism M → s∗0C in K1, which by the mapping
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cylinder axiom comes from an object D̃ of K with D̃0×?
∼= M and D̃1×?

∼= s∗0C. Let
n : 2 → be defined by n(0) = 0 × 0, n(1) = 0 × 1, n(2) = 1 × 1. Then D = n∗D̃
is an object of K2 giving rise to A → B → C. We want to verify that with this choice
of D, 1.4.6 is isomorphic to (24). Since isomorphisms between A ∼= EX , B ∼= EY , and
C ∼= EZ are part of our construction of D, and since TR3 is already proved, there is a
choice of isomorphisms A′ ∼= EX′ and C ′ ∼= EZ′ such that we get isomorphisms between
the two distinguished triangles in 1.4.6 and their counterparts in (24). It is clear that these
isomorphisms intertwine between the long left vertical arrows in 1.4.6 and (24).

We have constructed an isomorphism between 1.4.6 and (24). Therefore, (25) gives us a
lower half for 1.4.6, and we are through.

The proof of Theorem 1 is complete. Q.E.D.

1.4.7. Some spectral sequences. For any C ∈ K and A ∈ KC , we have a functorial distin-
guished triangle

A RA

PA =
⊕

X∈C

Ho RKan
iX

AX

?

�

�
�

�
�

��3

+(27)

which can be defined in a functorial way as follows: Let C̃ be the subcategory of C × 1
obtained by keeping all objects, but removing the non-identical morphisms between X × 1
and Y × 1. Let p : C̃ → C be the projection and i : C̃ → C × 1 be the inclusion. Let
B = Ho RKani p

∗A ∈ KC×1, by (10) and Proposition 3, we have (IdC × d1)
∗B = A and

(IdC×d0)
∗B = PA. Thus, putting RA = coneB, we get a functorial distinguished triangle

(27).

Lemma 2. We have Rdim C+1 = 0. Thus, we get a resolution

A RA R2A . . . Rdim C−1A RdimCA

PA PRA PR2A . . . PRdimC−1A PRdimCA
? ?

�

?

� � �

?

�

?

∼=

�
�

�
�

�
��3

+

�
�

�
�

�
�3

+

�
�

�
�

�
��3

+

�
�

�
�

��3

+

(28)
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By duality, we have a similar resolution

A R̃A R̃2A . . . R̃dim C−1A R̃dimCA

P̃A P̃ R̃A P̃ R̃2A . . . P̃ R̃dim C−1A P̃R̃dimCA

-

�
�

�
�

��+
+

-

�
�

�
�

��+
+

-
�

�
�

�
�

��+
+

-

�
�

�
�

�
��+

+

-

�
�

�
�

��+
+

6 6 6 6 6
∼=

(29)
with P̃A =

⊕
X∈C Ho LKaniX AX .

Proof. By Proposition 2, we have

(Ho RKan
iX

A)Y =
⊕

HomC(Y,X)

A,(30)

hence

(PA)X =
⊕

Y ∈Ob(C)
HomC(X,Y )

AY .(31)

Moreover, the morphism AX −→ (PA)X defined by evaluating the downward arrow in (27)
corresponds to the inclusion of the summand belonging to X. Let C

n denote the subset
of all objects X of C for which there exists a non-degenerate n-simplex X = X0 → X1 →
. . .→ Xn = X in N.C, and let Kn

C
be the full subcategory of all A ∈ KC with AX = 0 for

X 6∈ C
n. Then it follows easily from (31), and the exact triangle (27) that RKn

C
⊆ Kn+1

C
.

By induction we have Rdim C+1A ∈ Kdim C+1
C

. But C
dimC+1 = ∅, hence Kdim C+1

C
= 0.

Let Sub(C) denote the subdivision of C, cf. [Gra76]. Its objects are morphisms f in C,
a morphism from f to g in Sub(C) being a factorisation g = afb. The dimensions of C

and Sub(C) are equal.

Proposition 10. Let A and B be objects of KC , and let F be a covariant and G be a
contravariant cohomological functor on K0 with values in some abelian category. Then
there are canonical spectral sequences

Ep,q
2 = lim

Y→X∈Sub(C)

p Homq
K0

(BY , AX)⇒ Homp+q
KC

(B,A)(32)

Ep,q
2 = lim

C

p F q(AX)⇒ F p+q(Holim←−−−CA)(33)

Ep,q
2 = colim

C
op
−p
Gq(AX)⇒ Gp+q(Holim←−−−CA)(34)

Ep,q
2 = colim

C −p
F q(AX)⇒ F p+q(Holim−−−→CA)(35)

Ep,q
2 = lim

C
op

pGq(AX)⇒ Gp+q(Holim−−−→CA).(36)
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Proof. Let us first prove (32). Applying Hom∗KC
(B,−) to the resolution, one gets a spectral

sequence

Ep,q
1 = Homp+q

KC
(B,PRpA)⇒ Homp+q

KC
(B,A).(37)

We have to identify its E2-term. For objects C, D of KC, let M∗(C,D) be the Sub(C)-
diagram of abelian groups given by

M∗(C,D)Y→Z = Hom∗K0(CY , DZ).

By (31), the morphism AZ −→ (PA)Z derived from the downward arrow in (27) is a
(split) monomorphism. Therefore, the morphism (RA)Z −→ AZ is the zero morphism.
It follows that the homomorphism M ∗(B,Rk+1A) → M∗(B,RkA) is zero, therefore the
complex M∗+k(B,PRkA) is a resolution of M ∗(B,A). Consequently, the E2-term of (37)
is canonically isomorphic to the initial term of (32) if we can prove

lim
Sub(C)

pM∗(B,PC) =





⊕
X∈C Hom∗K0

(BX , CX) = Hom∗KC
(B,PC) if p = 0

0 if p > 0.
(38)

Note that the identity on the right hand side in the case p = 0 is a trivial consequence of
the definition of Ho RKan as an adjoint functor. The identification of the E2-term follows
from (38) by inserting C = RkA and applying the abstract de Rham theorem.

To verify (38), we note that by (31), we have

M∗(B,PC) ∼=
⊕

X∈Ob(C)

SX ,(39)

where

SX(Y → Z) =
⊕

ψ∈HomC(Z,X)

Hom∗K0
(BY , CX).

Let jX : (C→X)op → Sub(C) be the obvious embedding. For every object υ = (Y
φ
−−→ Z)

of Sub(C), the connected components of jX ⇐ υ correspond to the morphisms Z
ψ
−−→ X

in C, and each connected component has an initial object Y
ψφ
−−−→ X. Let TX be the

(C → X)op-diagram of abelian groups given by TX(Y → X) = Hom∗K0
(BY , CX). We

conclude by (1.1.2) that RKanljX TX vanishes for l > 0 while for l = 0 it is canonically
isomorphic to SX . Using this and the spectral sequence

Ek,l
2 = lim

Sub(C)

k RKanl
jX

TX ⇒ lim
(C→X)op

k+lTX ,

we get

lim
Sub(C)

kSX ∼= lim
(C→X)op

kTX ∼=




TX(X

Id−−→ X) = Hom∗K0
(BX , CX) if k = 0

0 if k > 0,
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where the last identity holds since X
Id−−→ X is an initial object of (C→X)op. Combining

this with (39), we get (38), completing the proof of (32).
To prove (35), we apply the cohomological functor F to the resolution (29) and identify

the E2-term of the resulting spectral sequence

Ep,q
1 = F p+q(Holim−−−→CP̃ R̃

−pA)⇒ F p+q(Holim−−−→CA).

with the left hand side of (35). As in the proof of (32), one sees that the C-diagrams
F ((P̃ R̃−qA)Y )Y ∈Ob(C) form a resolution of F (AY )Y ∈Ob(C). But

F ((P̃ R̃−qA)Y )Y ∈Ob(C) =
⊕

X∈Ob(C)

LKan
iX

F (R̃−qAX),

with vanishing higher LKani . Therefore,

colim
C

(
F ∗((P̃ R̃−qA)X)X∈Ob(C)

)
= F ∗(Holim−−−→CP̃ R̃

−qA),

without higher derived limits, proving the necessary formula for the E2-term.
The spectral sequence (33) is constructed in the same way, using (28). The spectral

sequences (36) and (34) are dual to the previous two cases.

Remark 3. Throughout the preceding subsections, we have used the notion of a category
in the usual sense, i.e., categories are assumed to have (small) Hom-sets but may have a
proper class of objects. However, for the discussion of quotient categories in 1.5.2, it will be
convenient to consider categories with proper Hom-classes. Let us call such mathematical
structures paracategories. It is easy to see that this notion can be formulated in terms of the
von Neumann-Bernays-Gödel axioms of set theory, and that all our preceding results still
hold for paracategories. The spectral sequence (32) is a spectral sequence of paragroups
(i. e., classes with an underlying group structure). There is no notion of a paracategory
of paragroups, since a proper class cannot be element of a class of objects. However, it is
still possible to define the notion of a diagram of paragroups (shaped by a small category),
and of the limit of such a diagram. In particular, (37) holds. The same remark applies
to the proof of the other spectral sequences in Proposition 10. If the E2-term of a finitely
convergent spectral sequence of paragroups is in fact a group, then its limit is also a group.
Therefore, the spectral sequence (32) proves that if K0 in a system of triangulated diagram
paracategories is in fact a category, then all KC are categories in the usual sense.

When one wants to construct the category of fractions of a big category by a multiplica-
tive class of morphisms as a paracategory, one has to form a quotient of a (possibly proper)
class by an equivalence relation. We will assume in addition to the von Neumann-Bernays-
Gödel axioms that such quotients exist. In other words, we assume that for a class X and

an equivalence relation R on X there exists a class Y and a surjective map X
f
−→ Y such

that for x, y ∈ X we have f(x) = f(y) if and only if (x, y) ∈ R. This is the case if the class
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of all sets is well-ordered, a strengthened version of the axiom of choice whose consistency
is proved in [Gö40].

1.5. Systems of Functors. Let K be one of the 2-categories PU , P̃U , CU , or C̃U , where
U is an infinite class.

1.5.1. Systems of triangulated functors.

Definition 6. Let KC and LC be systems of triangulated diagram categories. A compat-
ible system of functors consists of a collection FC : KC → LC for every C ∈ K and of
natural isomorphisms

f ∗FD
∼= FCf

∗(1)

for every functor f : C →D. These natural transformations must be compatible with the
ones in (1.2.1) in the sense that one has a morphism between 2-functors from K to the
2-category of categories.

In order to avoid awkward notations, we will often just write F instead of FC .
The composition of two systems of functors is defined in the obvious way. A compatible

system of natural transformations between two compatible systems of functors consists of
a natural transformation FC → GC for every C, which have to be compatible with (1) in
the sense that they constitute a bimorphism between morphisms between bifunctors.

If such a system of functors is given, then we have natural transformations

Ho LKan
f

FC → FD Ho LKan
f

(2)

FD Ho RKan
f

→ Ho RKan
f

FC(3)

defined by (1) and the universality property of the homotopy Kan extensions. It is natural
to ask when these natural transformations are isomorphisms.

Theorem 2. • The following assertions are equivalent:
a. For every f , (2) is an isomorphism.
b. The same condition, but applied only to f : C → D, i. e., to those functors

which do not map anything nontrivial to ?.
c. For every f , (3) is an isomorphism.
d. The same condition, but applied only to f : C →D.
e. For every C, FC× respects bicartesian squares.
f. For every C, FC can be made into a triangulated functor such that the iso-

morphisms (1) are triangulated, where f ∗ is given the structure of a triangu-
lated functor defined by the fact Proposition 1.4.5 that it preserves bicartesian
squares.
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• If these equivalent conditions are satisfied, then the collection of triangulated struc-
tures on the functors FC satisfying f is unique. More generally, if F and G satisfy

these conditions and if FC

φC−→ GC is a compatible system of natural transforma-
tions, then for every C φC is a triangulated functormorphism.
• These conditions are always satisfied in the case where FC has a right adjoint for

every C which is also a compatible system of functor, or in the case where it has left
adjoints forming such a system. For instance, if g : E

? → D
? is a functor, these

conditions are all satisfied for the functors

(g × IdC)∗ : KD×C→KE×C

Ho LKan
g×IdC

: KE×C→KD×C

Ho RKan
g×IdC

: KE×C→KD×C.

Proof. In the first assertion, the implications

b or d⇒ c or a⇒ e⇒ f

are trivial. It is now sufficient to derive c and a from f. By (1.4.30), (3) is an isomorphism
in the case of Ho RKaniX . Let f : C

? → D
? be a functor. Applying our previous remark to

Ho RKaniX and Ho RKanif(X)
(which is to be interpreted as the zero functor if f(X) = ?),

we see that for any object A of KC, the morphism (3) applied to PA is an isomorphism,
where PA is the same as in (1.4.27). The functor Ho RKanf is a triangulated functor since it
commutes with other right homotopy Kan extension functors, in particular with homotopy
fibres. From (1.4.28) we conclude therefore that (3) is an isomorphism for arbitrary A
since it is an isomorphism for PRkA. The case of Ho LKan is similar, using the resolution
(1.4.29).

The second assertion follows by applying [Kel91, Lemma 7.1.a)] to the epivalent tower

(
(
KC×1n

)
n∈Z

.

For the third point, let us first verify that for each of the functors considered at the
end of the theorem, at least one of the six equivalent conditions is satisfied. If F has
right adjoints forming a compatible system of functors, it clearly commutes with Ho LKan.
If left adjoints with the same property exist, it commutes with Ho RKan. The functor g∗

respects bicartesian squares by the remarks leading to Proposition 1.4.4. For Ho LKang×Idc

and Ho RKang×Idc
, we have already verified that they are triangulated, by an argument

which depends on the fact that they have an adjoint functor g∗ which forms a compatible
system of functors.

Definition 7. A compatible system of triangulated functors K → L is a compatible system
of functors satisfying the equivalent conditions of the above theorem. If the class of objects
of the bicategory K is a set and if for every C, KC is a small category, then let Fun4(K,L)
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be the category which has systems of triangulated functors from K to L as objects and
compatible systems of natural transformations as morphisms.

Proposition 1. Let FC : KC → LC be a system of triangulated functors.

• If F0 is an equivalence of categories, then so is FC for every C ∈ K.
• Let φC : FC → GC be a compatible system of natural transformations from F to a

second compatible system of triangulated functors. If φ0 is an isomorphism, then so
is φC for every C ∈ K.

Proof. The second assertion immediately follows from (1.4.32). For the same reason, in
the first assertion the functor FC is full and faithful. Its essential image is therefore a full
triangulated subcategory, which contains all objects of the form PA in (1.4.28) since F0 is
essentially surjective. It follows that FC is essentially surjective.

1.5.2. Thick Subcategories. Recall that a thick subcategory of a triangulated category is
a full subcategory closed under forming extensions (i.e, the third edge of a distinguished
triangle) and direct summands. This is not literally Verdier’s definition, but is equivalent
to it by a theorem of Rickard [Ric89, Proposition 1.3.] (cf. also [Nee90, Criterion 1.3.]).
One wants to have a notion of a factor category by a full subcategory. This factor category
should be defined by inverting all morphisms whose cone is in the thick subcategory. This
is possible, but the result of this procedure will in some cases be a paracategory (in the
sense of Remark 1.4.3). It is necessary to assume that the quotient of a class by an
equivalence relation always exists, cf. the remarks made at the end of Remark 1.4.3. We
will say that the quotient category of a triangulated category by a thick subcategory exists
if the quotient paracategory is in fact a category. There are examples of quotients of
triangulated categories by thick subcategories which do not exist in the usual sense, but
only as paracategories. For instance, [Fre66, Exercise 6A on p. 131] is an example of an
abelian category whose derived category exists only as a paracategory.

Theorem 3. Let K be a system of triangulated diagram categories and let E0 be a full
triangulated subcategory of K0.

• Let EC be the full subcategory containing all objects A of KC with AX ∈ E0 for every
X. Then EC is a system of triangulated diagram categories, and the functors

EC → KC

form a system of triangulated functors.
• Let in addition E0 be a thick subcategory. Then EC is a thick subcategory of KC

for every C. If K0/E0 exists, then the quotient categories KC/EC exist and form a
system of triangulated diagram categories, and the functors

KC → (K/E)C

form a system of triangulated functors.
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Proof. To prove that E is a system of triangulated diagram categories, it is sufficient to
verify that it is closed under taking homotopy Kan extensions. This is clear for Kan
extensions along the embedding iX , by (1.4.30) and its dual. By an application of (1.4.29)
and (1.4.28), one derives the general case from this special case.

It remains to verify the second point. That EC is a thick subcategory if E0 is a thick
subcategory is clear. In general, we know that KC/EC exists as a paracategory. Our
arguments will focus on showing that this system of quotient categories is a system of
triangulated diagram paracategories. Once this is established, it follows from Remark 1.4.3
that KC/EC exists as a usual category if K0/E0 does.

Since the pull backs and homotopy Kan extensions preserve E , they pass to the factor-
categories. Using the description of the factorcategories by means of a calculus of fraction,
one sees that the necessary adjointness relations remain valid.

For the factor category, the functoriality, isomorphism, disjoint union, and homotopy
Kan extension axioms are now trivial. Since we know that passage to the factorcategory
commutes with Kan extension, a square in (K/E) is cartesian (resp. cocartesian) if and
only if it is the image of a cartesian (resp. cocartesian) square in K , and these two
conditions are equivalent. The essential surjectivity of the functor

(K/E)C×1 → Ar
(
(K/E)C

)

follows easily from the description of the localisation by a calculus of fractions. To prove
its fullness, let S be the set of all morphisms in KC whose cone belongs to EC and let S̃ be
the set of all morphisms in Ar(KC) whose two components belong to S, then the standard
proofs of axiom TR3 for the quotient category (for instance, the proof in [GM88, §4.2.6])
prove the fullness of the functor

S̃−1 Ar(KC)→ Ar(S−1KC).

Therefore, the mapping cylinder axiom for K/E follows from the mapping cylinder axiom
for K.

The verification of the axioms for a system of triangulated diagram paracategories is
now complete. The inclusion and quotient functors mentioned at the end of the theorem
are triangulated because we have already convinced ourselves that they commute with
homotopy Kan Extensions.

Corollary 1. For any abelian category A and any self-equivalence T of A, the homotopy
categories (1.3.9) form a system of triangulated diagram paracategories. If they exist as
usual categories, then this system is a system of triangulated diagram categories. This is
the case if and only if D(T,N)(A) exists as a usual category.

Indeed, one can represent (1.3.9) as the quotient of (1.3.10) by the thick subcategory of
acyclic complexes.
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1.5.3. Partial equivalences. In the cases relevant to homotopy theory, we will only get a
partial uniqueness result for systems of triangulated diagram categories with an Adams
spectral sequence, giving a description for KC only when dim C is not too big.

Definition 8. A compatible system of equivalences FC : KC → LC in dimension dim C <
L is a collection of equivalences of categories FC for dim C < L, together with natural
transformations (1) satisfying the same compatibility assumption as in (1). A compat-
ible system of functor-isomorphisms between two compatible system of equivalences in
dimension < L is defined by restricting Definition 6 in the same way.

If F is a compatible system of equivalences in dimension < L, then FC can be given
a canonical structure of a triangulated functor if dim C < L − 1. This follows from the
description of the suspension functor and the distinguished triangles in terms of the functor
cone in Remark 1.4.2.

1.6. Strong Linearity.

1.6.1. The distinguished role of stable homotopy. The distinguished role of stable homotopy
is expressed the following theorem:

Theorem 4. Let Sfin be the system of homotopy categories of K-diagrams of spectra with
finitely many cells. By replacing it by an equivalent system of mall subcategories, we may
assume that the categories Sfin

C
are small. If the class of objects of K is a set, then the

evaluation of functors at the sphere spectrum defines an equivalence of categories

Fun4(Sfin,K) ∼= K0.(1)

In the case where the class of objects of K is a proper class, or if one does not make the
assumption that the categories Sfin

C
are small (such that the category Fun4(Sfin,K) cannot

be defined), it is still true that a compatible system of triangulated functors F from Sfin
C

to
K is determined uniquely up to unique compatible system of functor-isomorphisms by its
value at the sphere spectrum, that every object of K0 occurs in this way as F0S

0, and that
a compatible system of functor-morphisms is uniquely determined by its value at S0.

We will defer the somewhat technical proof of the theorem to the end of this subsection.
That such a theorem holds should not be too surprising, since the stable homotopy category
can be expressed through the combinatorics of the posets C.

