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ed The EuTrans-I Speeh Translation System �J.C.Amengual1, J.M.Bened��2, F.Casauberta2, A.Casta~no1, A.Castellanos1,V.M.Jim�enez1, D.Llorens1, A.Marzal1, M.Pastor2, F.Prat1, E.Vidal2 and J.M.Vilar1(1) Unidad Predepartamental de Inform�atia, Campus Riu Se, Universitat Jaume I, 12071 Castell�on dela Plana (Spain)(2) Depto. de Sistemas Inform�atios y Computai�on and Instituto Tenol�ogio de Inform�atia,Universidad Polit�enia de Valenia, 46022 Valenia (Spain)Abstrat. The EuTrans projet aims at using Example-Based approahes for the automati developmentof Mahine Translation systems |aepting text and speeh input| for limited domain appliations.During the �rst phase of the projet, a speeh translation system that is based on the use of automatiallylearnt Subsequential Transduers has been built. This paper ontains a detailed and to a long extentself-ontained overview of the transduer learning algorithms and system arhiteture, along with a newapproah for using ategories representing words or short phrases in both input and output languages.Experimental results using this approah are reported for a task involving the reognition and translationof sentenes in the hotel reeption ommuniation domain, with a voabulary of 683 words in Spanish. Atranslation word error rate of 1:97% is ahieved in real time fator 2.7 in a Personal Computer.Keywords: Speeh translation, subsequential transduers, transduer learning, �nite state models, gram-matial inferene 1. IntrodutionMost of the urrent e�orts to ope with the speeh translation problem are based onthe use of previously developed text-input translation systems relying on knowledge-basedtehnology, whih are serially oupled to the output of state-of-the-art word reognizerfront-ends (Blok, 1997; Bub et al., 1997; Lavie et al., 1997; Rayner and Carter, 1997).In ontrast, the EuTrans projet aims at building translation systems for text andspeeh input in limited domain appliations by (i) using example-based tehniques, and(ii) a tight integration of translation, syntati and aousti onstraints into global models.In last years, example-based tehniques have been showing their usefulness in translationsystems; for instane, through a balaned ombination with knowledge-based tehniques(Nirenburg, 1995).During the �rst phase of the projet, a basi demonstration speeh translation systemhas been developed that relies on a kind of �nite state models known as SubsequentialTransduers. Among the interesting properties of these models, we an remark:� They an be automatially learnt from a text, sentene-aligned, bilingual orpus byeÆient algorithms (Onina, 1991; Onina et al., 1993; Onina and Var�o, 1996).� They an be easily and eÆiently used in onventional Continuous Speeh Reognitionsystems so that, for eah input aousti sequene, the searh for the optimal transla-tion (and the orresponding input-language sentene) is guided by a model integrating� This work has been partially funded by the European Union and the Spanish CICYT, under grantsIT-LTR-OS-20268 and TIC97-0745-C02, respetively. The EuTrans projet is being developed in twophases. This paper desribes the approah adopted during the already �nished �rst phase, that will bereferred to as EuTrans-I. The seond phase is urrently under development. See the projet home pageat http://hermes.zeres.de/Eutrans/ 1999 Kluwer Aademi Publishers. Printed in the Netherlands.
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2 Amengual et al.(i) the syntati onstraints of the input language, (ii) the information needed for thetranslation into the output language, and (iii) the syntati onstraints of the outputlanguage (Jim�enez et al., 1994; Jim�enez et al., 1995; Amengual et al., 1997a).An important drawbak of this approah is the large amount of bilingual examplesrequired to learn useful translation models. In order to redue the severity of this require-ment, we show how appropriate models an be learnt from a ategorized bilingual orpus inwhih words or short phrases (for instane, numbers, dates, or proper names) are replaedby adequate labels, thus simplifying the tasks that the learning algorithms have to takle(Vilar et al., 1995; Amengual et al., 1997a; Amengual et al., 1997b).The rest of the paper is organized as follows. In Setion 2, we desribe Subsequen-tial Transduers and the learning algorithms. Although these algorithms have previouslyappeared in the literature (Onina et al., 1993; Onina and Var�o, 1996), for the sake ofompleteness we give them here in a more uni�ed and hopefully understandable presen-tation. Setion 3 is devoted to explain how to use ategorization to redue training datarequirements. The integrated arhiteture of the EuTrans-I speeh translation system ispresented in Setion 4. Experimental results are reported in Setion 5 and �nal onlusionsare drawn in Setion 6.2. The translation model and its basi learning algorithms2.1. NotationGiven an alphabetX, X� is the free monoid of strings over X. First letters (a; b; ; : : : ) rep-resent individual symbols of the alphabets and last letters (z; y; x; : : : ) represent strings ofthe free monoids. We refer to the individual elements of the strings by means of subindies,as in x = a1 : : : an. For any string x 2 X�, jxj denotes the length of x, and � is the symbolfor the string of length zero (empty string). Given two strings x; y 2 X�, xy denotes theonatenation of x and y.If v is a string in X� and L � X�, then Lv (vL) denotes (in this paper) the set ofstrings xy 2 L suh that y = v (x = v). Hene, X�v (vX�) denotes the set of all stringsof X� that end (begin) with v, while ;v = v; = ; (the empty set). For u; v; w 2 X�, thesuÆx of v with regard to u is de�ned as u�1v = w , v = uw, and the pre�x of u withregard to v as uv�1 = w , u = wv. Given a set L � X�, the longest ommon pre�x of allthe strings of L is de�ned as lp(L) = v , L = vL and 8u 2 X�; L = uL) juj � jvj.2.2. Finite State TransduersA Finite State Transduer (FST) is a �nite state mahine that aepts sentenes froma given input language and produes assoiated sentenes of an output language. It isomposed of states and edges onneting them. Eah edge has assoiated an input symboland an output string. The parsing of an input sentene begins from a distinguished state(the initial state) and proeeds by onsuming input symbols one by one. Every time aninput symbol is mathed following an adequate edge, the string assoiated to that edgeis output and a new state is reahed. This proess ontinues on until the whole input isproessed; then, additional output may be produed from the last state reahed in theanalysis of the input. An interesting lass of FSTs are the Subsequential Transduers,
mt98revision.tex; 3/09/1999; 17:54; p.2



