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ed The EuTrans-I Spee
h Translation System �J.C.Amengual1, J.M.Bened��2, F.Casa
uberta2, A.Casta~no1, A.Castellanos1,V.M.Jim�enez1, D.Llorens1, A.Marzal1, M.Pastor2, F.Prat1, E.Vidal2 and J.M.Vilar1(1) Unidad Predepartamental de Inform�ati
a, Campus Riu Se
, Universitat Jaume I, 12071 Castell�on dela Plana (Spain)(2) Depto. de Sistemas Inform�ati
os y Computa
i�on and Instituto Te
nol�ogi
o de Inform�ati
a,Universidad Polit�e
ni
a de Valen
ia, 46022 Valen
ia (Spain)Abstra
t. The EuTrans proje
t aims at using Example-Based approa
hes for the automati
 developmentof Ma
hine Translation systems |a

epting text and spee
h input| for limited domain appli
ations.During the �rst phase of the proje
t, a spee
h translation system that is based on the use of automati
allylearnt Subsequential Transdu
ers has been built. This paper 
ontains a detailed and to a long extentself-
ontained overview of the transdu
er learning algorithms and system ar
hite
ture, along with a newapproa
h for using 
ategories representing words or short phrases in both input and output languages.Experimental results using this approa
h are reported for a task involving the re
ognition and translationof senten
es in the hotel re
eption 
ommuni
ation domain, with a vo
abulary of 683 words in Spanish. Atranslation word error rate of 1:97% is a
hieved in real time fa
tor 2.7 in a Personal Computer.Keywords: Spee
h translation, subsequential transdu
ers, transdu
er learning, �nite state models, gram-mati
al inferen
e 1. Introdu
tionMost of the 
urrent e�orts to 
ope with the spee
h translation problem are based onthe use of previously developed text-input translation systems relying on knowledge-basedte
hnology, whi
h are serially 
oupled to the output of state-of-the-art word re
ognizerfront-ends (Blo
k, 1997; Bub et al., 1997; Lavie et al., 1997; Rayner and Carter, 1997).In 
ontrast, the EuTrans proje
t aims at building translation systems for text andspee
h input in limited domain appli
ations by (i) using example-based te
hniques, and(ii) a tight integration of translation, synta
ti
 and a
ousti
 
onstraints into global models.In last years, example-based te
hniques have been showing their usefulness in translationsystems; for instan
e, through a balan
ed 
ombination with knowledge-based te
hniques(Nirenburg, 1995).During the �rst phase of the proje
t, a basi
 demonstration spee
h translation systemhas been developed that relies on a kind of �nite state models known as SubsequentialTransdu
ers. Among the interesting properties of these models, we 
an remark:� They 
an be automati
ally learnt from a text, senten
e-aligned, bilingual 
orpus byeÆ
ient algorithms (On
ina, 1991; On
ina et al., 1993; On
ina and Var�o, 1996).� They 
an be easily and eÆ
iently used in 
onventional Continuous Spee
h Re
ognitionsystems so that, for ea
h input a
ousti
 sequen
e, the sear
h for the optimal transla-tion (and the 
orresponding input-language senten
e) is guided by a model integrating� This work has been partially funded by the European Union and the Spanish CICYT, under grantsIT-LTR-OS-20268 and TIC97-0745-C02, respe
tively. The EuTrans proje
t is being developed in twophases. This paper des
ribes the approa
h adopted during the already �nished �rst phase, that will bereferred to as EuTrans-I. The se
ond phase is 
urrently under development. See the proje
t home pageat http://hermes.zeres.de/Eutrans/

 1999 Kluwer A
ademi
 Publishers. Printed in the Netherlands.
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2 Amengual et al.(i) the synta
ti
 
onstraints of the input language, (ii) the information needed for thetranslation into the output language, and (iii) the synta
ti
 
onstraints of the outputlanguage (Jim�enez et al., 1994; Jim�enez et al., 1995; Amengual et al., 1997a).An important drawba
k of this approa
h is the large amount of bilingual examplesrequired to learn useful translation models. In order to redu
e the severity of this require-ment, we show how appropriate models 
an be learnt from a 
ategorized bilingual 
orpus inwhi
h words or short phrases (for instan
e, numbers, dates, or proper names) are repla
edby adequate labels, thus simplifying the tasks that the learning algorithms have to ta
kle(Vilar et al., 1995; Amengual et al., 1997a; Amengual et al., 1997b).The rest of the paper is organized as follows. In Se
tion 2, we des
ribe Subsequen-tial Transdu
ers and the learning algorithms. Although these algorithms have previouslyappeared in the literature (On
ina et al., 1993; On
ina and Var�o, 1996), for the sake of
ompleteness we give them here in a more uni�ed and hopefully understandable presen-tation. Se
tion 3 is devoted to explain how to use 
ategorization to redu
e training datarequirements. The integrated ar
hite
ture of the EuTrans-I spee
h translation system ispresented in Se
tion 4. Experimental results are reported in Se
tion 5 and �nal 
on
lusionsare drawn in Se
tion 6.2. The translation model and its basi
 learning algorithms2.1. NotationGiven an alphabetX, X� is the free monoid of strings over X. First letters (a; b; 
; : : : ) rep-resent individual symbols of the alphabets and last letters (z; y; x; : : : ) represent strings ofthe free monoids. We refer to the individual elements of the strings by means of subindi
es,as in x = a1 : : : an. For any string x 2 X�, jxj denotes the length of x, and � is the symbolfor the string of length zero (empty string). Given two strings x; y 2 X�, xy denotes the
on
atenation of x and y.If v is a string in X� and L � X�, then Lv (vL) denotes (in this paper) the set ofstrings xy 2 L su
h that y = v (x = v). Hen
e, X�v (vX�) denotes the set of all stringsof X� that end (begin) with v, while ;v = v; = ; (the empty set). For u; v; w 2 X�, thesuÆx of v with regard to u is de�ned as u�1v = w , v = uw, and the pre�x of u withregard to v as uv�1 = w , u = wv. Given a set L � X�, the longest 
ommon pre�x of allthe strings of L is de�ned as l
p(L) = v , L = vL and 8u 2 X�; L = uL) juj � jvj.2.2. Finite State Transdu
ersA Finite State Transdu
er (FST) is a �nite state ma
hine that a

epts senten
es froma given input language and produ
es asso
iated senten
es of an output language. It is
omposed of states and edges 
onne
ting them. Ea
h edge has asso
iated an input symboland an output string. The parsing of an input senten
e begins from a distinguished state(the initial state) and pro
eeds by 
onsuming input symbols one by one. Every time aninput symbol is mat
hed following an adequate edge, the string asso
iated to that edgeis output and a new state is rea
hed. This pro
ess 
ontinues on until the whole input ispro
essed; then, additional output may be produ
ed from the last state rea
hed in theanalysis of the input. An interesting 
lass of FSTs are the Subsequential Transdu
ers,
mt98revision.tex; 3/09/1999; 17:54; p.2



The EuTrans-I Spee
h Translation System 3PSfrag repla
ements
�la / � una / � punto / �y / �one en / one o'
lo
k 
uarto / a quarter past onemedia / half past oneFigure 1. A simpli�ed SST. The initial state has an arrow pointing to it and �nal states are marked bydouble-
ir
ling.be
ause there are well-known and eÆ
ient algorithms for inferring them from examples,as we will see below.Formally, a FST is a tuple � = (X;Y;Q; q0; E; �) where X and Y are the input andoutput alphabets, Q is a �nite set of states, q0 2 Q is the initial state, E � Q�X�Y ��Qis a set of edges, and � : Q ! Y � is a state emission fun
tion1. Those states for whi
h� is de�ned are usually 
alled �nal states. A Subsequential Transdu
er (SST) is a FSTverifying that, if (p; a; y; q) and (p; a; y0; q0) belong to E, then y = y0 and q = q0 (thedeterminism 
ondition). An example of a SST is shown in Figure 1.Given a string x = a1 : : : an 2 X�, a sequen
e (p0; a1; y1; p1), : : : , (pn�1; an; yn; pn) is apath from p0 to pn in � if (pi�1; ai; yi; pi) 2 E, i = 1; : : : ; n. When intermediate states arenot important, a path will be expressed as (p0; a1 : : : an; y1 : : : yn; pn), i = 1; : : : ; n. Theset of all paths between two states p; q 2 Q is denoted as �� (p; q). For every string x 2 X�su
h that 9(q0; x; y; q) 2 �� (q0; q) and q is a �nal state we will say that (q0; x; y; q) is avalid path, that x is a

epted by � and that y�(q) is a translation of x by � .If � is a SST, the 
ondition of determinism means that there 
an be no more than onevalid path, and hen
e at most one translation, for a given input string. Therefore, � de�nesa fun
tion between an input language, LI � X�, and an output language, LO � Y �. BothLI and LO are regular languages and their 
orresponding automata are easily obtainablefrom the SST. In parti
ular, an automaton for LI 
an be obtained by eliminating theoutput of the edges and states, and 
onsidering the �nal state set of the automaton beingthe same as in the SST. A state is useless if it is not 
ontained in any valid path. Uselessstates 
an be eliminated from a SST without 
hanging the fun
tion it de�nes.2.3. Inferen
e of Subsequential Transdu
ersIn general, any subsequential transdu
tion 
an be realized by several di�erent SSTs. How-ever, for ea
h subsequential transdu
tion, one of su
h transdu
ers is the 
anoni
al SSTfor the transdu
tion, whi
h has the minimum number of states and is onward (On
ina,1991; On
ina et al., 1993). A SST � = (Q;X; Y; q0; E; �) is onward if 8p 2 Q� fq0g,l
p(fy1 : : : yn�(qn) 2 Y �j(p; x1 : : : xn; y1 : : : yn; qn) 2 E�; �(qn) 6= ;; n � 0g) = �:In other words, the longest 
ommon pre�x of the output strings in paths departing fromp is �. Equivalently, a SST is onward if, for ea
h input string pre�x, the output stringasso
iated to it by the transdu
er is the longest 
ommon pre�x of the output strings(translations) 
orresponding to the input strings that begin with this input pre�x.In the following, basi
 algorithms whi
h are formally guaranteed to infer the minimumonward SST whi
h realizes a given subsequential transdu
tion from a set of examples of the1 In this paper, the term fun
tion refers to partial fun
tions. We will use f(x) = ; to denote that thefun
tion f is unde�ned for x.

