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Abstract. A subspace adaptation of the Coleman-Li trust region and interior method is proposed for solving large-scale

bound-constrained minimization problems. This method can be implemented with either sparse Cholesky factorization or

conjugate gradient computation. Under reasonable conditions the convergence properties of this subspace trust region method

are as strong as those of its full-space version.
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1. Introduction. Recently Coleman and Li [1, 2, 3] proposed two interior and reflective Newton

methods to solve the bound-constrained minimization problem, i.e.,

minx2<n f(x); l � x � u;(1.1)

where l 2 f< [ f�1ggn, u 2 f< [ f1ggn, l < u, and f is a smooth function, f : <n ! <1. Both

algorithms are interior methods since the iterates fxkg are in the strict interior of the feasible region, i.e.,xk 2 int(F) def= fx : l < x < ug. These two methods differ in that a line search to update iterates is used

in [2, 3] while a trust region idea is used in [1]. However, in both cases convergence is accelerated with

the use of a novel reflection technique.

The line search method version appears to be computationally viable for large-scale quadratic prob-

lems [3]. Our main objective here is to investigate solving large-scale bound-constrained nonlinear

minimization problems (1.1), using a large-scale adaptation of the Trust-region Interior Reflective (TIR)

approach proposed in [1].

The TIR method [1], outlined in FIG. 1, elegantly generalizes the trust region idea for unconstrained

minimization to bound-constrained nonlinear minimization. Here gk def= rfk; Hk def= r2fk. The crucial

role of the (diagonal) affine scaling matrices Dk and Ck will become clear in x2.

An attractive feature of the TIR method [1] is that the main computation per iteration is solving a� Research partially supported by the Applied Mathematical Sciences Research Program (KC-04-02) of the Office of Energy
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The TIR Method [1]

[Let 0 < � < � < 1, 0 < Λl < Λu and 1 < 1 < 2 be given. Let x0 2int(F); ∆0 < Λu.]

For k = 0; 1; � � �
1. Compute fk , gk, Dk, Hk , and Ck; define the quadratic model k(s) def= gTk s+ 1

2sT (Hk + Ck)s:
2. Compute a step sk , with xk + sk 2 int(F), based on the subproblem:

mins f k(s) : kDksk2 � ∆kg:
3. Compute �k = f(xk + sk)� f(xk) + 1

2sTk Cksk k(sk) :
4. If �k > � then set xk+1 = xk + sk . Otherwise set xk+1 = xk.

5. Update ∆k as specified below.

Updating Trust Region Size ∆k
1. If �k � � then set ∆k+1 2 (0; 1∆k]:
2. If �k 2 (�; �) then set ∆k+1 2 [1∆k;∆k]:
3. If �k � � then

if ∆k > Λl then

set ∆k+1 2 either [1∆k;∆k] or [∆k; 2∆k],
otherwise,

set ∆k+1 2 [∆k;min(2∆k;Λu)].
FIG. 1. The TIR Method for Minimization Subject to Bounds
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standard unconstrained trust region subproblem:

mins2<nf k(s) : kDksk2 � ∆kg:(1.2)

The method of Moré and Sorensen [4] can be directly applied to (1.2) if Cholesky factorizations of

matrices with the structure of Hk can be computed efficiently. However, this method is unsuitable for

large-scale problems if the HessianHk is not explicitly available or (sparse) Cholesky factorizations are too

expensive. Recently, Sorensen [5] proposed a new method for solving the subproblem (1.2) using matrix

vector multiplications. Nonetheless, the effectiveness of this approach for large-scale minimization,

particularly in the context of our trust region algorithm, is yet to be investigated.

We take the view that solving the full space trust region subproblem (1.2) is too costly for a large-

scale problem. This view is shared by Steihaug [6] who proposes an approximate (conjugate gradient)

approach. Steihaug’s approach to (1.2) seems viable although our computational experience (see Table

4) indicates that important negative curvature information can be missed, causing a significant increase

in the number of minimization iterations.

In this paper, we propose an alternative: an approximate subspace trust region approach (STIR). We

verify that, under reasonable conditions, the convergence properties of this STIR method are as strong

as those of its full-space version. We explore the use of sparse linear algebra techniques, i.e., sparse

Cholesky factorization and preconditioned conjugate gradients, in the context of this approach.

In addition, we demonstrate the benefits of our affine scaling, reflection and subspace techniques

with computational results. First, for (1.1), our affine scaling technique outperforms the classical Dikin

scaling [7], at least in the context of our algorithm. Second, we examine our method with and without

reflection. We show the reflection technique can substantially reduce the number of minimization itera-

tions. Third, our computational experiments support the notion that the subspace trust region method is

a promising way to solve large-scale bound-constrained nonlinear minimization problems. Compared to

the Steihaug [6] approach, the subspace approach is more likely to capture negative curvature information

and consequently leads to better computational performance. Finally, our subspace method is competitive

with, and often superior to, the active set method in LANCELOT [8].

The paper is organized as follows. In x2, we briefly summarize the existing TIR method. Then we

provide a computational comparison of the subspace trust region method and the Steihaug algorithm in

the context of unconstrained minimization in x3. We introduce a subspace method STIR, and discuss its

convergence properties, in x4. Issues concerning the computation of negative curvature directions and

inexact Newton steps are discussed in x5; computational results are provided indicating that performance

is typically not impaired by using an inexact Newton step. Concluding remarks appear in x7. The

convergence analysis of the STIR method is included in the appendix.

2. The TIR Method. In this section we briefly review the full-space TIR method [1], sketched in

FIG. 1. This method closely resembles a typical trust region method for unconstrained minimization,

minx2<n f(x). The key difference is the presence of the affine scaling (diagonal) matrices Dk and Ck .

Next we briefly motivate these matrices and the TIR algorithm.
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The trust region subproblem (1.2) and the affine scaling matrices Dk and Ck arise naturally from

examining the first-order Kuhn-Tucker conditions for (1): if a feasible point l < x is a local minimizer,

then xigi = 0 for 1 � i � n and if gi < 0 then xi is not at any of its bounds. This characterization is

expressed in the nonlinear system of equationsD(x)�2rf(x) = 0;(2.1)

where D(x) def= diag(jv(x)j�1=2);(2.2)

and the vector v(x) 2 <n is defined below: for each 1 � i � n,

(i). If gi < 0 and ui <1 then vi def= xi � ui;
(ii). If gi � 0 and li > �1 then vi def= xi � li;
(iii). If gi < 0 and ui =1 then vi def= �1;

(iv). If gi � 0 and li = �1 then vi def= 1.

The nonlinear system (2.1) is not differentiable everywhere; nondifferentiability occurs when vi = 0.