The EuTrans-I Speeh Translation System 3PSfrag replaements
�la / � una / � punto / �y / �one en / one o'lok uarto / a quarter past onemedia / half past oneFigure 1. A simpli�ed SST. The initial state has an arrow pointing to it and �nal states are marked bydouble-irling.beause there are well-known and eÆient algorithms for inferring them from examples,as we will see below.Formally, a FST is a tuple � = (X;Y;Q; q0; E; �) where X and Y are the input andoutput alphabets, Q is a �nite set of states, q0 2 Q is the initial state, E � Q�X�Y ��Qis a set of edges, and � : Q ! Y � is a state emission funtion1. Those states for whih� is de�ned are usually alled �nal states. A Subsequential Transduer (SST) is a FSTverifying that, if (p; a; y; q) and (p; a; y0; q0) belong to E, then y = y0 and q = q0 (thedeterminism ondition). An example of a SST is shown in Figure 1.Given a string x = a1 : : : an 2 X�, a sequene (p0; a1; y1; p1), : : : , (pn�1; an; yn; pn) is apath from p0 to pn in � if (pi�1; ai; yi; pi) 2 E, i = 1; : : : ; n. When intermediate states arenot important, a path will be expressed as (p0; a1 : : : an; y1 : : : yn; pn), i = 1; : : : ; n. Theset of all paths between two states p; q 2 Q is denoted as �� (p; q). For every string x 2 X�suh that 9(q0; x; y; q) 2 �� (q0; q) and q is a �nal state we will say that (q0; x; y; q) is avalid path, that x is aepted by � and that y�(q) is a translation of x by � .If � is a SST, the ondition of determinism means that there an be no more than onevalid path, and hene at most one translation, for a given input string. Therefore, � de�nesa funtion between an input language, LI � X�, and an output language, LO � Y �. BothLI and LO are regular languages and their orresponding automata are easily obtainablefrom the SST. In partiular, an automaton for LI an be obtained by eliminating theoutput of the edges and states, and onsidering the �nal state set of the automaton beingthe same as in the SST. A state is useless if it is not ontained in any valid path. Uselessstates an be eliminated from a SST without hanging the funtion it de�nes.2.3. Inferene of Subsequential TransduersIn general, any subsequential transdution an be realized by several di�erent SSTs. How-ever, for eah subsequential transdution, one of suh transduers is the anonial SSTfor the transdution, whih has the minimum number of states and is onward (Onina,1991; Onina et al., 1993). A SST � = (Q;X; Y; q0; E; �) is onward if 8p 2 Q� fq0g,lp(fy1 : : : yn�(qn) 2 Y �j(p; x1 : : : xn; y1 : : : yn; qn) 2 E�; �(qn) 6= ;; n � 0g) = �:In other words, the longest ommon pre�x of the output strings in paths departing fromp is �. Equivalently, a SST is onward if, for eah input string pre�x, the output stringassoiated to it by the transduer is the longest ommon pre�x of the output strings(translations) orresponding to the input strings that begin with this input pre�x.In the following, basi algorithms whih are formally guaranteed to infer the minimumonward SST whih realizes a given subsequential transdution from a set of examples of the1 In this paper, the term funtion refers to partial funtions. We will use f(x) = ; to denote that thefuntion f is unde�ned for x.
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4 Amengual et al.transdution are desribed (Onina, 1991; Onina et al., 1993; Onina and Var�o, 1996). InSetion 2.3.1, funtions that represent a set of training examples as simple forms of SSTsand produe ompatible generalizations are presented. In Setion 2.3.2, they are used toinfer the minimum onward SST for a given total subsequential funtion. This algorithmgeneralizes the training examples by taking only translation struture into aount. InSetion 2.3.3, an algorithm whih allows to inorporate syntati onstraints of the inputand output languages into the translation network is desribed. The introdution of aspei� input language model allows this last algorithm to infer the minimum onward SSTfor a given partial subsequential funtion. Finally, Setion 2.3.4 explains how probabilistiinformation an be inorporated to the learnt SSTs. For interested readers, algorithmsreferened in the following setions have been inluded in an appendix. Here, mainlyintuitive and illustrative ideas of their behaviour are given.2.3.1. Generalization of a set of examplesAny unambiguous or single-valued �nite set of samples (pairs of input-output strings)T � X��Y � an be immediately represented by means of a Tree Subsequential Transduer(TST). A TST, � = (Q;X; Y; q0; E; �), for a given single-valued �nite set of samples T ,is a pre�x tree aeptor for the input strings of T in whih the output strings appear inthe orresponding aepting states. Figure 2(a) shows an unambiguous set of examples,whih have been drawn from room number translation from Spanish into English. The TSTdiretly representing this sample set an be observed in Figure 2(b). Proedure Make TST(Algorithm 1, see appendix) an be used to build the TST of a given set T .From this TST, an Onward Tree Subsequential Transduer (OTST), whih also rep-resents T , is built by produing the onward SST equivalent to the TST of T . FuntionMake OTST (Algorithm 2) presents a reursive proedure for obtaining the OTST for Tfrom the TST for T . Mainly, this proess onsists in moving the longest ommon pre�xesof the output strings, level by level, from the leaves of the tree toward the root. Figure 2()illustrates the result of this proess. From the TST depited in Figure 2(b), the longestoutput pre�xes whih are ommon among all paths departing from eah state are movedtowards the root of the tree. Unommon output substrings remain at the highest levelstates and edges that they an reah in this reursive advanement proess.Note that the OTST obtained so far does not generalize the training set; that is, it isonly able to translate strings that appear in the training set. A simple generalization ofa set of samples T an be produed by merging two states of the OTST for T . The onlyproperty that these states must verify is that all paths departing from them whih sharethe same sequene of input symbols must also share the same sequene of output strings.In this ase, states are alled ompatible and they an be merged, resulting in a new SSTwhih is a suitable generalization of the previous one.The ompatibility test requires sometimes pushing bak some output string suÆxesthrough the paths of one of the states (Algorithm 3). This operation is needed to helpmathing equal input symbols along with their output strings in the possibly ommonpaths, and simply onsist in moving a suÆx of the output string of an edge to its followingstate and edges.The funtion Merge States (Algorithm 4) merges two states of the SST and ommonpaths departing from them. To this end, the ompatibility of the output strings of thestates is �rst tested. When this test sueeds, the edges of one of the states with inputsymbols not shared by the other state an be diretly assigned to this last one. Also, edges
mt98revision.tex; 3/09/1999; 17:54; p.4



The EuTrans-I Speeh Translation System 5T = f (�; �); (tresientos; three oh oh); (seisientos; six oh oh); (tresientos diez; three one oh);(tresientos inuenta; three �ve oh); (tresientos inuenta y uno; three �ve one);(seisientos inuenta y siete; six �ve seven); (seisientos ohenta; six eight oh);(seisientos ohenta y uatro; six eight four); (seisientos veintitr�es; six two three) g(a)

PSfrag replaements

tresientos / �seisientos / � diez / �inuenta / �inuenta / �ohenta / �veintitr�es / �1, three oh oh2, six oh oh 3, three one oh4, three �ve oh6, six eight oh7, six two three 11, three �ve one12, six �ve seven13, six eight four0, �

tresientos / threeseisientos / sixdiez / one ohinuenta / �veinuenta / �ve sevenohenta / eightveintitr�es / two threey / one
y / �y / �y / �

y / four
uno / �siete / �uatro / �5, ; 8, ;9, ;10, ;1, oh oh2, oh oh3, �4, oh6, oh7, �11, �12, �13, � (b)

PSfrag replaementstresientos / �seisientos / �diez / �inuenta / �ohenta / �veintitr�es / �1, three oh oh2, six oh oh3, three one oh4, three �ve oh6, six eight oh7, six two three11, three �ve one12, six �ve seven13, six eight four

0, � tresientos / threeseisientos / six diez / one ohinuenta / �veinuenta / �ve sevenohenta / eightveintitr�es / two three y / oney / �y / four uno / �siete / �uatro / �5, ; 8, ;9, ;10, ;1, oh oh2, oh oh 3, �4, oh6, oh7, �
11, �12, �13, �()Figure 2. Simple SSTs representing a training set. (a) An unambiguous set of examples, T . (b) TreeSubsequential Transduer for T . () Onward Tree Subsequential Transduer for T .sharing the same input symbols are adjusted on their output strings to reursively try tomerge the destination states of the edges.Suh a reursive merging onveys merging of ommon paths starting at the initial pairof states. Reursion �nishes suessfully when all mergings are found ompatible. Alter-natively, it an be interrupted if the output strings of a pair of states are non ompatibleor if the output strings of a pair of equal input edges are non adjustable. This last aseours if one of the edges has to be onsidered onsolidated and the other one annot be�tted to it. The notion of onsolidated edge is related to the order in whih pairs of statesare merged and to the assumption that a merging of two states annot modify the part ofthe transduer that has been being onsolidated by previous ompatible mergings.Figure 3 illustrates the merging proess for states 1 and 2 from the example OTSTobtained in Figure 2(). Output strings of these states are equal, thus the edge inomingstate 2 is hanged to reah state 1, edges outgoing state 2 are assigned to state 1 and state 2is removed (Figure 3(a)). At this moment, two edges with input symbol \inuenta" anddi�erent output strings depart from state 1. By pushing bak the symbol \seven" in oneedge, output strings of both edges are made equal allowing their merging along with theirdestination states (Figure 3(b)). States 4 and 5 an be merged beause state 5 has nooutput string. Now, state 4 has two outgoing edges with input symbol \y" and di�erentoutput strings. Pushing bak symbols \one" and \seven" to the following edges makes theempty string to be the output string in both edges, whih yields their merging and that of
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6 Amengual et al.
PSfrag replaements

0, � tresientos / threeseisientos / six diez / one ohinuenta / �veinuenta / �ve sevenohenta / eightveintitr�es / two three y / �y / one
y / seven

y / four
uno / onesiete / seven

uno / �siete / �uatro / �5, ; 8, ;9, ;10, ;1, oh oh 3, �4, oh6, oh7, �
11, �12, �13, �(a)

PSfrag replaements

0, � tresientos / threeseisientos / six diez / one ohinuenta / �ve

inuenta / �ve seven

ohenta / eightveintitr�es / two three

y / �
y / oney / seveny / four

uno / onesiete / seven
uno / �siete / �uatro / �

5, ; 8, ;9, ;10, ;1, oh oh 3, �4, oh6, oh7, �
11, �12, �13, �(b)

PSfrag replaements

0, � tresientos / threeseisientos / six diez / one ohinuenta / �ve

inuenta / �ve seven

ohenta / eightveintitr�es / two three y / �
y / oney / seven

y / four uno / onesiete / seven
uno / �siete / �

uatro / �
5, ; 8, ;9, ;

