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1. Introduction

Most of the current efforts to cope with the speech translation problem are based on
the use of previously developed text-input translation systems relying on knowledge-based
technology, which are serially coupled to the output of state-of-the-art word recognizer
front-ends (Block, 1997; Bub et al., 1997; Lavie et al., 1997; Rayner and Carter, 1997).

In contrast, the EUTRANS project aims at building translation systems for text and
speech input in limited domain applications by (i) using ezample-based techniques, and
(ii) a tight integration of translation, syntactic and acoustic constraints into global models.
In last years, example-based techniques have been showing their usefulness in translation
systems; for instance, through a balanced combination with knowledge-based techniques
(Nirenburg, 1995).

During the first phase of the project, a basic demonstration speech translation system
has been developed that relies on a kind of finite state models known as Subsequential
Transducers. Among the interesting properties of these models, we can remark:

— They can be automatically learnt from a text, sentence-aligned, bilingual corpus by
efficient algorithms (Oncina, 1991; Oncina ef al., 1993; Oncina and Vard, 1996).

— They can be easily and efficiently used in conventional Continuous Speech Recognition
systems so that, for each input acoustic sequence, the search for the optimal transla-
tion (and the corresponding input-language sentence) is guided by a model integrating

* This work has been partially funded by the European Union and the Spanish CICYT, under grants
IT-LTR-0S-20268 and TIC97-0745-C02, respectively. The EUTRANS project is being developed in two
phases. This paper describes the approach adopted during the already finished first phase, that will be
referred to as EUTRANS-I. The second phase is currently under development. See the project home page
at http://hermes.zeres.de/Eutrans/
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2 Amengual et al.

(i) the syntactic constraints of the input language, (ii) the information needed for the
translation into the output language, and (iii) the syntactic constraints of the output
language (Jiménez et al., 1994; Jiménez et al., 1995; Amengual et al., 1997a).

An important drawback of this approach is the large amount of bilingual examples
required to learn useful translation models. In order to reduce the severity of this require-
ment, we show how appropriate models can be learnt from a categorized bilingual corpus in
which words or short phrases (for instance, numbers, dates, or proper names) are replaced
by adequate labels, thus simplifying the tasks that the learning algorithms have to tackle
(Vilar et al., 1995; Amengual et al., 1997a; Amengual et al., 1997b).

The rest of the paper is organized as follows. In Section 2, we describe Subsequen-
tial Transducers and the learning algorithms. Although these algorithms have previously
appeared in the literature (Oncina et al., 1993; Oncina and Vard, 1996), for the sake of
completeness we give them here in a more unified and hopefully understandable presen-
tation. Section 3 is devoted to explain how to use categorization to reduce training data
requirements. The integrated architecture of the EUTRANS-I speech translation system is
presented in Section 4. Experimental results are reported in Section 5 and final conclusions
are drawn in Section 6.

2. The translation model and its basic learning algorithms

2.1. NOTATION

Given an alphabet X, X* is the free monoid of strings over X . First letters (a, b, c,...) rep-
resent individual symbols of the alphabets and last letters (z,y, x, ... ) represent strings of
the free monoids. We refer to the individual elements of the strings by means of subindices,
asin x = aj ...ay,. For any string x € X*, |z| denotes the length of x, and A is the symbol
for the string of length zero (empty string). Given two strings z,y € X*, xy denotes the
concatenation of z and y.

If v is a string in X* and L. C X*, then Lv (vL) denotes (in this paper) the set of
strings xy € L such that y = v (z = v). Hence, X*v (vX*) denotes the set of all strings
of X* that end (begin) with v, while v = v() = () (the empty set). For u,v,w € X*, the
suffix of v with regard to v is defined as v 'v = w < v = uw, and the prefix of u with
regard to v as uv~ ! = w < u = wv. Given a set L C X*, the longest common prefiz of all
the strings of L is defined as lep(L) =v & L =wvL and Yu € X*, L = uL = |u| < |v|.

2.2. FINITE STATE TRANSDUCERS

A Finite State Transducer (FST) is a finite state machine that accepts sentences from
a given input language and produces associated sentences of an output language. It is
composed of states and edges connecting them. Fach edge has associated an input symbol
and an output string. The parsing of an input sentence begins from a distinguished state
(the initial state) and proceeds by consuming input symbols one by one. Every time an
input symbol is matched following an adequate edge, the string associated to that edge
is output and a new state is reached. This process continues on until the whole input is
processed; then, additional output may be produced from the last state reached in the
analysis of the input. An interesting class of FSTs are the Subsequential Transducers,
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The EUTRANS-1 Speech Translation System 3

punto / A

en / one o’clock

cuarto / a quarter past one

media / half past one

Figure 1. A simplified SST. The initial state has an arrow pointing to it and final states are marked by
double-circling.

because there are well-known and efficient algorithms for inferring them from examples,
as we will see below.

Formally, a FST is a tuple 7 = (X,Y,Q, qo, F,0) where X and Y are the input and
output alphabets, () is a finite set of states, gy € @Q is the initial state, E C Q X X XY *x Q)
is a set of edges, and 0 : Q — Y* is a state emission function'. Those states for which
o is defined are usually called final states. A Subsequential Transducer (SST) is a FST
verifying that, if (p,a,y,q) and (p,a,y’,q’) belong to E, then y = 3/ and ¢ = ¢ (the
determinism condition). An example of a SST is shown in Figure 1.

Given a string z = ay ...a, € X*, a sequence (po,a1,y1,P1)s -+ (Pn—1,0n,Yn,Pn) is a
path from pg to p, in 7 if (pi—1,a,vi,p;) € E, i =1,... ,n. When intermediate states are
not important, a path will be expressed as (pg,a1...an, Y1 ... Yn,Pn), © = 1,... ,n. The

set of all paths between two states p, g € @ is denoted as IL,(p, ¢). For every string z € X*
such that 3(qo,x,y,q) € I1,(qo,q) and ¢ is a final state we will say that (qo,z,y,q) is a
valid path, that z is accepted by 7 and that yo(q) is a translation of x by 7.

If 7 is a SST, the condition of determinism means that there can be no more than one
valid path, and hence at most one translation, for a given input string. Therefore, 7 defines
a function between an input language, Ly C X*, and an output language, Lo C Y*. Both
L; and Lo are regular languages and their corresponding automata are easily obtainable
from the SST. In particular, an automaton for L; can be obtained by eliminating the
output of the edges and states, and considering the final state set of the automaton being
the same as in the SST. A state is useless if it is not contained in any valid path. Useless
states can be eliminated from a SST without changing the function it defines.

2.3. INFERENCE OF SUBSEQUENTIAL TRANSDUCERS

In general, any subsequential transduction can be realized by several different SST's. How-
ever, for each subsequential transduction, one of such transducers is the canonical SST
for the transduction, which has the minimum number of states and is onward (Oncina,
1991; Oncina et al., 1993). A SST 7 = (Q, X,Y, qo, E,0) is onward if Vp € Q — {qo},

lcp({yl .- -ynU(Qn) € Y*‘(p,.’lil e Ipy Y1 --ynaQn) € E*aU(Qn) # @,n > 0}) = A

In other words, the longest common prefix of the output strings in paths departing from
p is A. Equivalently, a SST is onward if, for each input string prefix, the output string
associated to it by the transducer is the longest common prefix of the output strings
(translations) corresponding to the input strings that begin with this input prefix.