mt98revision.tex; 3/09/1999; 17:54; p.3



4 Amengual et al.transdu
tion are des
ribed (On
ina, 1991; On
ina et al., 1993; On
ina and Var�o, 1996). InSe
tion 2.3.1, fun
tions that represent a set of training examples as simple forms of SSTsand produ
e 
ompatible generalizations are presented. In Se
tion 2.3.2, they are used toinfer the minimum onward SST for a given total subsequential fun
tion. This algorithmgeneralizes the training examples by taking only translation stru
ture into a

ount. InSe
tion 2.3.3, an algorithm whi
h allows to in
orporate synta
ti
 
onstraints of the inputand output languages into the translation network is des
ribed. The introdu
tion of aspe
i�
 input language model allows this last algorithm to infer the minimum onward SSTfor a given partial subsequential fun
tion. Finally, Se
tion 2.3.4 explains how probabilisti
information 
an be in
orporated to the learnt SSTs. For interested readers, algorithmsreferen
ed in the following se
tions have been in
luded in an appendix. Here, mainlyintuitive and illustrative ideas of their behaviour are given.2.3.1. Generalization of a set of examplesAny unambiguous or single-valued �nite set of samples (pairs of input-output strings)T � X��Y � 
an be immediately represented by means of a Tree Subsequential Transdu
er(TST). A TST, � = (Q;X; Y; q0; E; �), for a given single-valued �nite set of samples T ,is a pre�x tree a

eptor for the input strings of T in whi
h the output strings appear inthe 
orresponding a

epting states. Figure 2(a) shows an unambiguous set of examples,whi
h have been drawn from room number translation from Spanish into English. The TSTdire
tly representing this sample set 
an be observed in Figure 2(b). Pro
edure Make TST(Algorithm 1, see appendix) 
an be used to build the TST of a given set T .From this TST, an Onward Tree Subsequential Transdu
er (OTST), whi
h also rep-resents T , is built by produ
ing the onward SST equivalent to the TST of T . Fun
tionMake OTST (Algorithm 2) presents a re
ursive pro
edure for obtaining the OTST for Tfrom the TST for T . Mainly, this pro
ess 
onsists in moving the longest 
ommon pre�xesof the output strings, level by level, from the leaves of the tree toward the root. Figure 2(
)illustrates the result of this pro
ess. From the TST depi
ted in Figure 2(b), the longestoutput pre�xes whi
h are 
ommon among all paths departing from ea
h state are movedtowards the root of the tree. Un
ommon output substrings remain at the highest levelstates and edges that they 
an rea
h in this re
ursive advan
ement pro
ess.Note that the OTST obtained so far does not generalize the training set; that is, it isonly able to translate strings that appear in the training set. A simple generalization ofa set of samples T 
an be produ
ed by merging two states of the OTST for T . The onlyproperty that these states must verify is that all paths departing from them whi
h sharethe same sequen
e of input symbols must also share the same sequen
e of output strings.In this 
ase, states are 
alled 
ompatible and they 
an be merged, resulting in a new SSTwhi
h is a suitable generalization of the previous one.The 
ompatibility test requires sometimes pushing ba
k some output string suÆxesthrough the paths of one of the states (Algorithm 3). This operation is needed to helpmat
hing equal input symbols along with their output strings in the possibly 
ommonpaths, and simply 
onsist in moving a suÆx of the output string of an edge to its followingstate and edges.The fun
tion Merge States (Algorithm 4) merges two states of the SST and 
ommonpaths departing from them. To this end, the 
ompatibility of the output strings of thestates is �rst tested. When this test su

eeds, the edges of one of the states with inputsymbols not shared by the other state 
an be dire
tly assigned to this last one. Also, edges
mt98revision.tex; 3/09/1999; 17:54; p.4



The EuTrans-I Spee
h Translation System 5T = f (�; �); (tres
ientos; three oh oh); (seis
ientos; six oh oh); (tres
ientos diez; three one oh);(tres
ientos 
in
uenta; three �ve oh); (tres
ientos 
in
uenta y uno; three �ve one);(seis
ientos 
in
uenta y siete; six �ve seven); (seis
ientos o
henta; six eight oh);(seis
ientos o
henta y 
uatro; six eight four); (seis
ientos veintitr�es; six two three) g(a)

PSfrag repla
ements

tres
ientos / �seis
ientos / � diez / �
in
uenta / �
in
uenta / �o
henta / �veintitr�es / �1, three oh oh2, six oh oh 3, three one oh4, three �ve oh6, six eight oh7, six two three 11, three �ve one12, six �ve seven13, six eight four0, �

tres
ientos / threeseis
ientos / sixdiez / one oh
in
uenta / �ve
in
uenta / �ve seveno
henta / eightveintitr�es / two threey / one
y / �y / �y / �

y / four
uno / �siete / �
uatro / �5, ; 8, ;9, ;10, ;1, oh oh2, oh oh3, �4, oh6, oh7, �11, �12, �13, � (b)

PSfrag repla
ementstres
ientos / �seis
ientos / �diez / �
in
uenta / �o
henta / �veintitr�es / �1, three oh oh2, six oh oh3, three one oh4, three �ve oh6, six eight oh7, six two three11, three �ve one12, six �ve seven13, six eight four

0, � tres
ientos / threeseis
ientos / six diez / one oh
in
uenta / �ve
in
uenta / �ve seveno
henta / eightveintitr�es / two three y / oney / �y / four uno / �siete / �
uatro / �5, ; 8, ;9, ;10, ;1, oh oh2, oh oh 3, �4, oh6, oh7, �
11, �12, �13, �(
)Figure 2. Simple SSTs representing a training set. (a) An unambiguous set of examples, T . (b) TreeSubsequential Transdu
er for T . (
) Onward Tree Subsequential Transdu
er for T .sharing the same input symbols are adjusted on their output strings to re
ursively try tomerge the destination states of the edges.Su
h a re
ursive merging 
onveys merging of 
ommon paths starting at the initial pairof states. Re
ursion �nishes su

essfully when all mergings are found 
ompatible. Alter-natively, it 
an be interrupted if the output strings of a pair of states are non 
ompatibleor if the output strings of a pair of equal input edges are non adjustable. This last 
aseo

urs if one of the edges has to be 
onsidered 
onsolidated and the other one 
annot be�tted to it. The notion of 
onsolidated edge is related to the order in whi
h pairs of statesare merged and to the assumption that a merging of two states 
annot modify the part ofthe transdu
er that has been being 
onsolidated by previous 
ompatible mergings.Figure 3 illustrates the merging pro
ess for states 1 and 2 from the example OTSTobtained in Figure 2(
). Output strings of these states are equal, thus the edge in
omingstate 2 is 
hanged to rea
h state 1, edges outgoing state 2 are assigned to state 1 and state 2is removed (Figure 3(a)). At this moment, two edges with input symbol \
in
uenta" anddi�erent output strings depart from state 1. By pushing ba
k the symbol \seven" in oneedge, output strings of both edges are made equal allowing their merging along with theirdestination states (Figure 3(b)). States 4 and 5 
an be merged be
ause state 5 has nooutput string. Now, state 4 has two outgoing edges with input symbol \y" and di�erentoutput strings. Pushing ba
k symbols \one" and \seven" to the following edges makes theempty string to be the output string in both edges, whi
h yields their merging and that of

mt98revision.tex; 3/09/1999; 17:54; p.5



6 Amengual et al.
PSfrag repla
ements

0, � tres
ientos / threeseis
ientos / six diez / one oh
in
uenta / �ve
in
uenta / �ve seveno
henta / eightveintitr�es / two three y / �y / one
y / seven

y / four
uno / onesiete / seven

uno / �siete / �
uatro / �5, ; 8, ;9, ;10, ;1, oh oh 3, �4, oh6, oh7, �
11, �12, �13, �(a)