Hence we avoid such points by maintaining strict feasibility, i.e., restricting xk 2 int(F). A Newton step

for (2.1) is then defined and satisfies M̂kDksNk = �ĝk;(2.3)

where ĝk def= D�1k gk = diag(jvkj1=2)gk;M̂k def= D�1k HkD�1k + diag(gk)Jvk :(2.4)

Here Jv(x) 2 <n�n corresponds to the Jacobian of jv(x)j. Each diagonal component of the diagonal

matrix Jv equals to zero or �1. If all the components of l and u are finite, Jv = diag(sgn(g)). If vi = 0,

we define Jvii = 1.

Equation (2.3) suggests the use of the affine scaling transformation: x̂ def= Dkx. This transformation

reduces the constrained problem (1.1) into an unconstrained problem: a local minimizer of (1.1) corre-

sponds to an unconstrained minimizer in the new coordinates x̂ (for more details, see [1]). Therefore a

reasonable way to improve xk is to solve the trust region subproblem

minŝ2<nf ̂k(ŝ) : kŝk2 � ∆kg;(2.5)

where  ̂k(ŝ) def= ĝTk ŝ+ 1
2 ŝT M̂k ŝ:
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Let s = D�1k ŝ. Subproblem (2.5) is equivalent to the following problem in the original variable space:

mins2<nf k(s) : kDksk2 � ∆kg;(2.6)

where  k(s) def= sT gk + 1
2
sTMks;Ck def= Dkdiag(gk)JvkDk;Mk def= Hk + Ck:

In addition to the close resemblance to an unconstrained trust region method, the TIR algorithm has

strong convergence properties with explicit conditions on steps for optimality. We now describe these

conditions.

The TIR algorithm requires strict feasibility, i.e., xk + sk 2 int(F). We use ��k[dk] to denote the

step obtained from dk with a possible step-back for strict feasibility. Let ��k denote the minimizer alongdk within the feasible trust region, i.e., ��k = argmin�f k(�dk) : k�Dkdkk � ∆k; xk + �dk 2 Fg: Let�k 2 [�l; 1] for some 0 < �l < 1 and �k � 1 = O(kdkk). Then��k[dk] def= �k��kdk def= ( ��kdk if xk + ��kdk 2 int(F);�k��kdk otherwise:(2.7)

The above definition implies that �k = 1 if xk + ��kdk 2 int(F).
Explicit conditions which yield first and second-order optimality are analogous to those of trust region

methods for unconstrained minimization [1]:

(AS.3)  k(sk) < � �k[�D�2k gk], kDkskk � �0∆k; xk + sk 2 int(F).
(AS.4) Assume that pk is a solution to mins2<nf k(s) : kDksk � ∆kg and �q and �q0 are two

positive constants. Then sk satisfies  k(sk) < �q �k[pk]; kDkskk � �q0 ∆k; xk + sk 2int(F):
Condition (AS.3) is necessary for first-order convergence; (AS.4), together with (AS.3), is necessary

for second-order convergence. Both conditions (AS.3) and (AS.4) are extensions of convergence condi-

tions for unconstrained trust region methods. In particular, when l = �1 and u =1, these assumptions

are exactly what is required of trust region methods for unconstrained minimization problems.

Satisfaction of both conditions (AS.3) and (AS.4) is not difficult. For example, one can choose sk
so that  k(sk) is the minimum of the values  �k[pk] and  �k[�D�2k gk]. However, this does not lead to

an efficient computation process. In [3] and [2], we have utilized a reflection technique to permit further

possible reduction of the objective function along a reflection path on the boundary. We have found in [3]

and [2] that this reflection process significantly enhances performance for minimizing a general quadratic

function subject to simple bounds.
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FIG. 2. Reflection Technique

For all the computational results in this paper, sk is determined from the best of three points

corresponding to  �k[pk],  �k[�D�2k gk] and  �k[pRk ] where pRk denotes the piecewise direction path with pk
reflected on the first boundary it encounters, see FIG. 2.

We can appreciate the convergence results for this approach by observing the role of the affine scaling

matrixDk. For the components xi which are approaching the “correct” bounds, the sequence of directionsf�D�2k gkg becomes increasingly tangential to these bounds. Hence, the bounds will not prevent a large

step size along f�D�2k gkg from being taken. For the components xi which are approaching the “incorrect”

bounds, f�D�2k gkg points away from these bounds in relatively large angles (the corresponding diagonal

components of Dk are relatively large and gk points away from these bounds). Hence, a reduction of at

least  �k[�D�2k gk] implies the scaled gradient fD�2k gkg converges to zero (i.e., first-order optimality).

The scaling matrix used in our approach is related to, but different from, the scaling typically used

in affine scaling methods for linear programming. The affine scaling matrix Daffinek def= diag(min(xk �lk; uk � xk)) [7], commonly used in affine scaling methods for linear programming, is formed from

the distance of variables to their closest bounds. Our scaling matrix D2k equals to Daffinek only when

min(xk � lk; uk � xk) = jvkj. (Note that even in this case we employ the square root of the quantities

used to define Daffinek .)

Before we investigate a subspace adaptation of TIR, we demonstrate the effectiveness of our reflection

idea and affine scaling technique. We consider random problem instances of molecule minimization

[9, 10], which minimize a quartic subject to bounds on the variables. Table 1 and 2 list the average

number of iterations (over ten random test problem instances for each entry) required for the different

techniques under comparison. The notation > in front of a number indicates that the average number is at

least this number because the iteration number exceeds 1000, the maximum allowed, for some instance.

The details of the algorithm implementation are given in x6.

Table 1 demonstrates the significant difference made by a single reflection. The only difference
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n
100 200 400 800 1000

With Reflection 34.1 41.7 66.8 83.4 93.6

Without Reflection 71.4 >210.1 >425.4 >302.2 > 408.5

TABLE 1

The STIR algorithm with and without reflection: number of iterationsn
100 200 400 800 1000

unconstrained: Dk 38.6 47.3 61.4 72.7 93.6Daffinek 36.4 49 58.5 73.9 94.6

constrained: Dk 36.6 50.5 65.6 89.7 102.3Daffinek >517.4 >617.6 >517.3 >1000 >1000

TABLE 2

Comparison of the STIR scaling Dk and Dikin scaling Daffinek : number of iterations

between the rows with and without reflection is the following. Without reflection, sk is determined by the

best of the two points based on  �k[pk] and  �k[�D�2k gk]; with reflection, sk is determined by the best of

the three points based on  �k[pk],  �k[�D�2k gk] and  �k[pRk ] (with reflection). The superiority of using the

reflection technique is clearly demonstrated with this problem.