Corollary 1. There is a unique way to define smash products

Sfin
C
× KD → KC×D

which are systems of triangulated functors in both arguments, and such that the smash
product by the sphere spectrum is the identity functor. For these smash products, there is
a unique way to define an associativity law

P ∧
(
Q ∧ A

)
∼=
(
P ∧Q

)
∧ A, A ∈ KE, P ∈ S

fin
C
, Q ∈ Sfin

D
,(2)
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which, for given P , Q, is a compatible system of natural transformations in A. This
associativity law is automatically natural in P and Q as well and makes the pentagon
axiom [DM82, 1.0.1.] commutative. Moreover, if C is any poset and if πC : C → 0 is the
unique functor, then

Holim−−−→Cπ
∗
C
A ∼=

(
Q(|N.C|+)

)
∧ A,(3)

where
∣∣∣N.C

∣∣∣
+

is the classifying space of C with a point added and Q is the suspension

spectrum, and

Holim←−−−Cπ
∗
C
A ∼=

(
DQ(|N.C|+)

)
∧ A,(4)

where D is the Spanier-Whitehead duality. More over, if X is a finite spectrum, then the
functor DX∧? is both left and right adjoint to the functor X∧?, i. e.,

HomK0

(
A,X ∧B

)
= HomK0(DX ∧ A,B)(5)

Indeed, that a smash product which is a system of triangulated functors in the first
argument exists and is unique is an immediate consequence of the theorem, applied to
the system KD×?. Its functorial properties in the second variable also follow readily from
the theorem. The existence, uniqueness, and naturality of the associativity law follows
by applying, for A ∈ KE and Q ∈ Sfin

D , the theorem to the two compatible systems of
triangulated functors from Sfin

C
to KC×D×E given by P ∧ (Q∧A) and (P ∧Q)∧A, both of

which send the sphere spectrum to Q ∧ A. The pentagon axiom is also derived that way.
The relation between inductive homotopy limits and smash products will be proved in the
course of the proof of the theorem.

1.6.2. Strong linearity.

Definition 9. A strongly linear structure for K consists of the following data: A system
of functors

L
⊗ : Db,fin(ZC)×KD → KC×D(6)

together with compatible isomorphisms

αP : P ∧ A ∼= C(E)
L
⊗ A(7)

for P ∈ Sfin
C

and A ∈ KD, where the functor C

Sfin
C

C
−→ Db,fin(ZC)(8)

is obtained from the composition of the homology chain complex functor

finite spectra −→ {C-diagrams of chain complexes of finitely generated abelian groups}
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and the identification

chain complexes
I
−→ cochain complexes

(Ak, d) −→ (I(A)k = A−k, d),

and a system of natural transformations

βK,L : K
L
⊗
(
L

L
⊗ A

)
∼=
(
K

L
⊗ L

) L
⊗ A(9)

which is compatible with the associativity law (2) and satisfies the pentagon axiom [DM82,

1.0.1.]. An isomorphism between two strongly linear structures
L
⊗ and

L

� is a collection of
natural transformations:

K
L
⊗ A ∼= K

L

� A(10)

which are compatible with the isomorphisms (7) and (9) for
L
⊗ and

L

�. If K and L are two
strongly linear systems of triangulated diagram categories, then a strongly linear system
of functors F betwixt them is a compatible system of triangulated functors, together with

a system of natural transformations F (K
L
⊗ A) → K

L
⊗ F (A) which are compatible with

the transformations (7) and (9).

Remark 1. Since every finitely generated chain complex is quasi-isomorphic to the homol-
ogy chain complex of a finite spectrum, it follows that the natural transformations (9) and
(10) are isomorphisms in the case where K and L is just a chain complex of abelian groups.
By Proposition 1.5.1, they are isomorphisms in general.

For the same reasons, in the case of cochain complexes of abelian groups the natural
transformations (9) and (10) are uniquely determined if they exist. This need no longer
be the case for the derived tensor product by a diagram of abelian groups. The reason is
that for arbitrary C, there may be objects of D(ZC) which can not be obtained from any
C-diagram of spectra. Since the endomorphism group of the (mod 2)-Moore spectrum is
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known to be Z/4Z, the diagram of abelian groups

Z 0

Z 0

Z Z/2Z

Z Z/2Z

-

@
@

@
@@R

2

?

2

?

�
�

�
��	

-

?

2

?
-mod2

�
�

�
���

2

-mod2
@

@
@

@I

A
A

A
A

A
A

A
A

A
AK

regarded as an object of the derived category of diagrams of abelian groups, is a example
of this behaviour. Therefore, it seems to be necessary to include (9) into the definition of
a strongly linear structure rather than just requiring its existence. Also, the isomorphism

class of K
L
⊗ A may possibly depend on the strongly linear structure if K is a diagram

of cochain complexes. Similarly, I cannot exclude the possibility that a strongly linear
structure has automorphisms. There is no straightforward way to derive the pentagon
diagram for tensor products by diagrams of cochain complexes from its counterpart for the
smash product by diagrams of spectra.

Proposition 1. If HomK0(A,B) is a Q-vector space for all A and B, then there exists
a strongly linear structure on K, and it is unique up to unique isomomorphism. If L is
another Q-rational system of triangulated diagram categories, then any compatible system
of triangulated functors from K to L can be made into a strongly linear system in a unique
way.

Proof. The proposition follows immediately if we prove the the homology chain complex
functor from Sfin

C
⊗Q to Db(QC) is an equivalence of categories. But for C = 0 this is a well

known and straightforward consequence of Serre’s calculation of the rational homotopy of
spheres, and for arbitrary C it follows by Proposition 1.5.1.

Remark 2. In general there are, of course, several obstructions against the existence of
strongly linear structures. For instance, by Corollary 1 HomKC

(X, Y ) is a module over the
stable homotopy of spheres π∗(S

0), and the existence of a strongly linear structure implies
that the elements of positive degree act trivially.
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1.6.3. Finite posets and finite simplicial sets. For the proof of Theorem 4, We need the
fact that the homotopy theory of posets (i. e., the category of posets with the homotopy
equivalences inverted) is equivalent to the homotopy of finite simplicial sets.

Let D be any finite finite-dimensionalcategory, and let PD be the category of functors
from D to the category of posets. A morphism F → G in PD is a homotopy equivalence
if FX → GX is a homotopy equivalence for every X. Let η be the class of homotopy
equivalences. The nerve functor to the diagram category of finite simplicial sets

N : PD → sim setsD

fin

preserves homotopy equivalences, hence

N : h−1PD → Ho(sim setsD

fin).(11)

Proposition 2. The functor (11) is an equivalence of categories.

The proof uses work of Fritsch and Latch about inverses for the nerve functor. An
alternative way would be to follow the indications at the beginning of [Qui73, §1].

Let Sd be Kan’s subdivision functor for simplicial sets [Kan57]. It is easy to see that it
preserves finite simplicial sets. Recall the natural weak equivalence [Kan57, Lemma 7.5]

SdX −→ X.(12)

There is work of Fritsch and Latch [FL79, Theorems 3.1. and 3.4] showing that for a finite
simplicial set X one has a finite poset cSd2X and a canonical weak equivalence

Sd2X −→ NcSd2,

which, together with (12), proves Proposition 2.

1.6.4. Products by finite simplicial sets. For each C ∈ PD, viewed as a cofibred category

C
p
−→ C, denote by q the projection from C to 0, and put

C _ A = Ho LKan
p

q∗A ∈ ObKD(13)

for A ∈ ObK0. It is clear that this is a functor from PD × K0 to KD. It is an easy
consequence of Proposition 1.4.3.b. that for any functor f : E? →D?, (13) satisfies

f ∗(C _ A) ∼= (f ∗C) _ A.(14)

By Proposition 1.4.3.b. and (1.4.35), we have a homological spectral sequence

Hp(CX , Fq(A))⇒ Fp+q
(
(C _ A)X)
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for every covariant homological functor F on K0. This spectral sequence proves that (13)
takes homotopy equivalences between diagrams of posets to isomorphisms. By Proposi-
tion 2, it can be obtained by the composition of the realisation functor with a product
functor

_ : Ho(sim setsD

fin)×K0 → KD.(15)

For these functors, the analog of (14) holds. We want to prove that for any D
f
−−→ E and

every X ∈ sim setsD

fin, the canonical homomorphism

Ho LKan
f

(T _ A)→ (Ho LKan
f

T ) _ A(16)

derived from the analog of (14) is an isomorphism. It suffices to prove this if T is the
realisation of a diagram cofibrant diagram of ordered simplicial complexes M . Let N be
the left Kan extension of M along f , since M is diagram cofibrant the realisation of N is
the homotopy Kan extension of X. Let NM (resp. NN) be the categories of simplices of
M (resp. N), viewed as cofibred categories over D (resp. E) such that the fibre at X is the
poset of simplices of MX (resp. NX). Let g : NM → NN , p : NM → D, q : NN → E,
r : D → 0, s : E → 0 be the canonical functors. We have T _ A = Ho LKanp(rp)

∗A,
hence

Ho LKan
f

(X _ A) ∼= Ho LKan
q

Ho LKan
g

(rp)∗A.

Since (Ho LKanf T ) _ A = Ho LKanq(sq)
∗A, it suffices to prove that Ho LKang(rp)

∗A ∼=
(sq)∗A. In view of the following lemma, this follows from (1.4.35) and Proposition 1.4.2.

Lemma 1. In the situation described above, for every σ ∈ ObNN the category g⇒ σ is
contractible.

Proof. Let Y = q(σ), replacing D by f ⇒ Y and E by {Y }, we may assume, without
altering our assumption that M is diagram cofibrant, that E consists of a single point.
Now σ is a simplex in the inductive limit of M , and g⇒ σ is the category of pairs (X, τ),
where τ is a simplex of MX which maps to a boundary simplex of σ in the inductive limit
N . Associating to this pair the image of τ in N , we get a functor h from g⇒ σ to the
poset σ̂ of boundary simplices of σ. Since σ̂ has a finial object σ and is thus contractible,
it suffices to prove that h is a homotopy equivalence. But h makes g ⇒ σ into a fibred
category over σ̂, and the fibre at ϑ ∈ σ̂ is the category Kϑ(M) of pairs (X, τ), where the
simplex τ of MX maps to ϑ in the inductive limit. If we can prove that Kϑ has an initial
object, then it is contractible and it follows from [Qui73, Theorem A] that h is a homotopy
equivalence, proving the lemma.

The existence of an initial object of Kτ (M) will be proved by induction on the dimension
d of D, starting from the trivial case where d = 0, and the number of d-dimensional
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simplices in D, starting from the void case where this number is zero. Let X be a maximal
object of D and D̃ = D −X. Since M is diagram cofibrant, we have

colim
D̃

M ⊆ colim
D

M,(17)

and it makes sense to speak of Kϑ(M |D̃ ). If no object of the form (X, τ) of Kτ (M) exists,
then Kϑ(M) = Kϑ(M |D̃ ), and the induction assumption applies. If it exists, then τ is
unique. If it does not belong to the subcomplex colim

D̃→XM ⊆MX , then Kϑ(M) has the
unique object (x, τ). Otherwise, Kϑ(M |D̃ ) has an initial object (Y, ϕ), and Kτ (M |D̃→X )

has an initial object (Z, χ, Z
λ−−→ X). We have (Z, χ) ∈ Kϑ by (17), hence there exists a

unique morphism Y
µ
−−→ Z in D mapping ϕ to χ. But then (Y, ϕ, λµ) is also an object

of Kτ (M |D̃→X ), and since Z is initial we get Y = Z. This implies that (Y, ϕ) is also an
initial object of Kϑ(M).

The proof of our assertion that (16) is an isomorphism is complete.

1.6.5. Smash products by finite spectra. Let sim sets∗,fin be the category of finite pointed
simplicial sets. Every object X of this category gives rise to an object

i(X) : base point→ X,

whence a functor i : sim setsD

∗,fin → sim sets
D×0
fin . It is easy to see that i passes to the

homotopy category, where it has a left adjoint

C : Ho sim sets
D×1
fin → Ho sim setsD

∗,fin

C(T )X = cone(TX×0 → TX×1).

These functors identify Ho sim setsD

∗,fin with the full subcategory of Ho sim sets
D×1
fin consisting

of all D× 1-diagrams T with TX×0 contractible. Since there is a slight danger of confusing
the homotopy Kan extensions in the categories of pointed and unpointed simplicial sets,
we denote for the time being by Ho LKan* the homotopy Kan extension in the category of
pointed spaces. From our considerations about i and Q, we conclude that it is related to
its unpointed counterpart Ho LKan by

Ho LKan*
f

= C
(
Ho LKan

f×1
i
)
.(18)

For every T ∈ Ho sim setsD

∗,fin and every A ∈ ObK0, i(T ) _ A is an object in KD×1, to
which we can apply the cone functor cone : KD×1 → KD. This defines the smash product

T ∧ A = cone
(
i(T ) _ A

)
,

a functor from Ho sim setsD

∗,fin to KD with a compatible system of isomorphisms

(f ∗T ) ∧ A ∼= f ∗(T ∧ A)(19)
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for f : D? → C?. We want to prove that the analog of (16) is an isomorphism

(Ho LKan*
f

T ) ∧ A ∼= Ho LKan
f

(T ∧ A).(20)

To prove this, we will need the fact

cone(T _ A) = cone(iC(T ) _ A)(21)

for T ∈ Ho sim sets
D×1
fin . Indeed, let T̃ be the D × -diagram defined by T̃X×0×i = TX×i

for i ∈ {0; 1} and T̃X×1×0 = {point}, and let p be the projection from D × to D. Then
C(T ) = Ho LKanp T̃ , hence

(
iC(T ) _ A

)
X×1

= Ho LKan
p

(T̃ _ A) = cone(T _ A)

by (16) and the definition of cone. Since (iC(T ) _ A)X×0 = 0, this implies (21).
We are now ready to prove (20). We have

Ho LKan
f

(T ∧ A) = Ho LKan
f

cone
(
i(X) _ A

)

= cone Ho LKan
f

(
i(X) _ A

)

= cone

((
Ho LKan

f×1
i(T )

)
_ A

)

= cone

((
iC Ho LKan

f×1
i(T )

)
_ A

)

= cone
(
(iHo LKan*

f
T ) _ A

)

= (Ho LKan*
f

T ) ∧ A,

where we have used the definition of the smash product in the first and the last line, the
transitivity of left homotopy Kan extensions on the second, (16) on the third, (21) on the
fourth, and (18) on the fifth line. The proof of (20) is complete.

From now till the end of the paper, we will give up the distinction between Ho LKan
and Ho LKan*, since unpointed simplicial sets are no longer needed, so that the danger of
a confusion is over. All homotopy Kan extensions will again be denoted by Ho LKan.

By (20) and the definition of the suspension functor in K, we have (ΣT )∧A = Σ(T ∧A).
Since Σ is an equivalence of categories on K, there is a unique way to define smash products
by finite spectra which are related to the smash products by pointed finite simplicial sets
by QT ∧A = T ∧ A, QT being the suspension spectrum. Since homotopy Kan extensions
and pull-backs of diagrams commute with passing to the suspension spectrum, we also
have (19) for f : D? → E? and (20) for f : D → E . By Theorem 2, it follows that the
smash product P ∧A is a compatible system of triangulated functors in its first argument.
In particular, (20) holds in full generality and there is a similar compatibility with right
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homotopy Kan extensions. It is easy to see that S0 ∧ A ∼= A. Moreover, since our smash
products have been defined by homotopy limits, we have a canonical isomorphism

P ∧ F (A) = F (P ∧ A)(22)

for every compatible system of triangulated functors F : K → L and every diagram of finite
spectra P and every A ∈ ObK0.

1.6.6. Proof of Theorem 4. Let the functor (1) be denoted by E. We construct an inverse
I to E by putting (IA)(P ) = P ∧ A for A ∈ ObK0. By our previous assertion about
the smash product, IA is a compatible system of triangulated functors from the stable
homotopy category which satisfies (IA)(S0) ∼= A. In particular, EI ∼= Id. To prove
IE ∼= Id, note that (22) defines a canonical isomorphism

F (P ) ∼= F (P ∧ S0) ∼= P ∧ F (S0) =
(
IE(F )

)
(P )

for every spectrum P 1. The proof of Theorem 4 is complete. It remains to prove its
corollaries.

As we mentioned after formulating Corollary 1, most of its assertions are consequences
of the theorem. It is clear that the smash products defined in the last paragraph satisfy
the conditions by which the smash product was characterised in the corollary. This proves
the formula (3).

For the proof of (4), we first note that by Theorem 4 there is a unique (up to unique
natural transformations) compatible system contravariant triangulated functors D from
the system Sfin to itself such that DS0 = S0. We will first prove (4) for this D, and then
identify it with the usual Spanier-Whitehead duality. Before we prove that we note that
since D2 is a compatible system of triangulated functors from Sfin to itself preserving S0,
there is a unique compatible system of natural isomorphisms D2 ∼= Id which gives the
identity when applied to S0.

Let [X,A] be the smash product of A ∈ ObK0 = ObKop
0 by the diagram of spectra X in

the opposite system of triangulated diagram categories Kop. This is a compatible system
of contravariant triangulated functors from the homotopy categories of diagrams of finite
spectra to K, and since passing to the opposite system of categories interchanges the two
types of homotopy limits we know by (3) that (4) holds if its left hand side is replaced
by [Q(|N.C|+), A]. On the other side, by Theorem 4 we have a canonical isomorphism
[X,A] ∼= (DX) ∧ A, proving (4).

The adjointness relation (5) immediately follows from (3) and (4). Since the usual
Spanier-Whitehead duality satisfies this relation in the case K = Sfin [Ada74, III.5] and is

characterised by it uniquely, we conclude that it is canonically isomorphic to D : Sfinop
0 →

Sfin
0 .

1Here the smash product between two finite spectra has to be defined by the method of the last
paragraph. That it coincides with the usual smash product is a consequence of the uniqueness part of
Theorem 4.
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1.7. Comparison with other definitions of enhanced triangulated categories.

We will consider other enhancements of the definition of triangulated diagram categories,
in the order from little additional structure to much.

1.7.1. Ordinary triangulated categories. We have seen that there is a canonical way to put
a triangulated structure on K0.Since the topological application of our main uniqueness
theorem about categories with an Adams spectral sequence gives examples of systems of
triangulated diagram categories which are equivalent in low, but not in arbitrary dimension
(cf. Remark 3.1.1), it is clear that the tower K? can not usually be reconstructed from the
triangulated category K0.

1.7.2. Neeman’s categories of triangles. In [Nee91], Neeman enhanced the original defini-
tion by considering categories of triangles for a triangulated category. It is easy to see that
a Neeman structure on K0 can be defined in terms of the pair (K0,K1) and the functors
between them. For, by Remark 1.4.2, there is a functor from K1 to what Neeman calls
candidate triangles in K0. Let T be the category obtained from K0 by identifying two mor-
phisms which give the same morphism of candidate triangles. Then it is easy to see that
T is a Neeman structure for K0. Since the topological application of our main uniqueness
theorem about categories with an Adams spectral sequence gives examples of systems of
triangulated diagram categories which are equivalent in low, but not in arbitrary dimension
(cf. Remark 3.1.1), it is clear that the tower K? can not usually be reconstructed from the
pair (K0, T ).

1.7.3. Beilinson’s f -categories. Let K be a P-system of triangulated diagram categories,
and let

FK = colim
n
K[−n,n],(1)

where [−n, n] is the interval of integers between −n and n and the transition functors are
full immersions defined in the following way: Let for m > n pm,n : [−m,−m] → [−n, n]?

be defined by

pm,n(i) =





? if i < −n

i if −n ≤ i ≤ n

n if i > n,

and let the transition in (1) be made by p∗m,n. Let F (≤ 0)K be the similar inductive
limit over K[−n,0], and let F (≥ 0)K be the limit over K[0,n]. There is an obvious way
of defining a functor of a shift of the filtration by 1. Together, these data constitute a
filtered triangulated category in the sense of [Bei87, Definition A.1.]. Thus, every system
of triangulated diagram categories gives rise to a f -category in the sense of Beilinson.
However, I think it is unlikely that it can be reconstructed from it.
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1.7.4. Keller’s epivalent towers. Keller [Kel91] considered only the categories K1n , and
only functors between the various powers of 1 obtained by products of s0, d0, and d1. He
assumes that a triangulated structure on each of these categories is given, and imposes
an axiom similar to our mapping cylinder axiom. It is easy to see that these axioms are
satisfied by our categories K1n , hence one gets a Keller tower from a system of triangulated
diagram categories.