PSfrag repla
ements

0, � tres
ientos / threeseis
ientos / six diez / one oh
in
uenta / �ve


in
uenta / �ve seven

o
henta / eightveintitr�es / two three

y / �
y / oney / seveny / four

uno / onesiete / seven
uno / �siete / �
uatro / �

5, ; 8, ;9, ;10, ;1, oh oh 3, �4, oh6, oh7, �
11, �12, �13, �(b)

PSfrag repla
ements

0, � tres
ientos / threeseis
ientos / six diez / one oh
in
uenta / �ve


in
uenta / �ve seven

o
henta / eightveintitr�es / two three y / �
y / oney / seven

y / four uno / onesiete / seven
uno / �siete / �


uatro / �
5, ; 8, ;9, ;

10, ;1, oh oh 3, �4, oh6, oh7, �
11, �12, �13, �(
)Figure 3. Some steps of the merging pro
ess for states 1 and 2 from the Onward Tree SubsequentialTransdu
er of Figure 2(
).states 8 and 9 (Figure 3(
)). This merging pro
ess �nishes su

essfully sin
e all parti
ularstate and edge mergings have been found or have been made 
ompatible.2.3.2. Inferen
e of the translation stru
tureIn order to guarantee the inferen
e of a target subsequential transdu
tion, the learningpro
ess requires the pairs of states of the initial OTST to be su

essively 
onsidered ina 
ertain order. An appropriate order 
an be a lexi
ographi
 order of the input stringpre�xes. Noti
e that state numbering given to SSTs through Figures 2, 3, 4 and 5 followssu
h an order, whi
h is obtained as a by-produ
t of the TST 
onstru
tion (Algorithm 1),sin
e states are named by means of the input pre�xes that lead to them.The Onward Subsequential Transdu
er Inferen
e Algorithm (OSTIA) (On
ina, 1991;On
ina et al., 1993) is formally presented in Algorithm 5. It begins building the OTSTof a �nite single-valued training set T � X� � Y � that re
eives as input. Then, OSTIAtakes every state in lexi
ographi
 order, and tries to orderly merge ea
h one with someother previous state. Merging of two states is made e�e
tive only if it is 
ompatible. Atthe end, OSTIA returns an onward SST whi
h is 
onsistent with T ; i.e., an onward SSTwhi
h realizes T and a generalization derived from 
ompatible mergings.The 
lass of total subsequential transdu
tions 
an be identi�ed in the limit from positivepresentation of input-output pairs (On
ina, 1991; On
ina et al., 1993). In other words, forany total subsequential transdu
tion OSTIA will exa
tly obtain the minimum onward SST
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The EuTrans-I Spee
h Translation System 7
PSfrag repla
ements

0, � tres
ientos / threeseis
ientos / sixdiez / one oh 
in
uenta / �veo
henta / eightveintitr�es / two three y / � uno / onesiete / seven
uatro / four1, oh oh 4, oh 8, ;7, � 11, �12, �13, �(a)PSfrag repla
ements

0, � tres
ientos / threeseis
ientos / sixdiez / one oh 
in
uenta / �veo
henta / eightveintitr�es / two three y / �
uno / onesiete / seven
uatro / four 1, oh oh 4, oh8, ;7, �11, �12, �13, � (b)Figure 4. Last steps in the exe
ution of OSTIA after su

essfully merging states 1 and 2 (Figure 3(
))from the Onward Tree Subsequential Transdu
er of Figure 2(
).that realizes the subsequential transdu
tion from a large enough set of input-output pairsof the fun
tion.The behaviour of OSTIA on the example OTST of Figure 2(
) is outlined here below.It �rst tries to merge state 1 and state 0, whi
h is not possible due to the distin
t outputstrings of the states. Thus, state 1 remains as before, and now state 2 is 
onsidered. State 2
annot be merged with state 0 either, but it 
an be merged with state 1 be
ause they are
ompatible. Their detailed merging pro
ess was shown in Figure 3 and des
ribed in lastse
tion. Next, state 3 is 
onsidered to be merged on the SST obtained after merging states 1and 2 (Figure 3(
)).State 3 is 
ompatible with state 0, provided that their output strings are equal and nopath exists whi
h 
an distinguish them. Therefore, state 3 is merged with state 0. Then,state 6 is found non 
ompatible with states 0 and 1, due to their distin
t output strings.However, state 6 
an be merged with state 4, following a similar adjustment pro
edure tothat previously des
ribed for states 1 and 2. The SST resulting from mergings of states 3and 0 and states 6 and 4 is depi
ted in Figure 4(a).Finally, states 7, 8, 11, 12 and 13 are all found 
ompatible with state 0, yielding the SSTpresented in Figure 4(b) whi
h is the onward SST 
onsistent with T 
omputed by OSTIA.Note that the obtained SST 
orre
tly asso
iates output substrings to input symbols, whi
hwill allow it to appropriately translate other input strings not seen in the training. Su
h abehaviour generally appears in SSTs learnt by OSTIA, if a suÆ
iently large training setis available. However, although this behaviour is desirable in pra
ti
e, it is not enough toadequately model pra
ti
al translation tasks, as we dis
uss in next se
tion.2.3.3. Inferen
e of translation models with given input and output synta
ti
 
onstraintsIn pra
ti
e, the SSTs learnt by OSTIA tend to very a

urately translate 
orre
t inputsenten
es, but also tend to a

ept and translate in
orre
t senten
es produ
ing meaninglessresults for them. This yields undesirable e�e
ts in 
ase of noisy input, like the one obtainedby opti
al 
hara
ter re
ognition, typing, or (of parti
ular interest in our 
ase) spee
hre
ognition. The SST of Figure 4(b) 
an a

ept and translate in
orre
t senten
es, like\uno seis
ientos o
henta y tres
ientos" whi
h is translated as \one six eight three oh oh".
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8 Amengual et al.This problem originates from the fa
t that, by state merging, OSTIA tends to over-generalize the input and output languages as mu
h as possible while a

urately modelingthe mapping from input to output senten
es. That is, the �nite state model of the inputlanguage underlying the learnt SST (the one resulting from removing the output stringsasso
iated to the edges) does not ne
essarily 
onstitute a good input language model, andthe same happens with the �nite state model of the output language underlying the SST(the one resulting from removing the input symbols asso
iate to the edges)A possible way to over
ome this over-generalization problem is to impose to the learningpro
ess the 
onstraint that the learnt SSTs should not a

ept input senten
es or produ
eoutput senten
es whi
h are not a

epted by given models of the input (Domain) and output(Range) languages. If these 
onstraints 
an be modeled by Deterministi
 Finite Automata(DFA), then learning 
an be 
arried out with a version of OSTIA 
alled OSTIA-DR(Onward Subsequential Transdu
er Inferen
e Algorithm with Domain and Range) (On
inaand Var�o, 1996), whi
h is given in Algorithm 6. It only di�ers from OSTIA in the test forde
iding whether merging two states will be a

eptable or not: OSTIA-DR will never mergeSST states that 
orrespond to di�erent states in the DFA for the input language (Domain)or in the DFA for the output one (Range). Formally, let D = (QD;X; ÆD ; d0; FD) andR = (QR; Y; ÆR; r0; FR) be two DFAs des
ribing the Domain and Range of a subsequentialfun
tion t, respe
tively. Given a SST � = (X;Y;Q; q0; E; �), let (q0; xp; yp; p) be a path in�� (q0; p) and let (q0; xq; yq; q) be a path in �� (q0; q). Then states p and q are only allowedto be merged if ÆD(d0; xp) = ÆD(d0; xq) and ÆR(r0; yp) = ÆR(r0; yq). This test 
an be veryeÆ
iently implemented if the states and output symbols of the initial OTST are previouslylabelled with the 
orresponding states in the Domain and Range DFAs.OSTIA-DR 
an make use of any kind of DFA models for Domain and Range. In parti
-ular, these models 
an be N -Testable Automata, whi
h 
an be automati
ally learnt fromexamples (Gar
��a and Vidal, 1990). N -Testable Automata are just the result of removingprobabilisti
 information from sto
hasti
 N -Testable Automata whi
h, in turn, 
onstitutejust a 
onvenient stru
tural way of representing the well known N -Gram models in termsof �nite state ma
hines (Vidal et al., 1995). Therefore, standard automata minimizationalgorithms 
an be applied to N -Testable Automata. Experien
e shows that using smaller,more 
ompa
t Domain and Range models generally helps OSTIA-DR to produ
e bettergeneralizations for a given amount of training data, and, hen
e, minimized models aregenerally used.Figure 5 illustrates the result of exe
uting OSTIA-DR with the unambiguous trainingset T of Figure 2(a). In order to provide a 
lear presentation, the �gure only shows detailsrelated with the in
lusion of a Domain model in the learning pro
ess. Figure 5(a) shows aminimized 2-Testable automaton for the input language of the transdu
tion, whi
h is usedto label the states of the OTST for T, previously shown in Figure 2(
). The label addedto ea
h transdu
er state is simply the automaton state rea
hed when the input pre�x thatleads to the state of the OTST is parsed through the Domain automaton. The resultingOTST with labelled states is presented in Figure 5(b). In
lusion of a Range model wouldimply labelling all symbols of the output strings of the OTST.From this state labelled OTST, the generalization pro
ess 
arried out by OSTIA-DRyields the onward SST in Figure 5(
). Although its ordered merging pro
ess is similarto that of OSTIA, it 
an be observed that, in 
ontrast with the transdu
er obtained byOSTIA (Figure 4(b)), states 3, 7, 8, 11, 12 and 13 have not been merged with state 0sin
e they have asso
iated a di�erent state label. Moreover, note that the stru
ture ofthe onward SST learnt in this 
ase is the same as that of the Domain automaton. In the
mt98revision.tex; 3/09/1999; 17:54; p.8
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PSfrag repla
ements

d0 d1 d2 d3 d4tres
ientosseis
ientos diezveintitr�es
in
uentao
henta y 
uatrounosiete