In Table 2, we compare the computational advantage of the selection Dk over Daffinek : the only

difference is the scaling matrix. We differentiate between problems that have an unconstrained solution

(no bounds active at a solution) and those with a constrained solution. We observe that, for unconstrained

problems, there is no significant difference between the two scaling matrices. However, for the constrained

problems we tested, the choice Dk is clearly superior. We observe that when Dk is used, the number

of iterations for a constrained problem is roughly the same as that for the corresponding unconstrained

problem. For Daffinek , on the other hand, the number of iterations for a constrained problem is much larger

than for the corresponding unconstrained problem.

3. Approximation to the Trust Region Solution in Unconstrained Minimization. There are two

possible ways to approximate a full-space trust region solution in unconstrained minimization.

Byrd, Schnabel, and Schultz [11] suggest substituting the full trust region subproblem in the uncon-

strained setting by

mins2<nf k(s) : ksk2 � ∆k; s 2 Skg;(3.1)

where Sk is a low-dimensional subspace. (Our implementation employs a two-dimensional choice forSk.)

Another possible consideration for the approximation of (1.2) is the Steihaug idea [6], also proposed
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in the large-scale unconstrained minimization setting. In a nutshell, Steihaug proposes applying the

method of preconditioned conjugate gradients (PCG) to the current Newton system until either negative

curvature is revealed, the current approximate solution reaches the boundary of the trust region, or the

Newton system residual is sufficiently reduced.

We believe that a subspace trust region approach better captures the negative curvature information

compared to the Steihaug approach [6]. To justify this we have conducted a limited computational study

in the unconstrained minimization setting.

We implement the subspace method with the subspace Sk defined by the gradient direction gk and the

output of a Modified Preconditioned Conjugate Gradient (MPCG) method applied to the linear Newton

system: Hks = �gk . The output is either an inexact Newton step sINk defined by,HksINk = �gk + rk such that krkk=kgkk � �k;(3.2)

or a direction of negative curvature, detected by MPCG. Algorithm MPCG is given in greater detail in

FIG. 11, Appendix B. Our implementation of the Steihaug method can also be found in Appendix B.

Both the Steihaug and subspace implementations are wrapped in a standard trust region framework for

the unconstrained minimization problem. For both methods the preconditioning matrix used is Pk = G2k
where Gk is the diagonal matrix computed from Gkii = pjHkiij for Hkii 6= 0 andGkii = 1 otherwise.

The same strategy is used to update ∆k (see x6 for more details). We let ∆0 = 0:1kg0k where the k � k2 is

used for the subspace method and k � kG for the Steihaug method ([6]).

We used twenty different unconstrained nonlinear test problems. All but four are test problems

described in [12], but with all the bound constraints removed. The problems EROSENBROCK and

EPOWELL are taken from [13]. The last two problems, molecule problems MOLE1 and MOLE3, are

described in [9, 10]. For all problems, the number of variables n is 260. The minimization algorithm

terminates when kgk2 � 10�6. We use the parameter � = 0:0005 in both FIG. 11 and FIG. 12.

Tables 3 and 4 compare the Steihaug and subspace methods described above in terms of the number of

minimization iterations and the total number of conjugate gradient (CG) iterations. Table 3 shows problems

for which negative curvature was not detected, and Table 4 shows problems for which negative curvature

was detected. Although not included here, the function values and gradient norms (upon termination) were

virtually the same for both methods for all problems. Since these values were essentially the same among

the two methods, we only discuss the difference in iterations counts. The difference in minimization and

CG iteration counts is plotted in FIG. 3 and FIG. 4.

Most notable in Table 3 and the graphs of FIG. 3 is how strikingly similar the results are for the

Steihaug and subspace methods; the minimization with each method stops within two iterations of the

other in all cases. Furthermore, both methods take an identical number of total CG iterations except for

the problem BROWN1 where the Steihaug method takes four more iterations. When negative curvature

is encountered, shown in Table 4 and in FIG. 4, the iteration counts for each method are again similar

for a few problems. For most problems, however, the Steihaug method takes more iterations, and for

some problems the difference is substantial. This is particularly true for the problems CHAINWOOD,

MOLE1 and MOLE3 (for CHAINWOOD, problem 3 in FIG. 4, the total difference in iteration counts is
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Minimization CG

Problem Subspace Steihaug Subspace Steihaug

1. BROWN1 27 29 39 43

2. BROWN3 6 6 6 6

3. BROYDEN1A 11 11 81 81

4. BROYDEN1B 5 5 34 34

5. BROYDEN2B 7 7 71 71

6. CHAINSING 22 22 188 188

7. CRAGGLEVY 21 21 125 125

8. DEGENSING 22 22 188 188

9. EPOWELL 18 18 72 72

10. GENSING 22 22 83 83

11. TOINTBROY 7 7 58 58

12. VAR 43 43 5590 5590

TABLE 3

Comparison when only positive curvature is encountered: number of iterations

Minimization CG

Problem Subspace Steihaug Subspace Steihaug

1. AUGMLAGN 36 29 267 228

2. BROYDEN2A 22 19 247 196

3. CHAINWOOD 156 988 3905 3878

4. EROSENBROCK 44 46 52 86

5. GEROSE 23 33 166 165

6. GENWOOD 58 63 304 275

7. MOLE1 46 119 460 376

8. MOLE3 125 186 6311 5356

TABLE 4

Comparison when negative curvature is encountered: number of iterations
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explicitly noted as it is beyond the scale of the graph). In general the subspace method does take more CG

iterations on problems with negative curvature, but it is these extra relatively inexpensive CG iterations

that reduce the total number of minimization iterations. (Again, for the problem MOLE3 the difference

in CG iterations is explicitly noted in FIG. 4 as it is beyond the scale of the graph.)

A closer examination of the behavior of the two algorithms indeed shows that when negative curvature

is not encountered, both methods take similar steps. (In this case, if the trust region is large enough,

both methods in FIG. 11 and FIG. 12 will stop under the same conditions after the same number of

CG iterations, as displayed in Table 3.) By the nature of the algorithms, if the Steihaug method detects

negative curvature, then so will the subspace approach. However if the subspace algorithm detects

negative curvature, the Steihaug method may terminate before it finds negative curvature; and then it does

not converge (to a local minimizer) as quickly as the subspace method. The important role that negative

curvature plays is supported by the fact that the subspace method often moves in a substantial negative

curvature direction when the Steihaug method overlooks negative curvature. Furthermore, it is when the

trust region radius ∆k is small that the Steihaug method is most likely to stop early and miss negative

curvature. Thus it appears that the effectiveness of the Steihaug idea decreases as nonlinearity increases.

4. The STIR Method. Supported by the discussion in x3, we propose a large-scale subspace adap-

tation of the TIR method [1] for the bound constrained problem (1.1).