10, ;1, oh oh 3, �4, oh6, oh7, �
11, �12, �13, �()Figure 3. Some steps of the merging proess for states 1 and 2 from the Onward Tree SubsequentialTransduer of Figure 2().states 8 and 9 (Figure 3()). This merging proess �nishes suessfully sine all partiularstate and edge mergings have been found or have been made ompatible.2.3.2. Inferene of the translation strutureIn order to guarantee the inferene of a target subsequential transdution, the learningproess requires the pairs of states of the initial OTST to be suessively onsidered ina ertain order. An appropriate order an be a lexiographi order of the input stringpre�xes. Notie that state numbering given to SSTs through Figures 2, 3, 4 and 5 followssuh an order, whih is obtained as a by-produt of the TST onstrution (Algorithm 1),sine states are named by means of the input pre�xes that lead to them.The Onward Subsequential Transduer Inferene Algorithm (OSTIA) (Onina, 1991;Onina et al., 1993) is formally presented in Algorithm 5. It begins building the OTSTof a �nite single-valued training set T � X� � Y � that reeives as input. Then, OSTIAtakes every state in lexiographi order, and tries to orderly merge eah one with someother previous state. Merging of two states is made e�etive only if it is ompatible. Atthe end, OSTIA returns an onward SST whih is onsistent with T ; i.e., an onward SSTwhih realizes T and a generalization derived from ompatible mergings.The lass of total subsequential transdutions an be identi�ed in the limit from positivepresentation of input-output pairs (Onina, 1991; Onina et al., 1993). In other words, forany total subsequential transdution OSTIA will exatly obtain the minimum onward SST
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The EuTrans-I Speeh Translation System 7
PSfrag replaements

0, � tresientos / threeseisientos / sixdiez / one oh inuenta / �veohenta / eightveintitr�es / two three y / � uno / onesiete / sevenuatro / four1, oh oh 4, oh 8, ;7, � 11, �12, �13, �(a)PSfrag replaements

0, � tresientos / threeseisientos / sixdiez / one oh inuenta / �veohenta / eightveintitr�es / two three y / �
uno / onesiete / sevenuatro / four 1, oh oh 4, oh8, ;7, �11, �12, �13, � (b)Figure 4. Last steps in the exeution of OSTIA after suessfully merging states 1 and 2 (Figure 3())from the Onward Tree Subsequential Transduer of Figure 2().that realizes the subsequential transdution from a large enough set of input-output pairsof the funtion.The behaviour of OSTIA on the example OTST of Figure 2() is outlined here below.It �rst tries to merge state 1 and state 0, whih is not possible due to the distint outputstrings of the states. Thus, state 1 remains as before, and now state 2 is onsidered. State 2annot be merged with state 0 either, but it an be merged with state 1 beause they areompatible. Their detailed merging proess was shown in Figure 3 and desribed in lastsetion. Next, state 3 is onsidered to be merged on the SST obtained after merging states 1and 2 (Figure 3()).State 3 is ompatible with state 0, provided that their output strings are equal and nopath exists whih an distinguish them. Therefore, state 3 is merged with state 0. Then,state 6 is found non ompatible with states 0 and 1, due to their distint output strings.However, state 6 an be merged with state 4, following a similar adjustment proedure tothat previously desribed for states 1 and 2. The SST resulting from mergings of states 3and 0 and states 6 and 4 is depited in Figure 4(a).Finally, states 7, 8, 11, 12 and 13 are all found ompatible with state 0, yielding the SSTpresented in Figure 4(b) whih is the onward SST onsistent with T omputed by OSTIA.Note that the obtained SST orretly assoiates output substrings to input symbols, whihwill allow it to appropriately translate other input strings not seen in the training. Suh abehaviour generally appears in SSTs learnt by OSTIA, if a suÆiently large training setis available. However, although this behaviour is desirable in pratie, it is not enough toadequately model pratial translation tasks, as we disuss in next setion.2.3.3. Inferene of translation models with given input and output syntati onstraintsIn pratie, the SSTs learnt by OSTIA tend to very aurately translate orret inputsentenes, but also tend to aept and translate inorret sentenes produing meaninglessresults for them. This yields undesirable e�ets in ase of noisy input, like the one obtainedby optial harater reognition, typing, or (of partiular interest in our ase) speehreognition. The SST of Figure 4(b) an aept and translate inorret sentenes, like\uno seisientos ohenta y tresientos" whih is translated as \one six eight three oh oh".
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8 Amengual et al.This problem originates from the fat that, by state merging, OSTIA tends to over-generalize the input and output languages as muh as possible while aurately modelingthe mapping from input to output sentenes. That is, the �nite state model of the inputlanguage underlying the learnt SST (the one resulting from removing the output stringsassoiated to the edges) does not neessarily onstitute a good input language model, andthe same happens with the �nite state model of the output language underlying the SST(the one resulting from removing the input symbols assoiate to the edges)A possible way to overome this over-generalization problem is to impose to the learningproess the onstraint that the learnt SSTs should not aept input sentenes or produeoutput sentenes whih are not aepted by given models of the input (Domain) and output(Range) languages. If these onstraints an be modeled by Deterministi Finite Automata(DFA), then learning an be arried out with a version of OSTIA alled OSTIA-DR(Onward Subsequential Transduer Inferene Algorithm with Domain and Range) (Oninaand Var�o, 1996), whih is given in Algorithm 6. It only di�ers from OSTIA in the test fordeiding whether merging two states will be aeptable or not: OSTIA-DR will never mergeSST states that orrespond to di�erent states in the DFA for the input language (Domain)or in the DFA for the output one (Range). Formally, let D = (QD;X; ÆD ; d0; FD) andR = (QR; Y; ÆR; r0; FR) be two DFAs desribing the Domain and Range of a subsequentialfuntion t, respetively. Given a SST � = (X;Y;Q; q0; E; �), let (q0; xp; yp; p) be a path in�� (q0; p) and let (q0; xq; yq; q) be a path in �� (q0; q). Then states p and q are only allowedto be merged if ÆD(d0; xp) = ÆD(d0; xq) and ÆR(r0; yp) = ÆR(r0; yq). This test an be veryeÆiently implemented if the states and output symbols of the initial OTST are previouslylabelled with the orresponding states in the Domain and Range DFAs.OSTIA-DR an make use of any kind of DFA models for Domain and Range. In parti-ular, these models an be N -Testable Automata, whih an be automatially learnt fromexamples (Gar��a and Vidal, 1990). N -Testable Automata are just the result of removingprobabilisti information from stohasti N -Testable Automata whih, in turn, onstitutejust a onvenient strutural way of representing the well known N -Gram models in termsof �nite state mahines (Vidal et al., 1995). Therefore, standard automata minimizationalgorithms an be applied to N -Testable Automata. Experiene shows that using smaller,more ompat Domain and Range models generally helps OSTIA-DR to produe bettergeneralizations for a given amount of training data, and, hene, minimized models aregenerally used.Figure 5 illustrates the result of exeuting OSTIA-DR with the unambiguous trainingset T of Figure 2(a). In order to provide a lear presentation, the �gure only shows detailsrelated with the inlusion of a Domain model in the learning proess. Figure 5(a) shows aminimized 2-Testable automaton for the input language of the transdution, whih is usedto label the states of the OTST for T, previously shown in Figure 2(). The label addedto eah transduer state is simply the automaton state reahed when the input pre�x thatleads to the state of the OTST is parsed through the Domain automaton. The resultingOTST with labelled states is presented in Figure 5(b). Inlusion of a Range model wouldimply labelling all symbols of the output strings of the OTST.From this state labelled OTST, the generalization proess arried out by OSTIA-DRyields the onward SST in Figure 5(). Although its ordered merging proess is similarto that of OSTIA, it an be observed that, in ontrast with the transduer obtained byOSTIA (Figure 4(b)), states 3, 7, 8, 11, 12 and 13 have not been merged with state 0sine they have assoiated a di�erent state label. Moreover, note that the struture ofthe onward SST learnt in this ase is the same as that of the Domain automaton. In the
mt98revision.tex; 3/09/1999; 17:54; p.8