0, d0, �0, d0, �tres
ientos / threeseis
ientos / sixdiez / one oh
in
uenta / �ve
in
uenta / �ve seveno
henta / eightveintitr�es / two threey / oney / �y / fouruno / �siete / �
uatro / �uno / onesiete / seven
uatro / four5, d2, ;8, d3, ;8, d3, ;9, d3, ;10, d3, ;1, d1, oh oh1, d1, oh oh2, d1, oh oh3, d4, �3, d4, �4, d2, oh4, d2, oh6, d2, oh7, d4, �11, d4, �12, d4, �13, d4, � (a)

PSfrag repla
ementsd0d1d2d3d4tres
ientosseis
ientosdiezveintitr�es
in
uentao
hentay
uatrounosiete

0, d0, �

0, d0, �

tres
ientos / threeseis
ientos / six diez / one oh
in
uenta / �ve
in
uenta / �ve seveno
henta / eightveintitr�es / two three y / oney / �y / four uno / �siete / �
uatro / �

uno / onesiete / seven
uatro / four
5, d2, ; 8, d3, ;

8, d3, ;
9, d3, ;10, d3, ;1, d1, oh oh1, d1, oh oh

2, d1, oh oh 3, d4, �3, d4, � 4, d2, oh4, d2, oh 6, d2, oh7, d4, � 11, d4, �12, d4, �13, d4, �(b)

PSfrag repla
ementsd0d1d2d3d4tres
ientosseis
ientosdiezveintitr�es
in
uentao
hentay
uatrounosiete0, d0, �

0, d0, � tres
ientos / threeseis
ientos / six diez / one oh
in
uenta / �ve


in
uenta / �ve seven

o
henta / eight veintitr�es / two three

y / one

y / �

y / fouruno / �siete / �
uatro / �
uno / onesiete / seven
uatro / four

5, d2, ;8, d3, ;
8, d3, ;

9, d3, ;10, d3, ;1, d1, oh oh 1, d1, oh oh2, d1, oh oh3, d4, � 3, d4, �4, d2, oh 4, d2, oh6, d2, oh7, d4, �11, d4, �12, d4, �13, d4, � (
)Figure 5. Key details of the learning pro
ess of OSTIA-DR. (a) Automaton for the Domain language. (b)Onward Tree Subsequential Transdu
er of Figure 2(
) labelled with automaton states. (
) Onward SSTlearnt by OSTIA-DR.general 
ase, translation 
onstraints 
onvey an extension of the stru
ture determined byDomain and Range models.2.3.4. Estimating transition probabilitiesSo far, only stru
tural aspe
ts involved in the learning of �nite state translation modelshave been 
onsidered. However, in order to properly integrate these models with standarda
ousti
 models to perform spee
h translation (see Se
tion 4), not only stru
tural, but alsoprobabilisti
 aspe
ts are important. Given that a SST is a deterministi
 model, optimalmaximum likelihood estimates of the transition probabilities 
an be obtained by 
omputingthe relative frequen
y of use of ea
h transition in the (deterministi
) parsing of the texttraining senten
es. This results in an Sto
hasti
 SST whi
h models a joint probabilitydistribution of input-output senten
e pairs.3. Using 
ategories to redu
e the amount of data required to learn the SSTsAn important drawba
k of the approa
h presented so far is that the required amount oftraining data rapidly grows with the 
omplexity of the translation task to be modelled.Hen
e, some measures are required in order to apply this approa
h to non trivial taskswhile keeping the number of needed examples a�ordable. Among a number of promising
mt98revision.tex; 3/09/1999; 17:54; p.9



10 Amengual et al.approa
hes (Vidal, 1997), 
ategorization has proved quite e�e
tive: we 
an try to simplifya given translation task by repla
ing some words or short phrases, both in the input andoutput languages, by adequate labels from a set of what we 
all 
ategories. The basi
 idea
onsists in using the same 
ategory label to represent those words and expressions thatplay a similar role and, thus, are expe
ted to appear in the same kind of 
ontexts. Consider,for instan
e, the possibility of using a spe
i�
 
ategory for representing 
olors (bla
k, paleblue, olive green : : : ) and a di�erent one for plane shapes (
ir
le, square, ellipse, isos
elestriangle : : : ) in a translation task involving the des
ription of visual s
enes.The approa
h for using 
ategories together with SSTs presented in (Vilar et al., 1995)proved to be useful in redu
ing the number of examples required for learning. However, thisapproa
h was not easily integrable in a spee
h re
ognition system and 
ould not deal with
ategories in
luding units larger than a word. For these reasons, in the EuTrans-I proje
tthe approa
h was 
hanged so that a single FST would 
omprise all the information for thetranslation, in
luding elementary transdu
ers for the 
ategories. This 
an be a
hieved byfollowing these steps:� De�nition of 
ategories. Determine the set of 
ategories.� Corpus 
ategorization. Repla
e words and short phrases in the 
orpus by their
ategory labels.� Basi
 stru
ture model learning. Use the 
ategorized 
orpus to train a model,whi
h will be referred to as initial SST.� Category modelling. For ea
h 
ategory, learn a so-
alled 
ategory SST (
SST).� Category expansion. Expand the edges in the initial SST 
orresponding to thedi�erent 
ategories using their respe
tive 
SSTs. This expansion pro
edure, explainedin more detail below, 
an introdu
e non-determinism, so the new model is a FST whi
hwill be referred to as expanded FST.A general view of the pro
ess 
an be seen in Figure 6. The left part represents theelements involved in the learning of the expanded FST, exempli�ed with a single trainingpair. The right part of the diagram gives a s
hemati
 representation of the use of thistransdu
er for the translation of spee
h input as will be explained in Se
tion 4.The 
ategory expansion step is a bit more 
omplex than just substituting ea
h 
ategory-labelled edge by the 
orresponding 
SST. It has to 
onsider (i) how to insert the output ofthe 
SST within the output of the initial transdu
er;(ii) how to deal with more than one�nal state in the 
SST; and (iii) how to deal with 
y
les in the 
SST involving its initialstate.Solving (i) is not trivial, sin
e the translation of a 
ategory label 
an appear beforeor after the label has been seen in the input. For example, 
onsider the transdu
er inFigure 7(a) and a Spanish senten
e 
ategorized as \me voy a $HOUR", whi
h 
orrespondsto the 
ategorized English one \I am leaving at $HOUR". In our appli
ation, on
e \me voya" is seen, the 
ontinuation 
an only be \$HOUR", so the initial SST, before seeing this
ategory label in the input, has already produ
ed the whole output (in
luding \$HOUR").Taking this into a

ount, we de
ided to keep the output of the initial SST and to in
ludethere the information ne
essary for removing the 
ategory labels. To do this, the labelfor the 
ategory was 
onsidered as a variable that a
ts as a pla
eholder in the outputsenten
e and whose 
ontents are also �xed by an assignment appearing elsewhere within
mt98revision.tex; 3/09/1999; 17:54; p.10
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PSfrag repla
ements Original

: : :: : :: : :: : :
CorpusCorpus

Corpus
CorpusCategorizerCategorized

Category 1
Category 1

Category n
Category n

SST
SSTSST

FSTExpandedLexi
alModelsModelsA
ousti
InitialExpander
OSTIA-DROSTIA-DR

OSTIA-DR

Postpro
essor
Translator

Translation

Transdu
er Learning Pro
ess Translation Pro
essOriginal sampled�eme la llave de la habita
i�on 
iento veintitr�esgive me the key to room number one two three

Categorized sampled�eme la llave de la habita
i�on $ROOMgive me the key to room number $ROOM