In moving from the unconstrained subspace approach to the box-constrained setting, it seems natural

to replace the full trust region subproblem (1.2) by the following subspace subproblem

mins2<nf k(s) : kDksk2 � ∆k; s 2 Skg;(4.1)

where Sk is a small-dimensional subspace in <n, e.g., a two-dimensional subspace. A two-dimensional

subspace for the trust region subproblem (2.5) can be selected from the span of the two vectorsfD�1k gk; ŝNk g and a negative curvature direction ŵk for M̂k . This suggests that we form Sk from the

directions fD�2k gk;D�1k ŝNk ;D�1k ŵkg. Will such subspace formulations succeed in achieving optimality?

We examine this issue in more detail.

It is clear that the including the scaled gradient direction D�2k gk in Sk , and satisfying (AS.3), will

guarantee convergence to a point satisfying the first-order optimality conditions. Let us assume for now

that fxkg converges to a first-order point x�. To guarantee that x� is also a second-order point the

following conditions must be met.

Firstly, it is clear that a “sufficient negative curvature” condition must be carried over from the

unconstrained setting [14]. To this end, we can require that sufficient negative curvature of the matrix M̂k
be captured if it is indefinite, i.e., Sk must contain a direction wk = D�1k ŵk such thatŵTk M̂kŵkkŵkk � maxf��nc; ��min(M̂k)g:(4.2)

Secondly, it is important that a solution to (4.1) lead to a sufficiently large step — the potential

difficulty is running into a (bound) constraint immediately. This difficulty can be avoided if the stepsize

sequence, along the trust region solution direction, is bounded away from zero. Subsequently, we define:
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DEFINITION 4.1. A direction sequence fskg has large-step-size if lim infk!1 jD2kskj <1.

If fast local convergence is desired then the subspace Sk should also contain a sufficiently accurate

approximation to the the Newton direction D�1k ŝNk when M̂k is positive definite and ŝNk = �M̂�1k ĝk. An

inexact Newton step ŝNk for problem (1.1) is defined as an approximate solution toM̂ks = �ĝk;
with accuracy �k: M̂kŝINk = �ĝk + rk such that krkk=kĝkk � �k:(4.3)

Can we select two-dimensional subspaces satisfying all three properties and thus guarantee quadratic

(superlinear) convergence to a second-order point? The answer, in theory, is yes — the subspace adaptation

of TIR algorithm (STIR) in FIG.5 is an example of a subspace method capable of achieving the desired

properties.

To ensure convergence to a solution, the solution sequence of the subspace trust region subproblems

(4.1) need to have large-step-size. Lemma 1 below indicates that this can be achieved if we set Sk =
spanfwk; zkg, where fwkg and fzkg are two sequences of uniformly independent vectors in the sense

that lim inffkzk � wkkg > 0, each with large-step-size.

LEMMA 1. Assume that fwkg and fzkg have large-step-size with kDkwkk = 1 and kDkzkk = 1.

Moreover, lim infk!1fkzk � wkkg > 0. Then the solution sequence fpkg to the subproblem (4.1) withSk = spanfzk; wkg has large-step-size.

Proof. The proof is very straightforward and is omitted here.

For the STIR method, a natural extension of the condition (AS.4) necessary for second-order opti-

mality is the following.

(AS.5) Assume that pk is a solution to mins2<nf k(s) : kDksk � ∆k; s 2 Skg and �q and�q0 are two positive constants. Then sk satisfies  k(sk) < �q �k[pk]; where kDkskk ��q0 ∆k and xk + sk 2 int(F):
Theorem 2 below, with the proof provided in the Appendix, formalizes the convergence properties

of STIR.

THEOREM 2. Let the level set L = fx 2 <n : f(x) � f(x0); x 2 Fg be compact and f : F ! <
be twice continuously differentiable on L. Let fxkg be the sequence generated by the STIR algorithm in

FIG.5. Then

1. If (AS.3) is satisfied, then the Kuhn-Tucker condition is satisfied at every limit point.
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The STIR Method

[Let 0 < � < � < 1, 0 < Λl < Λu and 1 < 1 < 2 be given. Let x0 2int(F); ∆0 < Λu.]

For k = 0; 1; � � �
1. Compute fk , gk, Dk, Hk , and Ck; define the quadratic model k(s) = gTk s+ 1

2sT (Hk + Ck)s:
2. Compute a step sk , with xk + sk 2 int(F), based on the subspace

subproblem,

mins f k(s) : kDksk2 � ∆k; s 2 Skg;
where the subspace Sk is set up as below.

3. Compute �k = f(xk + sk)� f(xk) + 1
2sTk Cksk k(sk) :

4. If �k > � then set xk+1 = xk + sk . Otherwise set xk+1 = xk.

5. Update ∆k as specified in FIG.1.

Determine Subspace Sk:

[Assume that wk = D�1k ŵk where fwkg has large-step-size. Let 0 < � < 1 be a

small positive constant.]

IF M̂k is positive definiteSk def= spanfD�2k gk; wkg
ELSE M̂k is not positive definite

IF (D�2k sgn(gk))TMk(D�2k sgn(gk)) < � kD�2k gkk2kwkk2 wTkMkwkSk def= spanfD�2k sgn(gk)g
ELSESk def= spanfD�2k sgn(gk); wkg
END

END

FIG. 5. The STIR Method for Minimization Subject to Bound Constraints
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2. Assume that both (AS.3) and (AS.5) are satisfied and ŵk in FIG. 5 contains sufficient negative

curvature information whenever M̂k is indefinite, i.e.,ŵTk M̂kŵkkŵkk2 � max(��nc; ��min(M̂k));
with �nc > 0 and 0 < � < 1. Then

(a) If every limit point of fxkg is nondegenerate, then there is a limit point x� at which

both the first and second-order necessary conditions are satisfied.

(b) If x� is an isolated nondegenerate limit point, then both the first and second-order

necessary conditions are satisfied at x�.
(c) If M̂� is nonsingular for some limit point x� of fxkg and ŵk = ŝNk whenever M̂k is

positive definite, then M̂� is positive definite, fxkg converges to x�, all iterations are

eventually successful, and f∆kg is bounded away from zero.

The degeneracy definition is the same as in [1].

DEFINITION 4.2. A point x 2 F is nondegenerate if, for each index i:g(x)i = 0 =) li < xi < ui:(4.4)

We have established that in principle it is possible to replace the full-dimensional trust region

subproblem with a two-dimensional variation. However, the equally strong convergence properties of

STIR hinges on obtaining (guaranteed) sufficient negative curvature direction with large-step-size. We

discuss this next.

5. Computing Negative Curvature Directions with Large-Step-Size. Is it possible, in principle,

to satisfy both the sufficient negative curvature requirement (4.2) and the large-step-size property? The

answer is yes: let uk be a unit eigenvector of M̂k corresponding to the most negative eigenvalue, i.e.,M̂kuk = �min(M̂k)uk. It is easily verified that for any convergent subsequence limk!1 �min(M̂k) < 0,

the sequence fD�1k ukg has large-step-size.