The reconstruction of a system of triangulated diagram category from a Keller tower is
much more involved. It has been carried out by Goertz and Wolff [GW95], who construct

a P̃-system from a Keller tower. One intermediate step in this comparison is to drop the
homotopy Kan extension and linearity axioms and to assume instead that we are given
structures of triangulated categories on the KC and of triangulated functors on the f ∗ such
that the two sorts of natural transformations in (1.2.1) are triangulated. They derive the
remaining two axioms, and prove that the triangulated structures must be equivalent to
the ones constructed here.

As the two definitions are equivalent, it is a matter of taste which of them one prefers.
The fact that our definition contains more structures made it the method of choice for
the proof of our abstract uniqueness theorem Theorem 5. Also, the distinguished role of
stable homotopy is relatively straightforward to see for our definition, while it is rather
non-obvious for Keller’s, and in fact it seems to be so far unknown for Keller towers. On
the other side, Keller’s definition is more conservative, it is very similar to what one would
get by an iteration of Beilinson’s f -categories.

1.7.5. Various choices for K. Let L ⊂ K be two of the 2-categories of this paper. Obviously,
the restriction of a K-system of triangulated diagram categories to L is an L-system. We
will say that K-systems and L-systems are equivalent if the following two assertions hold:

• For every L-system K, there is a compatible system of equivalences of categories
from K to the restriction to L of a K-system of triangulated diagram categories.
• If K and L are K-systems, then the assertion which in the case where the necessary

categories of functors are well-defined expresses the fact that

Fun4(K,L) −→ Fun4(K |L ,L |L )

is an equivalence of categories holds, i. e.:
– Every compatible system of triangulated functors from K |L to L |L is the

restriction to K of a compatible system of triangulated functors from K to L.
– If F and G are compatible systems of triangulated functors from K to L, then a

compatible system of functormorphisms from F toG is uniquely determined by
its restriction to L. Moreover, every compatible system of functormorphisms
from F |L to G |L occurs as such a restriction.

It is very easy to see that if K is one of P, C̃, C, C̃, and if V ⊆ U , then KU -systems
and KV -systems are equivalent. The equivalence of C̃-systems and P̃-systems has been
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proved by Willing [Wil95]. It seems likely that these types of systems are also equivalent
to P-systems and to C-systems, but this comparison has not yet been worked out.

1.7.6. Systems for infinite posets and arbitrary small categories. There should be similar
definition of P∞- or C∞-systems, where P∞ is the bicategory of (not necessarily finite)
partially ordered sets and C∞ is the bicategory of small categories. I expect both types of
systems to be equivalent (provided they are properly defined). The necessary modifications
to the statements of our theorems probably all come from the fact that the infinite version of
(1.4.28) gives us information only about functors preserving direct products. In Theorem 4,
Sfin is replaced by the category S of all spectra, but the theorem can be applied only to
those functors S → K which preserve arbitrary direct sums. However, these remarks are
only tentative conjectures.

2. The abstract uniqueness theorem

Let K be one of the 2-categories PU , P̃U , CU , or C̃U , where U is an infinite class.

2.1. Adams spectral sequences for triangulated categories. The main result of our
paper is a abstract uniqueness result for triangulated categories with an Adams spectral
sequence which can be constructed by injective resolutions. This construction of the Adams
spectral sequence has been pioneered by H. B. Brinkmann [Bri68], and plays a decisive role
in the classification of K-local spectra by Bousfield [Bou85], who quoted it from R. M. F.
Moss [Mos68]. We briefly recall this construction and prove some lemmas which will be
needed later.

Definition 10. Let A be an abelian category with sufficiently many injective objects and
with a shift functor [1] which is an equivalence of categories, let D be a triangulated
category, and let F : D → A be a cohomological functor with a natural isomorphism
F (X[1]) ∼= F (X)[1]. Let I be an injective object of A. We say that the (F, I)-Eilenberg-
MacLane object exists, or that the Eilenberg-MacLane object exists for I, if the following
two conditions hold:

• the functor EI from D to abelian groups defined by

EI(X) = HomA
(
F (X), I

)

is representable by an object EI of D.
• The canonical homomorphism F (EI)→ I defined by

Id ∈ HomD(EI , EI) ∼= HomA(F (EI), I)

is an isomorphism.

In this case, we call EI an I-Eilenberg-MacLane object.
We say that F possesses an Adams spectral sequence by injective resolutions if every

object of A can be embedded into an injective object I for which the Eilenberg-MacLane
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object exists. A cohomological functor F is called almost faithful if F (X) ∼= 0 implies
X ∼= 0.

Lemma 1. Let F be an almost faithful cohomological functor possessing an Adams spectral
sequence by injective resolutions, and let E be an object of D for which I = F (E) is an
injective object of A. Then E is an I-Eilenberg-MacLane object. In other words, the
canonical homomorphism

HomD(X,E) −→ HomA
(
F (X), F (E)

)

is an isomorphism for every object X of D.

Proof. By our assumption, we know that we have an embedding I
i
−→ J into an injective

object J for which the Eilenberg-MacLane object EJ exists. Corresponding to i we have
E

ι
−→ EJ . Let

E
ι
−→ EJ

π
−→ Ẽ

δ
−→ E[1]

be a distinguished triangle. There is a canonical isomorphism F (Ẽ) ∼= coker(i). Since I is
injective, its embedding into J splits and there is a section s of the projection J −→ J/I.
Corresponding to s we have a morphism Ẽ

σ
−→ EJ , and the morphism

E ⊕ Ẽ
ι+σ
−−→ EJ

becomes an isomorphism after applying F , hence it is itself an isomorphism since F is
almost faithful. It follows that E is a direct summand of EJ , and this proves our claim.

Let A have finite injective dimension, and let F : D → A be an almost faithful cohomo-
logical functor possessing an Adams spectral sequence by injective resolutions. For every
object Y of D and every injective resolution F (Y ) → I0 → . . . → Ik → 0, we get a
resolution

Y = Y 0 Y 1 Y 2 . . . Y k−1 Y k

EI0 EI1 EI2 . . . EIk−1 EIk

? ?

�

?

� � �

?

�

?

∼=

�
�

�
�

��

+

�
�

�
�

��

+

�
�

�
�

���

+

�
�

�
�

��

+
(1)

in D. That Y k is an Ik-Eilenberg-MacLane object follows from Lemma 1. Applying
HomD(X,−), we get an Adams spectral sequence

Ep,q
2 = ExtpA

(
F (X), F (Y )[q]

)
⇒ Homp+q

D (X, Y )(2)

which can be shown to be independent of the choice of the resolution.
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Remark 1. It is clear that it is absolutely necessary for F (X) ∼= 0 to imply X ∼= 0 if one
wants to have an Adams spectral sequence (2). However, this condition is only sufficient if
A has finite cohomological dimension. If the cohomological dimension is infinite, such that
the diagram (1) becomes infinite, and if one assumes the existence of countable products,
then in order to establish good convergence properties, one has to show that

Holim←−−− Y
k ∼= 0,

where Holim←−−− is the (unique up to possibly non-unique isomorphism) projective homotopy
limit defined by Bökstedt and Neeman [BN93]. To conclude this vanishing in a straight-
forward way, one has to assume that F commutes with countable products. Of course, F
also has to respect all infinite coproducts which exist if one wants the functor EI to be
representable. In stable homotopy theory, Adams spectral sequences of infinite cohomo-
logical dimension usually come from a functor which does not respect infinite products. In
this case, there is no straightforward way to prove the convergence of the Adams spectral
sequence even if the faithfulness condition of the above definition is satisfied. Since there
are other reasons for which our methods are severely restricted to the case of finite co-
homological dimension, this problem, which is related to the difference between Bousfield
localisation and convergence of the Adams spectral sequence discussed in [Bou79, §5,6] and
also in [Rav84], does not have to bother us.

Definition 11. Let K(A) be the Grothendieck Group of A. The shift functor [1] makes
this group into a module over Z[t, t−1], and we put K̃(A, [1]) = K(A)/(t + 1)K(A). The
value group V(F ) of F is the set of all elements of K̃(A, [1]) which can be realized as
the equivalence class of F (X) for some X ∈ Ob(D). It is easy to see that it really is a
subgroup.

Proposition 1. Let D
F
−→ A be an almost faithful cohomological functor possessing an

Adams spectral sequence via injective resolutions. Assume that the cohomological dimension
of A is finite. If I is an injective object of A, then the I-Eilenberg-MacLane object exists if
and only if the image of I in K̃(A, [1]) belongs to V(F ). In particular, if K̃(A, [1]) = {0}
(for instance because A has countable coproducts or products), then for every injective
object I the Eilenberg-MacLane object exists.

Proof. We first claim that for every injective I, EI⊕I[−1] exists. Indeed, there is an injective
object J such that EI⊕J exists. Let e be the endomorphism of EI⊕J corresponding to the
projection of I ⊕ J to its second factor. Then by Lemma 1, a cone of e is an I ⊕ I[−1]-
Eilenberg-MacLane object.

Now we are ready to show that the existence of EI depends only on the image of I
in K̃(A, [1]). Indeed, let EJ exist and let the images of I and J in K̃(A, [1]) be the
same. Then there exist injective objects K and L such that there is an isomorphism

I ⊕ K ⊕ K[−1]
φ
−→ J ⊕ L ⊕ L[−1] in A. We know that EK⊕K[−1] and EL⊕L[−1]⊕J exist.
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By Lemma 1, the cone of the morphism EK⊕K[−1] −→ EL⊕L[−1]⊕J defined by φ is an I-
Eilenberg-MacLane object.

Let Ṽ(F ) ⊂ K̃(A, [1]) be the subset containing the equivalence classes of all injective
objects I for which EI exists. Obviously, this is a subgroup, and we have Ṽ (F ) ⊆ V(F ).
By considering an Adams resolution (1), we see that the last inclusion actually is an
equality.

So far, we only used ordinary triangulated categories. Now let K be a system of trian-
gulated diagram categories.

Proposition 2. If F : K0 → A possesses an Adams spectral sequence via injective resolu-
tions, then same is true for the functor FC : KC → AC defined by

FC(A)X = F (AX), A ∈ Ob(KC).

Moreover, the value group of FC is

V(F )C ⊆ K̃(A, [1])C ∼= K̃(AC, [1]).

Proof. Since every object J of AC can be embedded into
⊕

X∈Ob(C)

RKan
iX

JX ,

it suffices to establish the existence of ERKaniX
I with the desired property for every injective

object I of A. But

HomAC (FC(A),RKan
iX

I) = HomA(F (AX), I)

= HomK0(AX , EI)

= HomKC
(A,Ho RKan

iX
EI),

hence ERKaniX
I exists and is given by Ho RKaniX EI . But

FC

(
Ho RKan

iX
EI
)
∼= RKan

iX
F (EI) ∼= RKan

iX
I

by (1.4.30).
The assertion about value groups is clear.

There is another way in which the existence of an Adams spectral sequence via injective
resolutions can be inherited by a category.

Proposition 3. Let D be a triangulated category and let A be an abelian category with a

shift functor [1], and let D
F
−→ A be a functor possessing an Adams spectral sequence by

injective resolutions. Let B ⊂ A be a Serre class which is stable under [1], and assume that
the quotient functor

A
j∗
−→ A/B
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has a right adjoint j∗ such that the canonical functormorphism j∗j∗ −→ IdA/B is an isomor-
phism. Let DB = {X ∈ D|F (X) ∈ B}. Then the functor

D/DB
j∗F
−−→ A/B

possesses an Adams spectral sequence by injective resolutions.

Proof. This is clear: Let I be an injective object of A/B, and let J = j∗I. Then J is an
injective object of A, and the image of a (F, J)-Eilenberg-MacLane object in D/DB is a
(j∗F, I)-Eilenberg-MacLane object.

2.2. The uniqueness theorem. The standard example of a triangulated category with
an Adams spectral sequence is D([1],1)(A) (cf. (1.3.9)) with the cohomological functor H0.
The uniqueness theorem proves that under certain conditions the other examples are equiv-
alent to the standard example.

Definition 12. Let A be an abelian category with a self-equivalence [1]. A splitting of
period N for (A, [1]) is a Serre class B ⊂ A which is preserved by [N ] and [−N ] and has
the property that

⊕

0≤i<N

B → A(1)

(Bi)0≤i<N →
⊕

0≤i<N

Bi[i]

is an equivalence of categories. Let s(A, [1]) be the supremum of all N for which there
exists a splitting of period N .

Theorem 5. Let K be a system of triangulated diagram categories and let F : K0 → A
be a cohomological functor possessing an Adams spectral sequence via injective resolutions.
Let D be the injective dimension of A and assume that L = s(A, [1])−D ≥ 0. Let

D([1],1)
C

(A)V(F )C ⊆ D([1],1)
C

(A)(2)

be the full subcategory containing all ([1], 1)-quasiperiodic cochain complexes X for which
the image of H0(X) in K̃(A)C belongs to V(F )C. In the case where V(F ) = K̃(A, [1])
(for instance, when A has countable coproducts or products, which implies the vanishing of
the K-group), it is equal to the full derived category.

• There is a canonical way to define a compatible system of equivalences

RF
C

: D([1],1)
C

(A)V(F )C → KC

in dimension dim C < L (cf. Definition 8) together with a natural isomorphism of
cohomological functors ψ : FRF

0
∼= H0.
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• Let 0 < k < L and let GC : D([1],1)
C

(A)→ KC be a compatible system of equivalences
in dimension ≤ λ, together with a natural isomorphism

φ : FG0
∼= H0.(3)

Then there is a canonical way to define compatible natural isomorphisms τC : GC
∼=

RF
C

in dimension < k such that ψF (τ0) = φ. If τ̃C : GC
∼= RF

C
is a compatible

system of natural isomorphisms in dimension ≤ k with ψF (τ̃0) = φ, then τC = τ̃C
in dimension dim C < λ.

In view of Proposition 2.1.2 it will turn out to be sufficient to construct a realisation
functor D([1],1)(A) → K0. The construction of such a functor is a modification of the
construction of the realisation functor in [BBD82, 3.1.9.]. To motivate the following con-
structions, let us briefly recall the construction of the realisation functor in that paper. Let
an abelian category X and a t-structure (cf. [BBD82] or [GM88]) on the bounded derived
category of X , with heart Y be given. If C∗ is a cochain complex of objects of Y, then one
considers the descending filtration

F iC = (. . .→ 0→ C i → Ci+1 → Ci+1 → . . . ).(4)

It is clear that the quotient F i/F i+1 has a single cohomology object C i. The idea in
[BBD82, 3.1.9.] is to impose a similar condition on objects of the filtered derived category
of X , i. e., to consider the full subcategory of the filtered derived category of X consisting
of all objects C with (F i/F i+1)C[i] ∈ Y. It turns out that this category is equivalent to the
category of cochain complexes in Y, and this can be used to construct a realisation functor.
Let us now return to our original situation and consider a splitting B of A of period N . We
want to use a similar idea to construct a realisation functor for ([N ], N)-periodic complexes
in B. Since the complexes are quasi-periodic, it is no longer possible to consider a filtration
as in (4). Instead, we consider the more complicated diagram formed by the morphisms

Gi(C)→ Bi(C), Gi(C)→ Bi−1(C)[1],(5)

where Gi(C) = C i−1/Bi−1 for any ([N ], N)-periodic complex C. If the period N is bigger
than the cohomological dimension of A, then it turns out that one can construct a realisa-
tion functor by (5), imposing certain conditions on objects of KCN

for a certain poset CN .
The reason for considering (5) instead of the more straightforward

Bi(C)→ Z i(C), Bi(C)→ Z i−1(C)[1](6)

is that the bound L in Theorem 5 obtained by (5) is by one better than the bound obtained
by (6). If we had considered Adams spectral sequences obtained from projective resolutions,
(6) would be the better way of constructing a realisation functor.

To realise the program we have outlined, let B be a splitting of period N for (A, [1]).
We may exclude the case N = 1, which is trivial since in this case the assumptions of
Theorem 5 imply D = 0, hence all objects of A are injective. Let CN be the following
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poset: The elements of CN are 2N symbols βi and γi for i ∈ Z/NZ. The relations are
γi ≺ βi and γi ≺ βi−1. We denote by ki : 1 → CN the map given by ki(0) = γi+1 and
ki(1) = βi. We will usually write γi, βi and ki even in a situation where we should actually
write γimodN etc. Let L be the full subcategory of KCN

consisting of all objects A satisfying
the following two conditions:

• The objects of A Gi(A) = F (Xγi
)[i] and Bi = F (Xβi

)[i] are actually
objects of B.

• The morphism Gi(A)
πi−−→ Bi(A) defined by γi ≺ βi is surjective.

(7)

Let us define a functor Q from L to the category of ([N ], N)-periodic chain complexes in
B. Our conditions imply that the objects of A

Ci(A) = F (cone(k∗iA))[i](8)

are part of an exact sequence

0→ Bi(A)
ιi−−→ C i(A)

ρi
−−→ Gi+1(A)→ 0,

which implies that they are actually objects of B. Indeed, from the distinguished triangle
Aβi
−→ Aγi+1

−→ cone(k∗iA) −→ Aβi
[1] we have an exact sequence in A

Gi+1(A)[−1] −→ Bi(A) −→ C i(A) −→ Gi+1(A) −→ Bi(A)[1]

in which the first and the last morphism vanish, since the second and the fourth object
belong to B ⊂ A, while the first object belongs to B[−1] and the last object belongs to
B[1]. We define a differential d : C i(A)→ C i+1(A) by the composition

Ci(A)
ρi
−−→ Gi(A)

πi−−→ Bi+1(A)
ιi+1
−−−→ C i+1(A).(9)

d really is a differential since d2 factorises over the composition ρi+1ιi+1, which is zero. Since
π and ρ are both surjective, the image of d is B∗(A). We obtain the promised functor

Q : L → C([N ],N)(B)

to the category of ([N ], N)-periodic cochain complexes in B.
LetM be the full subcategory of objects A of L satisfying

inj dim
(
Bi(A)

)
< N − 1, inj dim

(
Gi(A)

)
< N − 1.(10)

In the case where N > D + 1, this condition is automatically satisfied.

Proposition 1. • The restriction of the functor Q toM is a full and faithful functor

M→ C([N ],N)(B).(11)
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• Let A0 → A1 → A2 → A0[1] be a distinguished triangle in KCN
, and assume that A2

and A3 are objects of L and that the morphism Q(A2)→ Q(A3) is an epimorphism
of complexes which induces an epimorphism on cohomology. Then A1 is an object
of L, and the sequence

0→ Q(A1)→ Q(A2)→ Q(A3)→ 0

is exact.
• The essential image of (11) is the full subcategory of those ([N ], N)-periodic com-

plexes which belong to the subcategory (2) and satisfy the analogue of (10). In
particular, if N > D + 1, then Q is an equivalence of categories

L =M∼= C([N ],N)(B)V(F )C .

If N = D + 1, this is no longer the case but it is at least true that the essential
image of Q contains all injective complexes.
• We have a canonical isomorphism in A

F (Holim−−−→CN
A) ∼=

N−1∑

i=0

H i
(
Q(A)

)
[−i].(12)

Proof. The first assertion is the most difficult part. Let A and Ã be objects of M. It
suffices to prove the injectivity of the map

M = HomKCn
(A, Ã)

α−−→ N =
⊕

i∈Z/NZ

HomB1

(
(Bi(A)→ C i(A)), (Bi(Ã)→ C i(Ã))

)
.

(13)

and to show that its image consists of the homomorphisms of complexes. The group M
is the limit of the spectral sequence (1.4.32), which in the given case amounts to an exact
sequence

(14)

⊕
i∈Z/NZ

Hom−1
K0

(Aβi
, Ãβi

)⊕

⊕
⊕

i∈Z/NZ

Hom−1
K0

(Aγi
, Ãγi

)
→

⊕
i∈Z/NZ

Hom−1
K0

(Aγi
, Ãβi

)⊕

⊕
⊕

i∈Z/NZ

Hom−1
K0

(Aγi
, Ãβi−1

)
→M →

→

⊕
i∈Z/NZ

HomK0(Aβi
, Ãβi

)⊕

⊕
⊕

i∈Z/NZ

Hom−1
K0

(Aγi
, Ãγi

)
→

⊕
i∈Z/NZ

HomK0(Aγi
, Ãβi

)⊕

⊕
⊕

i∈Z/NZ

HomK0(Aγi
, Ãβi−1

)

To investigate the terms in this sequence, we use the Adams spectral sequence (2.1.2). For
instance,

Ep,q
2 = ExtpA

(
F (Aβi

), F (Ãβi
)[q]

)
⇒ Homp+q

K0
(Aγi

, Ãγi
).