Input senten
ed�eme la llave de la habita
i�on 
iento do
e

give me the key to room $ROOM $ROOM=[ one one two ℄
give me the key to room number one one twoFigure 6. General s
heme of the treatment of 
ategories in the learning and translation pro
esses.that senten
e. In our example, the expe
ted output for \me voy a las tres y media" 
ouldbe \I am leaving at $HOUR $HOUR=[half past three ℄". This assumes that ea
h 
ategoryappears at most on
e within ea
h senten
e.The expanded FST is then obtained by an iterative pro
edure whi
h starts with theinitial SST. For ea
h edge whose input symbol is a 
ategory label, the following steps areperformed:� Eliminate the edge.� Create a 
opy of the 
SST 
orresponding to the 
ategory label.� Add new edges linking the new 
SST with the FST. These edges have to ensure thatthe output produ
ed by the 
SST is embra
ed between \
=[ " and \ ℄", 
 being the
ategory label.� Eliminate useless states.More formally, given a FST � = (X;Y;Q; q0; E; �), a 
SST �
 = (X;Y;Q
; q0
; E
; �
),where we assume that �
(q0
) = ; (i.e., the initial state of the 
SST is not a �nal one), andan edge (p; 
; z; q) 2 E, the edge expansion produ
es a new FST � 0 = (X;Y;Q [ Q0
; q0;(E � (p; 
; z; q)) [E0
; �0) in whi
h the new elements are:

mt98revision.tex; 3/09/1999; 17:54; p.11



12 Amengual et al.� The set Q0
, disjoint with Q and su
h that there exists a bije
tion � : Q
 ! Q0
.� The new set of edges:E0
 = �(�(r); a; y; �(s)) j (r; a; y; s) 2 E
	[ �(p; a; z
=[ y; �(s)) j (q0
; a; y; s) 2 E
	[ �(�(r); a; y�
(s) ℄; q) j (r; a; y; s) 2 E
 ^ �
(s) 6= ;	[ �(p; a; z
=[ y�
(s) ℄; q) j (q0
; a; y; s) 2 E
 ^ �
(s) 6= ;	� The new state emission fun
tion:�0(s) = � �(s) if s 2 Q; if s 2 Q0
Finally, the useless states that may appear during this 
onstru
tion are removed.A simple example of the e�e
ts of this pro
edure 
an be seen in Figure 7. Drawing (a)depi
ts the initial SST, while (b) shows a 
SST for the hours between one and three (in\o'
lo
k" and \half past" forms) and the expanded FST is represented in (
).Note that this pro
edure solves the problems derived from the 
SST having multiple�nal states or 
y
les involving the initial state. The pri
e to pay is the introdu
tion ofnon-determinism in the model, whi
h may lead to ambiguity. Transition probabilities 
anbe straightforward estimated for unambiguous models as outlined in Se
tion 2.3.4. Ambi-guity, however, rises non trivial estimation problems whi
h 
an be solved using di�erentestimation te
hniques dis
ussed in (Casa
uberta, 1995; Casa
uberta, 1996). An alternativeapproa
h, used in the experiments reported in Se
tion 5.3, 
onsists in independently esti-mating the transition probabilities of both the initial SST and all the 
SSTs as outlinedin Se
tion 2.3.4, and then adequately 
ombine these transition probabilities during the
ategory expansion pro
ess.4. The EuTrans-I integrated ar
hite
ture for spee
h translationIf both a Continuous Spee
h Re
ognition (CSR) system and a text input translation devi
e(for instan
e, a SST learnt by OSTIA) are available, we 
an build a spee
h translationsystem in a de
oupled manner by simply feeding the text translator with the output of theCSR system (with, possibly, error 
orre
ting parsing in order to 
ope with noisy outputfrom the re
ognizer). However, su
h a de
oupled s
heme has the disadvantage of nottaking the synta
ti
 restri
tions underlying the transdu
er itself into a

ount during there
ognition pro
ess. Also, it does not seem to be an ideal solution when we have imperfe
tre
ognition and translation devi
es: the translation module would add to its own errorsthose produ
ed by in
orre
tly re
ognized senten
es whi
h 
an not be 
orre
tly translated.Therefore the performan
e of the system resulting from serially 
oupling a re
ognition anda translation module should be expe
ted to be lower than the performan
e of ea
h one ofthem.For this reason, a di�erent, integrated ar
hite
ture has been adopted in the EuTrans-I system (Jim�enez et al., 1994; Jim�enez et al., 1995; Amengual et al., 1997a). The nextse
tions des
ribe the modeling levels and de
oding algorithms of this system.
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PSfrag repla
ements

me / I ma~nana / tomorrowhoy / todayvoy / am leaving a / at $HOURa / at $HOUR $HOUR / � �
�

threetwooney / half past threeen / three o'
lo
ky / half past twoen / two o'
lo
ky / half past oneen / one o'
lo
ktres / �dos / �una / �la / �las / �media / �punto / �las / $HOUR=[la / $HOUR=[dos / two ℄tres / three ℄una / one ℄punto / ℄media / ℄ (a) Initial SST.PSfrag repla
ementsme / Ima~nana / tomorrowhoy / todayvoy / am leavinga / at $HOUR$HOUR / �

�
threetwoone

y / half past threeen / three o'
lo
ky / half past twoen / two o'
lo
ky / half past one
en / one o'
lo
k

tres / �dos / �una / �la / �las / � media / �punto / �las / $HOUR=[la / $HOUR=[dos / two ℄tres / three ℄una / one ℄punto / ℄media / ℄ (b) A simpli�ed 
SST for the 
ategory $HOUR.
PSfrag repla
ements

me / I ma~nana / tomorrowhoy / todayvoy / am leaving a / at $HOURa / at $HOUR
$HOUR / �

��threetwoone
y / half past three
en / three o'
lo
k
y / half past twoen / two o'
lo
k
y / half past one
en / one o'
lo
ktres / �dos / �

una / �la / �las / �media / �punto / �
las / $HOUR=[la / $HOUR=[

dos / two ℄tres / three ℄
una / one ℄

punto / ℄media / ℄
(
) Expanded FST.Figure 7. An example of the 
ategories expansion pro
edure.4.1. A
ousti
 modelsThe most su

essful 
urrent approa
h to model the variability in spee
h produ
tion at theword or sub-word level uses (�rst order) Hidden Markov Models (HMMs) (Baker, 1975;Jelinek, 1976), whi
h are 
omposed by two sto
hasti
 pro
esses: (i) a Hidden pro
ess, givenby an homogeneous Markov 
hain, with dis
rete time parameter and �nite set of states;and (ii) an observation pro
ess, given by output distributions asso
iated with the statesof the hidden pro
ess. The Markov 
hain is 
onstituted by a �nite set of states Q and atransition probability matrix de�ning, for ea
h q; q0 2 Q, the probability of visiting state q0immediately after state q. In an homogeneous Markov 
hain this probability is independentof time, and 
an be denoted as P (q0jq; h), where h is the HMM under 
onsideration. Ingeneral, an additional probability distribution over the initial states is required. However,in CSR is usual to �x a state qS with probability 1 of being initial. Denoting by O the spa
e
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14 Amengual et al.of a
ousti
 observations, the observation pro
ess is de�ned by a probability distribution (ora probability density fun
tion) asso
iated with ea
h state, P (ojq; h) being the probabilityof observing o 2 O while in state q of h. A parti
ular state qF is the �nal state (whi
h is nonemitting and there are no transitions departing from it). The HMM 
an be regarded as a�nite state ma
hine that randomly generates sequen
es of observations as follows. Initiallyit departs from state q1 = qS. At time t it randomly outputs an observation ot, a

ordingto the emission probability distribution, and moves from state qt to state qt+1, 
hosenrandomly a

ording to the transition probability distribution. The pro
ess stops when the�nal state qF is rea
hed. An external observer may have a

ess to the generated sequen
eof observations o = o1o2 : : : ojoj, but the sequen
e of states is hidden to the observer.The probability of a sequen
e of observations o 2 O? being produ
ed by a HMM his obtained by summing up, over all possible sequen
es q1 : : : qjoj+1 of joj + 1 states withq1 = qS and qjoj+1 = qF , the probability of visiting the sequen
e of states q1 : : : qjoj+1 timesthe probability of generating the sequen
e of observations o along the sequen
e of statesq1 : : : qjoj+1: P (ojh) = Xq1:::qjoj+1 jojYt=1P (otjqt; h) � P (qt+1jqt; h) (1)In CSR systems, the a
ousti
 observations are obtained after a prepro
ess of parame-terization in whi
h the relevant information is extra
ted from the spee
h signal a
quiredby the mi
rophone. A HMM 
an be used for modeling the variability in the sequen
esof observations 
orresponding to di�erent pronun
iations of the same sub-word unit. Thetopology of the HMM (the stru
ture of the graph of states and transitions with positiveprobability) 
an allow for modeling the di�erent arti
ulatory e�e
ts in the initial, 
entral,and �nal parts of the sub-word unit. Also, time elongation or 
ontra
tions 
an be modeled(for instan
e, by loops over the same state or transitions that skip over some state).The emission probability distribution is usually a 
ontinuous parametri
 one, whoseparameters are estimated from a large enough 
orpora of utteran
es. Possibly the mostused distributions are mixtures of Gaussians:P (otjqt) = NtX
=1 wt;
 �N(otj�t;
;�t;
) (2)whose parameters are the number Ni of Gaussians per mixture, the weights wi;
, the meanve
tors �i;
, and the 
ovarian
e matri
es �i;
 (the dependen
e with h has been omittedfor simpli
ity). In order to redu
e the amount of data required for a 
orre
t estimation ofthe parameters, some of them are usually �xed by hand or shared by di�erent Gaussians,states or mixtures. Typi
al simpli�
ations are �xing Ni to 1, assuming �i diagonal, orassuming the same 
ovarian
e matrix for all the Gaussians in the same mixture.4.2. Lexi
al modelsIn small-vo
abulary tasks (for instan
e, re
ognition of sequen
es of digits), HMMs 
an beused to model vo
abulary words. When the vo
abulary size in
reases, the training data isusually not enough for individual modeling of ea
h di�erent word. In this 
ase the usual
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ements
�o / �a / �a / � i / �one n / one o'
lo
k o / a quarter past onea / half past onel u uu nn mk ee d ira ttpFigure 8. HMM resulting after the integration in the SST of Figure 1 of the lexi
al and the a
ousti
 models,for a 
ase in whi
h lexi
al models are simple 
on
atenation of phonemes and a
ousti
 models are 3-state
ontext-independent HMMs.approa
h is to use HMMs for modeling a small set of sub-word units. Typi
al sub-wordunits are phonemes. In this 
ase, lexi
al models 
onstitute the intermediate level betweenthe a
ousti
 and the language models, de�ning the mapping from words into sequen
esof phonemes. This also allows for easily adding new words to the vo
abulary a