The EuTrans-I Speeh Translation System 9

PSfrag replaements

d0 d1 d2 d3 d4tresientosseisientos diezveintitr�esinuentaohenta y uatrounosiete

0, d0, �0, d0, �tresientos / threeseisientos / sixdiez / one ohinuenta / �veinuenta / �ve sevenohenta / eightveintitr�es / two threey / oney / �y / fouruno / �siete / �uatro / �uno / onesiete / sevenuatro / four5, d2, ;8, d3, ;8, d3, ;9, d3, ;10, d3, ;1, d1, oh oh1, d1, oh oh2, d1, oh oh3, d4, �3, d4, �4, d2, oh4, d2, oh6, d2, oh7, d4, �11, d4, �12, d4, �13, d4, � (a)

PSfrag replaementsd0d1d2d3d4tresientosseisientosdiezveintitr�esinuentaohentayuatrounosiete

0, d0, �

0, d0, �

tresientos / threeseisientos / six diez / one ohinuenta / �veinuenta / �ve sevenohenta / eightveintitr�es / two three y / oney / �y / four uno / �siete / �uatro / �

uno / onesiete / sevenuatro / four
5, d2, ; 8, d3, ;

8, d3, ;
9, d3, ;10, d3, ;1, d1, oh oh1, d1, oh oh

2, d1, oh oh 3, d4, �3, d4, � 4, d2, oh4, d2, oh 6, d2, oh7, d4, � 11, d4, �12, d4, �13, d4, �(b)

PSfrag replaementsd0d1d2d3d4tresientosseisientosdiezveintitr�esinuentaohentayuatrounosiete0, d0, �

0, d0, � tresientos / threeseisientos / six diez / one ohinuenta / �ve

inuenta / �ve seven

ohenta / eight veintitr�es / two three

y / one

y / �

y / fouruno / �siete / �uatro / �
uno / onesiete / sevenuatro / four

5, d2, ;8, d3, ;
8, d3, ;

9, d3, ;10, d3, ;1, d1, oh oh 1, d1, oh oh2, d1, oh oh3, d4, � 3, d4, �4, d2, oh 4, d2, oh6, d2, oh7, d4, �11, d4, �12, d4, �13, d4, � ()Figure 5. Key details of the learning proess of OSTIA-DR. (a) Automaton for the Domain language. (b)Onward Tree Subsequential Transduer of Figure 2() labelled with automaton states. () Onward SSTlearnt by OSTIA-DR.general ase, translation onstraints onvey an extension of the struture determined byDomain and Range models.2.3.4. Estimating transition probabilitiesSo far, only strutural aspets involved in the learning of �nite state translation modelshave been onsidered. However, in order to properly integrate these models with standardaousti models to perform speeh translation (see Setion 4), not only strutural, but alsoprobabilisti aspets are important. Given that a SST is a deterministi model, optimalmaximum likelihood estimates of the transition probabilities an be obtained by omputingthe relative frequeny of use of eah transition in the (deterministi) parsing of the texttraining sentenes. This results in an Stohasti SST whih models a joint probabilitydistribution of input-output sentene pairs.3. Using ategories to redue the amount of data required to learn the SSTsAn important drawbak of the approah presented so far is that the required amount oftraining data rapidly grows with the omplexity of the translation task to be modelled.Hene, some measures are required in order to apply this approah to non trivial taskswhile keeping the number of needed examples a�ordable. Among a number of promising
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10 Amengual et al.approahes (Vidal, 1997), ategorization has proved quite e�etive: we an try to simplifya given translation task by replaing some words or short phrases, both in the input andoutput languages, by adequate labels from a set of what we all ategories. The basi ideaonsists in using the same ategory label to represent those words and expressions thatplay a similar role and, thus, are expeted to appear in the same kind of ontexts. Consider,for instane, the possibility of using a spei� ategory for representing olors (blak, paleblue, olive green : : : ) and a di�erent one for plane shapes (irle, square, ellipse, isoselestriangle : : : ) in a translation task involving the desription of visual senes.The approah for using ategories together with SSTs presented in (Vilar et al., 1995)proved to be useful in reduing the number of examples required for learning. However, thisapproah was not easily integrable in a speeh reognition system and ould not deal withategories inluding units larger than a word. For these reasons, in the EuTrans-I projetthe approah was hanged so that a single FST would omprise all the information for thetranslation, inluding elementary transduers for the ategories. This an be ahieved byfollowing these steps:� De�nition of ategories. Determine the set of ategories.� Corpus ategorization. Replae words and short phrases in the orpus by theirategory labels.� Basi struture model learning. Use the ategorized orpus to train a model,whih will be referred to as initial SST.� Category modelling. For eah ategory, learn a so-alled ategory SST (SST).� Category expansion. Expand the edges in the initial SST orresponding to thedi�erent ategories using their respetive SSTs. This expansion proedure, explainedin more detail below, an introdue non-determinism, so the new model is a FST whihwill be referred to as expanded FST.A general view of the proess an be seen in Figure 6. The left part represents theelements involved in the learning of the expanded FST, exempli�ed with a single trainingpair. The right part of the diagram gives a shemati representation of the use of thistransduer for the translation of speeh input as will be explained in Setion 4.The ategory expansion step is a bit more omplex than just substituting eah ategory-labelled edge by the orresponding SST. It has to onsider (i) how to insert the output ofthe SST within the output of the initial transduer;(ii) how to deal with more than one�nal state in the SST; and (iii) how to deal with yles in the SST involving its initialstate.Solving (i) is not trivial, sine the translation of a ategory label an appear beforeor after the label has been seen in the input. For example, onsider the transduer inFigure 7(a) and a Spanish sentene ategorized as \me voy a $HOUR", whih orrespondsto the ategorized English one \I am leaving at $HOUR". In our appliation, one \me voya" is seen, the ontinuation an only be \$HOUR", so the initial SST, before seeing thisategory label in the input, has already produed the whole output (inluding \$HOUR").Taking this into aount, we deided to keep the output of the initial SST and to inludethere the information neessary for removing the ategory labels. To do this, the labelfor the ategory was onsidered as a variable that ats as a plaeholder in the outputsentene and whose ontents are also �xed by an assignment appearing elsewhere within
mt98revision.tex; 3/09/1999; 17:54; p.10



The EuTrans-I Speeh Translation System 11
PSfrag replaements Original

: : :: : :: : :: : :
CorpusCorpus

Corpus
CorpusCategorizerCategorized

Category 1
Category 1

Category n
Category n

SST
SSTSST

FSTExpandedLexialModelsModelsAoustiInitialExpander
OSTIA-DROSTIA-DR

OSTIA-DR

Postproessor
Translator

Translation

Transduer Learning Proess Translation ProessOriginal sampled�eme la llave de la habitai�on iento veintitr�esgive me the key to room number one two three

Categorized sampled�eme la llave de la habitai�on $ROOMgive me the key to room number $ROOM