Since up to the same shift both F (?)-arguments of the Ext in the initial term belong to
B, the splitting (1) shows that the initial term vanishes unless q is divisible by N . On the
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other side, by our definition of M, the injective dimension of Bi(Ã) is ≤ N − 2, hence
the initial term vanishes unless 0 ≤ p ≤ N − 2. The Adams spectral sequence therefore
degenerates, and we have Ep,q

2 = 0 for p+ q = −1 and also for p+ q = 0 and p 6= 0. Thus,
we find

Hom−1
K0

(Aβi
, Ãβi

) = 0, HomK0(Aβi
, Ãβi

) = HomB(B
i(A), Bi(Ã)).

Computing the other terms in (14) in the same way, we get

(15) 0→
⊕

i∈Z/NZ

HomB(G
i(A), Bi−1(Ã))→M

→

⊕
i∈Z/NZ

HomB(B
i(A), Bi(Ã))⊕

⊕
⊕

i∈Z/NZ

HomB(G
i(A), Gi(Ã))

→

⊕
i∈Z/NZ

Ext1
B(G

i(A), Bi−1(Ã))⊕

⊕
⊕

i∈Z/NZ

HomB(G
i(A), Bi(Ã))

On the other side, the right hand side of (13) sits in an exact sequence

(16) 0→
⊕

i∈Z/NZ

HomB(G
i(A), Bi−1(Ã))→ N

→

⊕
i∈Z/NZ

HomB(B
i(A), Bi(Ã))⊕

⊕
⊕

i∈Z/NZ

HomB(G
i(A), Gi(Ã))

→
⊕

i∈Z/NZ

Ext1
B(G

i(A), Bi−1(Ã))

By an investigation of the way in which the spectral sequence (1.4.32) was constructed, one
sees that there is a homomorphism of exact sequences of groups from (15) to (16) given by

M
α−−→ N , the projection

⊕

i∈Z/NZ

Ext1
B(G

i(A), Bi−1(Ã))⊕
⊕

i∈Z/NZ

HomB(G
i(A), Bi(Ã))→

⊕

i∈Z/NZ

Ext1
B(G

i(A), Bi−1(Ã)),

and the identity on the other terms. We arrive at an exact sequence

0→M
α−−→ N →

⊕

i∈Z/NZ

HomB(G
i(A), Bi(Ã)),

confirming our claim that α is injective, with image equal to the subgroup of all morphisms
of cochain complexes. The proof of the first assertion is therefore complete.

To prove the second assertion, we note that the surjectivity of H i(Q(A2))→ H i(Q(A3))
and of C i(A2)→ Ci(A3) also implies the surjectivity of X i(A2)→ X i(A3) for X ∈ {B;G},
hence X i(A1) = ker(X i(A2)→ X i(A3)) since F is a triangulated functor, and the validity
of (7) for A1 follows from its validity for A2 and A3.

For the proof of the third assertion, recall the complexes

C(I), V (I) ∈ Ob(C([1],1)(A)) = Ob(C([N ],N)(B))

for injective I ∈ A from the proof of Proposition 1.3.3. It is straightforward to see that they
are in the essential image of Q if they belong to the subcategory (2). Since any injective
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complex with injective cohomology is a sum of two complexes of this form, it follows that
injective complexes with injective cohomology are in the essential image of Q. We prove
by induction on k that every complex C in the subcategory (2) with

max(inj dimBi(C), inj dimGi(C)) ≤ k ≤ N − 2(17)

is in the essential image of Q, starting from the case k = 0 which was just considered.
Let the induction assertion be proved for injective dimension ≤ k − 1. As in the proof of

Proposition 1.3.3, we find an embedding C i−→ K into an injective complex K = Q(A2)
with injective cohomology, such that i induces a monomorphism on cohomology. Let L
be the cokernel of i. This is a complex satisfying (17) with k replaced by k − 1, hence
L ∼= Q(A3) for some A3 by the induction assumption. Since we know that Q is full,
the morphism K → L comes from a morphism A2 → A3. Extending it to a distinguished
triangle to which the second assertion can be applied, we find A1 ∈ ObM with Q(A1) ∼= C.
This completes the proof of our assertion that all complexes satisfying (10) are in the
essential image ofM by Q

In the case D ≤ N−2, the condition (10) is void, hence in this case L =M∼= C([N ],N)(B).
In the limiting case D = N − 1, (10) is at least satisfied for quotients of injective objects,
hence all injective complexes are in the essential image. The proof of the third assertion is
complete.

For the proof of the last assertion, we note that by the conditions (7) the morphisms

F (Aγi
) → F (Aβi−1

) are zero, while the morphisms F (Aγi
)
πi[−i]
−−−−−→ F (Aβi

) are surjective.
It follows that

colim1
Cn

F (A?) = 0

and

colim
Cn

F (A?) ∼=
N−1∑

i=0

ker
(
F (Aγi

)→ F (Aβi
)
)

∼=
N−1∑

i=0

ker
(
Gi(A)

πiρi
−−−→ Bi(A)

)
[−i]

∼=
N−1∑

i=0

H i(Q(A))[−i],

where the isomorphism on the last line follows from the surjectivity of πi and ρi and the
injectivity of ιi in the definition of the differential d (9). Therefore, the spectral sequence
(1.4.35) degenerates to an isomorphism (12), completing the proof of the last assertion.

Let N ⊂ C([N ],N)(B)V(F )C be a full subcategory consisting of complexes satisfying (10)
and containing all injective complexes, and let Q−1 : N → Q−1(N ) ⊆ M ⊂ KCN

be an
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inverse to the functor Q. Let

RF
0 = Holim−−−→CN

Q−1 : N → K0.

The isomorphism (12) gives rise to an isomorphism

ψ : FRF
0 (M) ∼=

N−1∑

i=0

H i(M)[−i], M ∈ Ob(N )(18)

hence RF
0 preserves quasi-isomorphisms. By our assumption, N contains all injective

complexes, hence the factorcategory ofN by the quasi-isomorphisms is the derived category
and (10) factorises over a functor from the derived category

RF
0 : D([N ],N)(A)V(F ) → K0,(19)

which is denoted by the same letter and to which the natural isomorphism (12) also applies.
It is clear that this functor is up to canonical isomorphism independent of the choice of N .

Proposition 2. • If the sequence M0 → M1 → M2 → M0[1] is a distinguished tri-
angle in D([N ],N)(A)V(F ) such that H∗(M0) → H∗(M1) is a monomorphism, then
RF

0 maps this triangle into a distinguished one. In particular, it maps injective H ∗-

Adams resolutions of objects of D([N ],N)
V(F ) to injective Adams resolutions of objects of

K0.
• The functor RF

0 is an equivalence of categories.

Proof. The first point follows from the second point of Proposition 1. The first point
implies that RF

0 respects the Adams spectral sequences on its source and target, therefore
it is full and faithful. Since it is full, the first point proves by downward induction on i,
starting from i = k, that the objects Y i in (2.1.1) belong to the essential image.

If dim C < L, then we can apply the last proposition to the functor FC investigated in
Proposition 2.1.2, obtaining the functor

RF
C

= RFC

0 .(20)

It remains to show that the assertions of the theorem are true with this definition of RF .
We first have to construct a compatible system of natural isomorphisms

f ∗RF
D
∼= RF

C
f ∗(21)

for any functor f : C
? → D

?. Recall that for the definition of RF
C

, we were free to choose
a subcategory NC of C([N ],N)(BC) containing all injective complexes, such that the objects
of NC satisfy (10). Up to canonical isomorphism, all choices give the same result. The
definition of the compatible system of isomorphisms (21) becomes obvious if we choose NC

in such a way that f ∗ maps ND to NC. Such a choice is possible by defining NC as the
category of all C-diagrams of complexes A with the property that for every object X of
C, the complex AX consists of injective objects of B. The injective dimension of Gi(A)
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or Bi(A) is then ≤ D + dim C − 1, which in view of dim C < L = N − D is sufficient
to guarantee (10). This defines the structure of a compatible system of equivalences of
categories in dimension dim C < L on the functors

D([1],1)(A) ∼= D([N ],N)(B)
RF

C−−→ KC.

It is clear that RF
C

is determined uniquely up to unique isomorphism by our construc-
tion. Moreover, if J is another system of triangulated diagram categories and if G is a
cohomological functor on J0 with values in A possessing an Adams spectral sequence via
injective resolutions and if ΛC : KC → LC is a compatible system of equivalences in di-
mension dim C ≤ k ≤ L, then by our explicit construction of RF and RG, every natural
isomorphism of cohomological functors

λ : F ∼= GΛ0

determines a unique isomorphism

κλ : RG
C
∼= ΛCRF

C
.(22)

At this point, we want to check that neither RF nor the isomorphism (22) depend on
the choice of the splitting B. It is clear that B and its shifts B[i] give the same realisation
functors, and that a refinement B̃ of B (i.e, B̃ ⊂ B is a splitting of B with respect to the
shift functor [N ] : B → B) also defines the same realisation functors as B in the range of
dimensions in which both realisation functors are defined. But if B̃ is another splitting, of
period Ñ , then

A =
gcd(N,Ñ)⊕

i=1

Ai,

where

Ai =
lcm(N,Ñ)⊕

j=1

B[j] ∩ B̃[i + j].

Each Ai is [1]-invariant, and B ∩ Ai and B̃ ∩ Ai have the common (up to shift by i) sub-
splitting B∩B̃[i]. We conclude that the realisation functor is, up to canonical isomorphism
preserving (22), independent of the choice of the splitting.

It remains to prove the second part of the theorem. This uniqueness property of RF

will be derived from the easy fact that RH0 ∼= Id in the case of D([1],1)(A), together with
the isomorphism (22). If G is another compatible system of realisation functors with an
isomorphism (3) defined in dimension ≤ k ≤ L, then we have an isomorphism

Id
D

([1],1)
C

(A)V(F )

∼= RH0

C

κφ
−→ G−1RF

C
,(23)
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defining the natural isomorphism τC. The remaining part of the theorem, namely the
uniqueness property of τC , follows from the following consideration. If χC is any compatible
system of natural automorphisms of the identity functor on KC defined in dimensions
dim C ≤ k ≤ L and satisfying F (χ0) = Id, then we have Q(χCN

) = Id, hence χCN
is the

identity on M by Proposition 1. Hence χ0 must be the identity on the essential image
of M by Holim−−−→CN

, which is all of K0. Applying the same argument with K? replaced by
KC×?, we get χC = Id if dim C < k. The proof of our main uniqueness theorem is now
complete.

2.3. Comparison with the theory of t-Structures. Let K be a system of triangulated
diagram categories, and let a t-structure on K0 with heart H be given. We assume that H
has sufficiently many injective objects and finite injective dimension, that the t-structure
is non-degenerate (cf. [GM88] or [GM94]), and that the Ext-groups in H coincide with
homomorphisms in K0.

In this case, the functor tH∗ possesses an Adams spectral sequence via injective resolu-
tions in the graded abelian category of graded H-objects whose grading is bounded from
above and below. The graded abelian category admits splittings of arbitrarily big period,
and we conclude

Proposition 1. Under the assumptions made above, there is a compatible systems of equiv-
alences FC from KC to the bounded derived categories Db(HC) with the property that F0 is
t-exact (where the derived category is given its usual t-structure) and induces the identity
on H. These assumptions characterise F uniquely up to a unique compatible system of
functor-isomorphisms.

Remark 1. Our Theorem 5 also proves that if H is an abelian category with sufficiently
many injective objects, then any Adams spectral sequence with values in the category
of graded H-objects with bounded grading comes from a t-structure with heart H. The
theorem also applies in the case where the heart has sufficiently many projective objects.

Remark 2. Similar theorems are well-known in the literature on triangulated categories
and perverse sheaves, cf. [BBD82, Proposition 3.1.16], [Bei87, Appendix A], [Nee91, Theo-
rem 5.1.], and [Kel91, Corollary 2.7]. Of course, Keller’s result is (in view of the comparison
result [GW95]) sharper than ours because Keller does not have to assume that the heart
has sufficiently many injective or projective objects and finite cohomological dimension.
Of course, the assumption about cohomological dimension is absolutely necessary for an
application of our construction. The assumption about injective objects can probably be
eliminated. Moreover, it seems that our method can in principle still be applied in the case
of the unbounded derived category. We will not go into details here.

Remark 3. The theorem shows that for an abelian category of finite homological dimension
and with sufficiently many injective objects, there is essentially only one way to find a
system of triangulated diagram categories K such that K0 is the category Db(H). If L is a
second system with the same property, then there is a compatible system of equivalences
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K ∼= L which is the identity on K0 = L0 = Db(H). Moreover, this equivalence is unique
up to a unique compatible system of functor-isomorphisms, and a similar result is likely to
hold for the unbounded derived category under suitable assumptions, and the assumption
that there are sufficiently many injective objects can probably be dropped. Moreover, by
using a construction similar to the one in [BBD82] or in Keller’s paper, one sees that the
assumption that the homological dimension is finite can be probably be dropped if one
considers only the bounded derived category.

In the case of examples relevant to topology, it is no longer the case that the extension
of a triangulated category to a system of triangulated diagram categories is unique. For
instance, we shall see that there is more than one way to extend the stable homotopy
category of K-local spectra at an odd prime to a system of triangulated diagram categories
(cf. Remark 3.1.1).

3. Applications

The aim of this subsection is to apply the abstract uniqueness result to some of the
chromatic quotients of the stable homotopy category. We start with the special case of
K-local spectra at an odd prime, since in this case the assumptions of our uniqueness
theorem have been verified by Bousfield. The generalisation of these results to higher
chromatic primes is somewhat involved, although all the methods we need are in principle
contained in the literature. We first show that the Adams-Novikov spectral sequence can
be constructed by injective resolutions. Then we set up the chromatic spectral sequence
combine it with the result of Morava [Mor85] to understand the cohomological dimension of
the Adams-Novikov E2-term. We arrive at an algebraic description of the stable homotopy
category of spectra which are localised in chromatic dimension ≤ n at an odd prime p,
where n2 + n < 2p− 2.

3.1. Bousfield’s classification of K-local spectra at an odd prime. Fix an odd
prime p. As in [Bou85], we denote by A the category of Z(p)-modules M equipped with
Adams operations ψk for rational numbers k prime to p, such that the following conditions
hold:

• ψkψl = ψkl.
• We have a decomposition

M ⊗Q =
∞∐

j=−∞

Mj,(1)

where ψk acts on Mj by multiplication by kj.
• Every element of M is contained in a ψ-invariant finitely generated submodule N

such that for every m there is a n(m) such that the action of ψk on N/pmN depends
only on k mod pn(m).



66 JENS FRANKE, UNIVERSITÄT BONN

Let T be the self equivalence of A defined by letting TM the same Z(p)-module M , but
with the action of the Adams operations twisted:

ψkTM = kψM .

Let Ã be the category of graded A-objects L with an isomorphism L[2]
b−→ TL, morphisms

being the graded morphism compatible with the Bott periodicity b.

Let K be the K-theory spectrum and let SK be the system of triangulated diagram cat-
egories obtained by localising the stable homotopy category S with respect to the thick
subcategory of spectra A satisfying K∗A = 0. It was verified by Bousfield [Bou85, Theo-
rem 8.2.] that K−∗ is a cohomological functor on SK

0 with values in Ã which has an Adams
spectral sequence via injective resolutions.

Let B ⊂ A be the full subcategory of all M satisfying the following two conditions:

• In (1), the summands Mj vanish unless j is divisible by p− 1.
• Every element of M is contained in a ψ-invariant finitely generated submodule N

such that for every m there is a n(m) such that the action of ψk on N/pmN depends
only on the image of k in the p-primary component of Z/pn(m)Z.

Let B̃ be the full subcategory of Ã consisting of all objects L concentrated in even degree
and satisfying L0 ∈ ObB. This is a splitting of period 2p − 2 for Ã. Since the injective
dimension of B (and hence also of A and Ã) is 2 [Bou85, Proposition 7.7], we arrive at the
following theorem:

Theorem 6. Let p be an odd prime, then the K-local stable homotopy category of C-
diagrams of spectra is, in dimension dim C < 2p− 4, equivalent to the derived category of
quasi-periodic cochain complexes

D(T,2)(AC) ∼= DT
p−1,2p−2(BC).(2)

This isomorphism identifies K0 with the zeroth cohomology functor and has the uniqueness
properties described in the second part of Theorem 5.

Remark 1. By Remark 1.6.2, and since there are classes in the stable homotopy of spheres
which survive K-localisation, the system of homotopy categories of C-diagrams of K-local
spectra has no strongly linear structure. On the other side, (2) clearly has a strongly linear
structure. Therefore, our equivalence cannot be extended to arbitrary dimensions of C.

A similar argument was also used by A. Neeman [Nee92, Remark 4.8] in the discussion
of his triangulated lifting of the stable homotopy functor which, however, is far from being
an equivalence of categories.
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3.2. The Adams-Novikov spectral sequence via injective resolutions. We now
start to prepare for a generalisation of the last subsection to higher chromatic primes. We
first have to verify that the Adams-Novikov spectral sequence can be set up by injective
resolutions.

Let E be any ring spectrum, and let E∗X = π∗(X ∧E) be the homology theory defined
by E. We will write E∗ for E∗S

0. Then it is known (cf. [Rav86, §2.2]) that the pair
(E∗, E∗E) is a cogroupoid object in the category of graded rings. We will consider the
ring E∗E as an E∗-bimodule with the left multiplication given by the cotarget morphism

E∗
t
−→ E∗E and the right multiplication given by the cosource map.

By an (E∗, E∗E)-comodule we understand a graded E∗-module M∗ together with a co-
multiplication ∆: E∗E

⊗
E∗M∗ satisfying i⊗∆ = IdM , where i is the coidentity morphism,

and

(c⊗ IdM)∆ = (IdE∗ ⊗∆)∆,

where c : E∗E → E∗E
⊗

E∗ E∗E is the cocomposition map. By [Rav86, Proposition 2.2.8.],
the homology theory E∗X takes values in the abelian category of (E∗, E∗E)-comodules.

Proposition 1. Let E be a ring spectrum which is the inductive limit of finite subspectra
εα such that E∗εα is a projective E∗-module and such that the canonical morphism

E∗(εα) −→ HomE∗(E∗εα, E∗)(1)

sending εα
λ
−→ E to the homomorphism

E∗εα
E∗λ−−→ E∗E

i
−→ E∗,

where i is the coidentity of the cocatgory ring (E∗, E∗E), is an isomorphism. Then the
homological functor E∗ has an Adams spectral sequence via injective resolutions.

Proof. The forgetful functor from the category of (E∗, E∗E)-comodules to the category of
E∗-modules has a right adjoint which sends M to M

⊗
E∗ E∗E. Therefore, it suffices to

show that for every injective E∗-module J the functor

X −→ HomE∗(E∗X, J) = Hom(E∗,E∗E)(E∗X,E∗E
⊗

E∗

J)(2)

is representable by a spectrum EJ for which the morphism E∗EJ −→ E∗E
⊗

E∗ J is an
isomorphism.

The representability of (2) follows from the Brown representability theorem. We have

π∗EJ
∼= J.(3)

Let us prove that EJ possesses the structure of a E-module spectrum (in the sense of
[Ada74, §III.13]) in such a way that (3) becomes an isomorphism of E∗-modules. Indeed,
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from

HomS(X,EJ) ∼= HomE∗(E∗X, J)
i
−→

HomE∗(E∗E
⊗

E∗

E∗X, J) ∼= HomE∗(E∗(X ∧ E), J) ∼= HomS(X ∧ E,EJ),

where i is defined by the coidentity morphism of the cocategory object (E∗, E∗E) and we
have used [Rav86, Lemma 2.2.7], we obtain a natural transformation

HomS(X,EJ) −→ HomS(X ∧ E,EJ)

which is compatible with the structure of E as a ring spectrum. Applying it to X = EJ ,
we get the desired structure of a E-module up to homotopy on EJ .

The proof will be complete if we show that the multiplication map

π∗EJ

⊗

E∗

E∗X −→ π∗(EJ ∧X)(4)

is an isomorphism in the case X = E. That (4) is an isomorphism in the case X = εα
follows from

π∗(EJ ∧ εα) ∼= HomS(Dεα,EJ)
∼= HomE∗(E∗Dεα, J)
∼= HomE∗(HomE∗(E∗εα, E∗), J)

∼= E∗εα
⊗

E∗

J.