However, it is not computationally feasible to compute the (exact) eigenvector uk. Therefore,

approximations, and short cuts, are in order. Can we compute approximate eigenvectors with large-step-

size?

A good approximation to an eigenvector corresponding to an extreme eigenvalue can usually be

obtained through a Lanczos process [15]. Using the Lanczos method for M̂k with an initial vector q̂k ,

approximate eigenvectors at the j-th step are computed in the Krylov spaceK(M̂k; q̂k; j) def= span(q̂k; M̂kq̂k; � � � ; M̂ j�1k q̂k):
In the context of our algorithm, the vectors D�1k sgn(gk) orD�1k gk are natural choices for the initial vectorq̂k when applying the Lanczos method.
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Our key observation is the following. If a sequence fD�1k q̂kg has large-step-size then each sequence

in D�1k fq̂k; M̂kq̂k; � � � ; M̂ j�1k q̂kg retains this property.

Now assume that ŵk is the computed vector from the Lanczos method which contains the sufficient

negative curvature information with respect to M̂k . It can be verified, based on the recurrence relation,

that fD�1k q̂1k; � � � ;D�1k q̂jkg all have large-step-size if the Lanczos vectors fq̂1k � � � ; q̂jkg retain orthogonality.

Since ŵk is in the Krylov spaceK(M̂k; q̂k; j), it is clear that fwk = D�1k ŵkg has large-step-size. In other

words, in order to generate a negative curvature direction sequence with large-step-size, orthogonality

needs to be maintained in the Lanczos process. Fortunately, as discussed in [16], it is quite reasonable

to assume that until all of the distinct eigenvalues of the original matrix have been approximated well,

orthogonality of the Lanczos vectors are well maintained. Since we are only interested in a direction with

sufficient negative curvature, we expect that it can be computed before loss of orthogonality occurs.

A second (and cheaper) strategy is to employ a modified preconditioned conjugate gradient scheme,

e.g., MPCG in FIG.12. Unfortunately, this process is not guaranteed to generate sufficient negative

curvature; nonetheless, as indicated in [17], the MPCG output will satisfy the large-step-size property.

Finally we consider a modified Cholesky factorization, e.g., [18], to obtain a negative curvature

direction. Assume that fM̂kg is indefinite and fdkg is obtained from the modified Cholesky method. We

demonstrate below that fdk = D�1k d̂kg has large-step-size under a nondegeneracy assumption.

The negative curvature direction d̂k = Dkdk computed from the modified Cholesky method (see

[18], page 111) satisfies LTk d̂k = ejk ; and PTk M̂kPk + Ek = Lkdiag(�k)LTk ;
where Lk is a lower triangular matrix, Pk is a permutation matrix and ejk is the jkth elementary vector,

i.e., ejk(i) = 0, if i 6= jk and ejk(jk) = 1. Moreover, Ek is a bounded and non-negative diagonal matrix.

Without loss of generality, we assume that Pk = I .

We argue, by contradiction, that fdkg has the large-step-size property. Assume that fdkg does not

have this property. From LTk d̂k = ejk and that Lk is a lower triangular matrix with unit diagonals, it is

clear that d̂k[jk+1 : n] = 0. Moreover, from M̂k d̂k + Ekd̂k = �kjkLkejk , �k > � for some � > 0 and

definition (2.4) of M̂k, the first jk � 1 components of fDk d̂kg are bounded. This implies that fvjkg
converges to zero.

From the modified Cholesky factorization, the matrix M̂k [1: jk; 1: jk] is indefinite but M̂k [1: jk�1; 1: jk�1]
is positive definite. But this is impossible for sufficiently large k because, again using the definition (2.4)

of M̂k, fM̂k[1: jk; 1: jk]g converges to a matrix of the form" M̂k[1: jk�1; 1: jk�1] 0

0 �k #
where �k is positive (because of the nondegeneracy assumption). Therefore, we conclude that fdkg has

large-step-size.

6. Computational Experience. We demonstrate the computational performance of our STIR method

given in FIG.5. Below we report our experience with the modified Cholesky and the conjugate gradient
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(MPCG) implementations. We examine the sensitivity of the STIR method to a starting point. Finally,

some limited comparisons with SBMIN of LANCELOT [8] are also made.

In the implementation of STIR, we compute sk using a reflective technique as shown in FIG.2. The

exact trust region updating procedure is given below in FIG.6.

Updating Trust Region Size ∆k
Let � = 0:25; � = 0:75, Λl = 1, Λu = max(qPi min((ui � li)2; 1000); 1),
∆0 = min(0:1kgk;Λu), 0 = 0:0625; 1 = 0:5; 2 = 2 be given.

1. If �k � 0 then set ∆k+1 = 0∆;

2. If �k 2 (0; �] then set ∆k+1 = max(0∆k; 1kDkskk):
3. If �k 2 (�; �) then set ∆k+1 = ∆k:
4. If �k � � then

if ∆k > Λl
∆k+1 = 2∆k

otherwise

∆k+1 = min(max(∆k; 2kDkskk);Λu).
FIG. 6. Updating Trust Region Size

Our experiments were carried out on a Sun Sparc workstation using the Matlab environment.

The stopping criteria used are as follows. We stop if

either f(xk)� f(xk+1)) � �1(1 + jf(xk)j)
or kxk+1 � xkk2 � �2

or no negative curvature has been detected for M̂k and kDkgkk1 � �1:
We define �1 = 10�10 and �2 = p�1=10 = 10�6. We also impose an upper bound of 600 on the number

of iterations.

We first report the results of the STIR method using the modified Cholesky factorization. Table 5

lists the number of iterations required for some standard testing problems (for details of these problems

see [12]). (For all the results in this paper, the number of iterations is the same as the number of objective

function evaluations.) The problem sizes vary from 100 to 10; 000. The results in Table 5 indicate that, for

these testing problems at least, the number of iterations increases only slightly, if at all, with the problem

size. Moreover, in comparison to the unconstrained problems, the presence of the bound restrictions does

not seem to increase the number of iterations. This is depicted pictorially in FIG. 7. In this graph, the

problem size is plotted versus iteration count. For each problem, the corresponding points have been

connected to show how the iteration count relates to the problem size.

Our second set of results are for the STIR algorithm but using a conjugate gradient implementation.