Input sentened�eme la llave de la habitai�on iento doe

give me the key to room $ROOM $ROOM=[ one one two ℄
give me the key to room number one one twoFigure 6. General sheme of the treatment of ategories in the learning and translation proesses.that sentene. In our example, the expeted output for \me voy a las tres y media" ouldbe \I am leaving at $HOUR $HOUR=[half past three ℄". This assumes that eah ategoryappears at most one within eah sentene.The expanded FST is then obtained by an iterative proedure whih starts with theinitial SST. For eah edge whose input symbol is a ategory label, the following steps areperformed:� Eliminate the edge.� Create a opy of the SST orresponding to the ategory label.� Add new edges linking the new SST with the FST. These edges have to ensure thatthe output produed by the SST is embraed between \=[ " and \ ℄",  being theategory label.� Eliminate useless states.More formally, given a FST � = (X;Y;Q; q0; E; �), a SST � = (X;Y;Q; q0; E; �),where we assume that �(q0) = ; (i.e., the initial state of the SST is not a �nal one), andan edge (p; ; z; q) 2 E, the edge expansion produes a new FST � 0 = (X;Y;Q [ Q0; q0;(E � (p; ; z; q)) [E0; �0) in whih the new elements are:
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12 Amengual et al.� The set Q0, disjoint with Q and suh that there exists a bijetion � : Q ! Q0.� The new set of edges:E0 = �(�(r); a; y; �(s)) j (r; a; y; s) 2 E	[ �(p; a; z=[ y; �(s)) j (q0; a; y; s) 2 E	[ �(�(r); a; y�(s) ℄; q) j (r; a; y; s) 2 E ^ �(s) 6= ;	[ �(p; a; z=[ y�(s) ℄; q) j (q0; a; y; s) 2 E ^ �(s) 6= ;	� The new state emission funtion:�0(s) = � �(s) if s 2 Q; if s 2 Q0Finally, the useless states that may appear during this onstrution are removed.A simple example of the e�ets of this proedure an be seen in Figure 7. Drawing (a)depits the initial SST, while (b) shows a SST for the hours between one and three (in\o'lok" and \half past" forms) and the expanded FST is represented in ().Note that this proedure solves the problems derived from the SST having multiple�nal states or yles involving the initial state. The prie to pay is the introdution ofnon-determinism in the model, whih may lead to ambiguity. Transition probabilities anbe straightforward estimated for unambiguous models as outlined in Setion 2.3.4. Ambi-guity, however, rises non trivial estimation problems whih an be solved using di�erentestimation tehniques disussed in (Casauberta, 1995; Casauberta, 1996). An alternativeapproah, used in the experiments reported in Setion 5.3, onsists in independently esti-mating the transition probabilities of both the initial SST and all the SSTs as outlinedin Setion 2.3.4, and then adequately ombine these transition probabilities during theategory expansion proess.4. The EuTrans-I integrated arhiteture for speeh translationIf both a Continuous Speeh Reognition (CSR) system and a text input translation devie(for instane, a SST learnt by OSTIA) are available, we an build a speeh translationsystem in a deoupled manner by simply feeding the text translator with the output of theCSR system (with, possibly, error orreting parsing in order to ope with noisy outputfrom the reognizer). However, suh a deoupled sheme has the disadvantage of nottaking the syntati restritions underlying the transduer itself into aount during thereognition proess. Also, it does not seem to be an ideal solution when we have imperfetreognition and translation devies: the translation module would add to its own errorsthose produed by inorretly reognized sentenes whih an not be orretly translated.Therefore the performane of the system resulting from serially oupling a reognition anda translation module should be expeted to be lower than the performane of eah one ofthem.For this reason, a di�erent, integrated arhiteture has been adopted in the EuTrans-I system (Jim�enez et al., 1994; Jim�enez et al., 1995; Amengual et al., 1997a). The nextsetions desribe the modeling levels and deoding algorithms of this system.
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The EuTrans-I Speeh Translation System 13
PSfrag replaements

me / I ma~nana / tomorrowhoy / todayvoy / am leaving a / at $HOURa / at $HOUR $HOUR / � �
�

threetwooney / half past threeen / three o'loky / half past twoen / two o'loky / half past oneen / one o'loktres / �dos / �una / �la / �las / �media / �punto / �las / $HOUR=[la / $HOUR=[dos / two ℄tres / three ℄una / one ℄punto / ℄media / ℄ (a) Initial SST.PSfrag replaementsme / Ima~nana / tomorrowhoy / todayvoy / am leavinga / at $HOUR$HOUR / �

�
threetwoone

y / half past threeen / three o'loky / half past twoen / two o'loky / half past one
en / one o'lok

tres / �dos / �una / �la / �las / � media / �punto / �las / $HOUR=[la / $HOUR=[dos / two ℄tres / three ℄una / one ℄punto / ℄media / ℄ (b) A simpli�ed SST for the ategory $HOUR.
PSfrag replaements

me / I ma~nana / tomorrowhoy / todayvoy / am leaving a / at $HOURa / at $HOUR
$HOUR / �

��threetwoone
y / half past three
en / three o'lok
y / half past twoen / two o'lok
y / half past one
en / one o'loktres / �dos / �

una / �la / �las / �media / �punto / �
las / $HOUR=[la / $HOUR=[

dos / two ℄tres / three ℄
una / one ℄

punto / ℄media / ℄
() Expanded FST.Figure 7. An example of the ategories expansion proedure.4.1. Aousti modelsThe most suessful urrent approah to model the variability in speeh prodution at theword or sub-word level uses (�rst order) Hidden Markov Models (HMMs) (Baker, 1975;Jelinek, 1976), whih are omposed by two stohasti proesses: (i) a Hidden proess, givenby an homogeneous Markov hain, with disrete time parameter and �nite set of states;and (ii) an observation proess, given by output distributions assoiated with the statesof the hidden proess. The Markov hain is onstituted by a �nite set of states Q and atransition probability matrix de�ning, for eah q; q0 2 Q, the probability of visiting state q0immediately after state q. In an homogeneous Markov hain this probability is independentof time, and an be denoted as P (q0jq; h), where h is the HMM under onsideration. Ingeneral, an additional probability distribution over the initial states is required. However,in CSR is usual to �x a state qS with probability 1 of being initial. Denoting by O the spae
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14 Amengual et al.of aousti observations, the observation proess is de�ned by a probability distribution (ora probability density funtion) assoiated with eah state, P (ojq; h) being the probabilityof observing o 2 O while in state q of h. A partiular state qF is the �nal state (whih is nonemitting and there are no transitions departing from it). The HMM an be regarded as a�nite state mahine that randomly generates sequenes of observations as follows. Initiallyit departs from state q1 = qS. At time t it randomly outputs an observation ot, aordingto the emission probability distribution, and moves from state qt to state qt+1, hosenrandomly aording to the transition probability distribution. The proess stops when the�nal state qF is reahed. An external observer may have aess to the generated sequeneof observations o = o1o2 : : : ojoj, but the sequene of states is hidden to the observer.The probability of a sequene of observations o 2 O? being produed by a HMM his obtained by summing up, over all possible sequenes q1 : : : qjoj+1 of joj + 1 states withq1 = qS and qjoj+1 = qF , the probability of visiting the sequene of states q1 : : : qjoj+1 timesthe probability of generating the sequene of observations o along the sequene of statesq1 : : : qjoj+1: P (ojh) = Xq1:::qjoj+1 jojYt=1P (otjqt; h) � P (qt+1jqt; h) (1)In CSR systems, the aousti observations are obtained after a preproess of parame-terization in whih the relevant information is extrated from the speeh signal aquiredby the mirophone. A HMM an be used for modeling the variability in the sequenesof observations orresponding to di�erent pronuniations of the same sub-word unit. Thetopology of the HMM (the struture of the graph of states and transitions with positiveprobability) an allow for modeling the di�erent artiulatory e�ets in the initial, entral,and �nal parts of the sub-word unit. Also, time elongation or ontrations an be modeled(for instane, by loops over the same state or transitions that skip over some state).The emission probability distribution is usually a ontinuous parametri one, whoseparameters are estimated from a large enough orpora of utteranes. Possibly the mostused distributions are mixtures of Gaussians:P (otjqt) = NtX=1 wt; �N(otj�t;;�t;) (2)whose parameters are the number Ni of Gaussians per mixture, the weights wi;, the meanvetors �i;, and the ovariane matries �i; (the dependene with h has been omittedfor simpliity). In order to redue the amount of data required for a orret estimation ofthe parameters, some of them are usually �xed by hand or shared by di�erent Gaussians,states or mixtures. Typial simpli�ations are �xing Ni to 1, assuming �i diagonal, orassuming the same ovariane matrix for all the Gaussians in the same mixture.4.2. Lexial modelsIn small-voabulary tasks (for instane, reognition of sequenes of digits), HMMs an beused to model voabulary words. When the voabulary size inreases, the training data isusually not enough for individual modeling of eah di�erent word. In this ase the usual
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The EuTrans-I Speeh Translation System 15PSfrag replaements
�o / �a / �a / � i / �one n / one o'lok o / a quarter past onea / half past onel u uu nn mk ee d ira ttpFigure 8. HMM resulting after the integration in the SST of Figure 1 of the lexial and the aousti models,for a ase in whih lexial models are simple onatenation of phonemes and aousti models are 3-stateontext-independent HMMs.approah is to use HMMs for modeling a small set of sub-word units. Typial sub-wordunits are phonemes. In this ase, lexial models onstitute the intermediate level betweenthe aousti and the language models, de�ning the mapping from words into sequenesof phonemes. This also allows for easily adding new words to the voabulary aepted bythe system, without retraining the HMMs. The system an be adapted to di�erent tasksby simply hoosing di�erent lexial and syntati models, and optionally improving theaousti models with training sentenes of the task.In a simple approah, eah voabulary word is represented by a single sequene ofphonemes. In a more robust approah, speaker or dialetal variations are modeled sothat the same word an be assoiated with di�erent sequenes of phonemes. This an beeasily done by simply inreasing the voabulary with the di�erent variants for eah word.However, these alternatives an be more ompatly represented by a stohasti �nite stateautomaton, with phonemes assoiated with the edges in suh a way that di�erent pathsorrespond to di�erent word pronuniations.Lexial models are usually built by hand, or automatially by programs that implementphonologial rules for the input language. One the HMMs for phonemes have been trained,they an be joined or integrated together aording to the lexial models, replaing eahedge of the lexial models by the orresponding phoneme HMM. In this way a (bigger)HMM for eah word in the voabulary V is obtained, whih would model the di�erentsequenes of aousti observations in whih the pronuniation of the word ould result(Jelinek, 1976).4.3. Syntati and translation modelsSetions 2 and 3 have desribed how to learn, from a (possibly ategorized) bilingualorpus, a stohasti FST that represents, in an integrated way, (i) the syntati onstraintsof the input language, (ii) the information needed for the translation into the outputlanguage, and (iii) the syntati onstraints of the output language (whih help produingonly well formed translations).The HMMs for voabulary words, possibly obtained from HMMs for sub-word units (seeSetion 4.2), an in turn be integrated within this stohasti FST, resulting in a large HMMwhih ombines all the knowledge soures partiipating in the assignment of probabilitiesto sequenes of aousti observations. This is done by just substituting the edges of theFST by the HMMs for the orresponding input language words, as explained in (Jelinek,1976) for the integration within language models. This is illustrated in Figure 8. In theresulting integrated HMM there are two types of states: non-emitting, orresponding tothe states of the FST, and emitting, orresponding to the states of the original HMMs.
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16 Amengual et al.4.4. Viterbi deodingThe speeh translation problem an then be seen as a deoding problem that onsists in�nding the output sequene of words whose probability is maximum given the integratedHMM and given the sequene of aousti observations. A ommon suboptimal approx-imation to solve the deoding problem is to �nd the path (sequene of states) in theintegrated HMM whose probability is maximum, and then take the sequene of wordsassoiated to the edges traversed by that path. In our ase, by following the edges in theoptimal path, we an reover not only the (approximately) optimal sequene of words inthe input language but also its orresponding translation by the FST.The Viterbi algorithm (Viterbi, 1967; Forney, 1973) solves this problem of, given aHMM h and a sequene of observations o, �nd the state sequene q for whih the aposteriori probability P (qjo; h) is maximum. It is a very eÆient algorithm that justrequires O(jhj � joj) time (where jhj is the number of edges in h and joj is the length of o)and O(jhj) spae. But even this an beome omputationally expensive when jhj is high.In this ase a pruning tehnique known as beam searh (Lowerre, 1976) an be performed:after proessing eah new observation ot, those states whose umulative sore exeed thebest urrent sore by more than a given threshold, are pruned.In order to redue memory requirements, the integrated HMM does not need to be fullyexpanded in memory. For eah new aousti observation, only the suessors of those stateswhih are not pruned by the beam searh need to be expanded (Ney et al., 1987). A listlinking the ative states at time t an determine the possible ative states at time t+1. Inthe EuTrans-I system, this is implemented by using two di�erent beam searh thresholds:one at the states of the FST (or inter-word transitions) and another at the aousti states(or intra-word transitions). Choosing appropriate values for these thresholds an redueboth the temporal and spatial osts without signi�antly a�eting the system performane.A struture of bak-pointers is built linking the states of the FST whih survive the beamsearh pruning. The optimal sentene hypothesis together with its translation is reoveredat the end of the proess from the inter-word transitions whih onstitute this struture.In order to ahieve lose to real-time omputation, eah new aousti observation ob-tained after the aousti preproessing is immediately supplied to the deoding module.This works in a so-alled frame-synhronous (or left-to-right) manner, and so it an performomputation without waiting for the utterane to terminate.5. Experiments5.1. The Traveler Task orpusThe Traveler Task orpus is a set of paired bilingual sentenes (Spanish and English) thatwas built within the EuTrans-I projet. It is muh more realisti that the one used in(Castellanos et al., 1994), but, unlike other bilingual orpora suh as the Hansards (Brownet al., 1990), it is restrited to a limited domain.The general framework established for the Traveler Task aims at overing usual sen-tenes that an be needed by a traveler visiting a foreign ountry whose language he/shedoes not speak. This framework inludes a great variety of di�erent translation senarios,and thus results appropriate for progressive experimentation with inreasing omplexity.In a �rst phase, the senario has been limited to some human-to-human ommuniation