In the following, basic algorithms which are formally guaranteed to infer the minimum
onward SST which realizes a given subsequential transduction from a set of examples of the

! In this paper, the term function refers to partial functions. We will use f(z) = § to denote that the
function f is undefined for x.
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4 Amengual et al.

transduction are described (Oncina, 1991; Oncina et al., 1993; Oncina and Varé, 1996). In
Section 2.3.1, functions that represent a set of training examples as simple forms of SST's
and produce compatible generalizations are presented. In Section 2.3.2, they are used to
infer the minimum onward SST for a given total subsequential function. This algorithm
generalizes the training examples by taking only translation structure into account. In
Section 2.3.3, an algorithm which allows to incorporate syntactic constraints of the input
and output languages into the translation network is described. The introduction of a
specific input language model allows this last algorithm to infer the minimum onward SST
for a given partial subsequential function. Finally, Section 2.3.4 explains how probabilistic
information can be incorporated to the learnt SSTs. For interested readers, algorithms
referenced in the following sections have been included in an appendix. Here, mainly
intuitive and illustrative ideas of their behaviour are given.

2.3.1. Generalization of a set of ezamples

Any unambiguous or single-valued finite set of samples (pairs of input-output strings)
T C X*xY* can be immediately represented by means of a Tree Subsequential Transducer
(TST). A TST, 7 = (Q, X,Y, qo, E,0), for a given single-valued finite set of samples T,
is a prefix tree acceptor for the input strings of T' in which the output strings appear in
the corresponding accepting states. Figure 2(a) shows an unambiguous set of examples,
which have been drawn from room number translation from Spanish into English. The T'ST
directly representing this sample set can be observed in Figure 2(b). Procedure Make_TST
(Algorithm 1, see appendix) can be used to build the TST of a given set T'.

From this TST, an Onward Tree Subsequential Transducer (OTST), which also rep-
resents 1", is built by producing the onward SST equivalent to the TST of 7. Function
Make_OTST (Algorithm 2) presents a recursive procedure for obtaining the OTST for T
from the TST for T'. Mainly, this process consists in moving the longest common prefixes
of the output strings, level by level, from the leaves of the tree toward the root. Figure 2(c)
illustrates the result of this process. From the TST depicted in Figure 2(b), the longest
output prefixes which are common among all paths departing from each state are moved
towards the root of the tree. Uncommon output substrings remain at the highest level
states and edges that they can reach in this recursive advancement process.

Note that the OTST obtained so far does not generalize the training set; that is, it is
only able to translate strings that appear in the training set. A simple generalization of
a set of samples T' can be produced by merging two states of the OTST for T'. The only
property that these states must verify is that all paths departing from them which share
the same sequence of input symbols must also share the same sequence of output strings.
In this case, states are called compatible and they can be merged, resulting in a new SST
which is a suitable generalization of the previous one.

The compatibility test requires sometimes pushing back some output string suffixes
through the paths of one of the states (Algorithm 3). This operation is needed to help
matching equal input symbols along with their output strings in the possibly common
paths, and simply consist in moving a suffix of the output string of an edge to its following
state and edges.

The function Merge_States (Algorithm 4) merges two states of the SST and common
paths departing from them. To this end, the compatibility of the output strings of the
states is first tested. When this test succeeds, the edges of one of the states with input
symbols not shared by the other state can be directly assigned to this last one. Also, edges
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The EUTRANS-1 Speech Translation System 5

T = { (M), (trescientos,three oh oh), (seiscientos,six oh oh), (trescientos diez,three one oh),
(trescientos cincuenta, three five oh), (trescientos cincuenta y uno,three five one),
(seiscientos cincuenta y siete, six five seven), (seiscientos ochenta,six eight oh),

(seiscientos ochenta y cuatro, six eight four), (seiscientos veintitrés, six two three) }

(a)

cincuenta / A mee five of

y /A 8, 0 uno / A 1T, three five ong

y/ A 9.0 siete / A

trescientos / A (1, three oh o>

12, six five seven

10, 0 cuatro / A /ﬂeight four

y / one 8.0 uno / )\

y/A 9,0 siete / A 12,

cuatro / A

Figure 2. Simple SSTs representing a training set. (a) An unambiguous set of examples, T. (b) Tree
Subsequential Transducer for T'. (¢) Onward Tree Subsequential Transducer for T'.

sharing the same input symbols are adjusted on their output strings to recursively try to
merge the destination states of the edges.

Such a recursive merging conveys merging of common paths starting at the initial pair
of states. Recursion finishes successfully when all mergings are found compatible. Alter-
natively, it can be interrupted if the output strings of a pair of states are non compatible
or if the output strings of a pair of equal input edges are non adjustable. This last case
occurs if one of the edges has to be considered consolidated and the other one cannot be
fitted to it. The notion of consolidated edge is related to the order in which pairs of states
are merged and to the assumption that a merging of two states cannot modify the part of
the transducer that has been being consolidated by previous compatible mergings.

Figure 3 illustrates the merging process for states 1 and 2 from the example OTST
obtained in Figure 2(c). Output strings of these states are equal, thus the edge incoming
state 2 is changed to reach state 1, edges outgoing state 2 are assigned to state 1 and state 2
is removed (Figure 3(a)). At this moment, two edges with input symbol “cincuenta” and
different output strings depart from state 1. By pushing back the symbol “seven” in one
edge, output strings of both edges are made equal allowing their merging along with their
destination states (Figure 3(b)). States 4 and 5 can be merged because state 5 has no
output string. Now, state 4 has two outgoing edges with input symbol “y” and different
output strings. Pushing back symbols “one” and “seven” to the following edges makes the
empty string to be the output string in both edges, which yields their merging and that of
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6 Amengual et al.

one 8.0 uno / )\

cincuenta / five seven 5.0 y /A 9.0 siete / A

trescientos

seiscientos / six ochenta / eight

cuatro / A

siete / A

cuatro / A

10, 0 13, A
(b)
uno / one
8.0 siete / seven 121
10,0 cuatro / A 13, A

Figure 3. Some steps of the merging process for states 1 and 2 from the Onward Tree Subsequential
Transducer of Figure 2(c).

states 8 and 9 (Figure 3(c)). This merging process finishes successfully since all particular
state and edge mergings have been found or have been made compatible.

2.3.2. Inference of the translation structure

In order to guarantee the inference of a target subsequential transduction, the learning
process requires the pairs of states of the initial OTST to be successively considered in
a certain order. An appropriate order can be a lezicographic order of the input string
prefixes. Notice that state numbering given to SSTs through Figures 2, 3, 4 and 5 follows
such an order, which is obtained as a by-product of the TST construction (Algorithm 1),
since states are named by means of the input prefixes that lead to them.