The first line uses Spanier-Whitehead duality, the second line is (2), the third line is our
assumption (1), and the fourth line follows from our assumption that E∗εα is a projective
E∗-module. We have seen that (4) is an isomorphism in the case X = εα, hence it is also
an isomorphism in the case X = E, since E is the inductive limit of εα.

Corollary 1. Let MU be the complex bordism spectrum. The functor MU∗ with values
in the category of (MU∗,MU∗MU)-comodules possesses an Adams spectral sequence by
injective resolutions.

Proof. The assumption of the last proposition can be verified by taking Eα to be the Thom
constructions on the universal bundles over finite-dimensional Graßmannians. For these
varieties, the necessary calculations are easily made using either the complex orientation
or the Atiyah-Hirzebruch spectral sequence (cf. [Ada74, Proof of Proposition III.13.4])

The author hopes that he can prove the convergence of the spectral sequence thusly
obtained under conditions similar to the ones which are known to guarantee the convergence
of the usual Adams spectral sequence. We will not do this in the present paper. In the
application to a generalisation of Bousfield’s result, it is anyway necessary to pass to a
chromatic localisation of the category of (MU∗,MU∗MU)-comodules. The investigation
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of the cohomological dimension of these chromatic localisations is the main aim of the next
two subsections.

3.3. The abstract chromatic spectral sequence. Let G = (O,M) be a groupoid
object in the category of preschemes, with O as the prescheme of objects and M as the
prescheme of morphisms. We make the convention that in a fibre product M×O

·, M is

considered as an O-prescheme via the target morphism t, while a fibre product ·×O
M is

defined by the source morphism s. The composition morphism of the groupoid object G is
a morphism c : M×O

M→M, and the identity morphism is a morphism i : O →M. A
linear G-representation is a quasi-coherent OO-module M , together with an isomorphism

φM : s∗M ∼= t∗M(1)

such that

c∗(φM) = p∗2(φM)p∗1(φM),

where pi : M×O
M −→ M is the projections to the i-th factor and c is the composition

morphism. Let M(G) denote the category of linear G-representations. Throughout this
subsection, we assume in addition that s (and hence t as well) is flat. Then M(G) is an
abelian category, and the forgetful functor to the category of quasi-coherent OO-modules
is exact and faithful.

A morphism

G
f
−→ G̃

of groupoid preschemes is a pair (fO, fM) of morphisms of preschemes O
fO−→ Õ and

M
fM−→ M̃ making the obvious diagrams commutative. If f is a morphism of groupoid

schemes and if (M,φM) is an object ofM(G̃), then we denote the object (f ∗O(M), f ∗M(φM))

by f ∗
(
(M,φM)

)
.

If S is any prescheme, then G(S) denotes the groupoid (O(S),M(S)).

3.3.1. Homological algebra in M(G).

Proposition 1. M(G) is a Grothendieck category. In particular, it has sufficiently many
injective objects and all limits.

Proof. Using the fact that s∗ commutes with direct sums of sheaves, it is easy to see that
M(G) has arbitrary direct sums, which coincide with the direct sums in the category of
(quasi-coherent) sheaves. Since the category of sheaves is known to be AB5, the same is
true forM(G). It remains to prove the existence of a generating set.

For the purpose of this proof, let us call the size of a module M over a ring R the
minimum of the cardinalities of the subsets of M generating M as an R-module. The
size of a quasi-coherent sheaf M on a prescheme X is the supremum of the sizes of the
OX(U)-modules M(U), taken over all affine open subsets U of X or (which amounts to
the same result) over the elements of some covering of X by affine open subsets.
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For a cardinality ℵ, it is easy to construct a set Qℵ(G) of representatives for the isomor-
phism classes of objects ofM(G) of size ≤ ℵ.

Let O be covered by affine open subsets Ui, i ∈ I. There exist an index set J and a map
J

ι
−→ I × I and a family Vj, j ∈ J , of affine open subsets of M such that

Ui×
O

M×
O

Uk =
⋃

j∈J

ι(j)=(i,k)

Vj.

Let ℵ be an infinite cardinality which is at least as large as

sup
i∈I

ι−1card({i} × I).

We claim that Qℵ(G) is a generating set for the category M(G). This claim immediately
follows from the following lemma:

Lemma 1. Let M be an object of M(G), io ∈ I and s ∈ M(Uio). Then there exists a
subobject N ⊂M of size ≤ ℵ such that s ∈ N(Uio).

Therefore, the proof of the proposition is reduced to the proof of the lemma.

Remark 1. According to [TT90, Appendix B.2.], the result of this proposition seems to new
even in the case of quasi-coherent sheaves on a prescheme which fails to be quasi-compact
and quasi-separated.

Proof of Lemma 1: Let Ui = Spec(Ri), Vj = Spec(Sj). Giving the object M ofM(G)
is equivalent to giving Ri-modules Mi = M(Ui) and isomorphisms

Sj
⊗

Rk

Mk
φj
−→Mi

⊗

Ri

Sj

for j ∈ J , where ι(j) = (i, k). Of course, the φj have to satisfy various compatibilities. A
collection of Ri-submodules Ni ⊆Mi defines a subobject of M if and only if

φj(Sj
⊗

Rk

Nk) ⊆ Ni

⊗

Ri

Sj(2)

holds for j ∈ J and ι(j) = (i, k). (The compatibility conditions among the φj and the fact
that G is a groupoid imply that this inclusion amounts to an equality if it is satisfied for
all j.)

We inductively construct an increasing sequence of submodules N
(l)
i ⊆ Mi of size ≤ ℵ

as follows: Let N
(0)
i be the submodule generated by s if i = io and zero otherwise. Let the

N
(l)
i be defined. We will define the submodule N

(l+1)
i ⊇ N

(l)
i in such a way that

φj(Sj
⊗

Rk

N
(l)
k ) ⊆ N

(l+1)
i

⊗

Ri

Sj(3)

holds for all j ∈ I and ι(j) = (i, k). By the induction assumption, the size of N
(l)
k is at

most ℵ. Therefore, for each j ∈ J , we have to add at most ℵ generators to N
(l)
i in order to
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achieve (3). By our definition of ℵ, for each i the cardinality of all j for which this has to
be done is also at most ℵ. Therefore, by the rules of arithmetic for infinite cardinals, we

can construct N
(l+1)
i of size ≤ ℵ such that (3) holds.

Let Ni be the inductive limit of the N
(l)
i as l tends to infinity. By (3), (2) is satisfied.

Obviously, the size of Ni is at most ℵ, and we have s ∈ Nio.
The proof of Lemma 1 is complete. Q.E.D.

Recall that an open subprescheme U ⊂ O is called invariant if s−1(U) = t−1(U). In
this case, we denote by GU the groupoid prescheme (U, s−1(U)). Let Z = O − U and let
MZ(G) be the torsion class of all objects ofM(G) which are supported in Z.

Proposition 2. Let j : U → O denote the embedding. Then the restriction functor

j∗ : M(G) −→M(GU)

factorises over the functor p from M(G) to the quotient category M(G)/MZ(G) and a
uniquely defined faithful functor

j] : M(G)/MZ(G) −→M(GU).

Moreover, j∗ has a right adjoint j∗ and p has a right adjoint L, the localisation with respect
to U , and for an object M of M(G)/MZ(G) the canonical morphism

L(M) −→ j∗j
]M(4)

is a monomorphism. If the morphism j is quasi-compact, then j ] is an equivalence of
categories

M(G)
/
MZ(G) ∼=M(GU),

and (4) is an isomorphism. Moreover, in this case the functor j∗ coincides with the usual
direct image of sheaves on U .

Proof. The existence and faithfulness of j] follow from the exactness of j∗ and the fact
that the objects killed by j∗ are precisely the objects of the torsion class MZ(G). The
existence of right adjoints to j∗ and p follows from the fact that these functors are exact
and commute with arbitrary sums and from the special adjoint functor theorem (cf. [Fre66]
or [Mac71]). That (4) is a monomorphism follows from the adjunction relation and the
fact that j] is faithful.

In the case where j is quasi-compact, it is known ([EGAIII, 1.4.10], [EGAIII, Proposi-
tion 1.4.15] and [EGAIV, 1.7.21]) that the direct image functor from the category of sheaves
on U to the category of sheaves on X respects the classes of quasi-coherent sheaves and
commutes with base-change by the flat morphisms s and t if it is applied to a quasi-coherent
sheaf. This proves the remaining assertions of the proposition.
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Proposition 3. The inclusionMZ(G) −→M(G) has a right adjoint H0
Z respecting injec-

tive objects. If in addition the embedding U = O− Z
j
−→ O is a quasi-compact morphism,

then H0
Z(M) can be constructed as the subsheaf of M whose sections are the sections of M

supported in Z, and
H0
Z(M) = ker(M −→ j∗j

∗M)

holds for an arbitrary object M of M(G).

Proof. This is clear.

Proposition 4. In the situation of the last proposition, assume that j is quasi-compact and
that every injective object of MZ(G) is also injective in M(G). Then for every injective
object I of M(G), the objects j∗I of M(GU) and j∗j

∗I and H0
ZI of M(G) are injective,

and we have a (non-canonically) split short exact sequence

0 −→ H0
ZI −→ I −→ j∗j

∗I −→ 0.(5)

Proof. Clearly, H0
ZI is injective inMZ(G), hence also inM(G) by our assumption. There-

fore, the monomorphism H0
ZI −→ I splits. Let j∗I −→ J be an embedding into an injective

object ofM(GU). Then we have a monomorphism

I −→ Ĩ = H0
ZI ⊕ j∗J.

Since j is quasi-compact, j∗ is the usual direct image of sheaves, hence j∗j∗J = J , and it
follows that the morphism Ĩ −→ j∗j

∗Ĩ is an epimorphism. Since I is injective, it is a direct
summand of Ĩ. In particular, the morphism I −→ j∗j

∗I is an epimorphism. Moreover, j∗I
is injective since it is a direct summand of the injective object j∗Ĩ = J .

3.3.2. The abstract chromatic spectral sequence. Let O = Z0 ⊇ Z1 ⊇ . . . be a descending
sequence of invariant closed subsets of O. Let Z∞ =

⋂∞
i=0 Z

i. Let Uk = O − Zk+1 and
jk : Uk −→ O be the immersion. Let RHZk(M) be the derived functor of H0

Zk , viewed as an
element of the derived category of M(G). Let Hi

Zk(M) be the i-th cohomology object of
RHZk(M).

Theorem 7. Assume that for all finite k, every injective object of MZk(GU∞) is also
injective inM(GU∞) and that the immersions jk for k <∞ are quasi-compact morphisms.
Then for linear G-representations M , N there is a spectral sequence of a filtered complex

Ep,q
1 = Homp+q

D+(M(G))(M,Rjp∗RHZp∩Upj
∗
pN)(6)

with cohomology of the total complex equal to

Extp+qM(G)(M,Rj∞∗j
∗
∞N).

The initial term of (6) can also be written as

Ep,q
1 = Homp+q

D+(M(G)/M
Zp+1 (G))

(M, j∗pRHZpN).(7)
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Proof. Let I∗ be an injective resolution of j∗∞N . We have a canonical filtration by the
subsheaves of section with support in Zq − Z∞:

Ik ⊇ H0
Z1−Z∞(Ik) ⊇ . . . ⊇ H0

Zq−Z∞(Ik) . . . .(8)

Let j∞p be the embedding Up −→ U∞. Applying Proposition 4 to Zp − Z∞ ⊂ U∞, we see

that the p-th quotient of the filtration (8) is canonically isomorphic to j∞p∗H
0
Zp∩Up

j∞∗p Ik and

also that it is an injective object ofM(GU∞).
We conclude that GrqI∗ is an injective complex representing Rj∞q∗RHZq∩Uqj

∗
qN . We have

Homp+q
D+(M(G))(M,Rjq∗RHZq∩Uqj

∗
qN) ∼= Homp+q

D+(M(GU∞ ))(j
∗
∞M,Rj∞q∗RHZq∩Uqj

∗
qN).

Therefore, the initial term of the spectral sequence of the filtered complex

HomM(G)(M, I∗)

has the form described in (6). The description of the limit of (6) follows from the fact that
by the sheaf axioms we have

lim
q→∞

j∞q∗j
∞∗
q Ik ∼= j∗∞I

k

inM(GU∞) and from the adjointness relation between j∗∞ and Rj∞∗.
The reformulation of the initial term as (7) follows from the relation between M(GUk

)
andM(G)/MZk+1(G) described in Proposition 2.

Corollary 1. If the assumptions of Theorem 7 hold, then for k < ∞ and all objects M ,
N of M(GUk

), we have a finitely convergent spectral sequence

Em,n
1 =





Homm+n
D+(M(GUm ))(j

∗
mM,RHZm∩Umj

∗
mN) if 0 ≤ m ≤ k

0 otherwise
⇒ Extm+n

M(GUk
)(M,N).

(9)

Proof. To get (9), one replaces G by GUk
in (6). The spectral sequence is finitely convergent

because in this case the filtration of the complex is finite.

In our application to the generalisation of Bousfield’s work, Corollary 1 is the only
consequence of Theorem 7 we need. In particular, only finitely many chromatic levels are
involved. If this is no longer the case, there is the question of giving a condition under
which the limit of (6) can is in fact isomorphic to Ext∗M(G)(M,N) (which usually will be
the initial term of some Adams-Novikov spectral sequence). This question is answered by
the following corollary:

Corollary 2. If the assumptions of Theorem 7 hold, then for every N ∈ Ob(M(G)), there
exists an isomorphism

Rj∞∗j
∗
∞N −→ Holim←−−−Rjq∗j

∗
qN

projecting to the canonical morphisms

Rj∞∗j
∗
∞N −→ Rjq∗j

∗
qN.
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Here the homotopy limit is understood in the sense of [BN93]. If, moreover, for every
i ≥ 0 there is an k(i) such that

Hi
ZmN = 0 if m > k(i),(10)

then the canonical homomorphism

N −→ Rj∞∗j
∗
∞N

is an isomorphism, and (6) finitely converges to

Extp+qM(G)(M,N).

Proof. This is an easy consequence of the proof of Theorem 7. The spectral sequence
converges finitely because the filtered complex is cohomologically finite if (10) holds (cf.
[HS71, Theorem VIII.3.5]).

3.3.3. The case of a Noetherian scheme of objects. The Corollary 1 is what we need be-
cause it allows us, under certain circumstances, to relate the cohomological dimensions of
M(GUk

) and of the categoriesMZl(GU) for l < k. In the application to complex bordism,
the last category is understood because of the work of Morava. In order to get these things
done, we need two more technical facts.

Of course, we need a criterion which allows us to make sure that Theorem 7 can be
applied.

Proposition 5. Assume that the prescheme of objects O underlying G is Noetherian, and
assume that the source morphism s (and hence also t) is quasi-compact. If Z ⊆ O is an
invariant closed subset, then every injective object of MZ(G) is also injective in M(G).

For a prescheme X, let Qc(X) be the category of quasi-coherent sheaves on X, and let
QcZ(X) be its full subcategory of all objects supported in the closed subset Z.

In order to prove this proposition, we need a preparation.

Proposition 6. The forgetful functor fromM(G) to the category of all quasi-coherent OO-
modules has a right adjoint R. In the case where s (and hence also t) is quasi-compact,
the OO-module underlying RM is given by s∗t

∗M .

Proof. The existence of R follows from the special adjoint functor theorem (cf. [Fre66] or

[Mac71]). Let M×O
M

p1,2
−−→ M be the projections to the two factors, and recall that

M×O
M

c
−→ M is the composition morphism. If the source and target morphisms are

quasi-compact, then we have an isomorphism

s∗s∗t
∗M −→ p1∗c

∗t∗M

−→ p1∗p
∗
2t
∗M

−→ t∗s∗t
∗M,(11)
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where the second line uses the equality tc = tp2 and the first and third line are obtained
by applying the base change result [EGAIII, Proposition 1.4.15] and [EGAIV, 1.7.21] to
the two Cartesian squares

M×M M M×M M

M O M M.

-p1

?

c

?

s

-p1

?

p2

?

t

-s -s

It is easy to see that (11) defines the structure of an object ofM(G) on s∗t
∗M . Also, let

an object L of M(G) and a morphism L
f
−→ M of OO-modules be given. Applying the

adjointness between s∗ and s∗ to the composition

s∗L
φL−→ t∗L

t∗(f)
−−→ t∗M,

we get a canonical homomorphism L −→ s∗t
∗M , which is easily seen to be a morphism in

M(G). One easily checks that this morphism is universal, proving that s∗t
∗ is right adjoint

to the forgetful functor.

Proof of Proposition 5: It is sufficient to construct, for every object M of MZ(G),
an embedding M −→ I, where I is and injective object ofM(G) with support in Z. In the
case where M is injective in MZ(G), this embedding splits, and it follows that M is also
injective inM(G).

To construct the desired embedding, we first find an embedding M
j
−→ J , where J is an

injective object of Qc(O) with support in Z. This is possible: By [Har66, Theorem II.7.18],
the injective hull J of M in the category of all OX -modules is a quasi-coherent OX -module.
But this injective hull is isomorphic to i∗K, where i is the embedding of the topological
space Z into X and K is an injective hull of i∗M in the category of all i∗OO-modules. In
particular, J is supported in Z.

Having chosen J , we put I = RJ , where R was constructed in Proposition 6. The

embedding M
i
−→ I inM(G) is the one derived from the embedding M

j
−→ J in Qc(O) and

the adjointness property of R. That i really is monomorphism follows from the relation
j = pi, where RI

p
−→ I is the adjunction morphism in Qc(O), and the fact that j is

an embedding. That J is supported in Z follows from the explicit description of R in
Proposition 6.

The proof of Proposition 5 is complete. Q.E.D.

3.3.4. A base change result. Of course, Proposition 5 cannot be directly applied to the
category of (MU∗,MU∗MU)-comodules since MU∗ is not Noetherian. However, it will
turn out that at a finite chromatic level we can reduce to a Noetherian situation by applying
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an abstract result which we explain next. Let X
f
−→ O be a morphism of preschemes.

Assume that the two projections

X×
O

M×
O

X −→ X(12)

are flat. Then (X,X×O
M×O

X) has the structure of a groupoid prescheme with flat
cosource and cotarget map, which we denote by GX . Obviously this is compatible with
the notation which we had previously introduced in the case where X = U is an open
subprescheme of O. If M is an object ofM(G), then the quasi-coherent sheaf f ∗M has a
canonical structure of an object of M(GX). For a prescheme S, the groupoid GX(S) has
the set X(S) as its set of objects, and a morphism from x to x̃ in GX(S) is a morphism
from f(x) to f(x̃) in G(S). The morphism of groupoid schemes GX −→ G which on objects
is given by f and on morphisms by the projection

X×
O

M×
O

X −→M

will also be denoted by f . We are looking for a result stating that f ∗ is an equivalence
of categories if GX −→ G is what one might call an equivalence of groupoid preschemes.
One way to define the notion of an equivalence of groupoid preschemes is to assume the
existence of an inverse up to natural isomorphism. This property was called “natural
similarity” and used in [Mor85, Proposition 1.2.3]. Our aim is to prove a similar result,
which is more suitable for our considerations.

Proposition 7. Assume that the morphism

M×
O

X
p
−→ O(13)

induced by M
s
−→ O is faithfully flat and quasi-compact. Then (12) is flat, and the functor

M(G)
f∗
−→M(GX)

is an equivalence of categories. Moreover, if Z ⊂ O is a G-invariant closed subset, then
the restriction of this functor

MZ(G)
f∗
−→Mf−1(Z)(GX)

is also an equivalence of categories, and we have a canonical isomorphism

f ∗Hp
ZM
∼= Hp

f−1(Z)f
∗M.

As the reader will have guessed, this essentially amounts to an application of flat descent.