We use the algorithm MPCG in FIG.12 to find the directions needed to form the subspace Sk. The

stopping condition applied to the relative residual in MPCG is � = 0:005. The results are shown in

Table 6 and FIG. 8. Again, for these problems the iteration counts are low and steady. The exception

is for the problem VAR C with 10; 000 variables, where the iteration count jumps to 86. This is one of
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n
Problem 100 200 500 1000 10000

GENROSE U 25 25 25 25 25

GENROSE C 11 11 11 11 10

GENSING U 24 25 25 26 27

GENSING C 18 19 20 20 21

CHAINSING U 23 23 23 23 23

CHAINSING C 16 16 16 16 19

DEGENSING U 22 23 23 40 39

DEGENSING C 28 28 28 28 29

GENWOOD C 9 10 10 10 11

CHAINWOOD C 9 10 10 10 11

BROYDEN1A U 12 12 13 13 14

BROYDEN1A C 11 11 11 11 11

BROYDEN1B U 7 7 7 7 7

BROYDEN1B C 8 8 8 8 8

BROYDEN2A U 13 13 13 14 14

BROYDEN2A C 14 19 17 19 19

BROYDEN2B U 9 9 9 9 9

BROYDEN2B C 13 11 15 14 15

TOINTBROY U 8 8 8 8 8

TOINTBROY C 9 9 9 9 9

CRAGGLEVY U 16 14 15 16 15

CRAGGLEVY C 29 29 30 30 31

AUGMLAGN C 38 32 35 36 37

BROWN3 U 8 8 8 8 8

BROWN3 C 17 10 11 9 11

BVP U 9 10 9 8 8

BVP C 11 11 10 10 7

VAR U 9 9 10 12 15

VAR C 18 18 23 45 38

TABLE 5

STIR method with exact Newton steps: number of iterations
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FIG. 7. STIR performance with exact Newton steps
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FIG. 8. STIR method with inexact Newton steps

several degenerate problems included in this test set. With a tighter bound � on the relative residual in

MPCG, we could decrease the number of minimization iterations for this problem (note that the STIR

with exact Newton steps only takes 38 iterations). However, this change would also increase the amount

of computation (conjugate gradient iterations).

Next we include some results which indicate that our STIR method is fairly insensitive to the starting

point. The results in Table 7 were obtained using exact Newton steps on problems of dimension 1000.

The results in Table 8 were obtained using the conjugate gradient implementation, also on problems with

1000 variables. The starting points are as follows: original is the suggested starting point according

to [12]; upper starts all variables at upper bounds; lower starts all variables at the lower bounds; middle

starts at the midpoint between bounds; zero starts each variable at zero (the origin); upper-lower starts the

odd variables at the upper and the even variables at the lower bounds; lower-upper is the reverse of this.

For all of these, we perturb the starting point slightly if necessary to be strictly feasible. Note that for the

problem BROWN3 C, the iteration count is not shown starting at middle and at origin as the gradient is

undefined at both these starting points. These results are also shown graphically in FIG. 9 and FIG. 10.

From these graphs it is clear that both implementations of STIR are fairly robust when it comes to starting
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n
Problem 100 200 500 1000 10000

GENROSE U 21 21 21 21 21

GENROSE C 10 10 10 10 17

GENSING U 23 23 24 24 25

GENSING C 16 16 16 16 16

CHAINSING U 21 21 21 21 21

CHAINSING C 14 17 19 19 20

DEGENSING U 32 32 33 33 35

DEGENSING C 33 56 35 33 31

GENWOOD C 8 8 8 8 8

CHAINWOOD C 8 8 8 8 8

BROYDEN1A U 11 11 11 11 12

BROYDEN1A C 9 8 8 8 8

BROYDEN1B U 6 6 6 6 6

BROYDEN1B C 7 7 7 7 7

BROYDEN2A U 15 15 19 17 20

BROYDEN2A C 10 10 10 10 10

BROYDEN2B U 8 8 8 8 9

BROYDEN2B C 9 9 9 9 9

TOINTBROY U 7 7 7 7 7

TOINTBROY C 8 8 8 8 8

CRAGGLEVY U 26 26 27 27 29

CRAGGLEVY C 26 26 26 26 27

AUGMLAGN C 26 33 29 34 27

BROWN3 U 7 7 7 7 7

BROWN3 C 7 7 7 7 8

BVP U 13 13 12 13 25

BVP C 15 15 14 14 15

VAR U 34 35 35 37 36

VAR C 19 21 32 36 86

TABLE 6

STIR method with inexact Newton steps, krk=kgk � 0:005: number of iterations
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Starting Point

Problem original upper lower middle zero up-low low-up

GENROSE C 11 27 33 15 16 43 27

GENSING C 20 31 45 25 22 31 32

CHAINSING C 16 29 33 13 11 32 30

DEGENSING C 28 47 39 52 42 39 36

GENWOOD C 10 18 14 13 10 17 17

CHAINWOOD C 10 17 14 13 10 17 16

BROYDEN1A C 11 24 25 13 12 25 24

BROYDEN1B C 8 22 19 18 9 19 21

BROYDEN2A C 19 38 38 13 9 38 38

BROYDEN2B C 14 30 34 12 8 33 30

CRAGGLEVY C 30 38 33 26 26 34 37

AUGMLAGN C 36 40 26 36 15 23 37

BROWN3 C 9 28 14 * * 28 14

BVP C 10 17 8 9 10 11 17

VAR C 45 9 32 18 21 23 17

TABLE 7

STIR method with exact Newton steps for n = 1000: number of iterations

points. This is in contrast to active set methods where the starting point can have a more dramatic effect

on the iteration count.

Last we contrast the performance of the STIR method using the conjugate gradient option with the

SBMIN algorithm, an active set method, in the LANCELOT software package [8]. In particular, we

choose problems where negative curvature is present or where it appears that the “active set” at the

solution may be difficult to find. We expect our STIR method to outperform an active set method in these

situations; indeed, we have found this to be the case. For these problems, we use the default settings for

LANCELOT and adjusted our STIR stopping conditions to be comparable if not more stringent.

First consider a constrained convex quadratic problem. The results, given in Table 9, show that our

proposed STIR method is markedly superior (by an order of magnitude) to SBMIN on this problem (c.g. it

is the total number of conjugate gradient iterations). SBMIN takes many iterations on this problem when

the starting point is near some of the bounds — the method mis-identifies the correct active set at the

solution and takes many iterations to recover. Our proposed STIR method, a strictly interior method,

moves directly to the solution without faltering when started at the same point.