The Onward Subsequential Transducer Inference Algorithm (OSTTA) (Oncina, 1991;
Oncina et al., 1993) is formally presented in Algorithm 5. It begins building the OTST
of a finite single-valued training set T' C X* x Y* that receives as input. Then, OSTIA
takes every state in lexicographic order, and tries to orderly merge each one with some
other previous state. Merging of two states is made effective only if it is compatible. At
the end, OSTIA returns an onward SST which is consistent with T'; i.e., an onward SST
which realizes T' and a generalization derived from compatible mergings.

The class of total subsequential transductions can be identified in the limit from positive
presentation of input-output pairs (Oncina, 1991; Oncina et al., 1993). In other words, for
any total subsequential transduction OSTIA will exactly obtain the minimum onward SST
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uno / one

trescientos / three y /A 3.0 siete / seven
)

cincuenta

. . 12, A
seiscientos / six

< diez / one oh

cuatro / four

0, A

uno / one
siete / seven
cuatro / four

three

trescientos

seiscientos / six 1 oh ob ochenta / eight

veintitrés / two three

(b)

Figure 4. Last steps in the execution of OSTIA after successfully merging states 1 and 2 (Figure 3(c))
from the Onward Tree Subsequential Transducer of Figure 2(c).

that realizes the subsequential transduction from a large enough set of input-output pairs
of the function.

The behaviour of OSTTA on the example OTST of Figure 2(c) is outlined here below.
It first tries to merge state 1 and state 0, which is not possible due to the distinct output
strings of the states. Thus, state 1 remains as before, and now state 2 is considered. State 2
cannot be merged with state 0 either, but it can be merged with state 1 because they are
compatible. Their detailed merging process was shown in Figure 3 and described in last
section. Next, state 3 is considered to be merged on the SST obtained after merging states 1
and 2 (Figure 3(c)).

State 3 is compatible with state 0, provided that their output strings are equal and no
path exists which can distinguish them. Therefore, state 3 is merged with state (. Then,
state 6 is found non compatible with states 0 and 1, due to their distinct output strings.
However, state 6 can be merged with state 4, following a similar adjustment procedure to
that previously described for states 1 and 2. The SST resulting from mergings of states 3
and 0 and states 6 and 4 is depicted in Figure 4(a).

Finally, states 7, 8, 11, 12 and 13 are all found compatible with state 0, yielding the SST
presented in Figure 4(b) which is the onward SST consistent with 7' computed by OSTIA.
Note that the obtained SST correctly associates output substrings to input symbols, which
will allow it to appropriately translate other input strings not seen in the training. Such a
behaviour generally appears in SSTs learnt by OSTIA, if a sufficiently large training set
is available. However, although this behaviour is desirable in practice, it is not enough to
adequately model practical translation tasks, as we discuss in next section.

2.3.3. Inference of translation models with given input and output syntactic constraints

In practice, the SSTs learnt by OSTIA tend to very accurately translate correct input
sentences, but also tend to accept and translate incorrect sentences producing meaningless
results for them. This yields undesirable effects in case of noisy input, like the one obtained
by optical character recognition, typing, or (of particular interest in our case) speech
recognition. The SST of Figure 4(b) can accept and translate incorrect sentences, like
“uno seiscientos ochenta y trescientos” which is translated as “one six eight three oh oh”.
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This problem originates from the fact that, by state merging, OSTIA tends to over-
generalize the input and output languages as much as possible while accurately modeling
the mapping from input to output sentences. That is, the finite state model of the input
language underlying the learnt SST (the one resulting from removing the output strings
associated to the edges) does not necessarily constitute a good input language model, and
the same happens with the finite state model of the output language underlying the SST
(the one resulting from removing the input symbols associate to the edges)

A possible way to overcome this over-generalization problem is to impose to the learning
process the constraint that the learnt SSTs should not accept input sentences or produce
output sentences which are not accepted by given models of the input (Domain) and output
(Range) languages. If these constraints can be modeled by Deterministic Finite Automata
(DFA), then learning can be carried out with a version of OSTIA called OSTIA-DR
(Onward Subsequential Transducer Inference Algorithm with Domain and Range) (Oncina
and Vard, 1996), which is given in Algorithm 6. It only differs from OSTIA in the test for
deciding whether merging two states will be acceptable or not: OSTIA-DR will never merge
SST states that correspond to different states in the DFA for the input language (Domain)
or in the DFA for the output one (Range). Formally, let D = (Qp,X,dp,do, Fp) and
R = (Qg.,Y,0p, 10, Fr) be two DFAs describing the Domain and Range of a subsequential
function ¢, respectively. Given a SST 7 = (X,Y,Q, qo, E,0), let (qo, zp. yp, p) be a path in
1. (qo, p) and let (qo. z4,Yq, q) be a path in I1;(qo, ¢). Then states p and g are only allowed
to be merged if dp(dy, zp) = dp(do, z4) and dr(ro, yp) = Jr(ro,y,). This test can be very
efficiently implemented if the states and output symbols of the initial OTST are previously
labelled with the corresponding states in the Domain and Range DFAs.

OSTIA-DR can make use of any kind of DFA models for Domain and Range. In partic-
ular, these models can be N-Testable Automata, which can be automatically learnt from
examples (Garcia and Vidal, 1990). N-Testable Automata are just the result of removing
probabilistic information from stochastic N-Testable Automata which, in turn, constitute
just a convenient structural way of representing the well known N-Gram models in terms
of finite state machines (Vidal et al., 1995). Therefore, standard automata minimization
algorithms can be applied to N-Testable Automata. Experience shows that using smaller,
more compact Domain and Range models generally helps OSTIA-DR to produce better
generalizations for a given amount of training data, and, hence, minimized models are
generally used.

Figure 5 illustrates the result of executing OSTIA-DR with the unambiguous training
set T of Figure 2(a). In order to provide a clear presentation, the figure only shows details
related with the inclusion of a Domain model in the learning process. Figure 5(a) shows a
minimized 2-Testable automaton for the input language of the transduction, which is used
to label the states of the OTST for T, previously shown in Figure 2(c). The label added
to each transducer state is simply the automaton state reached when the input prefix that
leads to the state of the OTST is parsed through the Domain automaton. The resulting
OTST with labelled states is presented in Figure 5(b). Inclusion of a Range model would
imply labelling all symbols of the output strings of the OTST.

From this state labelled OTST, the generalization process carried out by OSTIA-DR
yields the onward SST in Figure 5(c). Although its ordered merging process is similar
to that of OSTIA, it can be observed that, in contrast with the transducer obtained by
OSTIA (Figure 4(b)), states 3, 7, 8, 11, 12 and 13 have not been merged with state 0
since they have associated a different state label. Moreover, note that the structure of
the onward SST learnt in this case is the same as that of the Domain automaton. In the
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diez

diez / one oh

trescientos / three (1, d1, oh oh cincuenta / five 4, d2, oh

veintitrés / two three

4@_’ a0, x trescientos / three ~

seiscientos / six

cincuenta / five

hent ight
ochenta / eig a2 ob y

()

Figure 5. Key details of the learning process of OSTIA-DR. (a) Automaton for the Domain language. (b)
Onward Tree Subsequential Transducer of Figure 2(c) labelled with automaton states. (¢) Onward SST
learnt by OSTIA-DR.

general case, translation constraints convey an extension of the structure determined by
Domain and Range models.