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The EuTrans-I Speeh Translation System 17Table I. Some examples of sentene pairs from the Spanish to English Traveler Task.Spanish: >Cu�anto uesta por d��a una habitai�on doble on pensi�on ompleta?English: How muh does a double room with full board ost per day?Spanish: Quisi�eramos reservar dos habitaiones para un d��a a nombre de Federio Mestre, por favor.English: We want to book two rooms for a day for Federio Mestre, please.Spanish: Por favor, d�enos las llaves de la dosientos veintid�os.English: Please give us the keys to room number two two two.Spanish: Por favor, >quieren pedirnos un taxi para la habitai�on tresientos diez?English: Will you ask for a taxi for room number three one oh for us, please?Table II. Main features of the Spanish to Englishtext orpora. Spanish EnglishVoabulary size 683 514Average sentene length 9.5 9.8Test set perplexity 13.8 7.0situations in the reeption of a hotel: asking for rooms, wake-up alls, keys, the bill,a taxi and moving the luggage; asking information about rooms (availability, features,prie); having a look at rooms, omplaining about and hanging them; notifying a previousreservation; signing the registration form; asking and omplaining about the bill; notifyingthe departure; and other ommon expressions.A small seed orpus was reated from several guide books with sentenes of ommonuse for tourists. This orpus was used to help the design of the Traveler Task orpus,whih was automatially built by using a set of Stohasti Syntax-Direted TranslationShemata (Gonzalez and Thomason, 1978) with the help of a data generation tool speiallydeveloped for the EuTrans-I projet. This software allows the use of several syntatiextensions to these shemata in order to express optional rules, permutation of phrases,onordane (of gender, number and ase), et. The use of automati orpora generationwas onvenient due to time onstraints of the �rst phase of the EuTrans-I projet, andost-e�etiveness. Moreover, this proedure allows to ontrol the level of omplexity of thetask.Some example pairs of the Spanish to EnglishTraveler Task orpus are shown in Table I.Some features of this orpus an be seen in Table II. The test set perplexity has beenomputed by training a trigram model (with simple at smoothing) using a set of 20,000random sentenes and omputing the probabilities yielded by this model for a set of 10,000independent random sentenes. The lower perplexity of the output language derives froma design deision: multiple variants of the input sentenes were introdued to aount fordi�erent ways of expressing the same idea, but they were given the same translation.
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18 Amengual et al.Finally, a multi-speaker speeh orpus for the task was aquired. A total of 436 Spanishsentenes were seleted from the text orpus. They were divided into eleven sets: oneommon set onsisting of 16 sentenes, and ten sets of 42 sentenes. Eah one of twentyspeakers (ten male and ten female) partiipating in the aquisition of this orpus, pro-nouned the ommon set and two out of the other ten, totalling 2,000 utteranes, 15,360words and about 90,000 phones. The sampling frequeny was 16 kHz.From this speeh orpus, two sub-orpora were extrated:� Training and adaptation (TravTR): 16 speakers (eight male and eight female), 268sentenes, 1,264 utteranes (approx. 11,000 words or 56,000 phones).� Speaker independent test (TravSI ): 4 speakers (two male and two female, not involvedin TravTR), 84 sentenes (not in TravTR), 336 utteranes (approx. 3,000 words or15,000 phones).5.2. Translation model training experimentsFirst, we tested on the text orpus the apaity of OSTIA-DR for learning good translationmodels. This orpus was divided in a training set and a test one, with 490,000 and 10,000pairs, respetively. Two sequenes of FSTs were trained with inreasing subsets of thetraining set:� Without ategories. For eah subset of the training set, minimized 3-TestableAutomata of the input and the output language were inferred and, using them asDomain and Range models, a SST was learnt by OSTIA-DR from the same subset.� With ategories. We hose ategories whih are easy to identify and that followsimple translation rules, so that the amount of speial linguisti knowledge introduedis very low. Seven ategories were used: masuline names, feminine names, surnames,dates, hours, room numbers, and general numbers. Simple sripts substituted thewords in the ategories by adequate labels. For example, the pair (\me voy el onede julio | I am leaving on july the eleventh") would beome (\me voy el $DATE |I am leaving on $DATE"), where \$DATE" would be the ategory label for dates. Foreah subset of the training set, and using again minimized N -Testable Automata asDomain and Range models, a FST was obtained following the approah desribedin Setion 3 (but SSTs were learnt from spei� manually built orpora, instead ofextrating them from the training subset by the ategorizer).Eah model was tested using only those sentenes in the test set that were not seenin training. This has been done beause a model trained with OSTIA-DR is guaranteedto reprodue exatly those translations it has seen during learning. The performane wasevaluated in terms of translation Word Error Rate (WER), whih is the perentage ofoutput words that have to be inserted, deleted and substituted in order to exatly maththe orresponding expeted translations.The results an be seen in Table III. The olumns labelled as \Di�erent" and \Categ.",refer to the number of di�erent sentenes in the training set and the number of di�erentsentenes after ategorization. As expeted, the use of lexial ategories had a major impaton the learning algorithm. The large inrease in performane is a natural onsequene ofthe fat that the ategories help in reduing the total variability that an be found in the
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The EuTrans-I Speeh Translation System 19Table III. Text input results. Translation word error rates (WER) and sizes of thetransduers for di�erent number of training pairs.Training pairs Without ategories With ategoriesGenerated Di�erent Categ. WER States Edges WER States Edges10,000 6,791 5,964 60.72 3,210 10,427 30.51 4,500 32,59920,000 12,218 9,981 54.86 4,119 15,243 22.46 4,700 35,58540,000 21,664 16,207 47.92 5,254 22,001 13.70 4,551 34,87980,000 38,438 25,665 38.39 6,494 31,017 7.74 4,256 37,673160,000 67,492 39,747 26.00 6,516 36,293 3.71 4,053 34,045320,000 119,048 60,401 17.38 6,249 41,675 1.42 4,009 33,643490,000 168,629 77,499 13.33 5,993 47,151 0.74 3,854 29,394orpora (although sentenes do exhibit a great deal of variability, the underlying syntatistruture is atually muh less diverse). They also have the advantage of allowing an easierextension in the voabulary of the task with a lower negative e�et on the performane ofthe models so obtained.5.3. Speeh input experimentsSpanish to English speaker independent speeh translation experiments were performedusing the integrated arhiteture desribed in Setion 4, with the following models:� Aousti level. Eah one of 25 ontext-independent Spanish phonemes (inludingtwo types of silene: initial and �nal) was modeled by a ontinuous-density HMMwith three emitting states and a left-to-right topology with loops in the emittingstates. The emission distribution of eah state was a mixture of Gaussians. The HTKHidden Markov Model Toolkit V1.5 (Young et al., 1993) was used to estimate theparameters of these HMMs from the union of two orpora: the 1,264 utteranes inthe TravTR sub-orpus, and an additional set of 1,530 utteranes (by 9 speakers, 4male and 5 female) from a di�erent, quasi-phonetially-balaned orpus. This speehmaterial was proessed to obtain, eah 10 mses, 10 epstral oeÆients of a Mel-�lterbank plus the energy and the orresponding �rst and seond derivatives. The �nalmodels had a total of 2,462 Gaussians.� Lexial level. Eah word was represented by a simple hain of phones, whih wasautomatially derived using standard rules from the Spanish Phonetis.� Syntati and translation level. The best of the transduers with ategoriesobtained in the Spanish to English text experiments was used after estimating thetransition probabilities as ommented in Setion 3.After these models were trained, the system was used to reognize and translate intoEnglish the 336 Spanish utteranes of the TravSI sub-orpus.A series of experiments were then arried out in order to tune the beam searh thresh-olds. The results in Table IV show how they an be adjusted to �nd an adequate tradeo�between auray and omputing time. For instane, a Translation WER of 1.97 % anbe ahieved with a real time fator of just 2.7. When translation auray is the main
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20 Amengual et al.Table IV. Speeh input results. E�et of the beam widths in the reognition andtranslation time and auray.Language Model Aousti Model Reognition Word Translation Word Real TimeBeam Width Beam With Error Rates Error Rates Fator100 50 37.94% 40.37% 0.7100 5.19% 5.13% 1.4200 2.15% 2.14% 2.6400 2.15% 2.14% 4.9200 50 37.94% 40.37% 0.7100 5.19% 5.13% 1.3200 2.05% 1.97% 2.7400 1.98% 1.83% 5.8Table V. Comparison between the integrated sheme (orrespondingto the last row of Table IV) and the deoupled sheme (reognitionusing a trigram, the same aousti and lexial models and the samebeam searh thresholds; and translation using a SST learnt withoutDomain and Range).Reognition Word Translation Word Real TimeApproah Error Rates Error Rates FatorDeoupled 2.15 % 3.54 % 5.7Integrated 1.98 % 1.83 % 5.8