Table 10 summarizes the performances of STIR and SBMIN, on a set of constrained problems

exhibiting negative curvature. (Again the problems are from [12] except the last two have been constrained

differently to display negative curvature.) STIR is significantly better on these problems — this is probably

due to the fact that negative curvature is better exploited in our subspace trust region approach than in
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Starting Point

Problem original upper lower middle zero up-low low-up

GENROSE C 10 23 37 17 20 37 23

GENSING C 16 27 57 26 22 30 29

CHAINSING C 19 29 33 11 10 33 28

DEGENSING C 33 43 37 42 37 37 44

GENWOOD C 8 14 10 11 8 13 13

CHAINWOOD C 8 14 10 11 8 13 13

BROYDEN1A C 8 24 21 13 8 21 24

BROYDEN1B C 7 21 16 13 8 16 21

BROYDEN2A C 10 35 35 13 8 36 35

BROYDEN2B C 9 28 32 12 8 31 28

CRAGGLEVY C 26 39 35 27 24 35 45

AUGMLAGN C 34 60 45 32 10 24 46

BROWN3 C 7 29 53 * * 29 53

BVP C 14 21 14 13 14 14 21

VAR C 36 7 34 29 25 28 8

TABLE 8

STIR method with inexact Newton steps for n = 1000: number of iterations
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FIG. 9. STIR method with exact Newton steps at varied starting points

inexact STIR SBMINn = 800 iteration c.g. it iteration c.g. it

BIGGSB2 16 5551 281 53157

TABLE 9

STIR with inexact Newton steps vs. LANCELOT SBMIN on a convex quadratic: number of iterations
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FIG. 10. STIR method with inexact Newton steps at varied starting points

inexact STIR SBMINn n
Problem 100 1000 10000 100 1000 10000

AUGMLAGN U 34 30 37 29 38 46

CHAINWOOD U 122 1004 8953 6594 > 10000 > 10000

GENWOOD U 62 67 63 439 952 554

GENROSE U 29 29 29 76 76 76

CHAINWOOD NC 17 31 16 54 48 61

GENWOOD NC 16 24 23 47 > 1000 60

TABLE 10

STIR with inexact Newton steps vs. LANCELOT SBMIN when negative curvature exists: number of iterations

the Steihaug trust region method, which SBMIN employs. This is consistent with results presented in x3,

e.g., see Table 4.

7. Conclusion. Based on the trust-region interior reflective (TIR) method in [1], we have proposed

a subspace TIR method (STIR) suitable for large-scale minimization with bound constraints on the

variables. In particular, we consider a two-dimensional STIR in which a subspace is formed from the

scaled gradient and (inexact or exact) Newton steps or a negative curvature direction.

We have designed and reported on a variety of computational experiments. The results strongly

support the different components of our approach: the “subspace idea”, the use of our novel affine

scaling matrix, the modified Cholesky factorization and conjugate gradient variations, and the “reflection

technique”. Moreover, preliminary experimental comparisons with code SBMIN, from LANCELOT [8],

indicate that our proposed STIR method can significantly outperform an active-set approach for some

large-scale problems.
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A. Proofs for THEOREM 2. The convergence results (THEOREM 2) for the STIR algorithm can

be obtained in a similar manner to THEOREM 3.10 for the full-space trust region and interior reflective

method (TIR)[1]. Indeed, first-order optimality is a direct consequence of the condition (AS.3). The

second order optimality rests on the fact that the solution subsequence of the subspace trust region

subproblem would have large-step-size if the corresponding fM̂�g were indefinite at a limit point (see

Lemma 3 below). Moreover, if M̂k is positive definite at a limit point then we prove that the step size

along the subspace trust region solution is sufficiently large in the following sense:�k � ��
∆k min(kD�1k gkk; kDksNk k); for some �� > 0:
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Here �k is the stepsize, along pk, to the boundary of the feasible region ( see Lemma 4 ). Based on this

inequality, it follows that the trust region size is bounded away from zero and Newton steps are eventually

successful.

Assume that pk is a solution to a subspace trust region subproblem (4.1) with Sk = spanfwk; zkg.

Assume that the columns of Yk form an orthonormal basis for spanfDkzk;Dkwkg. Then pk = D�1k Ykyk
where yk solves (Y Tk M̂kYk + �kI)yk = �Y Tk D�1k gk; Y Tk M̂kYk + �kI = RTkRk;(A.1)

and (Dkpk)T M̂kDkpk + �kkykk2 = �(Dkpk)T ĝk:(A.2)

Next we prove that the subspace trust region solution sequence from the STIR algorithm in FIG.5.

has large-step-size if the corresponding sequence fM̂kg satisfies that limk!1 �min(M̂k) < 0.

LEMMA 3. If lim sup�min(M̂k) < 0 for a subsequence, then the corresponding solution subsequencefpkg of the subspace trust region subproblem (4.1) has large-step-size.

Proof. Consider two subsequences of fM̂kg: one sequence satisfies jSkj = 1 and the other sequence

has jSkj = 2.

For the subsequence with jSkj = 1, the corresponding trust region solution sequence clearly has

large-step-size.

For the subsequence with jSkj = 2, it is clear that lim inffk D�2k sgn(gk)kD�2k sgn(gk)k � wkkwkkkg > 0. Sincefzkg = fD�2k sgn(gk)g and fwkg have large-step-size, we have that fpkg has large-step-size following

Lemma 1.

We state the following result which is similar to Lemma 8 in [1] and omit the proof.

LEMMA 4. Assume that (AS.4) is satisfied. Then� k(sk) � �q
2
[minf1; �2kg�k∆2k + minf1; �kgkRkykk2];

where �k is the stepsize along pk = D�1k Ykyk to the boundary and yk is defined by (A.1).

Let sNk denote the Newton step (2.3) of (2.1). Then

diag(gk)JvkDksNk = �D�1k gk �D�1k HkD�1k DksNk :(A.3)

The next result is required to establish that Newton steps sNk will eventually lead to successful steps.

LEMMA 5. Assume thatpk is a solution to the subspace subproblem (4.1) withSk = spanfD�2k gk; sNk g.

If fxkg converges to a nondegenerate point x� where the second order sufficiency conditions are satisfied,
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then �k � ��
∆k min(kD�1k gkk; kDksNk k);(A.4)

for k sufficiently large, where �k is the stepsize to the boundary along pk.

Proof. By definition, �k = mini (max( lki � xkipki ; uki � xkipki )):
For any k, if D�1k gk = �kDksNk for some �k 2 <1, then pk = � ∆kkD�1k gkkD�2k gk. Hence, if 1�� � kgkk1,

we have �k � ��
∆k min(kD�1k gkk; kDksNk k):

Assume that D�1k gk 6= �kDksNk . We first show that if we can establishpk = k(�D�2k gk) + �ksNk where �k � 0 and k � 0;(A.5)

then (A.4) holds. From (A.5) and (DksNk )T (�D�1k gk) � 0, we have(�kDksNk )T (k(�D�1k gk)) � 0:
Using p̂k = Dkpk = k(�D�1k gk) + �kDksNk again,kp̂kk2 = 2kkD�1k gkk2 + 2(kDksNk )T (�k(�D�1k gk)) + �2kkDksNk k2:
But kp̂kk � ∆k. Hence

0 � �k � ∆kkD�1k gkk and 0 � k � ∆kkDksNk k :
Hence, from (A.3), the boundedness of gk, D�1k gk, DksNk , and the fact that x� is a nondegenerate

first-order point, it is easy to verify that�k � ��
∆k min(kD�1k gkk; kDksNk k); for some �� > 0:

Finally, we need to establish (A.5) under the linearly independent assumption D�1k gk 6= �kDksNk .