epted bythe system, without retraining the HMMs. The system 
an be adapted to di�erent tasksby simply 
hoosing di�erent lexi
al and synta
ti
 models, and optionally improving thea
ousti
 models with training senten
es of the task.In a simple approa
h, ea
h vo
abulary word is represented by a single sequen
e ofphonemes. In a more robust approa
h, speaker or diale
tal variations are modeled sothat the same word 
an be asso
iated with di�erent sequen
es of phonemes. This 
an beeasily done by simply in
reasing the vo
abulary with the di�erent variants for ea
h word.However, these alternatives 
an be more 
ompa
tly represented by a sto
hasti
 �nite stateautomaton, with phonemes asso
iated with the edges in su
h a way that di�erent paths
orrespond to di�erent word pronun
iations.Lexi
al models are usually built by hand, or automati
ally by programs that implementphonologi
al rules for the input language. On
e the HMMs for phonemes have been trained,they 
an be joined or integrated together a

ording to the lexi
al models, repla
ing ea
hedge of the lexi
al models by the 
orresponding phoneme HMM. In this way a (bigger)HMM for ea
h word in the vo
abulary V is obtained, whi
h would model the di�erentsequen
es of a
ousti
 observations in whi
h the pronun
iation of the word 
ould result(Jelinek, 1976).4.3. Synta
ti
 and translation modelsSe
tions 2 and 3 have des
ribed how to learn, from a (possibly 
ategorized) bilingual
orpus, a sto
hasti
 FST that represents, in an integrated way, (i) the synta
ti
 
onstraintsof the input language, (ii) the information needed for the translation into the outputlanguage, and (iii) the synta
ti
 
onstraints of the output language (whi
h help produ
ingonly well formed translations).The HMMs for vo
abulary words, possibly obtained from HMMs for sub-word units (seeSe
tion 4.2), 
an in turn be integrated within this sto
hasti
 FST, resulting in a large HMMwhi
h 
ombines all the knowledge sour
es parti
ipating in the assignment of probabilitiesto sequen
es of a
ousti
 observations. This is done by just substituting the edges of theFST by the HMMs for the 
orresponding input language words, as explained in (Jelinek,1976) for the integration within language models. This is illustrated in Figure 8. In theresulting integrated HMM there are two types of states: non-emitting, 
orresponding tothe states of the FST, and emitting, 
orresponding to the states of the original HMMs.
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16 Amengual et al.4.4. Viterbi de
odingThe spee
h translation problem 
an then be seen as a de
oding problem that 
onsists in�nding the output sequen
e of words whose probability is maximum given the integratedHMM and given the sequen
e of a
ousti
 observations. A 
ommon suboptimal approx-imation to solve the de
oding problem is to �nd the path (sequen
e of states) in theintegrated HMM whose probability is maximum, and then take the sequen
e of wordsasso
iated to the edges traversed by that path. In our 
ase, by following the edges in theoptimal path, we 
an re
over not only the (approximately) optimal sequen
e of words inthe input language but also its 
orresponding translation by the FST.The Viterbi algorithm (Viterbi, 1967; Forney, 1973) solves this problem of, given aHMM h and a sequen
e of observations o, �nd the state sequen
e q for whi
h the aposteriori probability P (qjo; h) is maximum. It is a very eÆ
ient algorithm that justrequires O(jhj � joj) time (where jhj is the number of edges in h and joj is the length of o)and O(jhj) spa
e. But even this 
an be
ome 
omputationally expensive when jhj is high.In this 
ase a pruning te
hnique known as beam sear
h (Lowerre, 1976) 
an be performed:after pro
essing ea
h new observation ot, those states whose 
umulative s
ore ex
eed thebest 
urrent s
ore by more than a given threshold, are pruned.In order to redu
e memory requirements, the integrated HMM does not need to be fullyexpanded in memory. For ea
h new a
ousti
 observation, only the su

essors of those stateswhi
h are not pruned by the beam sear
h need to be expanded (Ney et al., 1987). A listlinking the a
tive states at time t 
an determine the possible a
tive states at time t+1. Inthe EuTrans-I system, this is implemented by using two di�erent beam sear
h thresholds:one at the states of the FST (or inter-word transitions) and another at the a
ousti
 states(or intra-word transitions). Choosing appropriate values for these thresholds 
an redu
eboth the temporal and spatial 
osts without signi�
antly a�e
ting the system performan
e.A stru
ture of ba
k-pointers is built linking the states of the FST whi
h survive the beamsear
h pruning. The optimal senten
e hypothesis together with its translation is re
overedat the end of the pro
ess from the inter-word transitions whi
h 
onstitute this stru
ture.In order to a
hieve 
lose to real-time 
omputation, ea
h new a
ousti
 observation ob-tained after the a
ousti
 prepro
essing is immediately supplied to the de
oding module.This works in a so-
alled frame-syn
hronous (or left-to-right) manner, and so it 
an perform
omputation without waiting for the utteran
e to terminate.5. Experiments5.1. The Traveler Task 
orpusThe Traveler Task 
orpus is a set of paired bilingual senten
es (Spanish and English) thatwas built within the EuTrans-I proje
t. It is mu
h more realisti
 that the one used in(Castellanos et al., 1994), but, unlike other bilingual 
orpora su
h as the Hansards (Brownet al., 1990), it is restri
ted to a limited domain.The general framework established for the Traveler Task aims at 
overing usual sen-ten
es that 
an be needed by a traveler visiting a foreign 
ountry whose language he/shedoes not speak. This framework in
ludes a great variety of di�erent translation s
enarios,and thus results appropriate for progressive experimentation with in
reasing 
omplexity.In a �rst phase, the s
enario has been limited to some human-to-human 
ommuni
ation
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The EuTrans-I Spee
h Translation System 17Table I. Some examples of senten
e pairs from the Spanish to English Traveler Task.Spanish: >Cu�anto 
uesta por d��a una habita
i�on doble 
on pensi�on 
ompleta?English: How mu
h does a double room with full board 
ost per day?Spanish: Quisi�eramos reservar dos habita
iones para un d��a a nombre de Federi
o Mestre, por favor.English: We want to book two rooms for a day for Federi
o Mestre, please.Spanish: Por favor, d�enos las llaves de la dos
ientos veintid�os.English: Please give us the keys to room number two two two.Spanish: Por favor, >quieren pedirnos un taxi para la habita
i�on tres
ientos diez?English: Will you ask for a taxi for room number three one oh for us, please?Table II. Main features of the Spanish to Englishtext 
orpora. Spanish EnglishVo
abulary size 683 514Average senten
e length 9.5 9.8Test set perplexity 13.8 7.0situations in the re
eption of a hotel: asking for rooms, wake-up 
alls, keys, the bill,a taxi and moving the luggage; asking information about rooms (availability, features,pri
e); having a look at rooms, 
omplaining about and 
hanging them; notifying a previousreservation; signing the registration form; asking and 
omplaining about the bill; notifyingthe departure; and other 
ommon expressions.A small seed 
orpus was 
reated from several guide books with senten
es of 
ommonuse for tourists. This 
orpus was used to help the design of the Traveler Task 
orpus,whi
h was automati
ally built by using a set of Sto
hasti
 Syntax-Dire
ted TranslationS
hemata (Gonzalez and Thomason, 1978) with the help of a data generation tool spe
iallydeveloped for the EuTrans-I proje
t. This software allows the use of several synta
ti
extensions to these s
hemata in order to express optional rules, permutation of phrases,
on
ordan
e (of gender, number and 
ase), et
. The use of automati
 
orpora generationwas 
onvenient due to time 
onstraints of the �rst phase of the EuTrans-I proje
t, and
ost-e�e
tiveness. Moreover, this pro
edure allows to 
ontrol the level of 
omplexity of thetask.Some example pairs of the Spanish to EnglishTraveler Task 
orpus are shown in Table I.Some features of this 
orpus 
an be seen in Table II. The test set perplexity has been
omputed by training a trigram model (with simple 
at smoothing) using a set of 20,000random senten
es and 
omputing the probabilities yielded by this model for a set of 10,000independent random senten
es. The lower perplexity of the output language derives froma design de
ision: multiple variants of the input senten
es were introdu
ed to a