onern, wider thresholds an be used in the searh to ahieve a Translation WER of1.83%, but with a real time fator of 5.8. These results were obtained on a Intel Pentium166Mhz Personal Computer running Linux, without resorting to any type of speializedhardware or signal proessing devie, and required no more than 16 Mb of memory.The proposed integrated arhiteture was also ompared against a deoupled shemein whih, instead of integrating the input (and output) language onstraints in the learnttransduers, reognition was performed with the stohasti 3-Testable Automata (equiv-alent to a trigram) of the input language, and then the output of the reognizer wastranslated by a SST learnt by OSTIA (without Domain or Range onstraints) from thesame ategorized orpus. The same aousti and lexial models were used. The resultsin Table V on�rm those reported by (Jim�enez et al., 1995) for a simpler translationtask: the integrated approah not only o�ers better translation but also better reognitionperformane; that is, not only the input language onstraints but also the translationand output language onstraints for the appliation domain an help in �nding whihwas the uttered sentene and also its orresponding translation. It is also worth notingthe relation of reognition and translation WER in both approahes. In the deoupledapproah, reognition errors are ampli�ed by the translation proess. In ontrast, theintegrated approah, taking advantage of the lower perplexity of the output language (seeTable II), obtains a translation WER lower than the reognition WER.
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The EuTrans-I Speeh Translation System 21Finally, we should remark that the results presented here are better that those reportedin (Amengual et al., 1997b), whih were obtained on a HP-9735 workstation, reetingimprovements in our aousti models: the set of phones onsidered, the topology of theHMMs and the HMM training software have been hanged.6. ConlusionsFinite State Transduers an be used as the basis of speeh translation systems for limiteddomains. These models an be automatially learnt from examples, and the learning pro-ess an be improved by means of ategories using the approah detailed in this paper. Thisapproah has been tested in a task involving the reognition and translation of utteranesin the hotel reeption ommuniation domain, with a voabulary of 683 words in Spanish.Experiments with text input show that using ategories signi�antly redues the number ofexamples required for ahieving good models. In experiments with speeh input, a 1:97%translation word error rate is ahieved in real time fator 2.7 in a Personal Computerwithout using speialized hardware. It is worth noting that there is a lear tradeo� betweenomputing time and auray. For o�-line operation, a di�erent on�guration an provideimproved translation performane at the ost of inreasing the real time fator (a 1:83%translation word error rate has been ahieved in real time fator 5.8).Automatially learning translation models from examples an lead to systems that anbe easily modi�ed and adapted to a great variety of tasks and language pairs, providedthat the required orpora are available. Therefore this is an approah that learly is worthontinuing to explore. Our urrent work onentrates in further reduing the numberof examples neessary for training the translation models, by reordering the words inthe translations (Vilar et al., 1996) or using new inferene algorithms (Vilar, 1998). Weare also exploring tehniques for automati bilingual ategorization, and error orretingtehniques for dealing with more spontaneous input. Finally, our system is in ontinuousdevelopment in order to deal with inreasing voabulary size and to get loser to otherstate-of-the-art CSR systems, so that our results ould be more fairly ompared to thoseof other spoken language translation projets.AknowledgementsThe authors wish to thank the anonymous reviewers who helped to improve the qualityand the presentation of this paper. ReferenesAmengual, J. C.; J. M. Bened��; K. Beulen; F. Casauberta; A. Casta~no; A. Castellanos; V. M. Jim�enez;D. Llorens; A. Marzal; H. Ney; F. Prat; E. Vidal; and J. M. Vilar: 1997, \Speeh Translation basedon Automatially Trainable Finite-State Models", in G. Kokkinakis, N. Fakotakis, and E. Dermatas(eds.), Proeedings of the EuroSpeeh, Rhodes, Greee, ESCA, pp. 1439{1442.Amengual, J. C.; J. M. Bened��; F. Casauberta; A. Casta~no; A. Castellanos; D. Llorens; A. Marzal; F. Prat;E. Vidal; and J. M. Vilar: 1997, \Using Categories in the Eutrans System", in Steven Krauwer, DougArnold, Walter Kasper, Manny Rayner and Harold Somers (eds.), Proeedings of the Spoken LanguageTranslation Workshop, Madrid, Spain, pp. 44{53.
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The EuTrans-I Speeh Translation System 23Vilar, J. M.; V. M. Jim�enez; J. C. Amengual; A. Castellanos; D. Llorens; and E. Vidal: 1996, \Textand Speeh Translation by means of Subsequential Transduers", Natural Language Engineering 2(4),351{354.Vilar, J. M.; A. Marzal; and E. Vidal: 1995, \Learning Language Translation in Limited Domains UsingFinite-State Models: Some Extensions and Improvements", in Proeedings of the EuroSpeeh, Madrid,Spain, ESCA, pp. 1231{1234.Vilar, J. M.: 1998, \Aprendizaje de Tradutores Subseueniales para su Empleo en Tareas de Do-minio Restringido [Learning Subsequential Transduers for Limited Domain Tasks℄", PhD dissertation,Universidad Polit�enia de Valenia, Spain.Viterbi, A. J.:1967, \Error Bounds for Convolutional Codes and an Asymptotially Optimal DeodingAlgorithm", IEEE Trans. on Information Theory 13, 260{269.Young, S. J.; P. C. Woodland; and W. J. Byrne: 1993: \HTK: Hidden Markov Model Toolkit V1.5",Cambridge University Engineering Department and Entropi Researh Laboratories In.Appendix. Transduer Learning AlgorithmsIn this appendix, all algorithms desribed and referened in Setion 2.3 are formally pre-sented. Both learning algorithms, Onward Subsequential Transduer Inferene Algorithm(OSTIA) and Onward Subsequential Transduer Inferene Algorithm with Domain andRange (OSTIA-DR), have been strutured by means of ommon funtions, whih are �rstintrodued.A �rst funtion (Algorithm 1) is used to build a Tree Subsequential Transduer (TST),whih is a pre�x tree representation for the input strings of a given unambiguous set oftraining samples. In this pre�x aeptor, eah output string is assoiated to the aeptingstate of the orresponding input one.Algorithm 1. Make TSTInput: T � X� � Y � = 8(x; y); (x0; y0) 2 T; x = x0 ) y = y0Output: � = (X;Y;Q; q0; E; �), a TST for TQ := f�g; q0 := �; E := ;;for all (x; y) = (a1 : : : ajxj; b1 : : : bjyj) 2 T do8i 2 f1; : : : ; jxjg, Q := Q [ fa1 : : : aig;8i 2 f1; : : : ; jxjg, E := E [ f(a1 : : : ai�1; ai; �; a1 : : : ai)g;8i 2 f1; : : : ; jxj � 1g, �(a1 : : : ai) := ;;�(a1 : : : ajxj) := y;end forreturn(�);Then, a seond funtion (Algorithm 2) obtains an Onward Tree Subsequential Trans-duer (OTST). Starting from the previous TST, the longest ommon pre�xes of the outputstrings are reursively moved, level by level, from the leaves toward the root of the tree.Next funtion (Algorithm 3) takes an edge of the transduer and an output suÆx (ofthe output string of the edge), and moves this suÆx from the edge to its following stateand edges. This operation is used to try mathing paths in the transduer that ould bethe same.The last funtion (Algorithm 4) attempts to merge two states of the transduer andpaths departing from them. To this end, it reursively tests the ompatibility of pairedstates and edges. Reursion �nishes suessfully when all mergings are found ompatible.
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24 Amengual et al.Algorithm 2. Make OTSTInput: � = (X;Y;Q; q0; E; �) a TST for a given T ; x 2 QOutput: � 0 = (X;Y;Q; q0; E0; �0), an OTST for T� 0 := � ;for all (x; a; �; xa) 2 E0 do� 0 := Make OTST(� 0; xa);z := lp(fy 2 Y � = (xa; b; y; xab) 2 E0g [ f�0(xa)g);8(xa; b; y; xab) 2 E0, E0 := (E0 � f(xa; b; y; xab)g) [ f(xa; b; z�1y; xab)g;�0(xa) := z�1�0(xa);E0 := (E0 � f(x; a; �; xa)g) [ f(x; a; z; xa)g;end forreturn(� 0);Algorithm 3. Push BakInput: � = (X;Y;Q; q0; E; �); (r; a; y; r0) 2 E; v 2 X� = y = uv; with u 2 X�Output: � 0 = (X;Y;Q; q0; E0; �0)� 0 := � ;8(r0; b; z; r00) 2 E0, E0 := (E0 � f(r0; b; z; r00)g) [ f(r0; b; vz; r00)gif �0(r0) 6= ; then �0(r0) := v�0(r0);E0 := (E0 � f(r; a; y; r0)g) [ f(r; a; yv�1; r0)g;return(� 0);
Algorithm 4. Merge StatesInput: � = (X;Y;Q; q0; E; �); q; r; s 2 QOutput: ompatibles 2 ftrue; falseg; � 0 = (X;Y;Q0; q0; E0; �0)� 0 := � ; ompatibles := false;if �0(r) = ; or �0(s) = ; or �0(r) = �0(s) thenif �0(r) = ; then �(r) := �(s);for all (s; a; z; s0) 2 E0 doif (r; a; y; r0) 62 E0 thenE0 := (E0 � f(s; a; z; s0)g) [ f(r; a; z; s0)g;else if r0 � q and y 62 Pr(z) then return(false; � 0),u := lp(fy; zg);� 0 := Push Bak(� 0; (r; a; y; r0); u�1y);� 0 := Push Bak(� 0; (s; a; z; s0); u�1z);(ompatibles ; � 0) := Merge States(� 0; q; r0; s0);if not ompatibles then return(false; � 0)end ifend forQ0 := Q0 � fsg; ompatibles := true;end ifreturn(ompatibles ; � 0);
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The EuTrans-I Speeh Translation System 25To guarantee the inferene of target subsequential transdutions, learning algorithmstry state merging following a lexiographi order, �, whih is obtained from the TSTonstrution, sine states are named by the input pre�xes leading to them. Given a SST� = (X;Y;Q; q0; E; �) suh that Q � X�, next funtions implement suh a state ordering:�rst(�) returns r = � 2 Q = 8r0 2 Q; r � r0;last(�) returns r 2 Q = 8r0 2 Q; r0 � r; andnext(�; s), with s 2 Q, returns r 2 Q = 8r0 2 X�; s � r0 � r ! r0 62 Q.The Onward Subsequential Transduer Inferene Algorithm (OSTIA) (Algorithm 5)infers SSTs using only the translation onstraints reeted in the training set.Algorithm 5. OSTIAInput: T � X � Y , single-valued �nite set of samplesOutput: � = (X;Y;Q; q0; E; �), Onward SST onsistent with T� := TST (T ); � := OTST (�; �); q := �rst(�);while q � last(�) doq := next(�; q); p := �rst(�); ompatibles := false;while not ompatibles and p � q do� 0 := � ;8(r; a; w; q) 2 E0, E0 := (E0 � f(r; a; w; q)g) [ f(r; a; w; p)g;(ompatibles ; � 0) := Merge States(� 0; q; p; q);if ompatibles then � := � 0;p := next(�; p);end whileend whileThe Onward Subsequential Transduer Inferene Algorithm with Domain and Range(OSTIA-DR) (Algorithm 6) infers SSTs using both syntati and translation onstraints.Algorithm 6. OSTIA-DRInput: T � X � Y , single-valued �nite set of samples;D = (QD; X; ÆD; d0; FD), a DFA representing the Domain language;R = (QR; Y; ÆR; r0; FR), a DFA representing the Range language;Output: � = (X;Y;Q; q0; E; �), Onward SST onsistent with T , D and R� := TST (T ); � := OTST (�); q := �rst(�);while q � last(�) doq := next(�; q); p := �rst(�); ompatibles := false;while not ompatibles and p � q doLet (q0; xp; yp; p) 2 ��(q0; p) and (q0; xq; yq; q) 2 �� (q0; q);if ÆD(d0; xp) = ÆD(d0; xq) and ÆR(r0; yp) = ÆR(r0; yq) then� 0 := � ;8(r; a;w; q) 2 E0, E0 := (E0 � f(r; a; w; q)g) [ f(r; a;w; p)g;(ompatibles ; � 0) := Merge States(� 0; q; p; q);if ompatibles then � := � 0;end ifp := next(�; p);end whileend while
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