2.3.4. Estimating transition probabilities

So far, only structural aspects involved in the learning of finite state translation models
have been considered. However, in order to properly integrate these models with standard
acoustic models to perform speech translation (see Section 4), not only structural, but also
probabilistic aspects are important. Given that a SST is a deterministic model, optimal
maximum likelihood estimates of the transition probabilities can be obtained by computing
the relative frequency of use of each transition in the (deterministic) parsing of the text
training sentences. This results in an Stochastic SST which models a joint probability
distribution of input-output sentence pairs.

3. Using categories to reduce the amount of data required to learn the SSTs
An important drawback of the approach presented so far is that the required amount of
training data rapidly grows with the complexity of the translation task to be modelled.

Hence, some measures are required in order to apply this approach to non trivial tasks
while keeping the number of needed examples affordable. Among a number of promising
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approaches (Vidal, 1997), categorization has proved quite effective: we can try to simplify
a given translation task by replacing some words or short phrases, both in the input and
output languages, by adequate labels from a set of what we call categories. The basic idea
consists in using the same category label to represent those words and expressions that
play a similar role and, thus, are expected to appear in the same kind of contexts. Consider,
for instance, the possibility of using a specific category for representing colors (black, pale
blue, olive green ... ) and a different one for plane shapes (circle, square, ellipse, isosceles
triangle ... ) in a translation task involving the description of visual scenes.

The approach for using categories together with SSTs presented in (Vilar et al., 1995)
proved to be useful in reducing the number of examples required for learning. However, this
approach was not easily integrable in a speech recognition system and could not deal with
categories including units larger than a word. For these reasons, in the EUTRANS-I project
the approach was changed so that a single FST would comprise all the information for the
translation, including elementary transducers for the categories. This can be achieved by
following these steps:

— Definition of categories. Determine the set of categories.

— Corpus categorization. Replace words and short phrases in the corpus by their
category labels.

— Basic structure model learning. Use the categorized corpus to train a model,
which will be referred to as initial SST.

— Category modelling. For each category, learn a so-called category SST (¢SST).

— Category expansion. Expand the edges in the initial SST corresponding to the
different categories using their respective ¢SSTs. This expansion procedure, explained
in more detail below, can introduce non-determinism, so the new model is a FST which
will be referred to as expanded FST.

A general view of the process can be seen in Figure 6. The left part represents the
elements involved in the learning of the expanded FST, exemplified with a single training
pair. The right part of the diagram gives a schematic representation of the use of this
transducer for the translation of speech input as will be explained in Section 4.

The category expansion step is a bit more complex than just substituting each category-
labelled edge by the corresponding ¢SST. It has to consider (i) how to insert the output of
the ¢SST within the output of the initial transducer;(ii) how to deal with more than one
final state in the ¢SST; and (iii) how to deal with cycles in the ¢SST involving its initial
state.

Solving (i) is not trivial, since the translation of a category label can appear before
or after the label has been seen in the input. For example, consider the transducer in
Figure 7(a) and a Spanish sentence categorized as “me voy a $HOUR”, which corresponds
to the categorized English one “I am leaving at $HOUR”. In our application, once “me voy
a” is seen, the continuation can only be “$HOUR”, so the initial SST, before seeing this
category label in the input, has already produced the whole output (including “$HOUR”).
Taking this into account, we decided to keep the output of the initial SST and to include
there the information necessary for removing the category labels. To do this, the label
for the category was considered as a variable that acts as a placeholder in the output
sentence and whose contents are also fixed by an assignment appearing elsewhere within
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Transducer Learning Process

Original sample
déme la llave de la habitacién ciento veintitrés
give me the key to room number one two three

OSTIA-DR

Original
o g

orpus

Categorizer Initial

SST

Categorized

Corpus Expander

Categorized sample T T
déme la llave de la habitacién $room
give me the key to room number $roomM

Category 1 Category n
SST SST
OSTIA-DR §..| OSTIA-DR

Category n
Corpus

Category 1
Corpus

Translation Process

Input sentence
déme la llave de la habitacién ciento doce

7

| Expanded
FST

Lexical
Models

Acoustic
Models

Translator

give me the key to room $r00M $ROOM=[ one one two 1

Postprocessor

give me the key to room number one one two

|

Translation

Figure 6. General scheme of the treatment of categories in the learning and translation processes.

that sentence. In our example, the expected output for “me voy a las tres y media” could
be “I am leaving at $HOUR $HOUR=[ half past three]”. This assumes that each category

appears at most once within each sentence.

The expanded FST is then obtained by an iterative procedure which starts with the
initial SST. For each edge whose input symbol is a category label, the following steps are

performed:

— Eliminate the edge.

— Create a copy of the cSST corresponding to the category label.

— Add new edges linking the new ¢SST with the FST. These edges have to ensure that
the output produced by the ¢SST is embraced between “c=[” and “]1”, ¢ being the

category label.

— Eliminate useless states.

More formally, given a FST 7 = (X,Y,Q, qo, F,0), a ¢SST 7. = (X,Y, Q¢, qo¢, Ec, 0¢),
where we assume that o.(qo.) = 0 (i.e., the initial state of the ¢SST is not a final one), and
an edge (p,c, z,q) € E, the edge expansion produces a new FST 7/ = (X,Y,Q U Q., qo,

(E — (p,c,2z,q)) U E.,¢') in which the new elements are:
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12 Amengual et al.
— The set @, disjoint with @ and such that there exists a bijection ¢ : Q. — Q..

— The new set of edges:

= {(¢(r),a,y,6(5)) | (r,a,y,5) € Ec}
U {(p, a,ze=Ly, d(s)) | (qoc, a,y,5) € Ec}
U{(¢(r),a,y0c(s)1,0) | (r,a,y,5) € B Noc(s) # 0}
{( a,zc=Lyo.(s)1,q) | (qoc,a,y,s) € E. N oe(s) # @}

— The new state emission function:

oy Jo(s) ifseqQ
U(S){@ if s e Q.

Finally, the useless states that may appear during this construction are removed.

A simple example of the effects of this procedure can be seen in Figure 7. Drawing (a)
depicts the initial SST, while (b) shows a c¢SST for the hours between one and three (in
“o’clock” and “half past” forms) and the expanded FST is represented in (c).

Note that this procedure solves the problems derived from the ¢SST having multiple
final states or cycles involving the initial state. The price to pay is the introduction of
non-determinism in the model, which may lead to ambiguity. Transition probabilities can
be straightforward estimated for unambiguous models as outlined in Section 2.3.4. Ambi-
guity, however, rises non trivial estimation problems which can be solved using different
estimation techniques discussed in (Casacuberta, 1995; Casacuberta, 1996). An alternative
approach, used in the experiments reported in Section 5.3, consists in independently esti-
mating the transition probabilities of both the initial SST and all the ¢SSTs as outlined
in Section 2.3.4, and then adequately combine these transition probabilities during the
category expansion process.