Let G̃
f
−→ G is a morphism of groupoid preschemes. The fibre product G̃×G

G̃ in the

category of groupoid preschemes exists and has Õ×O
Õ as its prescheme of objects and

M̃×M
M̃ as its prescheme of morphisms, and its structure morphisms are defined from
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the structure morphisms for G and G̃ in the obvious way. Let G̃×G
G̃

pr1,2
−−→ G̃ be the

projections to the two factors. The category Desc(G̃/G) of descent data for f has as objects

the pairs (M, dM), where M is an object ofM(G̃) and d is an isomorphism pr∗1M
∼= pr∗2M

such that the isomorphism of O
M̃×M

M̃
-modules underlying d is a descent datum for

quasi-coherent sheaves in the sense of [SGA1, Exp. VIII.1]. If N is an object of M(G),

then the object f ∗N ofM(G̃), together with the isomorphism

pr∗1f
∗N ∼= (fpr1)

∗N = (fpr2)
∗N ∼= pr∗2f

∗N

becomes an object of Desc(G̃/G) which we denote by f+N . The following fact follows
readily from the general theory of flat descent for quasi-coherent modules, cf. [SGA1,
Exp. VIII.1, 1.2. et 1.3.].

Proposition 8. Assume that the morphisms Õ
gO−→ O and M̃ −→ M are quasi-compact

and faithfully flat. Then the functor

M(G)
g+
−→ Desc(G̃/G)

is an equivalence of categories.

Proof. If an object of Desc(G̃/G) is given, then applying flat descent to G̃
fG−→ G shows how

to descent the underlying quasi-coherent sheaf to G, and descent for M̃
fM−→M shows how

to define the structure of an object of M(G) on this descented sheaf. Similarly, descent

for fG shows that every morphism in Desc(G̃/G) can be descented to a morphism between
quasi-coherent sheaves on G, and the faithful flatness of fM shows that this descent is a
morphism inM(G).

Remark 2. There is no obvious way to see that the structure morphisms s and t for G̃×G
G̃

are flat if the similar fact holds for G and G̃. From the factorisation of s
G̃×G

G̃

M̃×
M

M̃
(s

G̃
,fM)

−−−−→ M̃×
M

(Õ×
O

M) ∼= M̃×
O

Õ −→ Õ×
O

Õ

one sees that is is flat if M̃
(s

G̃
,fM)

−−−−→ Õ×O
M is flat. For our subsequent application, this

will be the case. However, it is not necessary for our purposes to know thatM(G̃×G
G̃)

is an abelian category.

For a groupoid prescheme H, there is a groupoid prescheme Ar(H) such that Ar(H)(S) =
Ar(H(S)) holds for any prescheme S, where Ar was defined in the formulation of the

mapping cylinder axiom. We have the two morphisms of groupoid prescheme Ar(H)
σ,τ
−→ H
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which to a morphism in H associates its source and target. There is a morphism of groupoid
preschemes

Ar(H)×
H

Ar(H)
χ
−→ Ar(H),

where the first Ar(H) is made into an H-prescheme via τ and the second Ar(H) via σ.

Lemma 2. Let H
f
−→ G be a morphism of groupoid preschemes which is part of a diagram

G̃ H

G
?

g

-h

�
�

��	
f

(14)

in which g satisfies the assumptions of Proposition 8. Assume that (14) commutes up to
natural isomorphism, i. e., that there exist a morphism from the prescheme of objects of
G̃ to the prescheme of morphisms of G which for every S defines a natural transformation

between the two functors G̃(S)
g,fh
−−→ G(S). Also, assume that there is a morphism

G̃×
G

G̃
a
−→ Ar(H)

satisfying the following two conditions:

• We have hpr1 = sa and hpr2 = ta, where G̃×G
G̃

pr1,2
−−→ G̃ are the two projections.

• We have apr1,3 = c(apr1,2, apr2,3), where

G̃×
G

G̃×
G

G̃
pri,j
−−→ G̃×

G

G̃

is the projection to the subproduct formed from the i-th and the j-th factor.

Finally, assume that the morphism of object preschemes underlying h is faithfully flat.
Then f ∗ is an equivalence of categories.

Proof. Let M = (M,φM) be an object of M(H). Its structure morphism φM defines an
isomorphism s∗M ∼= t∗M inM(Ar(H)). By our two conditions on a, the pull-back of this

isomorphism with respect to a defines the structure of an object of Desc(G̃/G) on h∗M .
Let us denote the resulting functor

M(H) −→ Desc(G̃/G)

by (h, a)].
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The following diagram of functors commutes up to natural isomorphism:

M(H) Desc(G̃/G)

M(G)

-(h,a)]

�
�

�
�

��3

g+

6
f∗

By Proposition 8, we know that g+ is an equivalence of categories. It follows that (h, a)]

is full and essentially surjective. But our assumption about the faithful flatness of the
morphism of preschemes of objects underlying h implies that (h, a)] is faithful. If follows
that (h, a)] is an equivalence of categories. But then f ∗ is an equivalence of categories.

Proof of Proposition 7: The flatness of (12) is obvious. We will derive Proposition 7

by applying the Lemma 2 to the morphism GX = H
f
−→ G. Let G̃ be the following groupoid

prescheme: Objects of G̃(S) are triples (x,m, o), where x ∈ X(S), o ∈ O(S), and m is a
morphism in G(S) from o to f(x) ∈ O(S). The image of (o,m, x) by g is o and its image

by h is x. A morphism from (o,m, x) to (õ, m̃, x̃) in G̃(S) is just a morphism n from o to
õ in G(S), its image by g is n and its image by h is the morphism from x to x̃ in GX(S)
given by m̃nm−1. It is clear from these definitions that the diagram (14) commutes up to
canonical isomorphism. The morphism h is faithfully flat because M is a faithfully flat O-
prescheme. That g satisfies the Cartesianness assumption of Proposition 8 is clear, and the
assumption about the quasi-compactness and faithful flatness of the underlying morphism
between the preschemes of objects is precisely our assumption about (13). The morphism

A = G̃×G
G̃

a
−→ Ar(H) sends an object

(
(o,m, x), (o,m′, x′)

)
of A(S) to the morphism

x
m′m−1

−−−−→ x′ in H(S), and the morphism ν from this object of A(S) to
(
(õ, m̃, x̃), (õ, m̃′, x̃′)

)
,

which is simply given by a morphism o
n
−→ õ in G(S), to the commutative diagram

x x′

x̃ x̃′

-m′m−1

?
m̃nm−1

?
m̃′nm′−1

-m̃′m̃−1

in H(S). It is easy to verify that this construction really gives a morphism of groupoid
preschemes, and that the assumptions of Lemma 2 about a are valid.

The proof of Proposition 7 is complete. Q.E.D.

In order to verify the assumption of Proposition 7 in the situation in which we will apply
it to bordism comodules, it will be convenient to verify the flatness of (13) in infinitesimal
neighborhoods of Zk − Zk+1 by applying the deformation theory of formal group laws. If
MU∗ was a Noetherian ring, it would be a standard fact of algebraic geometry that it is
sufficient to verify the flatness in infinitesimal neighborhoods of the strata. That we can
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still apply the same principle although MU∗ is not Noetherian will be derived from the
next proposition.

Proposition 9. Let G be an arbitrary groupoid prescheme. Assume that we are given a
filtering index set I with a final object o and a projective system of preschemes Mι indexed
by ι ∈ I with Mo = O and such that for ι ≺ κ the morphism Mι −→Mκ is affine, faithfully
flat and of finite type, and assume that we are given an isomorphism M ∼= limι∈I Mι

(where the inverse limit exists by [EGAIV, Proposition 8.2.3]) such that the projection
M −→ Mo = O is t. Assume also that O is the filtering projective limit of Noetherian
preschemes Oι, ι ∈ J , with transition morphisms which are affine, faithfully flat and of
finite type, such that J has a final element o for which the projection O

πo−→ Oo is invariant
(i.e, sπo = tπo), where

O
πj
−→ Oj

are the projections identifying O with the inverse limit of the Oj. Assume that a filtration

O = Z0 ⊃ . . . ⊃ Zk ⊇ . . .

of O by invariant closed subsets is given. View Zk as a reduced subprescheme of O defined
by a quasi-coherent sheaf of ideals Ik. Assume that Ik is coherent, and let Zk(l) be the
l-th infinitesimal neighborhood of Zk, i.e., the closed subprescheme defined by I lk. Let a

morphism X
f
−→ U∞ be given, and assume that X is Noetherian. Assume also that for all

k and l, the projection to the first factor
(
Zk(l) − Zk+1

)
×
O

M×
O

X −→ Zk(l) − Zk+1(15)

is flat. Then (13) is flat.

Proof. It suffices to show that at every m ∈ M×O
X and for every sufficiently big i,

M×O
X

πjp
−−→ Oi is flat. We have p(m) ∈ Zk − Zk+1 for some k < ∞. By [EGAIV,

Proposition 8.6.3], if i is sufficiently big then there exists a reduced closed subprescheme

Z̃k ⊂ Oi such that Zk = π−1
i (Z̃k). Let M

ρj
−→Mj be the projections identifying M with the

inverse limit of the Mj. Since Oi is an Oo-prescheme of finite type and since sπo = tπo, by

[EGAIV, Proposition 8.13.1] there exist a j and a morphism Mj
s̃
−→ Oi such that πis = s̃ρj.

We have a commutative diagram

M×
O

X Mj×
O

X

O Oi,

-
ρ̃=ρj×IdX

?

p

?
q=s̃pr1

-πi
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where Mj×O
X

pr1−→ Mj is the projection to the first factor, and the fibre product is
taken with respect to the projection Mj −→Mo = O. Since ρ̃ is flat, it is sufficient to show
that q is flat at ρ̃(m). We claim that for every l, the morphism

Z̃k(l)×
Oi

Mj×
O

X −→ Oi(16)

is flat at ρ̃(m). This follows from the fact that this morphism is part of a commutative
diagram

Zk(l)×
O

M×
O

X = Z̃k(l)×
Oi

M×
O

X Z̃k(l)×
Oi

Mj×
O

X

Zk(l) Z̃k(l)

?

(15)

-ρ̃

?

(16)

-restriction of πi

in which, by our assumptions, the bottom horizontal morphism is flat everywhere and the
left vertical morphism is flat at m since p(m) does not belong to Zk+1. Since ρ̃ is flat,
it follows that the right vertical morphism is flat at ρ̃(m), which is our claim about (16).
From this claim and from [EGAIV, Théorème 11.5.1] (cf. also [Mat86, Theorem 22.3]), it
follows that q is flat at ρ̃(m). Since this holds for every sufficiently big i, p is flat at m.

3.3.5. Investigation of the functor Hi
Z. In order to apply Theorem 7 and its corollaries, it

will be useful to have a condition which guarantees that the sheaf underlying the derived

functor Hi
Z in the categoryM(G) coincides with O−MH

i
Z , the derived functor of H0

Z in the

category of OO-modules, and QcH
i
Z, the derived functor of H0

Z in the category Qc(O).

Lemma 3. Let us assume that the open immersion O − Z −→ O is quasi-compact. Then

if M is a quasi-coherent OO-module, O−MH
i
Z is also quasi-coherent. Moreover, there are

canonical base-change isomorphisms

s∗O−MH
i

ZM
∼= O−MH

i

s−1(Z)

(
s∗M

)
(17)

t∗O−MH
i

ZM
∼= O−MH

i

t−1(Z)

(
t∗M

)
.

Proof. The first assertion is [Har67, Proposition 2.1.], and the second a consequence of
the exact sequence [Har67, Proposition 1.1.b] and a combination of [EGAIII, Proposi-
tion 1.4.15] and [EGAIV, 1.7.21].

The isomorphisms (17), together with the structure of an object of M(G) on M , define

the structure of an object ofM(G) on O−MH
i
ZM . Let us denote this object of M(G) by

H̃i
ZM .
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Proposition 10. Assume that Z ⊂ O is an invariant closed subset and that the inclu-
sion O − Z −→ O is quasi-compact. Then there is a unique natural transformation of
cohomological δ-functors on M(G):

Hi
ZM −→ H̃

i
ZM.

This natural transformation is an isomorphism if moreover the following two conditions
are satisfied:

• s is affine.

• For every injective object A of Qc(O) and every j > 0, O−MH
j
A vanishes. In other

words, the canonical natural transformation

QcH
j

Z −→
O−MH

j

Z

on functors from Qc(O) to itself is an isomorphism.

Proof. The existence of the natural transformation follows from the universal property of
a derived functor. To prove that it is an isomorphism, it is sufficient to show that every

object M of M(G) can be embedded into an object I of M(G) with O−MH
j
Z(I) = 0 for

j > 0. To achieve this, embed M into an injective object J of Qc(X) and put I = RJ ,
where R is the right adjoint to the forgetful functorM(G) −→ Qc(O) (cf. Proposition 6).
The composition of the embedding M −→ I with the adjunction morphism I −→ RI is a
monomorphism inM(G). Therefore, it is sufficient to show that RI is O−MH-acyclic. By
the explicit formula for R in Proposition 6, this amounts to

O−MH
j
(
s∗t
∗J
)

= 0 if j > 0.(18)

There are obvious Leray-type spectral sequences

Ep,q
2 = O−MH

p

ZR
qs∗X ⇒ Rp+q

(
H0
Zs∗

)
X(19)

Ep,q
2 = Rps∗

O−MH
q

s−1(Z)X ⇒ Rp+q
(
s∗H

0
s−1(Z)

)
X,

where the derived functor Rp+q is taken on the category of OM-modules. Since s∗H0
s−1(Z)

∼=

H0
Zs∗, the derived functors to which these spectral sequence converge are canonically iso-

morphic. Using this and applying [EGAIII, Proposition 1.4.14] to f = IdM and g = s,
and by [Har67, Proposition 2.1], we see that the spectral sequence, applied to X = t∗J ,
amounts to an isomorphism

O−MH
p

Zs∗t
∗J ∼= s∗

O−MH
p

s−1(Z)t
∗J.
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But

O−MH
p

s−1(Z)t
∗J = O−MH

p

t−1(Z)t
∗J

∼= t∗O−MH
p

ZJ

∼= t∗QcH
p

ZJ

= 0.

The first of these line is the invariance of Z, the second is (17), the third is a consequence
of our second assumptions, and the fourth line follows from the injectivity of I. The proof
of (18) is complete.

We will also need a condition which can be used to verify the second assumption of
Proposition 10.

Proposition 11. Let X be an affine prescheme, Z a closed subset of X which can be
defined by finitely many elements of a Noetherian subring of OX(X) over which OX(X) is

flat. Then the natural transformation QcH
j
Z −→

O−MH
j
Z is an isomorphism.

Proof. This follows from a combination of [Har67, Theorem 2.3, Lemma 2.4, and Propo-
sition 2.6] with the fact that the second of the two equivalent conditions of [Har67,
Lemma 2.4] is invariant under flat base change.

3.4. Application of Morava’s result. Let p be a prime number and Z(p) the localisation
of Z at p. Let G = (O,M) be the affine groupoid scheme representing the following functor
from the category of affine schemes to the category of groupoids: For every affine scheme
X = Spec(R), objects of G(X) are formal group laws F (S, T ) = S + T =

∑
a+b≥2 fa,bS

aT b

in one variable with coefficients in R. Morphisms from F to G are formal power series
φ(S) =

∑∞
a=1 φaS

a satisfying φ(F (S, T )) = G(φ(S), φ(T )), where φi ∈ R for all i, and φ1

is a unit in R. Moreover, let G̃ ⊂ G be the subgroupoid scheme with the same underlying
scheme of objects, but in which φ1 = 1 is required for morphisms. We have

G̃ = ker(G
δ
−→ Gm),(1)

where Gm = Spec Z(p)[T, T
−1] is the multiplicative group over Z(p) and δ, the differential

at the origin, sends every morphism φ ∈M(X) to φ1. There also is a morphism of schemes

Gm×Z(p)
O

γ
−→ M which sends every unit ρ ∈ R to the morphism φ(T ) = ρT in M(X).
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It is a section for δ, satisfies sγ = IdO and makes the diagram

Gm×Gm×O Gm×M M×M

Gm×O M

-(Id·p1,γ·(p2,p3))

?

(µ·(p1,p2),IdO·p3)

-(µ·t,IdM)

?

c

-γ

commutative, where µ is the multiplication on Gm, c is the composition law of G, and all
products are in the category of Z(p)-schemes.

By well-known results of Lazard, Milnor, Quillen, and Landweber-Novikov, G and G̃
exist and we have an isomorphism of groupoid schemes

G̃ = (SpecMU∗, SpecMU∗MU).

Therefore,M(G̃) is equivalent to the category of ungraded comodules over the cogroupoid

ring (MU∗,MU∗MU). In particular, every object F ofM(G) defines an object ofM(G̃)
by restriction, and therefore the structure of an ungraded (MU∗,MU∗MU)-comodule on
the MU∗-module F (O). Since F is an object ofM(G), every f ∈ F (O) has a unique finite
decomposition f =

∑∞
k=−∞ fk such that for the pull back with respect to the composition

Gm×Z(p)
O

γ
−→M

s
−→ O we have

(µγ)∗f =
∞∑

k=−∞

T−kfk,

where T is the parameter of Gm. There is a grading on F (O) defined by

F (O)l =
{
f ∈ F (O)

∣∣∣ fk = 0 unless l = 2k
}
.

It is easy to see that the grading on MU∗ = OO(O) coincides with the usual one, that
F (O) with this grading becomes a graded (MU∗,MU∗MU)-comodule, and that we get
an equivalence of categories betweenM(G) and the category of graded (MU∗,MU∗MU)-
comodules concentrated in even dimension.

For 0 ≤ k ≤ ∞, let Zk ⊆ O be the closed subset corresponding to formal group laws
of height ≥ k on a Fp-algebra, and let Uk = O − Zk. The reduced closed subscheme Zk

corresponds to the ideal Ik = 〈p, V1, . . . , Vk−1〉. Let Ik be the quasi-coherent sheaf on O
defined by Ik.

Our aim is to apply the results of the last subsection to the groupoid scheme G. We
first have to convince ourselves that the assumption of Proposition 3.3.4 holds. We will do
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this by applying Proposition 3.3.5. However, as I said before, we first have to reduce to a
Noetherian situation. This will be done using the result of the following subsubsection.

3.4.1. Base change to Noetherian MU∗-algebras satisfying the Landweber condition. Let

X be a Noetherian prescheme and let X
f
−→ U∞ ⊂ O be a morphism. We say that f

satisfies the assumptions of the Landweber exact functor theorem if for every x ∈ X, every
k and every i > 0, we have

Tor
OO,f(x)

i

(
OX,x,OO,f(x)

/
Ik,f(x)OO,f(x)

)
= {0}.

Another formulation of this condition is that p, V1, . . . , Vk is a regular sequence of OX,x (cf.
[Lan76, Theorem 2.6]). By the Hauptidealsatz, this condition implies that f−1(Zk+1) is
either empty or of codimension 1 in f−1(Zk). In particular, if a Noetherian O-prescheme
X satisfies the assumptions of the exact functor theorem, then there exists an m such that
f(X) ⊆ Um.

Theorem 8. Let X be a Noetherian O-prescheme. The following conditions are equivalent:

• For every k and l, (3.3.15) is flat.
• (3.3.13) is flat.
• X satisfies the assumptions of the Landweber exact functor theorem.

Corollary 1. Let X
f
−→ O be a Noetherian O-prescheme which satisfies the assumptions

of the exact functor theorem. Let m be the smallest number with f(X) ⊆ Um. Then

M(GUm)
f∗
−→M(GX)

and

MZk(GUm)
f∗
−→Mf−1(Zk)(GX), 0 ≤ k ≤ m

are equivalences of categories, and we have a canonical isomorphism

f ∗Hp
ZkM ∼= H

p
f−1(Zk)f

∗M.

Indeed, a point of O is in the image of (3.3.13) if and only if the formal group law it pa-
rameterizes is, over some field extension, isomorphic to the formal group law parametrized
by a point of X. By a result of Lazard [Rav86, Theorem A2.2.11], it follows that the
image (3.3.13) is either disjoint to or contains all of Uk ∩ Zk. By the Landweber condi-
tion, f−1(Zk−1) is either empty or strictly larger than f−1(Zk). Therefore, if the image
of (3.3.13) intersects Uk ∩ Zk, then it contains all of Uk. This implies that the image of
(3.3.13) it must be all of Um. It follows that (3.3.13) becomes quasi-compact and faithfully
flat if its image is replaced by Um. Therefore, that the corollary is a consequence of the
theorem follows from Proposition 3.3.7. We will now prove Theorem 8.

Let us first assume that (3.3.15) is flat. We want to apply Proposition 3.3.9 to verify
that (3.3.13) is flat. Indeed, MU∗MU is a polynomial ring in infinitely many variables
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MU∗[X1, . . . ], where deg(Xi) = 2i (cf. [Rav86, A2.1.10]), such that the cotarget homo-
morphism sends every element of MU∗ to the constant polynomial, and we put

Mi = Spec
(
MU∗[X1, . . . , Xi]⊗ Z(p)

)
.