ount fordi�erent ways of expressing the same idea, but they were given the same translation.
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18 Amengual et al.Finally, a multi-speaker spee
h 
orpus for the task was a
quired. A total of 436 Spanishsenten
es were sele
ted from the text 
orpus. They were divided into eleven sets: one
ommon set 
onsisting of 16 senten
es, and ten sets of 42 senten
es. Ea
h one of twentyspeakers (ten male and ten female) parti
ipating in the a
quisition of this 
orpus, pro-noun
ed the 
ommon set and two out of the other ten, totalling 2,000 utteran
es, 15,360words and about 90,000 phones. The sampling frequen
y was 16 kHz.From this spee
h 
orpus, two sub-
orpora were extra
ted:� Training and adaptation (TravTR): 16 speakers (eight male and eight female), 268senten
es, 1,264 utteran
es (approx. 11,000 words or 56,000 phones).� Speaker independent test (TravSI ): 4 speakers (two male and two female, not involvedin TravTR), 84 senten
es (not in TravTR), 336 utteran
es (approx. 3,000 words or15,000 phones).5.2. Translation model training experimentsFirst, we tested on the text 
orpus the 
apa
ity of OSTIA-DR for learning good translationmodels. This 
orpus was divided in a training set and a test one, with 490,000 and 10,000pairs, respe
tively. Two sequen
es of FSTs were trained with in
reasing subsets of thetraining set:� Without 
ategories. For ea
h subset of the training set, minimized 3-TestableAutomata of the input and the output language were inferred and, using them asDomain and Range models, a SST was learnt by OSTIA-DR from the same subset.� With 
ategories. We 
hose 
ategories whi
h are easy to identify and that followsimple translation rules, so that the amount of spe
ial linguisti
 knowledge introdu
edis very low. Seven 
ategories were used: mas
uline names, feminine names, surnames,dates, hours, room numbers, and general numbers. Simple s
ripts substituted thewords in the 
ategories by adequate labels. For example, the pair (\me voy el on
ede julio | I am leaving on july the eleventh") would be
ome (\me voy el $DATE |I am leaving on $DATE"), where \$DATE" would be the 
ategory label for dates. Forea
h subset of the training set, and using again minimized N -Testable Automata asDomain and Range models, a FST was obtained following the approa
h des
ribedin Se
tion 3 (but 
SSTs were learnt from spe
i�
 manually built 
orpora, instead ofextra
ting them from the training subset by the 
ategorizer).Ea
h model was tested using only those senten
es in the test set that were not seenin training. This has been done be
ause a model trained with OSTIA-DR is guaranteedto reprodu
e exa
tly those translations it has seen during learning. The performan
e wasevaluated in terms of translation Word Error Rate (WER), whi
h is the per
entage ofoutput words that have to be inserted, deleted and substituted in order to exa
tly mat
hthe 
orresponding expe
ted translations.The results 
an be seen in Table III. The 
olumns labelled as \Di�erent" and \Categ.",refer to the number of di�erent senten
es in the training set and the number of di�erentsenten
es after 
ategorization. As expe
ted, the use of lexi
al 
ategories had a major impa
ton the learning algorithm. The large in
rease in performan
e is a natural 
onsequen
e ofthe fa
t that the 
ategories help in redu
ing the total variability that 
an be found in the
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The EuTrans-I Spee
h Translation System 19Table III. Text input results. Translation word error rates (WER) and sizes of thetransdu
ers for di�erent number of training pairs.Training pairs Without 
ategories With 
ategoriesGenerated Di�erent Categ. WER States Edges WER States Edges10,000 6,791 5,964 60.72 3,210 10,427 30.51 4,500 32,59920,000 12,218 9,981 54.86 4,119 15,243 22.46 4,700 35,58540,000 21,664 16,207 47.92 5,254 22,001 13.70 4,551 34,87980,000 38,438 25,665 38.39 6,494 31,017 7.74 4,256 37,673160,000 67,492 39,747 26.00 6,516 36,293 3.71 4,053 34,045320,000 119,048 60,401 17.38 6,249 41,675 1.42 4,009 33,643490,000 168,629 77,499 13.33 5,993 47,151 0.74 3,854 29,394
orpora (although senten
es do exhibit a great deal of variability, the underlying synta
ti
stru
ture is a
tually mu
h less diverse). They also have the advantage of allowing an easierextension in the vo
abulary of the task with a lower negative e�e
t on the performan
e ofthe models so obtained.5.3. Spee
h input experimentsSpanish to English speaker independent spee
h translation experiments were performedusing the integrated ar
hite
ture des
ribed in Se
tion 4, with the following models:� A
ousti
 level. Ea
h one of 25 
ontext-independent Spanish phonemes (in
ludingtwo types of silen
e: initial and �nal) was modeled by a 
ontinuous-density HMMwith three emitting states and a left-to-right topology with loops in the emittingstates. The emission distribution of ea
h state was a mixture of Gaussians. The HTKHidden Markov Model Toolkit V1.5 (Young et al., 1993) was used to estimate theparameters of these HMMs from the union of two 
orpora: the 1,264 utteran
es inthe TravTR sub-
orpus, and an additional set of 1,530 utteran
es (by 9 speakers, 4male and 5 female) from a di�erent, quasi-phoneti
ally-balan
ed 
orpus. This spee
hmaterial was pro
essed to obtain, ea
h 10 mse
s, 10 
epstral 
oeÆ
ients of a Mel-�lterbank plus the energy and the 
orresponding �rst and se
ond derivatives. The �nalmodels had a total of 2,462 Gaussians.� Lexi
al level. Ea
h word was represented by a simple 
hain of phones, whi
h wasautomati
ally derived using standard rules from the Spanish Phoneti
s.� Synta
ti
 and translation level. The best of the transdu
ers with 
ategoriesobtained in the Spanish to English text experiments was used after estimating thetransition probabilities as 
ommented in Se
tion 3.After these models were trained, the system was used to re
ognize and translate intoEnglish the 336 Spanish utteran
es of the TravSI sub-
orpus.A series of experiments were then 
arried out in order to tune the beam sear
h thresh-olds. The results in Table IV show how they 
an be adjusted to �nd an adequate tradeo�between a

ura
y and 
omputing time. For instan
e, a Translation WER of 1.97 % 
anbe a
hieved with a real time fa
tor of just 2.7. When translation a

ura
y is the main
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20 Amengual et al.Table IV. Spee
h input results. E�e
t of the beam widths in the re
ognition andtranslation time and a

ura
y.Language Model A
ousti
 Model Re
ognition Word Translation Word Real TimeBeam Width Beam With Error Rates Error Rates Fa
tor100 50 37.94% 40.37% 0.7100 5.19% 5.13% 1.4200 2.15% 2.14% 2.6400 2.15% 2.14% 4.9200 50 37.94% 40.37% 0.7100 5.19% 5.13% 1.3200 2.05% 1.97% 2.7400 1.98% 1.83% 5.8Table V. Comparison between the integrated s
heme (
orrespondingto the last row of Table IV) and the de
oupled s
heme (re
ognitionusing a trigram, the same a
ousti
 and lexi
al models and the samebeam sear
h thresholds; and translation using a SST learnt withoutDomain and Range).Re
ognition Word Translation Word Real TimeApproa
h Error Rates Error Rates Fa
torDe
oupled 2.15 % 3.54 % 5.7Integrated 1.98 % 1.83 % 5.8

on
ern, wider thresholds 
an be used in the sear
h to a
hieve a Translation WER of1.83%, but with a real time fa
tor of 5.8. These results were obtained on a Intel Pentium166Mhz Personal Computer running Linux, without resorting to any type of spe
ializedhardware or signal pro
essing devi
e, and required no more than 16 Mb of memory.The proposed integrated ar
hite
ture was also 
ompared against a de
oupled s
hemein whi
h, instead of integrating the input (and output) language 
onstraints in the learnttransdu
ers, re
ognition was performed with the sto
hasti
 3-Testable Automata (equiv-alent to a trigram) of the input language, and then the output of the re
ognizer wastranslated by a SST learnt by OSTIA (without Domain or Range 
onstraints) from thesame 
ategorized 
orpus. The same a
ousti
 and lexi
al models were used. The resultsin Table V 
on�rm those reported by (Jim�enez et al., 1995) for a simpler translationtask: the integrated approa
h not only o�ers better translation but also better re
ognitionperforman
e; that is, not only the input language 
onstraints but also the translationand output language 
onstraints for the appli
ation domain 
an help in �nding whi
hwas the uttered senten
e and also its 
orresponding translation. It is also worth notingthe relation of re
ognition and translation WER in both approa
hes. In the de
oupledapproa
h, re
ognition errors are ampli�ed by the translation pro
ess. In 
ontrast, theintegrated approa
h, taking advantage of the lower perplexity of the output language (seeTable II), obtains a translation WER lower than the re
ognition WER.
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The EuTrans-I Spee
h Translation System 21Finally, we should remark that the results presented here are better that those reportedin (Amengual et al., 1997b), whi
h were obtained on a HP-9735 workstation, re
e
tingimprovements in our a
ousti
 models: the set of phones 
onsidered, the topology of theHMMs and the HMM training software have been 
hanged.6. Con
lusionsFinite State Transdu
ers 
an be used as the basis of spee
h translation systems for limiteddomains. These models 
an be automati
ally learnt from examples, and the learning pro-
ess 
an be improved by means of 
ategories using the approa
h detailed in this paper. Thisapproa
h has been tested in a task involving the re
ognition and translation of utteran
esin the hotel re
eption 
ommuni
ation domain, with a vo
abulary of 683 words in Spanish.Experiments with text input show that using 
ategories signi�
antly redu
es the number ofexamples required for a
hieving good models. In experiments with spee
h input, a 1:97%translation word error rate is a
hieved in real time fa
tor 2.7 in a Personal Computerwithout using spe
ialized hardware. It is worth noting that there is a 
lear tradeo� between
omputing time and a