4. The EuTrans-I integrated architecture for speech translation

If both a Continuous Speech Recognition (CSR) system and a text input translation device
(for instance, a SST learnt by OSTIA) are available, we can build a speech translation
system in a decoupled manner by simply feeding the text translator with the output of the
CSR system (with, possibly, error correcting parsing in order to cope with noisy output
from the recognizer). However, such a decoupled scheme has the disadvantage of not
taking the syntactic restrictions underlying the transducer itself into account during the
recognition process. Also, it does not seem to be an ideal solution when we have imperfect
recognition and translation devices: the translation module would add to its own errors
those produced by incorrectly recognized sentences which can not be correctly translated.
Therefore the performance of the system resulting from serially coupling a recognition and
a translation module should be expected to be lower than the performance of each one of
them.

For this reason, a different, integrated architecture has been adopted in the EUTRANS-
I system (Jiménez et al., 1994; Jiménez et al., 1995; Amengual et al., 1997a). The next
sections describe the modeling levels and decoding algorithms of this system.
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hoy / today

manana tomorrow

( > me /1 /" voy / am leaving
/

a / at $HOUR a / at $HOUR

$HOUR / X

(a) Initial SST.

media / A

punto / A

(b) A simplified ¢SST for the category $HOUR.

dos / two]

manana / tomorrow

/ at $HOUR a / at $HOUR

O me /T_/yoy / am leavin
N\

(c) Expanded FST.

Figure 7. An example of the categories expansion procedure.

4.1. AcousTIiC MODELS

The most successful current approach to model the variability in speech production at the
word or sub-word level uses (first order) Hidden Markov Models (HMMs) (Baker, 1975;
Jelinek, 1976), which are composed by two stochastic processes: (i) a Hidden process, given
by an homogeneous Markov chain, with discrete time parameter and finite set of states;
and (ii) an observation process, given by output distributions associated with the states
of the hidden process. The Markov chain is constituted by a finite set of states ) and a
transition probability matrix defining, for each ¢, ¢’ € @, the probability of visiting state ¢’
immediately after state g. In an homogeneous Markov chain this probability is independent
of time, and can be denoted as P(¢|q, h), where h is the HMM under consideration. In
general, an additional probability distribution over the initial states is required. However,
in CSR is usual to fix a state gg with probability 1 of being initial. Denoting by O the space
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14 Amengual et al.

of acoustic observations, the observation process is defined by a probability distribution (or
a probability density function) associated with each state, P(o|q, h) being the probability
of observing o € O while in state g of h. A particular state gr is the final state (which is non
emitting and there are no transitions departing from it). The HMM can be regarded as a
finite state machine that randomly generates sequences of observations as follows. Initially
it departs from state g1 = gg. At time ¢ it randomly outputs an observation o;, according
to the emission probability distribution, and moves from state ¢; to state g;41, chosen
randomly according to the transition probability distribution. The process stops when the
final state gr is reached. An external observer may have access to the generated sequence
of observations 0 = 0103 ... 0, but the sequence of states is hidden to the observer.

The probability of a sequence of observations o € O* being produced by a HMM h
is obtained by summing up, over all possible sequences qi ... q41 of lo| + 1 states with
q1 = gs and g|41 = gr, the probability of visiting the sequence of states qi ... |,/ times
the probability of generating the sequence of observations o along the sequence of states

Qi - Gof41:

lo|

P(olh) = Z HP ot|qi, h) - P(qi+1lq, h) (1)

Qjo|4+1 t=1

In CSR systems, the acoustic observations are obtained after a preprocess of parame-
terization in which the relevant information is extracted from the speech signal acquired
by the microphone. A HMM can be used for modeling the variability in the sequences
of observations corresponding to different pronunciations of the same sub-word unit. The
topology of the HMM (the structure of the graph of states and transitions with positive
probability) can allow for modeling the different articulatory effects in the initial, central,
and final parts of the sub-word unit. Also, time elongation or contractions can be modeled
(for instance, by loops over the same state or transitions that skip over some state).

The emission probability distribution is usually a continuous parametric one, whose
parameters are estimated from a large enough corpora of utterances. Possibly the most
used distributions are mixtures of Gaussians:

Ploilqr) = Zwtc' (0t|pt,cs X .c) (2)

whose parameters are the number N; of Gaussians per mixture, the weights w; ., the mean
vectors fi; ., and the covariance matrices 3; . (the dependence with A has been omitted
for simplicity). In order to reduce the amount of data required for a correct estimation of
the parameters, some of them are usually fixed by hand or shared by different Gaussians,
states or mixtures. Typical simplifications are fixing N; to 1, assuming ¥; diagonal, or
assuming the same covariance matrix for all the Gaussians in the same mixture.

4.2. LEXICAL MODELS

In small-vocabulary tasks (for instance, recognition of sequences of digits), HMMs can be
used to model vocabulary words. When the vocabulary size increases, the training data is
usually not enough for individual modeling of each different word. In this case the usual
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. W - mi?ﬁ%
m d
M% ; 78 a / half past one

Figure 8. HMM resulting after the integration in the SST of Figure 1 of the lexical and the acoustic models,
for a case in which lexical models are simple concatenation of phonemes and acoustic models are 3-state
context-independent HMMs.

approach is to use HMMs for modeling a small set of sub-word units. Typical sub-word
units are phonemes. In this case, lexical models constitute the intermediate level between
the acoustic and the language models, defining the mapping from words into sequences
of phonemes. This also allows for easily adding new words to the vocabulary accepted by
the system, without retraining the HMMs. The system can be adapted to different tasks
by simply choosing different lexical and syntactic models, and optionally improving the
acoustic models with training sentences of the task.

In a simple approach, each vocabulary word is represented by a single sequence of
phonemes. In a more robust approach, speaker or dialectal variations are modeled so
that the same word can be associated with different sequences of phonemes. This can be
easily done by simply increasing the vocabulary with the different variants for each word.
However, these alternatives can be more compactly represented by a stochastic finite state
automaton, with phonemes associated with the edges in such a way that different paths
correspond to different word pronunciations.

Lexical models are usually built by hand, or automatically by programs that implement
phonological rules for the input language. Once the HMMs for phonemes have been trained,
they can be joined or integrated together according to the lexical models, replacing each
edge of the lexical models by the corresponding phoneme HMM. In this way a (bigger)
HMM for each word in the vocabulary V is obtained, which would model the different
sequences of acoustic observations in which the pronunciation of the word could result
(Jelinek, 1976).

4.3. SYNTACTIC AND TRANSLATION MODELS

Sections 2 and 3 have described how to learn, from a (possibly categorized) bilingual
corpus, a stochastic FST that represents, in an integrated way, (i) the syntactic constraints
of the input language, (ii) the information needed for the translation into the output
language, and (iii) the syntactic constraints of the output language (which help producing
only well formed translations).