Also, MU∗ is a polynomial ring in infinitely many variables MU∗[z1, . . . ] (cf. [Rav86,
A2.1.10]), and we put

Oi = Spec
(
Z(p)[z1, . . . , zi]

)
.

It is easy to see that the assumptions of Proposition 3.3.9 are valid.
Let us now assume that (3.3.13) is flat. We want to verify the Landweber exact functor

condition. Let E = M×O
X. The projection from E to the second factor is always faith-

fully flat, therefore the Landweber condition for X
f
−→ O are equivalent to the Landweber

conditions for E
g
−→ O, where g is the composition

E = M×
O

X −→ X
f
−→ O.

Also, since the Landweber conditions are trivially valid for O
Id
−→ O, they are valid for the

morphism E
h
−→ O defined as the composition

E = M×
O

X −→M
s
−→ O,(2)

since we are assuming that h is flat. But since Ik is an invariant sheaf of ideals on O, we
have g−1Ik = h−1Ik, and this sheaf of ideals contains the section g∗Vk+1 − h∗Vk+1 since
Vk+1 is known to be invariant modulo Ik. Therefore, the Landweber conditions for g and
h are equivalent, and we conclude that f satisfies the Landweber conditions.

To complete the final step in the proof of Theorem 8, we need a result of Lubin and
Tate [LT66] which we now formulate. It is well-known (cf. [Rav86, Appendix A]) that
two formal groups laws of height m over an algebraically closed field are isomorphic, and
that their endomorphism rings are isomorphic to the maximal order in a division algebra
of invariant 1

n
with center Qp. Moreover, there is a formal group law Fm,o of height m

over Fp such that all endomorphisms of Fm,o over Fp are already defined over Fpm.Let
Wm = Spec(Zp[[V1, . . . , Vm−1]]) = Spec(Rm). The result of Lubin and Tate asserts that
there is a formal group law Fm on Wm which is a universal deformation of Fm,o, i.e., which
classifies all formal group laws on Artinian local rings with residue field containing Fp and
whose image in the residue field is Fm,o. Let Em be the ring of endomorphisms of Fm,o over
Fp. It is the maximal order in a central division algebra Dm of dimension m2 and invariant
1
m

over Zp (cf. [Rav86, Theorem A2.2.17]). Let

W̃m = Wm ×
Spec Zp

Spec W(Fpm) = Spec(R̃m),
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where W(Fpm) is the Witt ring and

R̃m = Rm

⊗

Zp

W(Fpm) = W(Fpm)[[V1, . . . , Vm−1]],

and let F̃m be the pull-back of Fm to W̃m, i. e., the same formal group law as Fm, but
with coefficients regarded as elements of the larger ring R̃m. Let d ∈ E×m. By the universal
property of Fm, there is a unique action d of d on the scheme W̃m such that there exists
an isomorphism

d∗F̃m
d̃
−→ F̃m

whose evaluation at the closed point is d. Moreover, d̃ is determined uniquely by this
condition.

The Frobenius endomorphism of Fm,o

ϕm(T ) = T p

defines a uniformizing element φm ∈ Em, and φmm is a central element π of Em by our
assumptions about the field of definition of the endomorphisms of Fm,o. We define d and

d̃ for arbitrary d ∈ D× as follows: ϕ
m

is the automorphism of W̃m over Wm defined by the
Frobenius automorphism of W(Fpm), and ϕ̃m is the identity automorphism of Fm, regarded

as an isomorphism between F̃m and ϕ∗
m
F̃m. An arbitrary d ∈ D× can be represented as

d = rϕkm, we put d = rϕk
m

and d̃ = r̃ϕ̃km. It is easy to see that de = de and d̃e = d̃ẽ hold

in full generality. Moreover, p and p̃ are the identity. Therefore, d and d̃ depend only on
the image of d in the factorgroup

Qm = D×m
/ {

π
k
∣∣∣ k ∈ Z

}
.

For any O-prescheme Y , d and d̃ determine an action of Qm on the Y -prescheme

Y×
O

M×
O

W̃m.

The following result is a consequence of the work of Lubin and Tate:

Proposition 1. Let Y
g
−→ Um be any morphism and assume that the ideal g−1Im is nilpo-

tent on Y . Then the projection

I = Y×
O

M×
O

W̃m
π
−→ Y(3)

is an pro-étale Qm-principal homogeneous space. More precisely, for every open normal
subgroup K ⊂ Qm, the quotient prescheme Y×O

W̃m/K exists, is étale over Y (in the
sense of [SGA1, Exp. IX, Definition 1.1]) and is a principal homogeneous space for Qm/K,
and the natural morphism

Y×
O

M×
O

W̃m −→ lim
K
Y×

O

W̃m/K
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is an isomorphism.

Proof. Let us first assume that g−1Im is not only nilpotent, but is even zero. Then for the
formal group law on Y , we have p = V1 = . . . = Vm−1 = 0, while Vm is a unit. Let G
be the formal group law classified by g, let G(k) be the finite closed subgroupscheme of G
defined by the pk-th power of the generator, let F (k)

o be defined in the same way, and let
Ik be the prescheme of isomorphisms from G(k) to F (k)

o . The same considerations which
were used after formula A2.2.12 in the proof of [Rav86, A2.2.11] prove that Ik+1 −→ Ik
is an Artin-Schreier covering of degree pm for k ≥ 0 and that I0 −→ Y is an unramified
Kummer covering of degree pm− 1. Since (3) is the limit of the preschemes Ik, this proves
our assertion in the special case g−1Im = 0.

Now we deal with the general case, in which g−1Im is only supposed to be nilpotent.
Let Yo be the closed subscheme of Y defined by this sheaf of ideals. For every Y -scheme
X, let Xo be the preimage of Yo in X. We claim that

HomY -schemes(Xo, Io) −→ HomY -schemes(X, I)(4)

is a bijection. This is a consequence of the following claim, which will follow from the work
of Lubin and Tate:

Lemma 1. Let X be a prescheme, F a formal group law and I a nilpotent sheaf of ideals
on X containing p. Let Xo = V (I) and let Fo be the reduction of F modulo I. Let

a morphism Xo
fo−→ W̃m mapping every point of Xo to the closed point of W̃m and an

isomorphism Fo
ϕo−→ f ∗o F̃m be given. Then there exists a unique pair (f, ϕ), where X

f
−→ W̃m

is an extension of fo and F
φ
−→ f ∗F̃m is an isomorphism whose reduction modulo I is ϕo.

We have already seen that Io is a pro-étale Yo-prescheme. By [SGA1, Exp. IX, Proposi-
tion 1.7], there is a unique way to extend Io to a pro-étale Y -prescheme Ĩ. By the bijection

(4), the isomorphism Ĩo
α
−→ Io extends in a unique way to a morphism Ĩ

β
−→ I. The inverse

isomorphism Io
α−1

−−→ Ĩo extends by [SGA1, Exp. IX, Proposition 1.7] in a unique way to

a morphism I
β
−→ Ĩ. We have αβ = IdI since (4) is injective and βα = IdĨ by [SGA1,

Exp. IX, Proposition 1.7]. Therefore, I ∼= Ĩ, and the result follows.
It remains to convince ourselves that Lemma 1 really is a consequence of the work of

Lubin and Tate. Here the only difficulty is that [LT66, Theorem 3.1] (of which Lemma 1
essentially is a reformulation) is only formulated in the Noetherian case. However, the
proof given there works in full generality. Also, one could use [Mes72, Theorem V.1.6.
and Corollary II.4.5] (using the method of the proof of [Mes72, Proposition IV.1.10] to
translate the deformation result from the language of universal extensions to the language
used by Lubin and Tate).
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We will now prove by induction on k that for every Noetherian O-prescheme satisfying
the assumptions of the Landweber exact functor theorem, the morphism (3.3.15) is flat.
We assume that this assertion holds for all k < m and prove it for k = m.

It follows from the induction assumption, from Proposition 1, and from the part of
Theorem 8 which we already proved that the projection

O×
O

M×
O

W̃m −→ O(5)

is flat. Indeed, since W̃m satisfies the Landweber condition, the induction assumption
proves that (3.3.15) with X replaced by W̃m is flat for all k < m. The same also holds for
k = m by Proposition 1 and for k > m since then the left hand side of (3.3.15) is empty.
By the part Theorem 8 which we already proved we conclude that (5) is flat.

LetX satisfy the assumptions of the exact functor theorem. We claim that the projection

X×
O

M×
O

W̃m −→ W̃m(6)

is flat. Since p, . . . , Vm−1 is a regular parameter sequence for the unique closed point of
W̃m, this amounts to the assertion that the pull-back of this sequence with respect to (6) is
again regular. By the argument which we used after (2), this is equivalent to the assertion
that the pull-pack of p, . . . , Vm−1 with respect to the composition

X×
O

M×
O

W̃m
p
−→ X

f
−→ O

is regular, which follows since p, which is the base change of (5) to X, is flat and since f
satisfies the Landweber conditions.

We are now ready to prove the flatness of (3.3.15) for k = m. Let S = Zk(l)−Zk+1. We
consider the following commutative diagram:

S×
O

M×
O

X S×
O

M×
O

X×
O

M×
O

W̃m

(S×
O

M×
O

W̃m)×̃
Wm

(X×
O

M×
O

W̃m)

S S×
O

M×
O

W̃m

?

α

� β

?

γ

?

δ

� ε

In this diagram, γ is defined by

γ
(
(σ, µ1, ξ, µ2, υ)

)
=
(
(σ, µ1µ2, υ), (ξ, µ1, υ)

)
,
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where σ, µi, ξ, υ are points of S, M, X, and W̃m with values in some prescheme A, and
the composition µ1µ2 is defined using the groupoid law of G. It is easy to see that γ is
an isomorphism. We have to prove the flatness of α. Since β and ε are faithfully flat
by Proposition 1, it is sufficient to prove that δ is flat. But δ is obtained from the flat
morphism (6) by base-change.

Corollary 2. Let W̃m
f̃m−→ O be the morphism classifying the formal group law F̃m. Then

M(GUm)
f̃∗m−→M(GW̃m

)

and

MZk(GUm)
f̃∗m−→Mf̃−1

m (Zk)(GW̃m
), 0 ≤ k ≤ m,

are equivalences of categories, and we have a canonical isomorphism

f̃ ∗mH
p
ZkM ∼= H

p

f̃−1
m (Zk)

f̃ ∗mM.

Indeed, f̃m satisfies the assumptions of the exact functor theorem.
It seems that this corollary is not covered by [Mor85], although the second equivalence

of categories with k = m is part of the main result of that paper.

3.4.2. The chromatic spectral sequence.

Corollary 3. The groupoid scheme G and the filtration O = Z0 ⊃ Z1 ⊃ . . . ⊃ Zk ⊃ . . .
satisfy the assumptions of Theorem 7. In particular, there is a chromatic spectral sequence
(3.3.6) converging in the sense explained in [Ada74, Theorem III.8.2] to the limit described
in (3.3.6) and Corollary 3.3.2. Moreover, the cohomological dimension of the category
M(GUn) can be investigated by means of Corollary 3.3.1.

Indeed, what we have to prove is that every injective object ofMZk(GUm) is injective in

M(GUm). By Corollary 2, we may replace Um by W̃m and Zk by f̃−1
m (Zk) and derive the

result from Proposition 3.3.5.
Although we will not need it in our application to the generalisation of Bousfield’s de-

scription of K-local spectra, it may still be worthwhile to give a criterion which guarantees
that the limit of (3.3.6) is Ext∗M(G)(M,N).

Corollary 4. Assume that N is an object of M(G) whose underlying MU∗-module is
a finitely presented MU∗-module (for instance, because N arises as the even or odd de-
gree part of the complex bordism of a finite spectrum). Then the canonical morphism in

D
(
M(G)

)

N −→ Holim←−−−Rjq∗j
∗
qN

is an isomorphism. In particular, in this case the limit of the chromatic spectral sequence
(3.3.6) is Ext∗M(G)(M,N).
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Proof. It is sufficient to verify the vanishing condition (3.3.10). By Proposition 3.3.10 and
Proposition 3.3.11, we have an isomorphism in Qc(O)

Hi
Zm(N) ∼= O−MH

i

Zm(N).

Therefore, it is sufficient to verify condition (3.3.10) for finitely presented OO-modules N

and with Hi
Zm replaced by O−MH

i
Zm . Since OO(O) is the union an ascending sequence of

polynomial rings over which it is flat, every finitely presented OO-module has a finite free
resolution. This reduces our assertion to the case N = OO. But in this case, it follows
from [Har67, Theorem 2.3] and the fact that (p, V1, . . . , Vm−1) is a regular sequence that

O−MH
i

Zm(OO) = 0 unless i = m,

proving (3.3.10).

3.4.3. The injective dimension of M(GUk
).

Theorem 9. Let k < p− 1, then the injective dimension of M(GUk
) is k2 + k.

By Corollary 3, we can try to prove the theorem by an application of Corollary 3.3.1. In
order to prepare an application of the chromatic spectral sequence, we use Morava’s result
to give an explicit description of MZm(GUm) in terms of torsion modules over a certain
ring with an action of a profinite group.

Recall from the formulation of Proposition 1 the action d of d ∈ Qm on W̃m = Spec(R̃m).

The isomorphism of formal group laws d̃ is classified by a morphism

W̃m −→ W̃m×
O

M×
O

W̃m

whose compositions with the projections to the first and second factor W̃m are d and
IdW̃m

. For every object object M of M(GW̃m
), evaluating (3.3.1) along this morphism

gives an automorphism ψd of the group M(W̃m). The following identities are satisfied for
m ∈M(W̃m), f ∈ R̃m, and d, e ∈ Qm:

ψd
(
ψe(m)

)
= ψde(m)(7)

ψd(fm) = ψd(f) · ψd(m),

where we have put
ψd(f) = (d∗f).

Recall that Im was the invariant ideal of MU∗ classifying height m formal group laws
in characteristic p. In the following considerations, we will denote

ImR̃m = 〈p, V1, . . . , Vm−1〉R̃m

by the same letter I −M . The following fact is a slight reformulation of results of Morava
[Mor85]:
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Proposition 2. Let Sm ⊂ W̃m be the closed point. The functor which to the object M of
MSm(GW̃m

) associates the group M(W̃m) with its additional structures is an equivalence

of categories between MSm(GW̃m
) and the following category: Objects are R̃m-modules M ,

together with an action of the profinite group Qm, such that the relations (7) hold and such
that every element of M is annihilated by some power of Im and invariant under some
open subgroup of Qm.

Proof. For every n, let

W̃ (n)
m = Spec

(
R̃m

/
Inm
)
⊂ W̃m

and

Qm×̂W̃
(n)
m = lim

U

((
Qm

/
U
)
× W̃ n

m

)
,

where the inverse limit over all open subgroups U ⊆ Qm exists by [EGAIV, 8.2.3]. Recall

the action d̃ of d ∈ Qm on the formal group law Fm over W̃m. Since modulo 〈p, V1, . . . , Vm〉n

every coefficient of the power series representing d̃ depends only on d modulo an open
subgroup of Qm, there is a morphism of schemes

Qm×̂W̃
(n)
m −→ W̃ (n)

m ×
O

M×
O

W̃ (n)
m

whose pull-back by the morphism W̃
(n)
M −→ Qm×̂W̃ (n)

m defined by d ∈ Qm corresponds to d̃.
By Proposition 1, this morphism an isomorphism. It follows readily from this observation
that the proposition is true if one restricts its formulation to objects annihilated by Inm.
But an object of any of the two categories occurring in the formulation of the proposition
is in a canonical way the colimit over n of subobjects satisfying this condition.

As an immediate consequence of this result, we have:

Corollary 5. The class of all objects M of MSm(GW̃m
) for which M(W̃m) is a finitely

generated R̃m-module is a generating class.

Now we want to study Ext-groups inMSm(GW̃m
) using the description of this category

by Proposition 2. Our result is a slight generalisation of [Mor85, Proposition 2.1.4], which
is essentially obtained by putting M = OW̃m

.

Proposition 3. Let M be an object of M(GW̃m
) such that M(W̃m) is a finitely generated

R̃m-module, and let N be any object of M(GW̃m
). Assume that one of the objects M and

N is supported in Sm. Then the action of Qm on

Ext∗R̃m

(
M(W̃m), N(W̃m)

)
(8)

defined by

ψd(ε) = ψdεψd
−1
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for an extension class ε is continuous for the discrete topology on the Ext-module, and we
have a spectral sequence

Ea,b
2 = Ha

(
Qm,ExtbR̃m

(
M(W̃m), N(W̃m)

))
⇒ Exta+bM(G

W̃m
)(M,N),(9)

where the cohomology is the cohomology of the profinite group Qm (i. e., using locally
constant cochains).

Proof. If M is finitely generated and supported in Sm, for an object L of M(GW̃m
) the

continuity of the action of Qm on the discrete group

HomR̃m

(
M(W̃m), L(W̃m)

)
(10)

is clear. If M is finitely generated and L is supported in Sm, then we still have

HomR̃m

(
M(W̃m), L(W̃m)

)
= colim

k
HomR̃m

(
M(W̃m)/IkmM(W̃m), L(W̃m)

)
.(11)

If N is an object of MSm(GW̃m
), it has an injective resolution in this category. We shall

see later that this resolution also defines an injective resolution of N(W̃m) in the category
of all R̃m-modules. By (11), this implies

ExtbR̃m

(
M(W̃m), N(W̃m)

)
= colim

k
ExtbR̃m

(
M(W̃m)/IkmM(W̃m), N(W̃m)

)
.(12)

In the case where M is supported in Sm, we have

HomM(G
W̃m

)(M,L) = HomR̃m

(
M(W̃m), L(W̃m)

)Qm

by Proposition 2 since the left hand side is equal to HomM(G
W̃m

)(M,H0
SmL) and since

(H0
Sm
L)(W̃m) is the submodule of Im-torsion elements of L(W̃m). If L is supported in Sm,

a similar fact holds by (11). Therefore, and (in the case where we do not assume that M
is supported in Sm) by the arguments which we used to derive (12) from (11), (9) follows
from the general Grothendieck spectral sequence for the derived functor of a composition
once we prove the following two facts:

• For every injective object I of M(GW̃m
), and for every Im-torsion Rm-module M ,

we have

ExtbR̃m

(
M, I(W̃m)

)
= 0

if a > 0. If in addition I is supported in Sm, then I(W̃m) is an injective R̃m-module.
• For the same I and for M subject to the assumptions of the proposition,

Ha
(
Qm,HomR̃m

(
M(W̃m), I(W̃m)

))

vanishes if a > 0.
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We claim that for the proof of both assertions it is possible to assume that I is Im-torsion.
Indeed, if M is supported in Sm we have

ExtbR̃m
(M, I) = ExtbR̃m

(M,H0
SmI).

But H0
SmI is an injective object of MSm(GW̃m

), by Corollary 3. In both cases this allows
us to assume that I is an injective object ofM(GW̃m

) with support in Sm.
We denote the right adjoint of the forgetful functor fromMSm(GW̃m

) to the category of

Im-torsion R̃m-modules by R. It is given by
(
RX

)
(W̃m) = R(X) =

{
α : Qm −→ X

∣∣∣ α is locally constant
}
,(13)

where the actions of R̃m and Qm on the right hand side of (13) are given by

(f · α)(d) = ψd(f) · α(d)
(
ψe(α)

)
(d) = α(de),

where f ∈ R̃m and d, e ∈ Qm, and α belongs to the right hand side of (13).
For any finitely generated R̃m-Module M , it follows that we have an isomorphism of

R̃m-modules with Qm-action

HomR̃m

(
M,R(X)

)
∼= R

(
HomR̃m

(M,X)
)
.(14)

If X is an injective R̃m-module, the right hand side of (14) is exact in M , therefore the left
hand side is also exact in M for finitely generated R̃m-modules M . Since R̃m is Noetherian,
this implies the injectivity of R(X) as an R̃m-module. For arbitrary X, Ha(Qm,R(X))
vanishes if a > 0. The same therefore holds for the cohomology of Qm with coefficients
in the left hand side of (14). We have verified the two points which we had to prove
for arbitrary injective objects I of MSm(GW̃m

) in the special case I = RX, where X is

an injective Im-torsion R̃m-module. But an arbitrary injective object I can always be
embedded as a direct summand into an injective object of this form.