Assume that the columns of Yk form an orthonormal basis for spanfD�1k gk;DksNk g. ThenYkY Tk D�1k gk =D�1k gk , YkY Tk DksNk = DksNk , and Y Tk Yk = I2 where I2 is the 2-by-2 identity matrix. Moreover,pk = �D�1k Yk[Y Tk (M̂k + ��I)Yk]�1Y Tk D�1k gk
where �� � 0 and if �� > 0, kDkpkk = ∆k > 0. Let p̂(�) = Dkpk(�) andp̂(�) def= �Yk[Y Tk (M̂k + �I)Yk]�1Y Tk D�1k gk; for � � 0:(A.6)
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Then there exists �(�) and (�) such thatp̂(�) = �(�)(�D�1k gk) + (�)DksNk :
First, it is clear that �(0) = 0, (0) = 1. From (A.6),

lim�!+1 p̂(�)kp̂(�)k = D�1k gkkD�1k gkk ;
and by the linear independence assumption D�1k gk 6= �kDksNk , we have

lim�!+1 �(�)kp̂(�)k = 1kD�1k gkk :
Hence, for � sufficiently large, �(�) > 0.

We now prove that (��) � 0 by contradiction. Assume that (��) < 0 (this means that kDksNk k >
∆k). From continuity of (�), (0) = 1 and (��) < 0, there exists 0 < �̄ < �� so that (�̄) = 0. This

implies that �(�̄)D�1k gk = �Yk(Y Tk (M̂k + �̄I)Yk)�1Y Tk D�1k gk:
From M̂kŝNk = �D�1k gk, YkY Tk ŝNk = ŝNk , and the columns of Yk are linearly independent, there exists �
such that [Y Tk M̂kYk]Y Tk D�1k gk = �[Y Tk M̂kYk]Y Tk ŝNk :
Again using YkY Tk D�1k gk = D�1k gk and YkY Tk ŝNk = ŝNk , we haveD�1k gk = �DksNk ;
which contradicts the assumption D�1k gk 6= �kDksNk .

Similarly, we can prove that �(��) � 0 based on �(�) > 0 for sufficiently large �. Therefore (A.5)

holds. This completes the proof.

Now we establish the convergence properties of the STIR algorithm.

THEOREM 2. Let the level set L = fx 2 <n : f(x) � f(x0); x 2 Fg be compact and f : F ! <
be twice continuously differentiable on L. Let fxkg be the sequence generated by the STIR algorithm in

FIG.5. Then

1. If (AS.3) is satisfied, then the Kuhn-Tucker condition is satisfied at every limit point.

2. Assume that both (AS.3) and (AS.5) are satisfied and ŵk in FIG. 5 contains sufficient negative

curvature information whenever M̂k is indefinite, i.e.,ŵTk M̂kŵkkŵkk2 � max(��nc; ��min(M̂k));
with �nc > 0 and 0 < � < 1. Then
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(a) If every limit point is nondegenerate, then there is a limit point x� at which both the

first and second order necessary conditions are satisfied.

(b) If x� is an isolated nondegenerate limit point, then both the first and second order

necessary conditions are satisfied at x�.
(c) If M̂� is nonsingular for some limit point x� of fxkg and ŵk = ŝNk whenever M̂k is

positive definite, then M̂� is positive definite, fxkg converges to x�, all iterations are

eventually successful, and f∆kg is bounded away from zero.

Proof. Using Lemma 3, for any subsequence with limk!1 �min(M̂k) < 0, the corresponding fpkg
has large-step-size. Therefore, there exists �0 > 0 such that �k > �0; for k sufficiently large: Hence,

using Lemma 4, for some �1 > 0,� k(sk) � �1
�q
2
[�k∆2k + kRkDkpkk2]:

Condition (AS.5) then implies thatf(xk)� f(xk+1) � ��1
�q
2
[�k∆2k + kRkDkpkk2]:(A.7)

Now assume that M̂� is positive definite and fxkg converges to x�. From Lemma 4, we have� k(sk) � �q
2
[minf1; �2kg�k∆2k + minf1; �kgkRkykk2]:

where �k is the stepsize along pk. Let � > 0 be a lower bound for the eigenvalues of M̂k.

From (A.1), (A.4) in Lemma 5, and kDksNk k � 1�kD�1k gkk, there exists � > 0 such thatj �k[pk]j � �minf∆2k; kDksNk k2g:(A.8)

Using (A.7) and (A.8), the proof is essentially the same as that of Theorem 3.10 in [1]: replacing

(3.21) in [1] by (A.7) and (3.22) in [1] by (A.8).

B. Implementation Details. We present details of our Steihaug method implementation in FIG.11

and the modified preconditioned conjugate gradient (MPCG) in FIG.12.

For more details on the large-step-size property of the steps computed from FIG.12, see [17].
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function [s] = Steihaug(H , g, C, �, ∆)

% Note: C is some preconditioning matrix for H. C must be positive definite.n = length(g); kmax = n=2;k = 0; p0 = 0; Q0 = 0; r0 = �g;

while k < kmax
Step 1: Solve Czk = rk;

Step 2: k = k + 1

Step 3: if k = 1, d1 = z0

else�k = rTk�1zk�1=rTk�2zk�2 ; dk = zk�1 + �kdk�1

end

Step 4: k = dTkHdk
Step 5: if k � 0, compute � > 0 so that kpk + �dkkC = ∆, s = pk + �dk, return

else�k = rTk�1zk�1=k; pk = pk�1 + �kdk; rk = rk�1 � �kHdk
end

Step 6: if kpkk � ∆
compute � > 0 so that kpk + �dkkC = ∆, s = pk + �dk, return, end

Step 7: if kC�1k � krkk � � � kC�1r0k, s = pk, return, end

ends = pk, return

FIG. 11. The Steihaug algorithm
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Step 0: j = 0; p0 = 0; d0 = 0; r0 = �ĝ;

% Note: � and � are positive constants.

while j < maximum iteration

Step 1: Solve Pzj = rj
Step 2: j = j + 1

Step 3: if j = 1d1 = z0

else�j = rTj�1zj�1=rTj�2zj�2dj = zj�1 + �jdj�1

end

Step 4: j = dTj M̂dj
Step 5: if j � 0, exit: d = dj , p = pj (B.1)

else if j � �(dTj Pdj), exit: d = 0, p = pj (B.2)

else�j = rTj�1zj�1=jpj = pj�1 + �jdjrj = rj�1 � �jM̂dj
end

Step 6: if kC�1k � krjk � � � kC�1r0k, exit: p = pj, d = 0 (B.3)

end

FIG. 12. MPCG
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