The HMMs for vocabulary words, possibly obtained from HMMs for sub-word units (see
Section 4.2), can in turn be integrated within this stochastic FST, resulting in a large HMM
which combines all the knowledge sources participating in the assignment of probabilities
to sequences of acoustic observations. This is done by just substituting the edges of the
FST by the HMMs for the corresponding input language words, as explained in (Jelinek,
1976) for the integration within language models. This is illustrated in Figure 8. In the
resulting integrated HMM there are two types of states: non-emitting, corresponding to
the states of the FST, and emitting, corresponding to the states of the original HMMs.
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4.4. VITERBI DECODING

The speech translation problem can then be seen as a decoding problem that consists in
finding the output sequence of words whose probability is maximum given the integrated
HMM and given the sequence of acoustic observations. A common suboptimal approx-
imation to solve the decoding problem is to find the path (sequence of states) in the
integrated HMM whose probability is maximum, and then take the sequence of words
associated to the edges traversed by that path. In our case, by following the edges in the
optimal path, we can recover not only the (approximately) optimal sequence of words in
the input language but also its corresponding translation by the FST.

The Viterbi algorithm (Viterbi, 1967; Forney, 1973) solves this problem of, given a
HMM h and a sequence of observations o, find the state sequence ¢ for which the a
posteriori probability P(glo,h) is maximum. It is a very efficient algorithm that just
requires O(|h| - |o]) time (where |h| is the number of edges in h and |o| is the length of o)
and O(]h|) space. But even this can become computationally expensive when |h| is high.
In this case a pruning technique known as beam search (Lowerre, 1976) can be performed:
after processing each new observation o;, those states whose cumulative score exceed the
best current score by more than a given threshold, are pruned.

In order to reduce memory requirements, the integrated HMM does not need to be fully
expanded in memory. For each new acoustic observation, only the successors of those states
which are not pruned by the beam search need to be expanded (Ney et al., 1987). A list
linking the active states at time ¢ can determine the possible active states at time ¢+ 1. In
the EUTRANS-I system, this is implemented by using two different beam search thresholds:
one at the states of the FST (or inter-word transitions) and another at the acoustic states
(or intra-word transitions). Choosing appropriate values for these thresholds can reduce
both the temporal and spatial costs without significantly affecting the system performance.
A structure of back-pointers is built linking the states of the FST which survive the beam
search pruning. The optimal sentence hypothesis together with its translation is recovered
at the end of the process from the inter-word transitions which constitute this structure.

In order to achieve close to real-time computation, each new acoustic observation ob-
tained after the acoustic preprocessing is immediately supplied to the decoding module.
This works in a so-called frame-synchronous (or left-to-right) manner, and so it can perform
computation without waiting for the utterance to terminate.

5. Experiments

5.1. THE TRAVELER TASK CORPUS

The Traveler Task corpus is a set of paired bilingual sentences (Spanish and English) that
was built within the EUTRANS-I project. It is much more realistic that the one used in
(Castellanos et al., 1994), but, unlike other bilingual corpora such as the Hansards (Brown
et al., 1990), it is restricted to a limited domain.

The general framework established for the Traveler Task aims at covering usual sen-
tences that can be needed by a traveler visiting a foreign country whose language he/she
does not speak. This framework includes a great variety of different translation scenarios,
and thus results appropriate for progressive experimentation with increasing complexity.
In a first phase, the scenario has been limited to some human-to-human communication
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Table I. Some examples of sentence pairs from the Spanish to English Traveler Task.

Spanish: ;Cudnto cuesta por dia una habitacién doble con pensién completa?

English: How much does a double room with full board cost per day?

Spanish: Quisiéramos reservar dos habitaciones para un dia a nombre de Federico Mestre, por favor.

English: We want to book two rooms for a day for Federico Mestre, please.

Spanish: Por favor, dénos las llaves de la doscientos veintidés.

English:  Please give us the keys to room number two two two.

Spanish: Por favor, jquieren pedirnos un taxi para la habitacién trescientos diez?

English:  Will you ask for a taxi for room number three one oh for us, please?

Table IT. Main features of the Spanish to English
text corpora.

Spanish  English

Vocabulary size 683 514
Average sentence length 9.5 9.8
Test set perplexity 13.8 7.0

situations in the reception of a hotel: asking for rooms, wake-up calls, keys, the bill,
a taxi and moving the luggage; asking information about rooms (availability, features,
price); having a look at rooms, complaining about and changing them; notifying a previous
reservation; signing the registration form; asking and complaining about the bill; notifying
the departure; and other common expressions.

A small seed corpus was created from several guide books with sentences of common
use for tourists. This corpus was used to help the design of the Traveler Task corpus,
which was automatically built by using a set of Stochastic Syntax-Directed Translation
Schemata (Gonzalez and Thomason, 1978) with the help of a data generation tool specially
developed for the EUTRANS-I project. This software allows the use of several syntactic
extensions to these schemata in order to express optional rules, permutation of phrases,
concordance (of gender, number and case), etc. The use of automatic corpora generation
was convenient due to time constraints of the first phase of the EUTRANS-I project, and
cost-effectiveness. Moreover, this procedure allows to control the level of complexity of the
task.

Some example pairs of the Spanish to English Traveler Task corpus are shown in Table I.
Some features of this corpus can be seen in Table II. The test set perplexity has been
computed by training a trigram model (with simple flat smoothing) using a set of 20,000
random sentences and computing the probabilities yielded by this model for a set of 10,000
independent random sentences. The lower perplexity of the output language derives from
a design decision: multiple variants of the input sentences were introduced to account for
different ways of expressing the same idea, but they were given the same translation.
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Finally, a multi-speaker speech corpus for the task was acquired. A total of 436 Spanish
sentences were selected from the text corpus. They were divided into eleven sets: one
common set consisting of 16 sentences, and ten sets of 42 sentences. Each one of twenty
speakers (ten male and ten female) participating in the acquisition of this corpus, pro-
nounced the common set and two out of the other ten, totalling 2,000 utterances, 15,360
words and about 90,000 phones. The sampling frequency was 16 kHz.

From this speech corpus, two sub-corpora were extracted:

— Training and adaptation (TravTR): 16 speakers (eight male and eight female), 268
sentences, 1,264 utterances (approx. 11,000 words or 56,000 phones).

— Speaker independent test (TravSI): 4 speakers (two male and two female, not involved
in TravTR), 84 sentences (not in TravTR), 336 utterances (approx. 3,000 words or
15,000 phones).

5.2. TRANSLATION MODEL TRAINING EXPERIMENTS

First, we tested on the text corpus the capacity of OSTIA-DR for learning good translation
models. This corpus was divided in a training set and a test one, with 490,000 and 10,000
pairs, respectively. Two sequences of FSTs were trained with increasing subsets of the
training set:

— Without categories. For each subset of the training set, minimized 3-Testable
Automata of the input and the output language were inferred and, using them as
Domain and Range models, a SST was learnt by OSTIA-DR from the same subset.