ura
y. For o�-line operation, a di�erent 
on�guration 
an provideimproved translation performan
e at the 
ost of in
reasing the real time fa
tor (a 1:83%translation word error rate has been a
hieved in real time fa
tor 5.8).Automati
ally learning translation models from examples 
an lead to systems that 
anbe easily modi�ed and adapted to a great variety of tasks and language pairs, providedthat the required 
orpora are available. Therefore this is an approa
h that 
learly is worth
ontinuing to explore. Our 
urrent work 
on
entrates in further redu
ing the numberof examples ne
essary for training the translation models, by reordering the words inthe translations (Vilar et al., 1996) or using new inferen
e algorithms (Vilar, 1998). Weare also exploring te
hniques for automati
 bilingual 
ategorization, and error 
orre
tingte
hniques for dealing with more spontaneous input. Finally, our system is in 
ontinuousdevelopment in order to deal with in
reasing vo
abulary size and to get 
loser to otherstate-of-the-art CSR systems, so that our results 
ould be more fairly 
ompared to thoseof other spoken language translation proje
ts.A
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.Appendix. Transdu
er Learning AlgorithmsIn this appendix, all algorithms des
ribed and referen
ed in Se
tion 2.3 are formally pre-sented. Both learning algorithms, Onward Subsequential Transdu
er Inferen
e Algorithm(OSTIA) and Onward Subsequential Transdu
er Inferen
e Algorithm with Domain andRange (OSTIA-DR), have been stru
tured by means of 
ommon fun
tions, whi
h are �rstintrodu
ed.A �rst fun
tion (Algorithm 1) is used to build a Tree Subsequential Transdu
er (TST),whi
h is a pre�x tree representation for the input strings of a given unambiguous set oftraining samples. In this pre�x a

eptor, ea
h output string is asso
iated to the a

eptingstate of the 
orresponding input one.Algorithm 1. Make TSTInput: T � X� � Y � = 8(x; y); (x0; y0) 2 T; x = x0 ) y = y0Output: � = (X;Y;Q; q0; E; �), a TST for TQ := f�g; q0 := �; E := ;;for all (x; y) = (a1 : : : ajxj; b1 : : : bjyj) 2 T do8i 2 f1; : : : ; jxjg, Q := Q [ fa1 : : : aig;8i 2 f1; : : : ; jxjg, E := E [ f(a1 : : : ai�1; ai; �; a1 : : : ai)g;8i 2 f1; : : : ; jxj � 1g, �(a1 : : : ai) := ;;�(a1 : : : ajxj) := y;end forreturn(�);Then, a se
ond fun
tion (Algorithm 2) obtains an Onward Tree Subsequential Trans-du
er (OTST). Starting from the previous TST, the longest 
ommon pre�xes of the outputstrings are re
ursively moved, level by level, from the leaves toward the root of the tree.Next fun
tion (Algorithm 3) takes an edge of the transdu
er and an output suÆx (ofthe output string of the edge), and moves this suÆx from the edge to its following stateand edges. This operation is used to try mat
hing paths in the transdu
er that 
ould bethe same.The last fun
tion (Algorithm 4) attempts to merge two states of the transdu
er andpaths departing from them. To this end, it re
ursively tests the 
ompatibility of pairedstates and edges. Re
ursion �nishes su

essfully when all mergings are found 
ompatible.
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24 Amengual et al.Algorithm 2. Make OTSTInput: � = (X;Y;Q; q0; E; �) a TST for a given T ; x 2 QOutput: � 0 = (X;Y;Q; q0; E0; �0), an OTST for T� 0 := � ;for all (x; a; �; xa) 2 E0 do� 0 := Make OTST(� 0; xa);z := l
p(fy 2 Y � = (xa; b; y; xab) 2 E0g [ f�0(xa)g);8(xa; b; y; xab) 2 E0, E0 := (E0 � f(xa; b; y; xab)g) [ f(xa; b; z�1y; xab)g;�0(xa) := z�1�0(xa);E0 := (E0 � f(x; a; �; xa)g) [ f(x; a; z; xa)g;end forreturn(� 0);Algorithm 3. Push Ba
kInput: � = (X;Y;Q; q0; E; �); (r; a; y; r0) 2 E; v 2 X� = y = uv; with u 2 X�Output: � 0 = (X;Y;Q; q0; E0; �0)� 0 := � ;8(r0; b; z; r00) 2 E0, E0 := (E0 � f(r0; b; z; r00)g) [ f(r0; b; vz; r00)gif �0(r0) 6= ; then �0(r0) := v�0(r0);E0 := (E0 � f(r; a; y; r0)g) [ f(r; a; yv�1; r0)g;return(� 0);
Algorithm 4. Merge StatesInput: � = (X;Y;Q; q0; E; �); q; r; s 2 QOutput: 
ompatibles 2 ftrue; falseg; � 0 = (X;Y;Q0; q0; E0; �0)� 0 := � ; 
ompatibles := false;if �0(r) = ; or �0(s) = ; or �0(r) = �0(s) thenif �0(r) = ; then �(r) := �(s);for all (s; a; z; s0) 2 E0 doif (r; a; y; r0) 62 E0 thenE0 := (E0 � f(s; a; z; s0)g) [ f(r; a; z; s0)g;else if r0 � q and y 62 Pr(z) then return(false; � 0),u := l
p(fy; zg);� 0 := Push Ba
k(� 0; (r; a; y; r0); u�1y);� 0 := Push Ba
k(� 0; (s; a; z; s0); u�1z);(
ompatibles ; � 0) := Merge States(� 0; q; r0; s0);if not 
ompatibles then return(false; � 0)end ifend forQ0 := Q0 � fsg; 
ompatibles := true;end ifreturn(
ompatibles ; � 0);
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The EuTrans-I Spee
h Translation System 25To guarantee the inferen
e of target subsequential transdu
tions, learning algorithmstry state merging following a lexi
ographi
 order, �, whi
h is obtained from the TST
onstru
tion, sin
e states are named by the input pre�xes leading to them. Given a SST� = (X;Y;Q; q0; E; �) su
h that Q � X�, next fun
tions implement su
h a state ordering:�rst(�) returns r = � 2 Q = 8r0 2 Q; r � r0;last(�) returns r 2 Q = 8r0 2 Q; r0 � r; andnext(�; s), with s 2 Q, returns r 2 Q = 8r0 2 X�; s � r0 � r ! r0 62 Q.The Onward Subsequential Transdu
er Inferen
e Algorithm (OSTIA) (Algorithm 5)infers SSTs using only the translation 
onstraints re
e
ted in the training set.Algorithm 5. OSTIAInput: T � X � Y , single-valued �nite set of samplesOutput: � = (X;Y;Q; q0; E; �), Onward SST 
onsistent with T� := TST (T ); � := OTST (�; �); q := �rst(�);while q � last(�) doq := next(�; q); p := �rst(�); 
ompatibles := false;while not 
ompatibles and p � q do� 0 := � ;8(r; a; w; q) 2 E0, E0 := (E0 � f(r; a; w; q)g) [ f(r; a; w; p)g;(
ompatibles ; � 0) := Merge States(� 0; q; p; q);if 
ompatibles then � := � 0;p := next(�; p);end whileend whileThe Onward Subsequential Transdu
er Inferen
e Algorithm with Domain and Range(OSTIA-DR) (Algorithm 6) infers SSTs using both synta
ti
 and translation 
onstraints.Algorithm 6. OSTIA-DRInput: T � X � Y , single-valued �nite set of samples;D = (QD; X; ÆD; d0; FD), a DFA representing the Domain language;R = (QR; Y; ÆR; r0; FR), a DFA representing the Range language;Output: � = (X;Y;Q; q0; E; �), Onward SST 
onsistent with T , D and R� := TST (T ); � := OTST (�); q := �rst(�);while q � last(�) doq := next(�; q); p := �rst(�); 
ompatibles := false;while not 
ompatibles and p � q doLet (q0; xp; yp; p) 2 ��(q0; p) and (q0; xq; yq; q) 2 �� (q0; q);if ÆD(d0; xp) = ÆD(d0; xq) and ÆR(r0; yp) = ÆR(r0; yq) then� 0 := � ;8(r; a;w; q) 2 E0, E0 := (E0 � f(r; a; w; q)g) [ f(r; a;w; p)g;(
ompatibles ; � 0) := Merge States(� 0; q; p; q);if 
ompatibles then � := � 0;end ifp := next(�; p);end whileend while
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