Corollary 6. Let m be not divisible by p − 1, and let A and B be objects of M(GW̃m
),

then
Homr

D

(
M(G(Um))

)
(
A,RHSm(B)

)

vanishes for r > m2 +m.

Proof. Let N ∗ = RHSm(B). We first show that for every object M of MSm(GW̃m
) such

that M(W̃m) is a finitely generated R̃m-module, we have

Homk

D

(
M(G

W̃m
)

)(M,N∗) = 0 if k > m2 + d.(15)

Once this is proved, the corollary easily follows from the following result:
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Lemma 2. Let A be an AB5 category and let U be a generating class for A such that any
quotient object of an element of U also is in U .

• Let K
π
−→ L be a morphism in A such that

HomA(U,K) −→ HomA(U, L)

is an epimorphism for every U ∈ U . Assume also that K is injective. Then π is a
split epimorphism.
• Let A have sufficiently many injective objects (for instance, because it is a Grothen-

dieck category) and let X be an object of D+(A) with the property that for all
elements U of U , Homi

D+(A)(U,X) vanishes unless i ≤ e. Then X can be represented
by an injective complex which is concentrated in dimensions ≤ e.

To apply the second point of the lemma to the proof of Corollary 6, one takes M =
MSm(GW̃m

), X∗ = N∗, and U the class of all objects U of A for which U(W̃n) is a

finitely generated R̃m-module. By Corollary 5, this is a generating class of MSm(GW̃m
).

The remaining assumption of Lemma 2 is (15). It follows that N ∗ can be represented
by an injective complex I∗ in MSm(GW̃m

) which is concentrated in dimensions between 0
and d + m2. But every injective object of MSm(GW̃m

) also is injective in M(GW̃m
), by

Corollary 3.
To prove (15) for M(W̃m) finitely generated, we note that

Homk

D

(
MSm (G

W̃m
)

)(M,RHSmB) ∼= ExtkM(G
W̃m

)(M,B)(16)

since every injective object ofMSm(GW̃m
) is injective inM(GW̃m

) and since H0
Sm

is right
adjoint to the inclusion functor

MSm(GW̃m
) −→M(GW̃m

).

But the right hand side of (16) is the limit of the spectral sequence (9). Let

Xb = ExtbR̃m

(
M(W̃m), B(W̃m)

)
,

the spectral sequence has the form

Ea,b
2 = Ha(Qm, X

b)⇒ Exta+bM(G
W̃m

)(M,B).

By Serre’s result about the injective dimension of regular local Noetherian rings, we have
Xb = 0 if b > m. Therefore, it is sufficient to show that Ea,b

2 = 0 if a > m2. We have
E×m ⊂ Qm, and it is known that the cohomological dimension of the profinite group E×m
is m2 and the strict cohomological dimension is m2 + 1 (cf.[Mor85, 2.2.0–2] or [Rav86,
Theorem 6.2.10]). Therefore, Y a,b = Ha(E×m, X

b) = 0 for a > m2, since Xb is p-torsion. By
Hochschild-Serre, it is sufficient to show that Hr(Qm/E

×
m, Y

a,b) = 0 for r > 0. But Qm/E
×
m
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is cyclic of order m, generated by image of the Frobenius endomorphism ϕm of Fm,o, and
the action of the image of ϕm in Qm/E

×
m is σ-linear:

ϕm(wy) = F (w)ϕm(y), y ∈ Y a,b, w ∈ W (Fpm).

It is well-known that this implies that the higher cohomology of Y a,b vanishes: For instance,
by flat descent it follows that Qm/Em- and W (Fp)-modules

Y a,b = W (Fpm)
⊗

Zp

Ỹ a,b

for Zp-modules Ỹ a,b, such that ϕm acts as the Frobenius automorphism of the Witt ring and
as the identity on the second factor of the tensor product. Since W (Fpm)/Zp is unramified,
the normal basis theorem holds for the rings of integers in unramified extensions, W (Fpm)
as a Galois module is induced from the zero subgroup of Qm/E

∗
m, hence the same holds

for Y a,b, and Y a,b has no higher cohomology.

Proof of Lemma 2: Both parts of the lemma are probably well-known, but we prove
them here because we did not find a reference for it.

For the first point, let Π be the poset of all pairs (Λ, σ), where Λ
iΛ−→ L is a subobject

of L and Λ
σ
−→ K satisfies πσ = iΛ. The partial ordering is defined by (Λ, σ) � (Λ̃, σ̃) if

Λ ⊆ Λ̃ and σ̃ |Λ = σ. Π is not empty because it contains the zero subobject, and every
totally ordered subset of Π has an upper bound because in an AB5 category the colimit
of a totally ordered family of subobjects of L is a subobject of L. By Zorn’s lemma, it
follows that Π has a maximal element (L̃, σ). Assume that L̃ ⊂ L. Then there exists a
L̃ ⊂ L ⊆ L such that L/L̃ ∈ U . By the injectivity of K there exists an extension of σ̃ to
some morphism L

τ
−→ K. The morphism

L
Id

L
−πτ

−−−−→ L

annihilates L̃. Since L/L̃ ∈ U , by our assumption on π this implies the existence of a
morphism L/L̃

α
−→ K such that IdL − πτ = πα. Let σ = τ + α. Then (L, σ) ∈ Π and

(L̃, σ̃) � (L, σ), contradicting the maximality of (L̃, σ̃). We conclude L̃ = L, and σ̃ is the
desired left inverse of π.

For the second point we may assume that X∗ is given by an injective complex I∗ which
is bounded from below. By our assumption, for k > e and U ∈ U the mapping

HomA(U, Ik−1)
d
−→ HomA(U,Zk)

must be surjective. By the first point, this implies that Ik−1 d
−→ Zk is a split epimorphism.

In other words, Zk = Bk and there exists a section Bk σ̃
−→ Ik−1. Extending σ̃ to Ik

σ
−→ Ik−1,

we see that Zk = Bk splits off Ik and also that Zk−1 splits off Ik−1. Therefore, we may
replace I∗ by the complex {0} −→ I0 −→ . . . −→ Ie−1 −→ Ze −→ {0}.

The proof of Lemma 2 is complete. Q.E.D.
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Let now M and N be objects ofM(GUk
), with k < p− 1. We have already verified that

we can apply Corollary 3.3.1 to get a spectral sequence

Em,n
1 =





Homm+n
D+(M(GUm ))(j

∗
mM,RHZm∩Umj

∗
mN) if 0 ≤ m ≤ k

0 otherwise
⇒ Extm+n

M(GUk
)(M,N).

By Corollary 2, the initial term is isomorphic to

Homm+n

D+(M(G
W̃m

))
(f̃ ∗mM,RHSm f̃ ∗mN),

which by Corollary 6 vanishes for m+ n > m2 +m, in particular for m+ n > k2 + k. This
proves one half of Theorem 9.

It remains to prove that the cohomological dimension is also exactly k2 +k. Let χ be the
unique character of Qk with values in F×p such that Hk2

(Qk,Fp,χ) ∼= Fp (for the existence
of such a character, cf. [Mor85, § 2.2]). Let M be the object ofM(GW̃k

) whose underlying
quasi-coherent sheaf is OW̃k

, and whose structure morphism is the tautological isomorphism
s∗OO

∼= OM
∼= t∗OO. Let N be the object of M(GW̃k

) described by the correspondence

of Proposition 2 as follows: The underlying R̃k-module is Fpk, with Ik acting trivially, and

ψd is χ(d)−1Frobv(d). It is well known from commutative algebra that ExtkR̃k
(Fpk , R̃k) is a

one-dimensional Fqk-vector space M , and that this is the only non-vanishing Ext-group.
Moreover, the action of Qk on this space is given by χ and the Frobenius automorphism.

It follows from (8) that Extk
2+k
M(G

W̃k
)(N,M) ∼= Fp. By Corollary 2, there exist objects A and

B ofMUk∩Zk(GUk
) such that f̃ ∗kA

∼= N and f̃ ∗kB
∼= M . We have

Extk
2+k
M(GUk

)(A,B) ∼= Fp.

The proof of Theorem 9 is complete.

Remark 1. The same methods can be used to prove the following result: Let k̃ ≤ k. If
there exists no number l which is a multiple of p − 1 and satisfies k̃ ≤ l ≤ k, then the
cohomological dimension ofMZ k̃(GUk

) is k2 + k. Otherwise, the cohomological dimension
is infinite.

3.5. Generalisation of Bousfield’s result to higher chromatic primes. Let an odd

prime number p be fixed and let G be the same as in the last subsection. Let M(G)
T
−→

M(G) be the following self-equivalence of categories: For (M,φM) ∈ Ob(M(G)), let

T
(
(M, δ)

)
be the object (M,φTM) ofM(G) with the same underlying OO-module M and

the isomorphism

φTM : s∗M ∼= t∗M

given by

φTM = δ · φM ,
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where G
δ
−→ Gm was defined after (3.4.1). We claim that (M(G), T ) has a splitting of

period p− 1. This will follow readily from the following fact:

Lemma 1. Let F be a formal group law over flat Z(p)-algebra A,and let ζ ∈ A be a p−1-th

root of unity. Then there exists a unique automorphism F
[ζ]
−→ F such that the differential

of [ζ] at the origin is ζ.

Proof. Obviously, the assertion depends only on the isomorphism class of A. In the case
where A is a Q-algebra, F is isomorphic to the additive formal group law. If F is the
additive formal group law, then all automorphisms of F are given by multiplication by
a certain element of A. The existence and uniqueness of [ζ] are clear in that case. This
proves the uniqueness of [ζ] in general, since A is assumed to be a flat Z(p)-algebra.

In general, by a theorem of Cartier [Rav86, A2.1.18], F is isomorphic to a p-typical
formal group law. Thus, it remains to prove the existence of [ζ] for p-typical F . We claim
that for F p-typical,

[ζ](T ) = ζT

is an automorphism of F . Again, we may replace A by A ⊗ Q since A was assumed to
be without torsion. Then an isomorphism logF from F to the additive formal group law
exists, and the p-typicalness of F is equivalent to the assertion that logF has the form

logF (T ) =
∞∑

k=0

wkT
pk

.

Then logF (ζT ) = ζ logF (T ), and this implies that [ζ] really is an automorphism of F .

If X is a flat O-scheme and if ζ ∈ OX(X) is a p− 1-th root of unity, then the endomor-
phism [ζ] of the pull-back to X of the universal formal group law on O is classified by a
morphism

X
σζ
−→ X×

O

MD ⊆ X×
O

M×
O

X,

where
M∆ = O×

O×O

M.

In this formula for M∆, O is made into an O×O-scheme by the diagonal embedding, and
M by the pair of morphisms (s, t). In other words, M∆ is the scheme of endomorphisms of
the objects parametrized by O. If (M,φM) is an arbitrary object ofM(GX), then the pull-

back σ∗ζ (φM) of the isomorphism s∗XM
φM−−→ t∗XM with respect to σζ is an automorphism

Sζ of M . It is clear that Sζ is a natural automorphism of the identity functor ofM(GX).

Moreover, if Y
f
−→ X is a flat morphism, then the automorphism Sf∗ζ and f ∗(Sζ) of the

functorM(GX) −→M(GY ) coincide. If η is another p− 1-th root of unity on X, then we
have

σζη = c̃(σζ , ση),



UNIQUENESS FOR CERTAIN CATEGORIES WITH AN ADAMS SS 99

where (
M∆×

O

X
)
×
X

(
M∆×

O

X
)

c̃
−→M∆×

O

X

is the morphism obtained by base-changing the restriction of c to M∆ to X. Consequently,
we have Sζη = SζSη. In particular, Sp−1

ζ = Sζp−1 = Id.
We apply these remarks to the O-scheme

X = O×
Z(p)

µµp−1
p
−→ O

where µµp−1 is the scheme of p− 1-th roots of unity. Let ζ be the universal (p− 1)-th root
of unity. If M is an object of M(G) and if m ∈ M(O), then p∗m is a section of p∗M to
which we may apply Sζ . Since OO×µµp−1 is a free OO-module with base 1, ζ, . . . , ζp−2, we
have

Sζ
(
p∗m

)
=

∑

k∈Z/(p−1)Z

ζkp∗
(
πk(m)

)

with πk(m) ∈M(O). We claim that the πk(m) are idempotents and that πkπl = 0 if k 6= l.
Indeed, let

X̃ = O×
Z(p)

µµp−1×
Z(p)

µµp−1
r
−→ O,

let η and ϑ be the two copies of the universal (p− 1)-th root of unity on µµp−1× µµp−1, and
let

X̃
q1,2,3
−−−→ X

be defined by pqi = r and q∗1(ζ) = η, q∗2(ζ) = ϑ, and q∗3(ζ) = ηϑ. The remarks about the
functor-automorphisms Sζ made in the last paragraph imply

∑

i∈Z/(p−1)Z

∑

j∈Z/(p−1)Z

ηlϑmr∗πi(πj(m)
)
) =

∑

j∈Z/(p−1)Z

ϑjq∗1(ζ
ip∗(πi(πj(m))))

=
∑

j∈Z/(p−1)Z

ϑjq∗1(Sζ(p
∗(πj(m))))

=
∑

j∈Z/(p−1)Z

ϑjSη(r
∗(πj(m)))

= Sη

( ∑

j∈Z/(p−1)Z

ϑjr∗(πj(m))
)

= Sη
(
Sϑ(m)

)

= Sηϑ(r
∗(m))

=
∑

k∈Z/(p−1)Z

ηkϑkr∗(πk(m)),
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from which identity our assertions about πk ensue. If we denote the image of M under the
idempotent πk by Mk, then M is the direct sum of its subobjects Mk, andM(G) splits as

M(G) ∼=
⊕

k∈Z/(p−1)Z

M(G)k,

where

M(G)k =
{
M ∈ Ob(M(G))

∣∣∣Mk = M
}
.

Since δ(σζ) = ζ, it is easy to see from the above definition of T that T (M(G)k) =M(G)k+1.
Therefore, M(G)0 is a splitting of period p− 1 for (M(G), T ).

Remark 1. It is clear from the proof of Lemma 1 and from Quillen’s relation between MU∗
and BP that this splitting corresponds to the splitting of the category of even degree
(BP∗,BP∗BP)-comodules by those comodules which are concentrated in degree 2p− 2.

Let M̃(G) be the category of graded objects M ofM(G), together with an isomorphism

M [2] ∼= TM . In other words, M̃(G) is obtained from M(G) and T the same way that

Ã was obtained from A and T in our consideration of K-local spectra. Let M̃(GUk
) be

obtained in the same way from M(GUk
) and T . Let S(p)

C
be the localisation of the stable

homotopy category of C-diagrams of spectra at p (the odd prime number which we kept
fixed from the beginning of this subsection). The complex bordism functor, localised at p,
defines a cohomological functor

S(p)
0 −→ M̃(G),

which we denote by MU. We have MU
(
S[1]

)
∼= MU

(
S
)
[1]. Let the functor

M̃(G) −→ M̃(GUk
)

obtained from

M(G)
j∗
k−→M(GUk

)

be also denoted by j∗k , and let

MUk(S) = j∗k(S).

Let S(p),k
C

be the thick subcategory of all objects S of S (p)
C

with MUk(SX) = 0 for all X ∈ C.

Since M̃(GUk
) is a quotient category of the category of all (MU∗,MU∗MU)-comodules,

Corollary 3.2.1 and Proposition 2.1.3 imply that MUk has an Adams spectral sequence by
injective resolutions. We have verified all assumptions of Theorem 5 and can formulate the
result of an application of this theorem as follows:
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Theorem 10. Let p be an odd prime, and let k > 0 be an integer such that L = 2p− 2−

k2−k is positive. Then S(p)
C

/
S(p),k

C
is, in dimension dim C < L, equivalent to the derived

category of quasi-periodic cochain complexes

D([1],1)(M̃(GUk
)
C

) ∼= D(T,2)(M(GUk
)C).(1)

This isomorphism identifies the localisation of the even degree part of the complex bordism
functor with the zeroth cohomology functor and has the uniqueness properties described in
the second part of Theorem 5.

References

[Ada74] J. F. Adams. Stable Homotopy and Generalised Homology, volume 10 of Chicago Lectures in
Mathematics. The University of Chicago Press, 1974.

[Adl96] Jürgen Adleff. Konstruktionen für Homotopielimites in Frobeniuskategorien und prätriangulierten
DG-Kategorien. Diplomarbeit, Bonn, 1996.

[BBD82] A. A. Beilinson, J. N. Bernstein, and P. Deligne. Faisceaux pervers. In Analyse et topologie sur
les espaces singuliers, volume 100 of Astérisque, pages 7–171. 1982.
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Co-Türme triangulierter Kategorien. Diplomarbeit, Bonn, 1995.

[Har66] Robin Hartshorne. Residues and Duality, volume 20 of Lecture Notes in Mathematics. Springer,
1966. Lecture Notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64.

[Har67] Robin Hartshorne. Local cohomology, volume 41 of Lecture Notes in Mathematics. Springer, 1967.
A seminar given by A. Grothedieck, Harvard University, Fall 1961.

[Hel88] Alex Heller. Homotopy theories, January 1988.
[HS71] Peter John Hilton and Urs Stammbach. A Course in Homological Algebra, volume 4 of Graduate

Texts in Mathematics. Springer, 1971.
[Kan57] Daniel M. Kan. On c.s.s. complexes. Amer. J. Math., 79:449–476, 1957.
[Kel91] Bernhard Keller. Derived categories and universal problems. Comm. Algebra, 19(3):699–747, 1991.
[Lan76] Peter S. Landweber. Homological properties of comodules over MU∗(MU) and BP∗(BP ). Amer.

J. Math., 98(3):591–617, 1976.
[LT66] Jonathan Lubin and John Tate. Formal moduli for one-parameter formal lie groups. Bull. Soc.

Math. France, 94:49–59, 1966.
[Mac71] Saunders MacLane. Categories for the working mathematician, volume 5 of Graduate Texts in

Mathematics. Springer, 1971.
[Mat86] Hideuki Matsumura. Commutative ring theory, volume 8 of Cambridge studies in advanced math-

ematics. Cambridge University Press, 1986.
[Mes72] William Messing. The Crystals Associated to Barsotti-Tate Groups: with Applications to Abelian

Schemes., volume 264 of Lecture Notes in Mathematics. Springer, 1972.
[Mor85] Jack Morava. Noetherian localisation of cobordism comodules. Ann. of Math. (2), 121:1–39, 1985.
[Mos68] R. M. F. Moss. On the composition pairing of Adams spectral sequences. Proc. London Math.

Soc., 18:179–192, 1968.
[Nee90] Amnon Neeman. The derived category of an exact category. J. Algebra, 135:388–394, 1990.
[Nee91] Amnon Neeman. Some new axioms for triangulated categories. J. Algebra, 139:221–255, 1991.
[Nee92] Amnon Neeman. Stable homotopy as a triangulated functor. Invent. Math., 109:17–40, 1992.
[Qui67] Daniel G. Quillen. Homotopical Algebra, volume 43 of Lecture Notes in Mathematics. Springer,

1967.
[Qui69] Daniel G. Quillen. Rational homotopy theory. Annals of Mathematics, 90:205–295, 1969.
[Qui73] Daniel G. Quillen. Higher algebraic K-theory I. In Higher K-Theories, volume 341 of Lecture

Notes in Mathematics, pages 85–147. Springer, 1973.
[Rav84] Douglas C. Ravenel. Localization with respect to certain periodic homology theories. Amer. J.

Math., 106:351–414, 1984.
[Rav86] Douglas C. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres, volume 121 of

Pure and Applied Mathematics. Academic Press, Inc., 1986.
[Rav87] Douglas C. Ravenel. Localization and periodicity in homotopy theory. In E. Rees and J. D. S.

Jones, editors, Homotopy Theory, volume 117 of London Math. Soc. Lecture Notes Series, pages
174–194. Cambridge University Press, 1987. Proceedings of the Durham Symposium 1985.

[Rav93] Douglas C. Ravenel. Nilpotence and Periodicity in Stable Homotopy Theory, volume 128 of Annals
of Mathematics Studies. Princeton University Press, 1993.



UNIQUENESS FOR CERTAIN CATEGORIES WITH AN ADAMS SS 103

[Ric89] Jeremy Rickard. Derived categories and weak equivalences. J. Pure Appl. Algebra, 61:303–317,
1989.

[SGA1–7] A. Grothendieck and Collaborators. Séminaire de Géométrie Algébrique 1–7, volume 224
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