— With categories. We chose categories which are easy to identify and that follow
simple translation rules, so that the amount of special linguistic knowledge introduced
is very low. Seven categories were used: masculine names, feminine names, surnames,
dates, hours, room numbers, and general numbers. Simple scripts substituted the
words in the categories by adequate labels. For example, the pair (“me voy el once
de julio I am leaving on july the eleventh”) would become (“me voy el $DATE
I am leaving on $DATE”), where “$DATE” would be the category label for dates. For
each subset of the training set, and using again minimized N-Testable Automata as
Domain and Range models, a FST was obtained following the approach described
in Section 3 (but cSSTs were learnt from specific manually built corpora, instead of
extracting them from the training subset by the categorizer).

Each model was tested using only those sentences in the test set that were not seen
in training. This has been done because a model trained with OSTIA-DR is guaranteed
to reproduce exactly those translations it has seen during learning. The performance was
evaluated in terms of translation Word Error Rate (WER), which is the percentage of
output words that have to be inserted, deleted and substituted in order to exactly match
the corresponding expected translations.

The results can be seen in Table ITI. The columns labelled as “Different” and “Categ.”,
refer to the number of different sentences in the training set and the number of different
sentences after categorization. As expected, the use of lexical categories had a major impact
on the learning algorithm. The large increase in performance is a natural consequence of
the fact that the categories help in reducing the total variability that can be found in the
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Table III. Text input results. Translation word error rates (WER) and sizes of the
transducers for different number of training pairs.

Training pairs Without categories With categories
Generated Different Categ. WER  States Edges WER  States Edges

10,000 6,791 5964 60.72 3,210 10,427 30.51 4,500 32,599
20,000 12,218 9,981 54.86 4,119 15243 2246 4,700 35,585
40,000 21,664 16,207 47.92 5254 22,001 13.70 4,551 34,879
80,000 38,438 25,665 38.39 6,494 31017 7.74 4256 37,673
160,000 67,492 39,747 26.00 6,516 36,293  3.71 4,053 34,045
320,000 119,048 60,401 17.38 6,249 41,675 1.42 4,009 33,643
490,000 168,629 77,499 13.33 5993 47,151  0.74 3,854 29,394

corpora (although sentences do exhibit a great deal of variability, the underlying syntactic
structure is actually much less diverse). They also have the advantage of allowing an easier
extension in the vocabulary of the task with a lower negative effect on the performance of
the models so obtained.

5.3. SPEECH INPUT EXPERIMENTS

Spanish to English speaker independent speech translation experiments were performed
using the integrated architecture described in Section 4, with the following models:

— Acoustic level. Each one of 25 context-independent Spanish phonemes (including
two types of silence: initial and final) was modeled by a continuous-density HMM
with three emitting states and a left-to-right topology with loops in the emitting
states. The emission distribution of each state was a mixture of Gaussians. The HTK
Hidden Markov Model Toolkit V1.5 (Young et al., 1993) was used to estimate the
parameters of these HMMs from the union of two corpora: the 1,264 utterances in
the TravTR sub-corpus, and an additional set of 1,530 utterances (by 9 speakers, 4
male and 5 female) from a different, quasi-phonetically-balanced corpus. This speech
material was processed to obtain, each 10 msecs, 10 cepstral coefficients of a Mel-filter
bank plus the energy and the corresponding first and second derivatives. The final
models had a total of 2,462 Gaussians.

— Lexical level. Each word was represented by a simple chain of phones, which was
automatically derived using standard rules from the Spanish Phonetics.

— Syntactic and translation level. The best of the transducers with categories
obtained in the Spanish to English text experiments was used after estimating the
transition probabilities as commented in Section 3.

After these models were trained, the system was used to recognize and translate into
English the 336 Spanish utterances of the TravSI sub-corpus.

A series of experiments were then carried out in order to tune the beam search thresh-
olds. The results in Table IV show how they can be adjusted to find an adequate tradeoff
between accuracy and computing time. For instance, a Translation WER. of 1.97 % can
be achieved with a real time factor of just 2.7. When translation accuracy is the main
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Table IV. Speech input results. Effect of the beam widths in the recognition and
translation time and accuracy.

Language Model | Acoustic Model — Recognition Word  Translation Word  Real Time
Beam Width Beam With Error Rates Error Rates Factor

50 37.94% 40.37% 0.7

100 5.19% 5.13% 1.4

100 200 2.15% 2.14% 2.6

400 2.15% 2.14% 4.9

50 37.94% 40.37% 0.7

100 5.19% 5.13% 1.3

200 200 2.05% 1.97% 2.7

400 1.98% 1.83% 5.8

Table V. Comparison between the integrated scheme (corresponding
to the last row of Table IV) and the decoupled scheme (recognition
using a trigram, the same acoustic and lexical models and the same
beam search thresholds; and translation using a SST learnt without
Domain and Range).

Recognition Word  Translation Word Real Time

Approach Error Rates Error Rates Factor
Decoupled 2.15 % 3.54 % 5.7
Integrated 1.98 % 1.83 % 5.8

concern, wider thresholds can be used in the search to achieve a Translation WER of
1.83%, but with a real time factor of 5.8. These results were obtained on a Intel Pentium
166Mhz Personal Computer running Linux, without resorting to any type of specialized
hardware or signal processing device, and required no more than 16 Mb of memory.

The proposed integrated architecture was also compared against a decoupled scheme
in which, instead of integrating the input (and output) language constraints in the learnt
transducers, recognition was performed with the stochastic 3-Testable Automata (equiv-
alent to a trigram) of the input language, and then the output of the recognizer was
translated by a SST learnt by OSTIA (without Domain or Range constraints) from the
same categorized corpus. The same acoustic and lexical models were used. The results
in Table V confirm those reported by (Jiménez et al., 1995) for a simpler translation
task: the integrated approach not only offers better translation but also better recognition
performance; that is, not only the input language constraints but also the translation
and output language constraints for the application domain can help in finding which
was the uttered sentence and also its corresponding translation. It is also worth noting
the relation of recognition and translation WER in both approaches. In the decoupled
approach, recognition errors are amplified by the translation process. In contrast, the
integrated approach, taking advantage of the lower perplexity of the output language (see
Table II), obtains a translation WER lower than the recognition WER.
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Finally, we should remark that the results presented here are better that those reported
in (Amengual et al., 1997b), which were obtained on a HP-9735 workstation, reflecting
improvements in our acoustic models: the set of phones considered, the topology of the
HMMs and the HMM training software have been changed.

6. Conclusions

Finite State Transducers can be used as the basis of speech translation systems for limited
domains. These models can be automatically learnt from examples, and the learning pro-
cess can be improved by means of categories using the approach detailed in this paper. This
approach has been tested in a task involving the recognition and translation of utterances
in the hotel reception communication domain, with a vocabulary of 683 words in Spanish.
Experiments with text input show that using categories significantly reduces the number of
examples required for achieving good models. In experiments with speech input, a 1.97%
translation word error rate is achieved in real time factor 2.7 in a Personal Computer
without using specialized hardware. It is worth noting that there is a clear tradeoff between
computing time and accuracy. For off-line operation, a different configuration can provide
improved translation performance at the cost of increasing the real time factor (a 1.83%
translation word error rate has been achieved in real time factor 5.8).

Automatically learning translation models from examples can lead to systems that can
be easily modified and adapted to a great variety of tasks and language pairs, provided
that the required corpora are available. Therefore this is an approach that clearly is worth
continuing to explore. Our current work concentrates in further reducing the number
of examples necessary for training the translation models, by reordering the words in
the translations (Vilar et al., 1996) or using new inference algorithms (Vilar, 1998). We
are also exploring techniques for automatic bilingual categorization, and error correcting
techniques for dealing with more spontaneous input. Finally, our system is in continuous
development in order to deal with increasing vocabulary size and to get closer to other
state-of-the-art CSR systems, so that our results could be more fairly compared to those
of other spoken language translation projects.
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Appendix. Transducer Learning Algorithms

In this appendix, all algorithms described and referenced in Section 2.3 are formally pre-
sented. Both learning algorithms, Onward Subsequential Transducer Inference Algorithm
(OSTIA) and Onward Subsequential Transducer Inference Algorithm with Domain and
Range (OSTIA-DR), have been structured by means of common functions, which are first
introduced.

A first function (Algorithm 1) is used to build a Tree Subsequential Transducer (TST),
which is a prefix tree representation for the input strings of a given unambiguous set of
training samples. In this prefix acceptor, each output string is associated to the accepting
state of the corresponding input one.

Algorithm 1. Make_TST

Input: T C X* x Y™ /V(z,y), (', y) €T, z=2" =>y=1y
Output: 7 = (X,Y,Q,q0, E,0), a TST for T
Q:=={\} q@:=X E:=0
for all (z,y) = (a1...a;;,b1...by) €T do
Vie{l,...,|z|]}, @:=QU{a1...a:};
Vie{l,...,|z|}, E:=EU{(ai...ai—1,ai,\,a1...a;)};
Vie{l,...,|z| =1}, o(ar...a;) = 0;
oar...ap) =y
end for
return(7);

Then, a second function (Algorithm 2) obtains an Onward Tree Subsequential Trans-
ducer (OTST). Starting from the previous TST, the longest common prefixes of the output
strings are recursively moved, level by level, from the leaves toward the root of the tree.

Next function (Algorithm 3) takes an edge of the transducer and an output suffix (of
the output string of the edge), and moves this suffix from the edge to its following state
and edges. This operation is used to try matching paths in the transducer that could be
the same.

The last function (Algorithm 4) attempts to merge two states of the transducer and
paths departing from them. To this end, it recursively tests the compatibility of paired
states and edges. Recursion finishes successfully when all mergings are found compatible.
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Algorithm 2. Make_OTST

Input: 7 = (X,Y,Q,qo, E,0) a TST for a given T'; = € Q
Output: 7' = (X,Y,Q, q0, E',0'), an OTST for T
=
for all (z,a,\,za) € E' do
7' = Make_OTST(7', a);
z:=lep({y € Y* / (za,b,y,zadb) € E'} U {0’ (za)});
Y(za,b,y,zab) € E', E':= (E — {(za,b,y,zab)}) U {(xa,b, 2 'y, zab)};
o'(za) ==z o' (za);
E = (E'"—{(z,a,\,za)}) U{(z,a,z,za)};
end for
return(r’);

Algorithm 3. Push_Back

Input: 7 = (X,Y,Q,qo, E,0); (r,a,y,7')€E; ve€ X" /y=uv,withue X"
Output: 7' = (X,Y,Q,q0, E',0")

=T

V(r',b,z,r") € E', E' :=(E"—{(r',b,z,7")}) U{(r',bvz,r")}

if o'(r') £ 0 then o' (') := vo'(r');

E' = (E' —{(r,a,y,7")}) U{(r;a,yv"",r")};

return(r’);

Algorithm 4. Merge_States

Input: 7= (X,Y,Q,q0,E,0); q,r,s€Q
Output: compatibles € {true, false}; 7' = (X,Y,Q’,q0, E',0’)
7' =171, compatibles := false;
if o'(r) =0 or 0'(s) = 0 or o'(r) = 0'(s) then
if o'(r) = 0 then o(r) := o(s);
for all (s,a,z2,s') € E' do
if (r,a,y,r') € E' then
E = (E' —{(s,a,2,8")}) U{(r,a,z,5)};
else
if r' < g and y ¢ Pr(z) then return(false, 7'),
u = lep({y, 2}):
7’ := Push_Back(7', (r,a,y,7"),u""y);
7' := Push_Back(7', (s,a,z,8'),u” " 2);
(compatibles, ') := Merge_States(t',q,7',s');
if not compatibles then return(false, ')

-1
—1

end if
end for
Q' = Q' — {s}; compatibles := true;

end if
return(compatibles, 7');
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To guarantee the inference of target subsequential transductions, learning algorithms
try state merging following a lexicographic order, <, which is obtained from the TST
construction, since states are named by the input prefixes leading to them. Given a SST
7= (X,Y,Q,q, FE,o) such that Q C X*, next functions implement such a state ordering:

first(7) returns r = A€ Q /Vr' € Q, r <X r;

last(7) returns r € Q / Vr' € Q, ' < r; and

next(r,s), with s € Q, returns r € Q / Vr' € X*, s <r' <r =1 €Q.

The Onward Subsequential Transducer Inference Algorithm (OSTIA) (Algorithm 5)
infers SSTs using only the translation constraints reflected in the training set.

Algorithm 5. OSTIA

Input: T C X x Y, single-valued finite set of samples
Output: 7 = (X,Y,Q, qo, E,0), Onward SST consistent with T
7:=TST(T); 7:= OTST(1,N); q:= first(7);
while ¢ < last(7) do
q := next(1,q); p:= first(T); compatibles := false;
while not compatibles and p < q do
=1
V(T‘, a, w, q) € EI7 E = (EI - {(1", a, w, Q)}) U {(T7 a, wyp)};
(compatibles, ') := Merge_States(t',q, p, q);
if compatibles then 7 := 7';
p := next(r,p);
end while
end while

The Onward Subsequential Transducer Inference Algorithm with Domain and Range
(OSTIA-DR) (Algorithm 6) infers SSTs using both syntactic and translation constraints.

Algorithm 6. OSTIA-DR

Input: T C X x Y, single-valued finite set of samples;
D =(Qp,X,dp,do, Fp), a DFA representing the Domain language;
R = (Qr,Y,0r, 70, Fr), a DFA representing the Range language;
Output: 7 = (X,Y,Q, qo, E, ), Onward SST consistent with 7', D and R
7:=TST(T); 7:= OTST(r); q:= first(7);
while ¢ < last(7) do
q := next(r,q); p:= first(r); compatibles := false;
while not compatibles and p < q do
Let (qo, Zp, Yp. p) € Il (qo, p) and (qo, T4, Yq, q) € - (qo, q);
if 6p(do,zp) = dp(do, zq) and dr(ro,yp) = dr(ro,y,) then
=
V(r,a,w,q) € E', E':=(E'—{(r,a,w,q)}) U{(r,a,w,p)};
(compatibles, ') := Merge_States(t’,q,p,q);
if compatibles then 7 := 71';
end if
p = next(t,p);
end while
end while
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